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THE BOUNDARY BEHAVIOUR OF HADAMARD

LACUNARY SERIES

TAKAFUMI MURAI

§ 1. Introduction

A convergent power series f(z) in the open unit disk D is called
Hadamard lacunary if it is expressed as follows:

( 1) f(z) = Σ ckz
n\ nkjnk > q (k > 1) for some q > 1 .

We shall discuss the boundary behaviour of Hadamard lacunary series.
For a subset X of Z>, we put b{X) = X Π 3D, where X is the closure of
X and 3D the boundary of D. We say that an analytic function g(z) in
D has an extended complex number ω as an asymptotic value if there
exists a path γ c D with b(γ) Φ 0 such that limlz]_1>zer g(z) = ω. We say
that g(z) has an asymptotic value at aedD if there exists a path γ c D
with b(γ) = {a} such that limz^a>z6ΐ g(z) exists. The Maclane class si is
the totality of analytic functions g(z) in D such that g(z) has asymptotic
values at a dense subset of 3D.

In [5], G. R. Maclane proved that a power series f(z) given by (1) with
g>3 belongs to si. It is conjectured that Hadamard lacunary series belong
to si. In [1], J. M. Anderson noted that Maclane's result is deduced from
a result of K. G. Binmore in [2], In [3], K. G. Binmore and R. Hornblower
gave an another partial answer to this question. We shall answer this
question. The main purpose of this paper is to show

THEOREM. Let f(z) be an Hadamard lacunary series given by (1) with
limsupfc^ \ck\ = co. Then f(z) has an asymptotic value oo at every point
of 3D.

It is known that the Hadamard lacunary series in our theorem has no
finite asymptotic value ([2]), and hence oo is a unique asymptotic value.
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If an Hadamard lacunary series f(z) given by (1) satisfies

< oo, then Paley's theorem ([11]) yields fes/. Hence we have, by our

theorem,

COROLLARY. Hadamard lacunary series belong to sέ.

As application of our method, we shall note that Property (A) (which

will be stated later) deduces Binmore's result in [2] and Sons's result on

annular functions.

§2. Fundamental tools

LEMMA 1 ([4]). Let p be a positive integer and g(ζ) an analytic func-

tion in D(w, p) = {ζ; |ζ - w\< p] such that \g{p)(w)\ > yx and \g{p)(ζ)\ < y2

(ζ e D(w, p)). Then there exists 0 < ε < p such that

for all ζ e S(w, ε) = {z; \z — w\ = ε}, where η(p) is a constant depending only

on p.

In this lemma, we may assume that (̂1) > η{2) > consider

min {η(j); 1 <j <p} (p = 1, 2, •) if necessary.

LEMMA 2 ([11]). Given q > 1, there exist two constants 0 < A < 1 and

B > 1 depending only on q with the following property: For every lacunary

polynomial P(t) = 2]S-i ake
ίmkt, mk+ίlmk > q and every interval I in [0, 2;r)

of length > B/mu there exists toel such that Re P(t0) > A 2]"«i \ak\.

LEMMA 3. Let

( 2 ) Q(ζ) = Σ ak e x p (m f cζ), mkjmk >q>l(k>l).
k l

Then, for every complex number w and 1 < d < n, there exists an integer

£ = £(Q, w, d) with 0 < i < n — 1 such that

( 3) \Q(£)(w)\ > Cm£

d\ad\ exp (md Re w) ,

where C = 1/2- Π?-i {(1 - q~k)l(l + q~k)}2.

Proof. This lemma is analogous to Lemma 8 in [6]. The following

elegant proof was communicated by W. H. J. Fuchs. Without loss of

generality, we may assume ad Φ 0. Let us consider an equation:
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( 4 )

••• 1

- - - mn

Then we have, with Δ = Uk<Λmj —

1 . . . 1

\χΔ = det

, 1 Id-l Jn

IΔ

<Σ det

1

n

L

W - l

L ]

w5"Ί

(omit the dth column and the £tu row from
the determinant in (4))

= Σ \<r*,t Π (m, - mk))\yAIΔ = Π \mk -

where σdjs are defined by Πi^^n;*^(« + mk) = σ^^7

+ σdtί. If |y,| < Cmd-
ι\xd\ (̂  = 1, . . . , n), then

+ +

< Π \m* -

= Π {(mk 4

< Π id + - q-k)fC\xd\ = |xa|/2 ,

and hence xd = 0.
Now we put yt = Q«"l)(w) (1 < I <ή) in (4). Then xt = α, exp (m,^)

(1 < ^ < n). If (3) does not hold for all £ with 0 < I <n - 1, then xd = 0,
that is, α<z = 0. This is a contradiction. Hence (3) holds for some £ with
0 < i < n - 1.

