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THE MODULI OF A CLASS OF RANK 2

VECTOR BUNDLES ON P3

G. PETE WEVER

Introduction

Barth and others [1], [2], [5] have begun the study of stable algebraic
vector bundles of rank 2 on protective space. Maruyama [7] has shown
that stable rank 2 bundles have a variety of moduli which is the finite
union of quasi-projective varieties.

The point of view taken here is to study a rank 2 vector bundle on
P = Pi, k an algebraically closed field, by looking at the zero sets of the
global sections of the bundle. The zero set is a curve in P. A skew
bundle on P is a rank 2 bundle which has a global section whose zero
set is a pair of skew lines. Skew bundles are precisely the stable rank
2 bundles with Chern classes (which we consider as integers) cx = c2 = 2.
This paper gives the explicit description of the moduli of skew bundles as
an open subscheme in P\. These bundles, see Remark 2.1.3, were among
the first known examples of indecomposable vector bundles on P [6, Sec-
tion 10]. From a point of view different from the present one Barth [1,
Section 7] has implicitly given the moduli of these bundles which he calls
null-correlation bundles.

More precisely we do the following. A skew bundle parametrized by
a scheme J7 is a rank 2 vector bundle E on P% such that the restrictions
of E to the fibres over geometric points of T are skew bundles. For a
locally noetherian scheme T let Sk(T) = {E\E skew bundle parametrized
by T}/~, where Ex ~ E2 if there exists some isomorphism of E2 and Et ®P» L
where L is the pullback of a line bundle on T. If g: T' -> T is a morphism
and E a skew bundle parametrized by T then the pullback of E to P?, is
a skew bundle parametrized by T'. This gives a natural map g*: Sk{T)
-> Sk{Tf). Clearly Sk is a contravariant functor from the category of locally
noetherian schemes to the category of sets. Our main theorem (Theorem
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3.5) says that Sk is a representable functor. That is, there is a scheme M
and a class of skew bundles parametrized by M which defines in the obvi-
ous way a morphism of functors Φ: Horn ( , M) -> Sk and Φ is an isomor-
phism. M is called the fine moduli for skew bundles. The construction
in this paper arises naturally from the geometry and is independent of
the techniques of [7], [8].

In Section 1 we establish the basic techniques and give some preli-
minary results. In Section 2 we give a method for constructing families
of skew bundles. In Section 3 we show that there is a fine moduli for
skew bundles. The moduli has a natural compactification and in Section
4 we show that geometric points of the compactification correspond to
stable coherent sheaves on P.

Notations and Conventions
All schemes are assumed to be locally noetherian. If F is a coherent

sheaf on a scheme T let F* denote the dual J4?om(F, Θτ). If t is a point
of T then k(t) denotes the residue class field ΘttTjmt. If /: X-+T is a
morphism of schemes then Xt = X X τ spec k{t) is the scheme fibre of / over
t and if F is a sheaf on X then Ft is the restriction of F to the fibre Xt.
A geometric point of T is a morphism spec K^>T, K an algebraically closed
field. By abuse of notation we will denote this morphism by t and K by
k(t) and say t is a geometric point of T. With the morphism / above, we
define the geometric fibre Xt of / over the geometric point t and the re-
striction Ft of F to the geometric fibre. It will be clear from the context
whether we are referring to a usual point or a geometric point of a
scheme. If E is a sheaf on T and t is either a usual point or a geometric
point of T then the fibre of E at t is the restriction of E to spec k(t) and
is denoted by E(t).

I would like to thank Arthur Ogus and Robin Hartshorne for gener-
ously sharing their time and enthusiasm with me as I did this work.

§ 1. Preliminaries

In this section k denotes an algebraically closed field and P = P%.
Our basic technique for studying vector bundles (locally free sheaves) is
the correspondence between rank 2 bundles E and curves Y which arise
as the zero sets of the global sections. If s e H°(P, E) then Y = Z(s) is the
scheme zero set of s. If Y is nonempty and has codimension > 2 then Y is
in fact a local complete intersection curve and s defines an exact sequence
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(1.0.1) 0 > ΘP > E > Jγ(cx) > 0 .

Conversely, given the curve Y the bundle can be recovered as an exten-

sion. For details and proofs of this and the following see [5, Sections 1,

2]. For a curve Y in P, ωγ = SxtP (<9Y, ωP) is the dualizing sheaf. The

precise statement of the correspondence is as follows.

1.0.2. A local complete intersection curve Y in P = PI occurs as the

scheme zero set of a rank 2 vector bundle if and only if ωγ is isomorphic

to the restriction of a line bundle from P. In this case ωγ = 0γ{cλ — 4)

where cx is the first Chern class of the bundle.

1.0.3. If Y is a curve which comes from a rank 2 bundle with Chern

classes cx and c2 then the degree of Y is d = c2 and arithmetic genus is

Pa = {Φλ - 4)/2) + 1.

Let Y be the union of two skew lines L and U. We have Θγ = ΘL

Θ ΘL,, ωγ = Θγ{ — 2) and P α Y = — 1. By the preceding Y comes from a

vector bundle E which has Chern classes c: — c2 = 2. For a coherent sheaf

F let λ'(P, F) denote dim, H\P, F).

PROPOSITION 1.1. Let Y be two skew lines L and L'. Then the homo-

geneous ideal of Y is generated by 4 quadrics and hι(P, <?γ(n)) = 0 for n

^ 0 and h\P, Jγ) = 1.

Proof. By a suitable choice of homogeneous coordinates we may sup-

pose IL = (x, y) and Iv — (z, w). Then Iγ = (xz, xw, yz, yw) is generated

by 4 quadrics. From the standard exact sequence

0 > Jγ{n) > ΘP(n) > Θγ(ή) > 0 .

