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THE BOUNDARY BEHAVIOUR OF HADAMARD
LACUNARY SERIES

TAKAFUMI MURAI

§1. Introduction

A convergent power series f(z) in the open unit disk D is called
Hadamard lacunary if it is expressed as follows:

(1) f@ = 3 cz™ Menfn,>q (k>1) for some ¢ > 1.
k=1

We shall discuss the boundary behaviour of Hadamard lacunary series.
For a subset X of D, we put b(X) = X N D, where X is the closure of
X and oD the boundary of D. We say that an analytic function g(z) in
D has an extended complex number o as an asymptotic value if there
exists a path y C D with b(y) # 0 such that lim .., 8(2) = 0. We say
that g(2) has an asymptotic value at a € 9D if there exists a path y C D
with b(y) = {a} such that lim,_, .., g(2) exists. The Maclane class &/ is
the totality of analytic functions g(2) in D such that g(z) has asymptotic
values at a dense subset of aD.

In [5], G. R. Maclane proved that a power series f(2) given by (1) with
g>3 belongs to 7. It is conjectured that Hadamard lacunary series belong
to /. In [1], J. M. Anderson noted that Maclane’s result is deduced from
a result of K. G. Binmore in [2]. In [3], K. G. Binmore and R. Hornblower
gave an another partial answer to this question. We shall answer this
question. The main purpose of this paper is to show

THEOREM. Let f(2) be an Hadamard lacunary series given by (1) with
limsup,_.., |c,] = . Then f(2) has an asymptotic value co at every point
of oD.

It is known that the Hadamard lacunary series in our theorem has no
finite asymptotic value ([2]), and hence oo is a unique asymptotic value.

Received April 16, 1981.
Revised October 5, 1981.

65



66 TAKAFUMI MURAI

If an Hadamard lacunary series f(z) given by (1) satisfies limsup,._..|c;|
< oo, then Paley’s theorem ([11]) yields fe.«/. Hence we have, by our
theorem,

CoroLLARY. Hadamard lacunary series belong to <.

As application of our method, we shall note that Property (A) (which
will be stated later) deduces Binmore’s result in [2] and Sons’s result on
annular functions.

§2. Fundamental tools

LemMA 1 ([4]). Let p be a positive integer and g(£) an analytic func-
tion in D(w, p) = {C; | — w| < p} such that |g§P(w)| >y, and |g®(Q)| < ¥,
(e D(w, p)). Then there exists 0 < e < p such that

|8(©) — g(w)| > y(p)p"y?*ty;?

for all e S(w,e) = {z;|z2 — w| = ¢}, where 5(p) is a constant depending only
on p.

In this lemma, we may assume that »(1) >#»(2) > ---; consider
min {y(j); 1 <j<p} (p=1,2, ) if necessary.

LemmA 2 ([11]). Given q > 1, there exist two constants 0 < A < 1 and
B > 1 depending only on q with the following property: For every lacunary
polynomial P(t) = > %, a.e'™, m,,,/m, > q and every interval I in [0, 2r)
of length > B[m,, there exists t,e I such that Re P(t,) > A >, |a,l.

LEmmA 3. Let

(2) QE) = kziak exp (m,{), Mea/m,>q>1((k>1).

Then, for every complex number w and 1 < d < n, there exists an integer
4= 4@, w,d) with 0 < ¢{ < n— 1 such that

(3) |Q@“(w)| = Cmg|a,| exp (m, Re w) ,
where C = 1/2-[[z. {1 — ¢ ®/Q + g 9}~

Proof. This lemma is analogous to Lemma 8 in [6]. The following
elegant proof was communicated by W. H.dJ. Fuchs. Without loss of
generality, we may assume a, = 0. Let us consider an equation:
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1 -1
m m o i
(4) ‘ " =1
I X, Yn
n

Then we have, with 4 = [],<,; (m; — m,),

1 -1 9y 1 o1
|2g| = [det | - S S |2
mit e mptiy, mgsy - mRt
1 .01
< 2| det | l|3|/4
m’l“l e m:“l

(omit the d™ column and the ¢ row from
the determinant in (4))

=3 {owe 1, (mo— molidid = [T Im, — mo|* o0l

3
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where ¢,,/’s are defined by [[icicniea (X + M) = 64,8 + 04, X" 2 4 - -

+ o, Iy < Cmitxy| (4 =1, -, n), then

n
x| < [T |my — my|™ 3 04,m5*Clx,|
k#a =1

= [1{0n, + moflm, — m,}Clx,|

< T+ @79/ — ¢ 9FClx = |x.)j2

and hence x; = 0.