§ 3. Proof of Theorem

In this section, we shall show that our theorem follows from two
properties, which will be stated later. Let fiz) be an Hadamard lacunary
series given by (1) with limsup,^ \ck\ = ex?. Our purpose is to construct
a path γ C D with b(γ) = {a} such that f(z) has co as an asymptotic value
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along with γ. Without loss of generality, we may assume a = 1. Adding

terms with coefficient 0 if necessary, we may assume that q < nk+jnk < q2

(k > 1).
To construct such an arc, we deal with an analytic function

{ 5 ) F(ζ) = f{eζ) = f]ck exp (nkζ)

in a domain U = {ζ; Re ζ < 0} and shall construct a path Γ c U with b{Γ)

= {0} such that F(ζ) has oo as an asymptotic value along with Γ.

Now we introduce some notation. Throughout the paper, A, B and

C are the constants in Lemmas 2 and 3. We put θ = A/8. For every

— 1 < r < 0, we put

Mr = max {\ck\ exp (nkr); k > 1} (the maximum term)

μr = min {k; \ck\ exp(nkr) — Mr) (the smallest central index)

vτ = max {k; \ck\ exp (nkr) = Mr} (the largest central index)

αr = r — 0/τι̂  (the smallest dominant point)

βr = r — θ/nVr (the largest dominant point)

I(t, r) = {x + it; αr < x < βr) (\t\ < π) .

Then limr_o Mr = limr^0 μr = limr_0 vr = oo and lim^0 αr = Hm r.o βr = 0. We

denote by (OS-i (ym+i > O the totality of the largest central indexes.

Since vr is increasing and continuous on the right, we can find rm, sm

such that U{r; vr = vm) = [rm, sm) ( n > 1). We have sm = rm + 1 (m > 1).

Now we prove μSm = vm. Since μr is continuous on the left, we have

μSm = limr Umμr < limr t Sm vr = ι̂ m. Let ^ be the (finite) set of all integers

with |cfc|exp(nfcsm) = MSm (k > 1). Then the smallest integer in 0t is μSm.

We have

(7) ι ; ω < ψ ; ω {ke^kΦμ*),

where μ* = μSm and ψfc(r) = |ck\ exp (nfcr). Hence |cμ*\ exp (^*r) >\ck\ exp(nfcr)

(j«* < k < vm+1) for all r (r < sm) sufficiently near to sm. Since vr < vm+1

(r < sm), this signifies vr < μSm for all r (r < sm) sufficiently near to sm.

Thus vm = limr Umvr< μSm < vm. Consequently, μSm = μrm+1 = vm. By these

facts, we have U{j8r; - 1 :£ r < 0, ι;r = vm} = [J8rm, αrm+1) (w > 1).

For every — 1 <£ r < 0, we denote by fr the largest integer in a set

of m's (m > 1) with Σ f c < m |cfc| <,A/2'Mr; if the set is empty, we put £r = 0.

Then limr_ofr = °° We need the following two properties.
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(A) For every w with βrm < Re w < arm+1 (for some m), there exists a

positive number εw with 0 < εw < l/nVm such that |F(ζ)| > DMrm (ζ e S(w, ej),

where D is a constant depending only on q.

(B) For every m > 2, there exist a point ίm with | tm \ < 25/nf (f = f rm)

and a corresponding Jordan curve Γm with diam (Γm) = (the diameter of

ΓJ < 3lnVm_t such that <ΓW> => I(*Λ, rm) and \F(ζ)\ > EMrm (ζ e ΓJ, where

(JΓmy is the domain bounded by Γm and E a constant depending only on

q-

We postpone the proof of (A) and (B) to the sections 4 and 5. From

now, we construct a required path Γ assuming (A) and (B).

•* TO+l

<Xr βrm
0

Fig.