We get H\ΘP{1)) s H°(Θγ(ΐ)) and thus H\ΘP(n)) -* H\Θγ{n)) is surjective

for all n > 1. The conditions on the JEP's now follow.

If Y — Z(s) comes from a 2 bundle E with cx = c2 = 2 then degree 7

= 2 and ω r = 0F(—2). Our next step is to classify all such curves.

PROPOSITION 1.2. Let Y be a local complete intersection curve in P of

degree 2 and ωγ = 0 r(—2). T&era Y is either

i) 2 s&eu; Zmes, or

ii) α nonreduced scheme structure on a line, given for example on the

line x = y = 0 by the homogeneous ideal (x2, xy, y2, xF + yG) where

F and G are linearly independent linear forms in z and w.

Proof. See [5, Prop. 9.1(b)].
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A curve satisfying ii) will be called a "double line".

Let F be a coherent torsion free sheaf on P£ and let PF(ri) = χ(F(n))/rank

F where χ(F(n)) is the Hubert polynomial of F. Following Gieseker [3]

we say F is stable (respectively, semi-stable) if for all proper coherent

subsheaves G of F, P0(n) < PF(n) (respectively, PG(n) < PF(n)). Inequality

means PG(n) < PF(ri) for n > 0. Clearly (semi-)stability is independent

of tensoring with <DP»(t).

For a rank 2 vector bundle E on P with Chern classes cx and c2 the

Riemann Roch Theorem gives

χ(E) = i((c? - 3clC2) + 6(c2 - 2c2) + lie, + 12) .

If E(ή) = J£(g) 0P(tt) then c^Efa)) = c, + 2n and c2(E(n)) = π2 + c ^ + c2.

After twisting by a line bundle any rank 2 bundle on P can be normalized

so that cx = 0 or cx = — 1. We now give a criterion for stability.

PROPOSITION 1.3. Let E be a normalized rank 2 vector bundle on P

= Pi. Then E is stable if and only if H°(P, E) = 0. If E is not stable,

then E is semi-stable if and only if E ~ ΘP® ΘP.

Proof. To check (semi-)stability of a rank 2 bundle E we need only

to consider invertible subsheaves. Indeed, if F is any rank 1 subsheaf

of E we may replace F by a slightly larger sheaf if necessary (we denote

this new subsheaf again by F and its polynomial PF(ή) is bigger than

the original) and suppose that the quotient Q = E/F is torsion free, rank

1. Q is then isomorphic to <fγ(c) for some c where JΎ is the ideal sheaf

of a subscheme Y of codimension > 2 or Y is empty. If Y is empty then

Q is invertible and then so is F. If codimension Y> 2 then since Jγ is

locally generated by 2 elements (because it's a quotient of E(—c)) Y is a

local complete intersection curve. It follows that JΎ is locally generated

by a regular sequence and has local homological dimension 1. F then has

local homological dimension 0 so again is invertible.

Suppose E is a normalized rank 2 bundle and H°(E) = 0. For any

invertible subsheaf F = ΘP(d) we have cx{F) = d < cx{E)l2 = 0 or -1/2

and hence E is stable. Let E be a rank 2 bundle with Chern classes cx

and c2 and a global section s such that Y = Z(s) has codimension = 2.

The section s defines an injection ΘP -> j£. Comparing polynomials we

get

PE(ή) - Pφp(ri) = | (3c^ 2 + 3(c2 - 2c2 + & > + c? - 3CA + 6(c2 - 2c2) + l l c j .
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PE(n) — Pop*) > 0 exactly when cx > 0. Furthermore if cx = 0 then c2 <

0. But c2 = degree Y > 0. Suppose now that E is stable and normalized

then we have strict inequality and it follows that H°(E) = 0. If E is

semi-stable and we have equality then E has a section s with the degree

of its zero set equal to 0, i.e. s is nonvanishing and E splits as ΘP 0 ΘP.

Remark 1.3.1. The proof easily generalizes to give the same criterion

for (semi-)stability of a rank 2 bundle on P£, n > 2.

Remark 1.3.2. There is an older definition of stability for vector

bundles introduced by Mumford and Takemoto which is used in [1], [2]

and [5]. This definition uses just the first Chern class instead of the entire

Hubert polynomial. The definition we use is the appropriate generaliza-

tion to arbitrary coherent sheaves [7], [8]. The criterion we have obtained

for stability of a rank 2 bundle on P% is equivalent to the old definition,

see [5, Section 3]. However for semi-stability of rank 2 bundles the old

definition is less restrictive. In fact the restriction of a skew bundle to

a general plane in P is old semi-stable [5, Theorem 3.3] but it is not stable

and is not decomposable (cf. the Chern classes) and so it is not new semi-

stable.

We now consider skew bundles. Let E be a skew bundle so ct = c2

= 2. £7norm = E(— 1) has Cj = 0, c2 = 1. Let s be a section of E with Y

= Z(s), 2 skew lines. The sequence (1.0.1) becomes

(1.3.3) 0 > ΘP > E > Jγ{2) > 0 .

From this we get H\E(-1)) ~ H\JY{1)) = 0 since Y does not lie in a

plane. Thus E is stable by our criterion.

PROPOSITION 1.4. Skew bundles (up to twisting) are precisely the stable

rank 2 bundles with cx = 0, c2 = 1.

Proof. We must show that any such stable bundle E is a skew bundle.

By [5, Theorem 8.2] H0(E(l))φ0. Thus E(ΐ) has a global section s such

that Y = Z(s) has codimension = 2. Since E(ΐ) has cx = c2 = 2 we con-

clude from Proposition 1.2 that Y is 2 skew lines or a double line. How-

ever, in Remark 3.3.4 we will see that any bundle corresponding to double

lines is already a skew bundle.