Now we put y, = @“ "(w) (1 < 4 <n) in (4). Then x, = a, exp (mw)
(1< ¢<n). If(3) doesnot hold for all £ with 0 < ¢ <n — 1, then x, =0,
that is, a, = 0. This is a contradiction. Hence (8) holds for some ¢ with

0<i4<n—1.

§3. Proof of Theorem

In this section, we shall show that our theorem follows from two
properties, which will be stated later. Let f(2) be an Hadamard lacunary
series given by (1) with limsup,._..|c,] = c©. QOur purpose is to construct
a path y © D with b(y) = {a} such that f(2) has oo as an asymptotic value
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along with y. Without loss of generality, we may assume ¢ = 1. Adding
terms with coefficient 0 if necessary, we may assume that q < n,.,/n, < ¢

(k>1).
To construct such an arc, we deal with an analytic function

(5) F(©) = f(e) = 3 c. exp (m.0)

in a domain U = {{; Re { < 0} and shall construct a path I" ¢ U with &(")
= {0} such that F({) has co as an asymptotic value along with I'.

Now we introduce some notation. Throughout the paper, A, B and
C are the constants in Lemmas 2 and 3. We put § = A/8. For every

—1<r<0, we put

M, = max {|c,|exp (n,r); k > 1} (the maximum term)

o, = min {&; |c,| exp (n,r) = M,} (the smallest central index)
v, = max {k; |c,| exp (n,r) = M,} (the largest central index)
a,=r—0/n, (the smallest dominant point)

B.=r—0n, (the largest dominant point)
I, r)={x+it;a, < x < B} (t| < n).

(6)

Then lim,_, M, = lim, , ¢, = lim,_, v, = o0 and lim, ,, @, = lim,_, B, = 0. We
denote by (Vn)n-1 (ms: > vn) the totality of the largest central indexes.
Since v, is increasing and continuous on the right, we can find r,, s,
such that U{r;v, = v,} = [rn,sn) (m >1). We have s, =r,,, (m>1).

Now we prove p,, = v,. Since g, is continuous on the left, we have
Yo, = lim, . g, < lim,,, v, = v,. Let Z be the (finite) set of all integers
with |c.|exp (n:8,) = M,, (R >1). Then the smallest integer in Z is p,,.
We have

(7) Vilsn) < Vilsn)  (ReZ R+ p¥),

where p* = p,, and ¥, (r) = |c,|exp (n,r). Hence |c,.|exp (n,.r) > |c,| exp (n.r)
(w* < k<Lvy,,,) for all r (r < s,) sufficiently near to s,. Since v, <v,,,
(r < s,), this signifies v, < g, for all r (r < s,) sufficiently near to s,,.
Thus v,, = lim,,,, v, < g, <v.. Consequently, g, = g,.., = v,: By these
facts, we have U{8,; —1<r <0, v, =v,} = [y ¥rn,,) (m > 1).

For every — 1 < r <0, we denote by &, the largest integer in a set
of m’s (m > 1) with ... |ci] < A/2-M,; if the set is empty, we put &, = 0.
Then lim,_, &, = . We need the following two properties.
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(A) For every w with 5,, < Rew < «,,,, (for some m), there exists a
positive number ¢, with 0 <e, < 1/n,, such that |F({)|> DM, (e S(w,e,)),
where D is a constant depending only on q.

(B) For every m > 2, there exist a point ¢, with |¢,| < 2B/n. (§ =&,,)
and a corresponding Jordan curve I',, with diam (I",) = (the diameter of
r,) <3/n,,_, such that <I",> D I(¢,, r,) and |F()| > EM,, (¢ I,), where
{I',> is the domain bounded by I', and E a constant depending only on
q.

We postpone the proof of (A) and (B) to the sections 4 and 5. From
now, we construct a required path I assuming (A) and (B).

r,
Jm‘ Fm+1 itm

itm+1

Frm ﬁfm (L2 ABTm+1 0
Fig.