Note that |j8ri, 0) = US=i lβrm, «rm+1] U [αrm+1, j8Γw+J. Let Jm be the seg-

ment which connects βTm + iίm and arm+1 + iίOT+1 (m > 1). The property (A)

shows that, for every weJm, there exists 0 < εw < l/nVm such that |F(ζ)|

> DMTm (ζ e S(ίί;, O ) This shows that there exists a Jordan curve fm
with κm — max {the distance of ζ and Jm; ζe γm} < \\nVm such that (γm} z>

J w and |F(ζ)| > DM r m (ζ e r J . Put Γ* = U ϊ - i (̂ m U u). Since limm_^ <m

= 0, we have 6(Γ*) a 0. Since Σ j = m diam {Γ3) + Σ ; = w Λ:, = o(l) (m -> oo),

we have b(Γ*) = {0}. Since Γ* is arcwise connected, we can choose a

path Γ a Γ* with 6(Γ) = {0}. Then F(ζ) has oo as an asymptotic value

along with Γ.

§4. Proof of (A)

In this section, we prove (A). Let w satisfy βrm < Re w < arm+1. Put

r = Re w + θ\nVn. Then rm<r<rm+1 and Mr = |c y j exp (n,mr).

LEMMA 4. TΛere exisίs α positive integer p = p(F, M;) Lt iί/i 1 <p < N

(N: a constant depending only on q) such that

( 8 )
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Proof. Let us write

F\ζ) = Σ nkck exp (nkζ) = Σ + Σ + Σ
k = l k<vm-n vm-n<,k<,vm+n k>vm+n

= Φ(ζ) + Q(Q + Φ(ζ),

where n is determined later. Lemma 3 shows that there exists £ = £(ή)

with 0 < £ < 2n such that

( 9 ) \Q«Kw)\ > CntϊlcJ exp {nVm(r - θ/nj} > C\e-Mrn^ .

We have

(10) ψι\w)\<Mr Σ nl+ί = MX+J Σ (nkinJM

k<vm-n k<vm-n

J Σ
j=n+l

Note that x2n+1e~θx is decreasing in [(2n + ϊ)/θ, oo). We choose an integer

No = iVo(̂ ) so that qj > (2j + l)/θ (j > N0(θ)). Let n > No. Then

\ ( ) \ Σ
k>vm+n

<Mr(11) *>»

= Mrni^τn(θ), say) .
j=n + l

Now we choose n ( > No) so that l/qn(q - 1) < C/4β, rn(0) < C/4e and put

p = p(F, w) = £(ή) + 1, N=2n + 1. Then (8) follows from (9), (10) and

(11). Q.E.D.

LEMMA 5. Let p — p(F, w) be the integer in Lemma 4. Then, for any

ζ e D(w, Il2nvj,

where Do = {1 + (2lθYN(2N)l}ql(q - 1).

Proof. Note that e~θx/2 < (2lθ)2p(2p)lχ-2p (x > 0). Since Re ζ < r -

θl2nVm, we have

oo

I exp {nk(r — θ/2nVm)}

rl+ Σ
,k = l k = vm +
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Σ q-*> < DoMrn*m . Q.E.D.
j = 0

Now we apply Lemma 1 to g(ζ) = F(ζ) and D(w, θ/2nvj. There exists

0 < ε < θj2nVm (< I / O such that, for any ζ e S(w;, e),

\F(ζ) - F(w)\ >

(13) = MpXθl2y(CI2e)*+ιDϊ*}Mr

> {v(N)(θl2)N(Cl2e)N+ιDoN}Mrm (= 3DMrm, say) .

If \F(w)\ < 2DMrm, then |F(ζ)| > DMrm (ζeS(w,ε)). Hence εw = ε is a

required number. If \F(w)\ > 2DMrm, we choose 0 < εw < l/ftVm so that

|F(ζ)| > DMΐm (ζ e S(w, εj). This completes the proof of (A).

§ 5. Proof of (B)

In this section, we prove (B). For the sake of simplicity, we write,

for a polynomial P(t) = Σ^ = 1 αfee
ίm&ί, ||P[| = ΣίUlαfcl> &(P) = ( t h e length of

P) = n, s.e. P = (the smallest exponent in P) = m1? I.e. P = (the largest

exponent in P) = mn.