The following result characterizes double coverings of P4 by the Grass-

mann variety of lines in P3. If W is a 4 dimensional k-vector space then
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G = G2(WV) parametrizes 2-quotients of Wv which are lines in P | = P(WV).

There is a closed immersion of G into P% = P(Λ2WV), the Plύcker mor-

phism. Let V be a 5 dimensional vector space and Pi = P(VV).

PROPOSITION 1.5. Lei f\ G-^Pibe a finite morphism of degree 2. Then

there exists a closed point m in Pi such that f factors as the Pliicker em-

bedding followed by projection from the point m and an automorphism of

PI

Proof. The Picard group of G = G2(WV) is generated by the very

ample invertible sheaf ΘG(1) which gives the Plϋcker embedding G -> PJ.

The invertible sheaf f*ΘPi(l) is isomorphic to ΘG(n) for some n > 0. The

linear system defining /, f*H°(ΘPi(ϊ)), is a subsystem of the complete linear

system H°(ΘG(n)) which defines an embedding g of degree 2n5 of G into

some PN. The morphism / factors as π o g where π is projection from a

linear subspace in PN onto P 4 followed by an automorphism of P4. See

[4, II, 7] for details about morphisms and linear systems. Since the degree

of / is the degree of G in PN it follows that n = 1, N = 5 and the linear

space is a closed point m in P 5.

Remark 1.5.1. Geometrically the fibres of the morphism / are obtained

by taking lines L in P 5 through m and intersecting with G.

Remark 1.5.2. Given the morphism / there is an intrinsic way of ob-

taining the point m. Pulling back the canonical 1-quotient sequence on

P 4 via / gives a short exact sequence on G

0 > K > Vv ® 0a > Θβ(ϊ) • 0 .

Vy <8> @G is the trivial sheaf of rank 5 and ΦG(ί) is generated by five global

sections. Taking global sections gives

0 > Vv • H°(ΘG(ΐ)) > k • 0 .

Making the canonical identifications H°(ΘG(Ϊ)) ~ H°(ΘPi(ΐ)) ~ Λ2VΓ we

obtain the 1-quotient of A2W* corresponding to the point m.

We will make use of the theorem of Cohomology and Base Change.

See [4, Theorem 12.11] for the statement and proof in the case of pro-

jective morphisms of noetherian schemes and scheme points. Since the

results are local they extend to the case of local noetherian schemes.
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Passing from scheme fibres to geometric fibres is a faithfully flat base ex-
tension so it suffices to check the maps of cohomology on the geometric
fibres.

PROPOSITION 1.6. Let f: X -> Y be a flat protective morphism of locally
noetherίan schemes such that for every geometric point y in Y, h°(Xy, ΘXy)
= 1 and h\Xy9 ΘXy) = 0. Let L and M be invertible sheaves on X such
that Ly ~ Mv on Xy. Then L ~ M®f*N for some invertible sheaf N on
Y.

Proof By taking the invertible sheaf L (x) M'1 we may suppose M =
Θx and must show that L ~ /*iV. By Cohomology and Base Change it
follows that fJL is invertible. If p: f*f*L^>L is the canonical morphism
then the restriction of p to the geometric fibres is an isomorphism. It fol-
lows that p is an isomorphism.

Our final result in this section is the following.

PROPOSITION 1.7. Let /, g: X-+Y be morphisms of S-schemes. Suppose
X is reduced and for every geometric point s of S the induced maps on the
geometric fibres X9 —> Y8 are the same. Then f = g.

Proof It is easy to show that the underlying set maps are the same
so we reduce to the case that S, X and Y are affine. Since the mor-
phisms agree on the geometric fibres it follows they agree on the scheme
fibres since this is a faithfully flat base extension. Finally we are reduced
to the case of, say C-algebra homomorphisms, a, β: A^>B where B is
reduced and for every prime P in C the induced maps A ® k(P) -> B <g) k(P)
agree. This means for all x in A a(x) — β(x) is zero in B® k(P) for every
prime P in C. It follows that a(x) — β(x) = 0.

§ 2. Families of skew bundles

In this section we give a method of constructing families of skew
bundles when the ground scheme T is arbitrary. Applying this in the
case T = spec Z we will obtain a family of skew bundles parametrized by
a Z-scheme M which is our candidate for the moduli.

From now on we fix a free Z-module W of rank 4. Projective three
space is P\ = P(WV) and M = P(Λ2WV) - G2(WV), the complement of the
Grassmann in P | under the Plύcker embedding. Let T be a scheme and
p = P(Wτ) = P(WV)XZT. On P we have the canonical 1-subbundle 0->
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ΘP{—1)-> WP = ΘP® W. Twisting once gives a section $ of WP(ΐ). The

Koszul Complex defined by s is the exact sequence of trivial sheaves

0 _ > ^ _ - > WP(1)—> Λ2 Wp(2)—•* Λ3 WP(3)—> Λ4 WW4) = 0 .

After twisting by 0 P (-2) let 0 denote the map f\2WP-> Λ3 WP(ΐ). Let K

and C denote the kernel and image respectively. We obtain a short exact

sequence of locally free sheaves on P

(2.0.1) 0 >K >/\2 WP -^-> C >0 .

Remark 2.0.2. If ΩP/T is the sheaf of relative differentials we have

[4, III, Example 8.4.b], the canonical exact sequence on P

o — • ΩP/T —> w (-i) —> ΘP —> o.

Since K is also the cokernel of 0P(—2) —• WP(—1) it follows that K is

canonically isomorphic to ΩP/T(2Y. If we choose a free basis for Wτ we

can identify /\4 Wp ^ ^ P and the dual of the Koszul resolution becomes

isomorphic to itself. In this way C is non-canonically isomorphic to

ΩP/T(2).