Note that [8,,, 0) = Up-1 [Brs @ d Ul s Brnide Let o, be the seg-
ment which connects 8, + it,, and «,,,, + it,., (m > 1). The property (A)
shows that, for every w e dJ,, there exists 0 <e¢, < 1/n,, such that |F({)]
> DM, (eS(w,e,). This shows that there exists a Jordan curve 7,
with &, = max {the distance of { and J,; {€er,} < 1/n,, such that <{7,> D
J, and |F(@)| > DM, Cern). Put I'* = U, (I U 1n). Since lim, .. ¢,
=0, we have b(I'*)50. Since > 7., diam (I";) + > 5., &; = o(1) (m — o),
we have b(I'*) = {0}. Since I'* is arcwise connected, we can choose a
path I' € I'* with b(I") = {0}. Then F({) has c as an asymptotic value
along with I.

§4. Proof of (A)

In this section, we prove (A). Let w satisfy 8,, < Rew < «,,,,. Put
r=Rew+6/n,. Thenr,<r<r,,, and M, =|c, |exp (n,,r).

LemMA 4. There exists a positive integer p = p(F, w) with 1< p< N
(N: a constant depending only on q) such that

(8) |[F®P(w)| > C|2e-M,nz, .
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Proof. Let us write

F'@©) = ,g nic, exp (m,L) = Z_n + sm-nESsm+n  KSvmtn
=40 + Q) + 20),

where n is determined later. Lemma 3 shows that there exists £ = 4(n)
with 0 < ¢ < 2n such that

(9) |Q“(w)| > Cni'lc,,| exp {n, (r — 6/n,)} > Cle-M,ni:".

We have

(10) ¢V (w)| < M, Z nt = Mnlt > (n/n,,)*!
<vm-n k<vm—-7n

< Ml 3 g < {lgg — DIMniS
j=n+1

Note that x***'e~’" is decreasing in [(2n + 1)/, ©). We choose an integer
N, = Ny@) so that ¢’ > (2j + 1)/6 (j > Ny@)). Let n > N,. Then

129w)l < 20 nielexp {n(r — 6/n,,)}
E>vm+n

<M, > ni'exp(—6nyn,,)
(11) k>vm+n

< Mm‘+1 Z (ny/n,, )" exp (— 6n,/n.,)

Svm+n

< Mt 3 @ exp (— 0g°) (= M,ni'z,(6), say) .

j=n+1

Now we choose n (> N,) so that 1/q"(qg — 1) < Clde, 7,(6) < C/4e and put
p=pF,w)=4¢n)+1, N=2n+ 1. Then (8) follows from (9), (10) and
1. Q.E.D.

LemMA 5. Let p = p(F, w) be the integer in Lemma 4. Then, for any
¢ € D(w, 1/2n,,),

(12) |[F®(Q)| < DM,n?, ,
where D, = {1 + (2/6)**(2N)"}q/(q — D).
Proof. Note that e ’*/* < (2/6)**(2p)!x~*? (x > 0). Since Re{ <r —

6/2n, , we have

IFO@Q)| < 2 nf|c,| exp {n,(r — 0/2n,,)}

IA

M, 3" ntexp (— 6n,/2n,,) = Mr{ﬁ + }
k=1 k=um+1
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< M L5 uin, ) + @IOEP)! 3 (ufn) (i |
< M {1+ @O"@p)} 3 a7 < DiMon, . QED.

Now we apply Lemma 1 to g(¢) = F({) and D(w, 6/2n,,). There exists
0<e<6/2n,, (<1/n,) such that, for any ¢ e S(w, ¢),

|F(©Q) — F(w)| = n(p)6/2n,,)"(C|2e- M,n%,)** (D,M,n},)""
(13) = {n(p)(0/2)*(C|2¢)**' Dy "} M,
> {n(N)(©0/2)"(C|2¢)" "' D; "}M,,, (= 3DM,,, say) .

If |F(w)| < 2DM,,, then |F()| > DM,, (eS(w,¢)). Hence ¢, =c¢ is a
required number. If |F(w)| > 2DM,,, we choose 0 <e, < 1/n,, so that
|F()| > DM, (e S(w,e,)). This completes the proof of (A).