Given m > 2, our purpose is to define a point ίw and a corresponding

Jordan curve P m having the required properties. We write simply r — rm,

ξ = ξm* μ = j"rm(= ^m-i), ^ = m̂ We need two constants ^, A depending

only on q which are defined as follows.

Let λ be a positive integer such that Bl{θqλ~ι(q — 1)} < A/32 and A a

positive integer such that (A/2 + l)jA < A/4.

Using λ, A, we define polynomials Jo, J1? J1? J2> Λ, * with (̂J-,) <

2^(^ - 1), £(dj) = λ (j> 1). L e t Δ*(t) = Σ J , , cfc exp {nk(r + it)}, Δf(t) =

Σi«+w-i)<*^+wc*eχP{7l*(Γ +^)} (̂  > 1) . Choosing a sequence (^)J==i of

positive integers so that ||J^.|| = min{|| Jf||; A(j — 1) < i < Aj}, we put 20

= Δt + Σi<n 4*, A = Λ* , 4 = Σij<i<ij+1 Δ* (j > 1), where Δ, = 0 if ί i,1

= -^ + 1. Thus the required polynomials are defined. We put hj = s.e. Δj

(j > 1), i/, = I.e. Δj (j > 0), where hj = Hj = I.e. J, if J, = 0. Denoting

by a the smallest non-negative integer such that nv < Hj (j > 0), we put

So = 4» Sj = Σί=o Δt + ΣLi Δ£ (1 < j < σ). Then s.e. So = ne, I.e. S, = ίί,

(0 < j < σ). The required point tm is defined by

LEMMA 6. There exists tm with \tm\< 2B/nξ such that \Sj(tm)\ > A/4 ||Sj\\
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Proof. Using Lemma 2, we define inductively σ + 1 points (w^= 0 in

the following manner: Let uQ be a point with \uo\ < B/nξ such that Re S0(u0)

> A| |So | | and u5 a point with \us — u5^\ < B\h5 such that Re 2£uj) > A\\3j\\

(1 < j < σ). We put tm = uσ and prove that this is a required point.

We have

(14) ' »
B/ Σ (Hjlh£) < Bl{q>-\q - 1)H3) < A/(2iJ,) (0 < < σ) .

In particular, | ί , | < |uo | + AI(2H0) < B/ns + A/(2raί) < 2B/ra{. By (14), we

have

Re Δltm) > Re JJμ,) - | u} - tm 11| Δ'j ||

>A\\2}\\- (AI2HJ)HJp,|| > A/2 | | ϊ , | | (1 < < σ)

and ReS 0 (ίJ ^ Re So(«o) - |w0 - ίM|ίfo||Soll > A/2 | |S0 | | . Hence the required

inequality holds for j = 0. Let 1 < j < σ. Then (15) gives

I > Re Sj(tm) > Re S0(tJ + ± Re J/im) - ± yt\\
ei £i

> {A/2. (1 - I/Λ) - IIΛ} IIS, II > A/4. || S> \\ . Q.E.D.

To define the required Jordan curve Γm9 we assume, for a while,

σ > 2 and consider intervals [r - 0/n,, r - θ/H0]9 [r - Θ/Hj^, r -

(1 < j < σ - 1), [r - θjHσ_u r - θlnv]. We prepare

LEMMA 7. If xe[r — ΘIHj_19 r — 0/ίf,] for some 1 < < σ — 1,

(16) |F(x + *OI>A/16.Mr-T,,

α Λβre Γ, = ||Jj\\ + \\2j\\ + \\4j+1\\.

Proof Writing

F(x + itm) = Σ cfc exp {nk(x + itm)}

= Σ+ Σ + Σ + Σ .
*<{ n(<.nt<,Hj-i Hj-i<nic<hj+ι ntZhj + i

we denote by Sj.lι3: the second term. Then
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On the other hand, the sum of absolute values of other terms is dominated

by

Σ 1

Hence we

c»l + {114,11 +

< A/32 .M; H

have (16).

IIΛII -
h T,-\

f ιi4,+,ιι:
r l/W-Xg-i)}

Σ + j exp(-d

Mr < A/16-Mr^

Q.E.D

For the definition of Γm9 we choose, for every x e [<xr> βr]> & number

0 < εx < l/nμ such that |F(ζ)| > EMr (ζ e S(x + ίtm, εx)) (E: some constant).