Let Mτ = P{/\2Wτ) - G2(Wτ). As an open subscheme of P(Λ 2 W^\ M

inherits the canonical 1-subbundle sequence τ

(2.0.3) 0 • ΘMτ(-l) • Λ2 WMr >G >0

where G is locally free of rank 5. Consider the following diagram of T-

schemes

Ί ϊ
Mτ — > T

where p and q are the projections. On the product, which we denote

simply by PxM, we combine the pullbacks of (2.0.1) and (2.0.3) to obtain

the following diagram
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i
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4
0
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ΘPXM(0, — 1) denotes the pullback of the invertible sheaf ΘMτ{—1). The map
ψ is obtained by composition and E = coker ψ is a coherent sheaf. The
bottom row is the induced surjection and ε is composition. The construc-
tion of E is functorial over the base T. That is, if T -» T is a base change
then the pullback of E to the corresponding product scheme over Tf is the
cokernel of the same construction obtained by starting with the base scheme
Tf and the free module Wτ>- For any scheme T we obtain a family E of
coherent sheaves on P? Xτ Mτ parametrized by Mτ.

THEOREM 2.1. E is a skew bundle parametrized by Mτ.

Proof. We must show that the restriction of E to the fibre over geo-
metric points of Mτ is a skew bundle. We study these geometric fibres
by taking a geometric point spec k->T and looking at the fibres over
/^-rational points of Mk = Mτ x τ spec k.

We now are reduced to the construction in the case T = spec k, k an
algebraically closed field. For a closed point m in Mk we identify the fibre
p~ι(rri) with P = P(Wζ). Restricting (2.0.4) to p~\m) we obtain the following
diagram.

(2.1.1)

0
4

K

\
WP-

c -
I
0

Jζ

Y

— > G(m)P

1
— + En

ϊ
0
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The middle row is a sequence of trivial sheaves and is the pullback from

k(m) = k of the sequence of vector spaces

(2.1.2) 0 > k > Λ2 Wk > G(m) > 0 .

The image of k is the 1-subspace spanned by an indecomposable vector

(i.e. an element in /\2 Wk not of the form x Ay) corresponding to the point

m in Mk.

We first show that Em is a rank 2 bundle. For a closed point x in P

let wx be a generator of the 1-subspace in Wk corresponding to x. At the

fibre of (2.1.1) at x the map φ(x) is given by—Λ wx up to a scalar. K(x)

is the 3-subspace of f\2Wk consisting of decomposable vectors of the form

w Λ wx. It follows that ψm is an injection fibre by fibre of a rank 3 bundle

on P into a rank 5 bundle so the cokernel Em is a rank 2 bundle.

Both εm and ψm of (2.1.1) are injections and we get short exact sequences

for the bottom row and right column. Since K ~ ΩP/k(2Y cohomology of

the right column of (2.1.1) gives an isomorphism of global sections G(m) =

H°(P, G(m)P) ~ H°(P, Em). We now show Em is a skew bundle. A nonzero

section s of Em gives a 1-subspace of H°(Em) and hence a 1-subspace of

G(m). From (2.1.2) we see that this 1-subspace lifts to a 2-subspace V of

/\2 Wk = H°(/\2 WP). For a closed point x in P we identify V with its

image in the fibre /\2WP<8> k(x) ~ /\2Wk. Consider the fibre map of (2.1.1)

a(x): /\2 Wk-> C(x)-> Em(x). The image of V under a(x) is zero exactly

when the section s vanishes at x. V corresponds to a line L = P(VV) in

p 5 = P(/\2 Wk

v) through m. Since the Grassmann G = G2(Wζ) is of degree

2 in P 5 L meets G in 2 points (or 1 point with multiplicity 2) correspond-

ing to lines ix and 4 in P. The image of V under αr(a ) is zero exactly

when x lies on lx U 4> i β s is z e r ° precisely on ^ U #2 We easily com-

pute the Chern classes of Em to be cx = c2 — 2. It follows that the scheme

zero set Z(s) has degree 2 and Pa = — 1 and so Z(s) is two skew lines or

a double line. The argument shows that every global section of Em deter-

mines a line in P 5 through m. Conversely any line L through m deter-

mines a section s of E and s vanishes on the lines in P corresponding to

the intersection of L and G. Since there are always lines through m meet-

ing G in 2 distinct points Em is a skew bundle.

Remark 2.1.3. From the bottom row of (2.1.1) we see we can view Em

as a quotient of the rank 3 bundle C ~ ΩP/k(2) by a non-vanishing section.

In Section 4 we extend our study to coherent sheaves which are quotients
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of 42(2) by sections which vanish along a line.

COROLLARY 2.2. Let E and Mτ be as in the previous theorem and let

p: P(Wτ) XTMτ —>Mτ be the projection. Then (p%EY is naturally iso-

morphίc to the kernel of the canonical invertible quotient sequence on Mτ

(2.2.1) 0 — • (p*EY — * Λ2 W^τ — > ΘMΐ(l) — > 0 .

Proof. From (2.0.4) we have the exact sequence 0 -> q*K-±p*G-+ E

-> 0. In (2.1.1) we studied the geometric fibre of this sequence and con-

cluded that direct image cohomology gives p*p*G = G ~ p%E. The result

now follows from (2.0.3).

Remark 2.2.2. The fibre of (2.2.1) at a geometric point m of Mτ, k(m)

— k, is

(2.2.3) o —> mp(WD, Emy —* Λ2 w; —> k — • o

which is the dual of (2.1.2) and corresponds to m as a closed point in Mk.

§ 3. Representability of Sk

Let T = spec Z and let $ be the skew bundle of Theorem 2.1 which

is parametrized by the open subscheme M= P(/\2 Wv) — Cr2(W
v) in P%. £

defines in a natural way a morphism of functors Φ: Horn ( , M) -> Sk. We

now show that Φ is an isomorphism of functors and thus the pair (M, £),

or more accurately M and the class of δ9 represent the functor Sk.