§5. Proof of (B)

In this section, we prove (B). For the sake of simplicity, we write,
for a polynomial P(f) = > 7., a.,e'™, || P|| = > r.,|a.l, 4(P) = (the length of
P) = n, s.e. P = (the smallest exponent in P) = m,, l.e. P = (the largest
exponent in P) = m,,.

Given m > 2, our purpose is to define a point £, and a corresponding
Jordan curve I',, having the required properties. We write simply r =r,,
E=& =t (=vn_y), v=v,. We need two constants 1, 4 depending
only on ¢ which are defined as follows.

Let 2 be a positive integer such that B/{#g’"'(¢ — 1)} < A/32 and 4 a
positive integer such that (A/2 + 1)/4 < A/4.

Using 2, 4, we define polynomials 4,, 4., 4,, 4,, 4,, --- with 4(4;) <
24 = 1), U4 =2 (j=1). Let 45¢t) = 2k-ccoexp {n(r + D)}, 45() =
D usac-n<k<u+i Cx €Xp {ny(r + i)} (£ >1). Choosing a sequence (£;)7.; of
positive integers so that ||4}|| = min {||4¥|; 4 — 1) < ¢ < 4j}, we put 4,
=4 + 2 df, 4; = a5, Z’j = D tycectyon AF (j = 1), where Zj =0 if ¢,.,
= ¢; + 1. Thus the required polynomials are defined. We put h; = s.e. 4;
(j>1), H;=1le. 4, (j >0), where h; = H, = l.e. 4, if 4,=0. Denoting
by ¢ the smallest non-negative integer such that n, < H, (j > 0), we put
Sy =4y S; =204, + >i.4, 1 <j<o). Then se.S,=n, le.S,=H,
(0 <j < o). The required point ¢, is defined by

LeEMMA 6. There exists t,, with|t,|< 2B|n. such that|S(t,)| > A/4-||S;|
0<j<o).



2 TAKAFUMI MURAI

Proof. Using Lemma 2, we define inductively ¢ + 1 points (u,);, in
the following manner: Let u, be a point with |u,| < B/n, such that Re Sy(u,)
> A||S,|| and u, a point with |u, — u,_,| < B/h, such that Re 4,(u,) > A||4,||
(1<j<o). We put ¢, = u, and prove that this is a required point.

We have

s = tal < BT 1/h,
= BlH, 3 (Hj/h) < Bl{¢"(a — DH} < AjRH) 0 <j<0).

(14)

In particular, |¢,| < |u| + A/2H,) < B/n; + A/(2n;) < 2B/n,. By (14), we
have

(15) Re Z](tm) > Re Zj(uj) — |u; — tm”M—?”
> A|l4,|| — (AJ2H)H,|4,| > A]2-)14,] (1<j<o)

and Re Sy(t,) > Re Sy(uy) — |uy — t,.|Hol|Soll > A/2-]|S,|. Hence the required
inequality holds for j = 0. Let 1 <j<o¢. Then (15) gives
j _ j
|Si(tn)| > Re Si(t,) > Re Si(t,) + 2 Re 4t,) — 2 1ol

> - (IS0 + % 141) - S 14l
> (A2 = 1) — 1A S, > A/4-]S,] - QED.

To define the required Jordan curve I',, we assume, for a while,
¢ >2 and consider intervals [r— 0/n, r— 0/H), [r— 0/H,.,,r — 6/H)]
1<j<o—-1),[r—6/H,_,r —0/n). We prepare

Lemma 7. If xe[r— 60/H,_,,r — 6/H,] for some 1 <j <o — 1, then
(16) |F(x +it,)| > A/16-M, — T},
where Ty = ||4;|| + 14,1 + 1145l

Proof. Writing

F(x + it,) = 3¢, exp {mu(x + itu)}

k<¢ nesng<SHj-1 Hj1<ng<hj+1 ne2hj+1
we denote by S,_,, the second term. Then

|Sj—1,z | 2 ISJ-I(tm)l - lx - rlIlS;—lll
= A/4‘”S/—1“ - (0/HJ—1)HJ—1”SJ—1” = A/8'“Sj—1“ = A/B'Mr .
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On the other hand, the sum of absolute values of other terms is dominated
by

% leel + {1450 + 11450l + 14504} + M, 3 exp(—6n,/H))

ng2hj+1

< AJ32-M, + T, + 1/{6¢"(q — D}-M, < A/16-M, + T, .
Hence we have (16). Q.E.D.