Let x e [r - θjH}.u r - Θ/Hj] (l<j<σ- 1). We must distinguish the

following two cases:

(a) T, <A/32 M r , (b) Tό >A/32 M r .

In the case (a), we have \F(x + ίtm)\ > A/32 M r and hence we can choose

0 < ε, < 1/n, so that |F(ζ)| > EMr (C € S(x + itm, εx)) with E1 = A/64. In

the case (b), the choice of εx will be analogous as in the proof of (A).

Since Tj > A/32-Mr, £(dj + Δs + Jy + 1) < 2λΛf there exists d with H^,

< nd < hj+1 such that \cd\exp(ndr) > AI(64λΛ)'Mr. Hence \cd\exp(ndx) >

\cd\ exp (ndr - θnJHj^) > A/{64λΛ exp (θqiU)} Mr ( = 3ΐJ2Mr, say). First we

prove that there exists a positive integer pr — p\F, x) with 1 < p' < N'

(iV7: a constant depending only on q) such that

(17) \F^(x + itm)\

Let us write

Σ + Σί 0 = Σ + Σ +

Q(ζ) + Φ(ζ),

where n' will be determined later; we choose, for a while, so that n' >

N'Q (N'Q = NQ(θq~iU): the function given in the proof of Lemma 4). Lemma 3

shows that there exists ί — £(nf) with 0 < ί < 2nf such that

(18) I Q«>(x + itn) I > aCE2Mrni+1.

We have

(19) \φM(x + ίtm)\ < {llqn'(q - l)}Mrn^ ( see (10)).

Since x < r - Θ/Hj = r — {θnd\Ή^)\nd < r - (0q'm)lnd, we have
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(20) <Mrn
e

d

+1Σ
k>d+n

Jc>d+n'

Σ (nJn

< Mrn^τn,(θq-UΛ) ( see (11)) .

Choosing n'(>Nζ) so that \\qn' (q - 1) < CE2, τn,(θq-iXΛ) < CE2, we put

p' = j/(F, x) = £(nf) + 1, N' = 2ri + 1. Then (17) follows from (18), (19)

and (20).

Next we prove

(21) |F»'>(ζ)| < EMM (C € D(x + itm, Θ/2H,)) ,

where E3 = {1 + (2lθfN'(2N')\ qiN'u}ql(q - 1).

Since Re ζ < x + θβH, < r - Θ\2Ή.S, we have

ΣMr Σ nf exp ( - θnJ2Hj) = Mr\Σ +
k l U = l

K/n-)1" + (2/0FW)! Σ

ig'' - 1) + (2lθy»'(2Py. (HJn^ Σ
fc=d+

\W qip'λΛ}qp'l(qp'

Now we apply Lemma 1 to #(ζ) = F(ζ) and D(x + itm, ΘI2H3). There

exists 0 < ε < θj2Hj such that, for any ζ e S(x + ίtm, ε),

F(x + itm)\ >

> {η{Nf)(θl2γf(CE2)
N>^EςNt}Mr ( = 3£J4Mr, say) .

If |F(x + iίw)] < 2S4Mr, we put εx = ε. Then 0 < εx < θ/2Hj < \\nμ and

|F(ζ)| > EMr (ζ € S(x + itm, ex)). If |F(x + iOI > 2EMr, we choose 0 < εx

< \\nμ so that |F(C)| > EMr (ζ € S(x + iίm, εj).

Thus we have chosen, for every xe [r — Θ/Hθ9 r — θ\Ή.σ_^ a number

0 < ε, < l/nμ such that \F(ζ)\ > min {El9 EA}Mr (ζ e S(x + itm, ex)).

If x 6 [r — θjHσ.u r — θjnv], we can use the method given in (b), since

\cv\ exp (nux) > Mr exp (— θnJHσ-ϊ) > exp (— θqUΛ)Mr. Analogously, we can

use the method for x e [r — θjnμi r — Θ/HQ]. Consequently, in the case a > 2,

we can choose, for every x e [ar, βr], a number 0 < ê  < l/nμ satisfying the

required inequality with some constant.