For the time being let E be a skew bundle over an algebraically closed

field k and let P — P(Wζ). Suppose s is a global section of E such that

Y — Z(s) is 2 skew lines. The section determines the exact sequence (1.0.1)

which becomes

(3.0.1) 0 • ΘP • E • yγ(2) > 0 .

In Proposition 1.1 it was shown that the homogeneous ideal of Y is gener-

ated by 4 quadrics. Thus the sheaf JΎ(2) is generated by global sections

and h°(P, Jγ(2)) = 4. It follows easily from (3.0.1) that E is generated by

global sections and h°(P, E) = 5. Twisting (3.0.1) by n and taking coho-

mology gives an isomorphism H\P, E(ή)) ~ H\P, Jγ{n + 2)). Again from

Proposition 1.1 we conclude that ίΓ(P, E(n)) = 0 for n Φ - 2 and Hι(P, E(-2))

= k. Also H°(P9 E(-ΐ)) ~ H°(P, JY{1)) = 0 since Y does not lie in a plane.

Let L be a line in P. Restriction of E to L gives an exact sequence



20 G. PETE WEVER

(3.0.2) 0 • SL.E > E >E\L > 0.

LEMMA 3.1. Cohomology of (3.0.2) gives the exact sequence

(3.1.1) 0 — • H°(P9 JL E) — > H°(P, E) — • H°(P, E \L) — > 0.

Furthermore h°(SL-E) = 1 and h\E\L) = 4.

Proof. The line L is a complete intersection in P so J L has a standard

locally free resolution which we tensor with E to obtain

0 >E(-2) >®E(-ΐ) >SL-E >0.

We see that IP(P9SL-E) injects into H\P,E(-2)) which is Serre dual to

H\P, £v(2)(-4)) = H\P9 £(-4)) = 0. This gives exactness of (3.1.1) on the

right. The above sequence also gives H°(P, J?L-E) ~ H\P, E(-2)) = k.

The rest of the lemma follows easily.

LEMMA 3.2. For every line L in P = P{Wζ) there exists a section of E

unique up to a scalar multiple vanishing on L.

Proof H°(P, J Ϊ/E) is the subspace of global sections of E vanishing

on L and has dimension one.

We now fix a (locally noetherian) scheme T and a skew bundle E para-

metrized by T. Let P = P(WΪ), G = G2(Wτ) and π and p be the respective

structure morphisms as T-schemes. Let F c P XTG be the flag scheme.

We have the following commutative diagram of T-schemes with projections

σ and τ

>P

G —> T

One shows easily that π*E is locally free of rank 5 and the fibre at a

geometric point t of T is π*E(t) ~ H°(Pt, Et). Let P((π*EY) be the projective

bundle over T with geometric fibre over t equal to P(H°(Pt, EtY).

PROPOSITION 3.3. Given T and E as above then there exists a morphism

of T-schemes

such that for a geometric point t of T the fibre map ft takes a closed point
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of Gt corresponding to a line L in Pt to the point corresponding to the 1-

quotίent H\Pt,JLΈtY of H°(Pt,Et)\ That is, ft maps the line L to the

essentially unique section of Et vanishing on L.

Proof. The subscheme F in P XTG satisfies the usual exact sequence

which we tensor with σ*E to obtain

(3.3.1) 0 > JF - a*E > σ*E > ΘF ® σ*E > 0 .

To take direct image cohomology of this sequence we study the geo-

metric fibres of τ by taking a geometric point ί of Γ and looking at the

fibres of τt over closed points ί in Gt. The restriction of (3.3.1) to the fibre

τϊ\β) ~ Pt is (3.0.2) for the bundle Et where & corresponds to the line L

in Pt. Using cohomology and base change it is straight forward to show

that cohomology of (3.3.1) gives the exact sequence

0 > τ*(JF σ*E) > τ*σ*E > τ*(ΘF ® σ*E) > 0

of locally free sheaves of rank 1, 5 and 4 respectively. The fibre of this

sequence at ί in Gt is (3.1.1) for the bundle Et. Identifying τ*σ*E ~ p*π*E

and dualizing gives an invertible quotient on G

(3.3.2) 0 —-> r*((P, ® σ*EY - ^ p*((π*EY) - ^ τ*(<fF σ*Ey —-> 0 .

Clearly this invertible quotient defines the desired morphism.

Remark 3.3.3. In the above situation the geometric fibre map ft is a

2-1 covering since every section of Et vanishes on 2 lines or 1 line with

multiplicity 2 (by Proposition 1.2 these are the only curves that can come

from a skew bundle). From Proposition 1.5 we get a closed point mt in

F(Λ2 Wκ(t)) which gives a bijection between the set of lines L through mt

and points in P(H°(Pt, EtY). The associated section vanishes on the lines

in Pt corresponding to the intersection of L and Gt. We call mt the "point

of the bundle E". Since some lines through mt meet Gt with multiplicity

2 it is apparent that every skew bundle Et has sections vanishing on double

lines.

Remark 3.3.4. Let Y be a double line of the type in Proposition 1.2

and let F r e d = L ~ P1 be the reduced line. It turns out (see the referenced

proof of the proposition) that Jγ is the kernel of a surjective map JL ->

ΘL. Using this exact sequence one obtains immediately the same results

as in Proposition 1.1 for the case of a double line. The same arguments
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now give Lemmas 3.1 and 3.2 for bundles E corresponding to double lines.

We again get a 2-1 covering / of P(H°(EY) by the Grassmann of lines and

the fibres of / correspond to the lines through a closed point in P(Λ 2 W*)

It now follows that E also has sections vanishing on 2 skew lines. Thus

double lines do not give any new bundles.