For the definition of I',,, we choose, for every xc¢ [, $,], 2 number
0 <e, < 1/n, such that |F({)| > EM, (e S(x + it,,¢,)) (E: some constant).
Let xe[r—0/H;_,r—0/H] A <j<o—1). We must distinguish the
following two cases:

() T,< AJ32-M,, ®) T, > AJ32-M,.

In the case (a), we have |F(x + it,)| > A/32-M, and hence we can choose
0 <e, < 1/n, so that |[F@Q| > EM, (e S(x + it,,e,)) with E, = A/64. In
the case (b), the choice of ¢, will be analogous as in the proof of (A).

Since T, > A/32-M,, £(4, + 4, + 4,.)) < 224, there exists d with H,_,
< ny < hy,, such that |¢;|exp (n,r) > A/(6424)-M,. Hence |c,| exp (n,x) >
lcs| exp (nyr — Ony/H,_ ) > A/{6424 exp (6¢*)}- M, (= 3E,M,, say). First we
prove that there exists a positive integer p’ = p/(F, x) with 1 <p' < N’
(IN’: a constant depending only on g) such that

a7 |F®) (% + it,)| > CE,M.nz .

Let us write

FQ=Xneepmd=3 + > + 5

d-n’ d-n'<k<d+n’ k>d+n’

= ¢ + Q) + 2(),

where n’ will be determined later; we choose, for a while, so that n’ >
N (N} = Ny(fq~*%): the function given in the proof of Lemma 4). Lemma 3
shows that there exists ¢ = 4(n’) with 0 < ¢ < 2n’ such that

(18) |Q“(x + it,)| > 8CE,M,ni*™ .
We have
(19) [ + it,)| < {1/ (q — D}M,ng*  (;see (10)).

Since x <r —60/H;, =r — (On,/H)[n, < r — (g~**%/n,, we have
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|09(x 4 it,)| < M, >, niexp(—0n,/H)
E>d+n’
(20) < Myng” 3, (mfng™ " exp {—@g™)m/n.)}
< M.ngt'z,(0g~*)  (;see (11)).

Choosing n/(>N}) so that 1/¢™(q — 1) < CE,, 7,(0q **) < CE,, we put
p=pF x)=4n)+1, N =20 +1. Then (17) follows from (18), (19)
and (20).

Next we prove

@y |FQ < EMng (e D(x + it,, 0/2H) ,

where E, = {1 + (2/6)"'(2N")! ¢*""*}q/(q — 1).
Since Re¢ < x + 6/2H; < r — 6/2H,, we have

[FeQ| < M, 5 nif exp (— 6nj2H) = M{Z g }

k=d+1

< Mg {3 (nn)” + QO @)Y 3 (mfn)”(Hfn)” |

< Mo {a” I — D + @OF @) En)” 3 (nafn))
< Mng{L+ @Joy” @p) g *)q” i(g” — 1) < EM,n .

Now we apply Lemma 1 to g({) = F(¢) and D(x + it,, 6/2H,). There
exists 0 < e < §/2H, such that, for any ¢ e S(x + it,, ¢),

|F(©) — F(x + it,)| = 7(p")(0/2H )" (CEM,nf)" *(EM,ng)™"
= {n(p)6/2)" (CE)”*'Es”} M,
= {(n(N)(@/2)" (CE)" *'Es™}M, (= 3E,M,, say) .

If |F(x + it,)| < 2E.M,, we put ¢, =e. Then 0<e, < /2H; < 1/n, and
|F©)| > EM, (e S(x + it,,e,). If|F(x + it,)| > 2E,M,, we choose 0 <e,
< 1/n, so that |F(Q)| > E.M, (e S(x + it,, ).

Thus we have chosen, for every x¢e[r — 6/H,, r — 8/H,_,], a number
0 <e¢, < 1/n, such that |F({)| > min {E,, E}M, ({e S(x + it,,¢.))-

If xe[r—6/H,_,,r — 6/n)], we can use the method given in (b), since
le,| exp (n,x) > M, exp (— 6n,/H,_,) > exp (— 6¢*)M,. Analogously, we can
use the method for x € [r — 0/n,, r — 6/H;]. Consequently, in the case ¢ > 2,
we can choose, for every x € [a,, 5,], @ number 0 < ¢, < 1/n, satisfying the
required inequality with some constant.