In the case σ = 0, 1 also, we can use the method given in (b). Thus
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in any case, we can choose, for every xe [ar, βr], a number 0 < εx < \\nμ

such that |F(ζ)| > EMr (ζ e S(x + ίtm, εx)) (E: some constant).

Now we choose a finite covering D(xj + ίtm, εx) (j = 1, , ύ) of I(tm, r)

and put Γm = 3{UUD(XJ + itn,e*)} Then we have d i a m ( Γ J < 3/nμ =

3/nVm_l9 according to diam (I(tmf r)) = θjnμ — θjnv < \\nμ and 0 < εx. < \\nμ

0" = 1, , u). We have also \F(ζ)\ > EMr (ζ e Γ J . This completes the

proof of (B).

§ 6. Application

APPLICATION 8. In [2], K. G. Binmore showed that an Hadamard

lacunary series f(z) given by (1) has no finite asymptotic value if

limsupfĉ oo \ck\ > 0. We note that the discussion in the proof of (A) ( in

particular (13),) gives a new proof of this fact. For the sake of simplicity,

we work only with limsup*.^ \ck\ = oo.

Let f be a path in D with b(f) Φ 0. Without loss of generality, we

may assume b(f) 3 1. Then there exists a path Γ in U with b(f) B 0 and

c(Γ) = f, where c is the mapping defined by (̂ζ) = eζ. It is sufficient

to prove that F(ζ) has no finite asymptotic value along with Γ. Let

(wm)Z=i be a sequence in Γ with Re wm = βrm (m > 1). Then (13) shows

that

(22) \F(ζ) - F(wm)\ > 3DMrm (ζ e S(wm, εwj) .

Let u/m be a point in f Π S(wm, εWm) (m > 1). Then (22) holds for ζ = u/m.

Since lim.̂ 0̂0 Mrm = co, F{ζ) has no finite asymptotic value along with Γ.

APPLICATION 9. We say that an analytic function g(z) in D is annular

if there exists a sequence (γt)m=\ of Jordan curves in D such that <f*> a 0

(m > 1) and lim^oo min {|g(2)|; z e γ%} = oo. We say that g(z) is strongly

annular if we can choose (γ*)m=\ so that /*'s are circles with center 0 in

addition to the above conditions. L. R. Sons showed that an Hadamard

lacunary series f(z) given by (1) is annular if and only if limsup k^ \ck\

= oo. The "only if" part is immediately seen; if limsup^oo \ck\ < oo, then

f(z) is normal ([8]) and hence f(z) is not annular ([9] p. 267). Let us show

that the "if" part is deduced from (A). Put Im = {ζ; Re ζ = βrm, 0 < Im ζ

< 2π] (m > 1). Given m > 1, (A) shows that, for every w e Im, there exists

0 < εw < \\nVm such that |F(ζ)| > DMrm (ζ € S(w, ej) . We choose a finite
covering D(Wj,εWj) (j = 1, , ύ) of Im and put Vm = c(\J]=1D(wj,εWj)).

Then Vm z> S(0, βrj. Let (γt)Z,=i be the sequence defined by γl = 3Vm Π
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Dφ, βrm\ Then <r*> 9 θ ( m > l ) and limm_min{| f(z)\; ^e r*} = oo. Hence
f(z) is annular.

Let us remark that, in Sons's result, "annular" cannot be replaced
by "strongly annular". This is a consequence of the following proposition:
Let φ(z) = Σfc=i bkz

Xk be an analytic function in D such that, with sm =
& 1 I W T 2 (m>l), limm_6m/sm = 0 and liminf^ log^+ 1/log^ > 1.
Then φ(z) is not strongly annular.

The proof is as follows. Nothing is to be proved if lim.m_toosm < 00.
Let limm_toosm = 00. Then the method given in [7] (Lemma 38) yields
meas {t; \φ(peu)\ < 2ω} > δ(ωldp)

2 (p0 < p < 1) for some 0<p0<l, where
"meas" signifies the 1-dimensional Lebesgue measure,

i/2

and δ an absolute constant. Thus min {|̂ (2)|; \z\ = p} < 2ω (p0 < p < 1),
and hence limsup^ min{|^(z)|; \z\ = p} < 2ω. This shows that φ{z) is not
strongly annular.
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