We now give our key technical result.

THEOREM 3.4. Let E be a skew bundle parametrized by T Then there

exists an equivalent bundle Ef such that {K^E'Y is the kernel of an invertible

quotient map

The quotient defines a morphism of Z-schemes g: Γ-> M C P(/\2WV) which

satisfies the property (*) for E''.

(*) If z is a geometric point of spec Z, k{z) = k, then the fibre map gz

takes a ^-rational point t of Tz to mt in P(Λ 2 Wζ) where mt is the

point of El of Remark 3.3.3.

Furthermore if E~ is another skew bundle such that (π*E~Y defines the same

morphism g and g satisfies (*) for E~ then E~ ~ E\

Proof We begin with the invertible quotient (3.3.2). For a geometric

point t of T, k(t) = k, the restriction of (3.3.2) to Gt gives the invertible

quotient which defines ft. In Proposition 1.5 we saw that this invertible

quotient is isomorphic to ΦGt(l). By Proposition 1.6 the invertible quotient

of (3.3.2) is isomorphic to ΘG{1) ® p*L where L is a line bundle on T and

@G(Ϊ) defines the Plύcker embedding of G.

We replace E by the equivalent bundle 7r*L"1 (x) E which we again

denote by E and (3.3.2) becomes

(3.4.1) 0 > τ*(ΘF ® σ*EY > p*((π*EY) > ΘG(l) > 0 .

Changing E by π*L~ι changes P((π*EY) to P(L®(π*EY) but they are

canonically isomorphic so we still have the "same" morphism /. The re-

striction of the above sequence to the geometric fibre Gt gives the exact

sequence which defines ft,

0 • (r#(0, ® σ*EY)t • H°(Pt, EtY ® Gt • ΘGt(ΐ) • 0 .

In Remark 1.5.2 we saw that the cohomology of this sequence is
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(3.4.2) 0 • H°(Pt9 EtY > Λ2 Wζ • k > 0 ,

and the 1-quotient corresponds to the point mt of the bundle Et. It now

follows that direct image cohomology of (3.4.1) gives on T

0 • (π*EY • Λ2 W; • Λ > * M ^ ® σ*EY) • 0 .

We have made the canonical identification ρ^ΘG(l) ~ /\2 WT which comes

from the Plύcker embedding of G in P(/\ z W?).

The fibre of this sequence at a geometric point t is (3.4.2) and

Rιρ*(τ*{ΘF®σ*EY) is an invertible quotient which defines the morphism

g which satisfies (*).

Suppose now that E~ is another skew bundle such that (π*E~Y defines

the same morphism g satisfying (*). This says that there is an isomorphism

(π*E~Y ~ (π*EY such that for each geometric point t of T the induced

isomorphism H°(Pt, E~) ~ H°(Pt, Et) preserves zero sets of the sections since

both bundles have the same point mt. We noted that a skew bundle is

generated by global sections so the canonical morphism π*π%E -> E is sur-

jective and similarly for E~. If K and K~ denote respectively the kernels

then the above isomorphism gives on P,

0 >K >π*π*E >E >0

0 > K~ > π*π*E~ > E~ > 0 .

One concludes easily by looking at the geometric fibres that i£~ ~ K and

so E~ ~ E. This completes the proof of the theorem.

The theorem says that given a skew bundle E parametrized by T then

in the equivalence class of E there is a distinguished element Ef which

defines the morphism g with property (*).

We now determine the morphism g for the skew bundle δ parametrized

by the open scheme M in FJ.

Let p: P{WW

M) -> M be the projection. The invertible quotient sequence

(2.2.1) defines the morphism \άM. The fibre of this sequence at a geometric

point m of Λf, k(m) — k, is (2.2.3). Clearly m is the point of the bundle

£m. This means that if g is the morphism of the previous theorem then

for a geometric point z of specZ the fibre maps g^id*,: MZ->MZ agree

on &(;ε)-rational points and hence agree on the geometric fibre Mz since

Mn is reduced and of finite type over k(z). Now by Proposition 1.7 g must
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be id^. Thus i is the distinguished element in its class and the morphism

it defines is id^.

THEOREM 3.5. The morphism of functors Φ: Horn ( , M) -> Sk defined

by $ is an isomorphism.

Proof. Let T be a locally noetherian scheme. We must show that

the set map Φ(T): Horn (T, M) ->• Sk(T) is a bijection. Let E be the dis-

tinguished representative of its class in Sk(T) which defines the morphism

g: T->M of Theorem 3.4. We have the following diagram

T - ^ > M.

The morphisms π and p are the canonical ones and gA is the map induced

by g. Let EA = gΛ*&9 which is a skew bundle. The construction in

Theorem 3.4 is functorial; i.e., each sequence in the construction for EΛ

is the pullback of the corresponding sequence for S. Thus the morphism

gE*: T->M determined by EA is g followed by the morphism determined

by S which is id^. Hence gE* = g and by the uniqueness property of

Theorem 3.4 EΛ is isomorphic to E. We have shown that Φ(T) is surjective.

Suppose g: T-+ M. Let E = gA*£. We have just seen that gE = g

so it follows that Φ(T) is injective. This completes the proof.

Remark 3.5.1. If T = spec k, k an algebraically closed field, then the

map Φ(T) gives a bijection between Horn (spec k, Mk) = closed points of Mk

and the isomorphism classes of skew bundles on P(Wk). Any automor-

phism of P(Wk) is induced by an automorphism of the vector space Wk

which in turn induces an automorphism of /\2 Wζ. Thus we get a group

homomorphism A\itP(Wk)-^AutP(/\2Wk) with σ *-> /\2 σ. It is easy to

verify by choosing a basis of Wζ that there are exactly two orbits of the

closed points of P(f\2 Wk) under this action, namely G2(Wk) and the com-

plement Mk. The correspondence between bundles and points is preserved

under the action in the sense that if E is a skew bundle with point m then

σ*E is the skew bundle with point ^σ'^m). Since the action is transitive

on Mk any two skew bundles are related by an automorphism of P(Wk).
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§4. Stability

The construction of the skew bundle $ parametrized by the open sub-

scheme M extends to give a coherent sheaf parametrized by PJ. Since Pi

is the natural projective closure of M it is reasonable to investigate the

sheaves we get by restriction to the fibres over geometric points of PI.