In the case ¢ = 0, 1 also, we can use the method given in (b). Thus
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in any case, we can choose, for every x ¢ [a,, 5,], a number 0 <e¢, < 1/n,
such that |F(8)| > EM, (e S(x + it,,e,)) (E: some constant).

Now we choose a finite covering D(x; + it,,¢,) (j =1, -+, u) of I(¢,, )
and put I', = 8{U%.. D(x; + it,, ¢, )}. Then we have diam (I',) < 3/n, =
3/n,,_,, according to diam (I(t,, r)) = 0/n, — 0/n, < 1/n, and 0 <e,, < 1/n,
(=1, ---,u). We have also |F()|> EM, ((<I',). This completes the
proof of (B).

§6. Application

AprpLicaTioN 8. In [2], K. G. Binmore showed that an Hadamard
lacunary series f(z) given by (1) has no finite asymptotic value if
limsup,._.. |c;] > 0. We note that the discussion in the proof of (A) (; in
particular (13),) gives a new proof of this fact. For the sake of simplicity,
we work only with limsup,_..|c,| = oo.

Let 7 be a path in D with b(7) = 0. Without loss of generality, we
may assume b(7)51. Then there exists a path I" in U with 5(")50 and
«(I) = 7, where ¢ is the mapping defined by () = €. It is sufficient
to prove that F({) has no finite asymptotic value along with I". Let
(W, be a sequence in I' with Rew, = 8,, (m > 1). Then (13) shows
that

(22) |F() — F(w,)| = 3DM,, (¢ Swn, ¢w,) -

Let w/, be a point in I N S(w,, ¢,,) (m > 1). Then (22) holds for ¢ = w/,.
Since lim,, ... M, = oo, F(¢) has no finite asymptotic value along with I".

Tm

ApprLicATION 9. We say that an analytic function g(2) in D is annular
if there exists a sequence (y¥);_, of Jordan curves in D such that (¥>30
(m > 1) and lim,,_. min {g(2)|; zer}t} = 0. We say that g(2) is strongly
annular if we can choose (y});_, so that y}’s are circles with center 0 in
addition to the above conditions. L. R. Sons showed that an Hadamard
lacunary series f(z) given by (1) is annular if and only if limsup ... |cl
= co, The “only if” part is immediately seen; if limsup,.. |c;] < oo, then
f(2) is normal ([8]) and hence f(z) is not annular ([9] p. 267). Let us show
that the “if” part is deduced from (A). Put I, ={{;Rel =4,,0<Im¢
< 2z} (m >1). Given m > 1, (A) shows that, for every w € I, there exists
0 <e, < 1/n,, such that |F(¢)| > DM, (e S(w,e,)). We choose a finite
covering D(wje,) (j=1,---,u) of I, and put V, = (%, D(w;, &.)-
Then V,, D S(, 8,,). Let (y¥)n_, be the sequence defined by ¢} =aV, N
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D, 8,,). Then {r¥>>0 (m > 1) and lim,, ... min {|f(2)|; 2€ r} = co. Hence
f(2) is annular.

Let us remark that, in Sons’s result, “annular” cannot be replaced
by “strongly annular”. This is a consequence of the following proposition:
Let ¢(2) = > 7., b,2* be an analytic function in D such that, with s, =
Cr. b (m>1), lim,..b,/s, =0 and liminf,_. log 2,.,/log 2, > 1.
Then ¢(2) is not strongly annular.

The proof is as follows. Nothing is to be proved if lim,_. s, < oo.
Let lim,_. s, = co. Then the method given in [7] (Lemma 38) yields
meas {¢; |#(pe’)| < 20} > d(w/d,)* (o, < p < 1) for some 0 < p, <1, where
’ signifies the 1-dimensional Lebesgue measure,
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and § an absolute constant. Thus min {{¢(2)|; (2] = p} < 20 (o, < p < 1),
and hence limsup,., min {¢(2)|; |2] = p} < 20. This shows that ¢(z) is not
strongly annular.
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