We modify the construction in Section 2 as follows. For a scheme T

we replace Mτ by P£ = P(/\2 WT) and obtain a diagram similar to (2.0.4)

which again defines the sheaf E = coker ψ. We study the restriction to

the fibres over geometric points of P£ by the usual trick of reducing to

the case T = spec k, k an algebraically closed field, and considering the

restriction to the fibres over /^-rational points of Pi = P(Λ 2 W* )•

From now on we fix the scheme T = spec k and P — P\ = P(Wζ). The

restriction of (2.0.4) to the fibre p~\£) ~ P, £ a closed point of G = Gt(Wζ)9

gives the same diagram (2.1.1) (replace n by £) and (2.1.2) now becomes

0 > k • Λ 2 Wk • G(£) • 0 .

The image of k is now spanned by a decomposable vector corresponding

to the point £ in G. Let L be the line in P corresponding to £. Using

the same analysis as we did in Section 2 it is easy to show that the map

K -> G(£)P as in (2.1.1) is injective at the fibres except at points in L. Eί

is a coherent sheaf of rank 2 except at points in L where the rank jumps

to 3. Again we get a bijection between the set of lines in Pi through £

and sections of H°(E£) upto scalar multiple. In Remark 2.1.3 we viewed a

skew bundle as a quotient of 42(2) = ΩP/k(2) by a nonvanishing section. In

the present case we can view Ee as a quotient of 42(2) by a section which

vanishes on L. Ee is torsion free since the section does not vanish along

a divisor.

LEMMA 4.1. If a section s of 42(2) vanishes on a line L then Z(s) = L,

i.e. s vanishes with multiplicity 1.

Proof Suppose L has equations Xo = Xt = 0 in P. 42(2) fits into the

exact sequence

and

0 > Q(2) > © OJX) • ΘP{2)

H\Ω(2)) = ker ( φ H%ΘP(Ϊ)) —> H\ΦP(2)ή
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where the map is given by XidXj »-• XtXj see [4, Π, Theorem 8.13] and the

proof. The dX/s denote the basis. H°(Ω(2)) has a basis XidXj - X5dXt

for 0 < i < j < 3 and s is given by XodXί — XxdXQ. The local equations

for s are Xo — Xx = 0 and so Z(s) = L.

The techniques used in Proposition 1.3 for determining stability of a

rank 2 bundle fail to go through for an arbitrary coherent sheaf. To check

the stability of the coherent sheaves Ee we use an ad hoc method. First

we establish several technical results.

4.1.1. Let A be a noetherian local ring and M a finitely generated

A-module with a finite protective resolution. Let pd M denote the protective

dimension of M. We have the following inequality [9, Section 16, Example 4]

pd M + depth M = depth A.

4.1.2. Let A be regular local ring and M a finitely generated A-module.

Then pd M < r if and only if Ext* (M, A) = 0 for all ί > r, see [4, IΠ,

Example 6.6].

LEMMA 4.2. Let F be a coherent sheaf on P. Then SxeP{F\ ΘP) = 0

for all i > 1.

Proof. Choose a locally free sheaf L such that 0-+K-+L-+F-+0.

Dualizing we obtain

0 >FV >U >KV

\ /
R

/ \
0 0.

From the short exact sequence we get ixtP (F\ ΘP) ~ £xtP

+1 (R, ΘP) for i > 0.

Since R injects into the torsion free sheaf K we have depth Rx > 1 for all

x in P. From 4.1.1 and 4.1.2 we get £xtP

+1 (R, ΘP) = 0 for ί > 1 which proves

the lemma.

4.2.1. Let Y be a closed subscheme of codimension r in P. Then

ixtP (Φγ, ΘP) = 0 for i < r. See [4, IΠ, Lemma 7.3].

4.2.2. Let Jγ be a sheaf of ideals where 7 has codimension Y > 2 in

P. Then dualizing the standard exact sequence 0 —> Jγ -±ΘP —> Θγ —> 0 and

using 4.2.1 we get Jγ a ΘP.
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Let i be a closed point of G corresponding the line L in P and let Ee

be the coherent sheaf we constructed with the point ί. Ee embeds into its

double dual E] v . Recall that ωL = #>4 (ΘL, ωP) ~ ΘL{-2) and ωP ~ ΘP(-4).

PROPOSITION 4.3. E"," ~ <9P(1) Θ ΦP(ί).

Proof. The first step is to show that 2 3 " is locally free. Ee is the

quotient of Ω(2) by a section s which gives the exact sequence

(4.3.1) 0 > ΘP > Ω{2) • E, • 0 .

From Lemma 4.2, Z(s) = L. Dualizing the sequence we get

0 • E", • β ( 2 ) v • ΘP • ίxϊp (Et, GP) • 0 .

\ /

/ \

0 0

Hence SxtP (Et, ΘP) cz ΦL. Dualizing the first short exact sequence we obtain

0 • Jl > Ω(2) • E; V • Λ 4 (SLi ΘP) > 0.

W e have J"
L
 ~ Θ

P
 by 4.2.2.

From the exact sequence

0 • J
L
 > Θ

P
 • Θ

L
 >0 .

We get $xtP {JL, &P) ~ Sxt% (ΘL, ΘP) ~ α»L(4) ~ ΘL(2).

Combining the exact sequences we get

0 >ΘP > Ω(2) >EΓ • <PL(2) > 0

I II t
0 > ΘP > Ω(2) > E, > 0 .

It follows that

(4.3.2) 0 > Ee • Elv > ΘL{2) > 0 .

Again, applying Jfom ( , &P) to this exact sequence and using 4.2.1 we get

0 > δJp (E; \ ΘP) > $*x\ (Et, ΘP) • £*tP (ΦL(2), ΘP)

(E"e", ΘP) = 0 by Lemma 4.2. The middle two terms are both isomorphic
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to βL9 hence ixtP (E]\ ΘP) = 0 and by 4.1.2. it follows that Z£/v is locally

free.

From (4.3.1) we get

fθ, nΦ —2
H\Ω(2 + ήj)

[k9 n = —2 .

and cx(E£) = c2(Ee) = 2. From (4.3.2) we compute c^EJ v) = 2 and c2(EJv) = 1.

Since H\El-l)) = 0 we have # ° ( £ ; v (-3)) = 0. We claim that H\EΓ{-2))

= 0. Otherwise, E^v(—2) has a section 5 with Y= Z(s) of codimension 2,

degree Y = 1 and <yF = 0F(—6) which is impossible. Since ίΓ(JS/— 1)) = 0

we get H°(Ey(-l)) ~ H°(0L(1)). Hence ^ Γ ( - l ) has a section s with

degree Z(s) = 0 and thus 5 is nonvanishing. The bundle EJV(—1) splits as

ΘP 0 (Pp. This proves the proposition.

We now give our result on the stability of the 2£/s.

THEOREM 4.4. For closed points & in G the coherent sheaves Et are

stable sheaves with the same Chern classes and hence Hilbert polynomial as

skew bundles.

Proof. Let L be the line in P corresponding to £. We have just shown

that the E/s have the same Chern classes as skew bundles. Let F be a

rank 1 subsheaf of Ee with a torsion free quotient Q. Then F~ J\{c) and

Q ~ yw(d) where Z and W have codimension > 2 or are empty. By 4.2.2

Jz{cYv ~ ΘP{c). But Jz(cYv - - > E] V ~ ΘP{1) Θ ΘP{1) so c < 1. If c < 1

then PF(n) < PEe(n) since the leading coefficient of PEe{ri) — PF(^) is

- c = l - c > 0 . Suppose c = 1. Since H°(E£-l)) = 0 we have J

We have the following exact diagram

0 0 0

t ί ί
0 > 6JX) • ΘL{2)

ί . ί
o _ > ^ i ) _ _ • ΘP(χ) θ

ί ί ί
0 >SA) > Ee > ^

ί ί
0 0
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Clearly support Z=L and Z is reduced so Z = L and W is a reduced point.

Thus we consider subsheaves 0 -> ./^(l) -> J57̂  which exist, viz. image (α:) Π

E^ in J5/v. Computing polynomials we get PEe(n) — PL(n + 1) = (n + l)/2

> 0. We conclude that JÊ  is a stable sheaf.

The family of coherent sheaves Ep9 p a closed point in P | , consists of

the quotients of 42(2) by global sections. In (1.3.3) we saw that skew bundles

occur as extensions. This is also true for the sheaves E£. Indeed, let Ee

be a quotient of Ω(2) by a section t which vanishes on the line L. Recall

that there is a bijection between lines S in P 5 through 6 and (H°(P, Et) —

0)/fe*. Let S be a line through £ which meets G in exactly one other point

V corresponding to U in P. Let s' be the section of Ee corresponding to

S and let Q be the quotient EJs'-ΘP. The section s' lifts to a section £'

of Ω{2) and we get

0-—>k)®p >O(2) >Q >0.

The span of t, f in H°(Ω(2)) contains a nonvanishing section t" which gives

a skew bundle E and Q is a quotient of 2? by a section vanishing on the

skew lines Y — L (J L'. Hence Q ~ JΎ(2) and we obtain 25, as an element

of Extfp G/r(2), 0P).

PROPOSITION 4.5. ΓΛe family of sheaves EP9 p a closed point in P\9 con-

sists of precisely the sheaves which occur as elements of Extp (*/r(2), ΘP) for

all possible pairs of skew lines Y in P | .

Proof. We have just observed that every Ep is such an extension.

Conversely if Y = L U ΊJ is a pair of skew lines let £9 &
f be the correspond-

ing points on the Grassmann G. From the exact sequence

0 > Jγ(2) > ΘP{2) • Θγ{2) > 0

we get Extp (Jr

γ(2), ΘP) ~ Extp (Θγ{2\ ΘP). The spectral sequence of local

and global Ext degenerates, since Y is a local complete intersection, to give

Extp {Θγ{2\ ΘP) ~ £f°(P, Λί2p {Θγ{2\ ΘP)) ~ H°(Y, ωγ(2)) - iT°(y, (PF) = k Θ Λ. If

S is the line in P 5 through £ and ^7 then each point p on S gives a sheaf

iίJp with a section s upto scalar such that Ev\s 0 P ~ <fγ(2), i.e. an element

of ExtJ, (^Γ(2), ^p)/fe* = PI Conversely any element of ExtJ, (Jγ{2\ ΘP) which

corresponds to a unit in H°(ΦY) determines an extension

0 > GP > E > <fγ{2) • 0
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where E is a rank 2 bundle, hence a skew bundle (see proof of [5, Theorem

1.1]). Thus we have a (noncanonical) bijection between points of S and

elements in Exti (Jr

γ(2)9 ΘP)/k*.

The writer has been unable to determine if there are any other stable

or semi-stable coherent sheaves on Pi with the same Hubert polynomial as

the skew bundles.
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