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§1. Introduction

Let R™ be the real n-dimensional euclidean space. Elements of R
are denoted by x = (x,, - - -, x,), and || x| denotes the euclidean norm of x.
The open ball B(x, r) with center x and radius r is defined by

B(x,r) = {y:|ly — x| <r}
and the sphere S(x, r) is defined by
Sx, 1) := {y:lly — xll =1} .
In particular B := B(0,1) is the unit ball and S:= S(0,1) is the unit
sphere.
"~ Let u be a positive harmonic function in B. Then by the Herglotz

Theorem ([2], p. 29) there exists a positive Borel measure yx on the unit
sphere S such that

w(z) = L f PG, Ddux)  (xeS)

Oy

holds for all ze B. P(z, x) is the Poisson kernel for B defined by
P(z, x) := 1—l=lf
lz — x|

and o, is the surface area of S.

Now the question arises of the relationship between the limiting be-
havior of u(2) as z approaches a boundary point and the measure px on
the boundary. To study this question we define the open polar cap J(a, r)
having center ¢ € S and radius r by

Ja,r):={xeS:|x—a|| < r}
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and the symmetric derivative (Dp) (@) of the measure p at a surface point
a by

(Dp)(a) := lim -£-[J(a, )]
r-0 m

where

N _ M@, )]
[J(a r)] = miJ@. ]
and m is Lebesgue measure on the sphere. We note that y,r*~* < m[J(a, r)] <
r.r* ! for 0 < r <1, where 7,, 7, are constants depending only on the dim-
ension n. The first main result regarding the limiting behavior of u is
the following, which is due to Fatou (1906) in case n = 2 and to Bray
and Evans (1927) for n = 3.
Farou’s THEOREM. Let u be a positive harmonic function in the open
unit ball of R* having measure p in its Herglotz representation. If (Dy)(a)
exists, then the radial limit lim,_, u(ra) exists and is equal to (Dy)(a).

Remark. The Theorem of Fatou also holds in the case (Dy)(e) =
We indicate a short proof of this fact. Let xeJ{(a,1 —r). Using the
triangle inequality we get

lre — x| < llra — all + lla — x| <21 —r).

From this it follows that

ur) = 1 [ AT dumz [ T duw

¢, Js ra — x| o'n @i-n 21 — r)"

2%, @A—=r)y' = 2", m [Jla, ] = +eo

for r — 1, since (Dp)(a) =

Fatou’s Theorem also holds, if z approaches the point ¢ in a non-
tangential manner (in a Stolz domain at a), see e.g. [2], p. 55. But if we
replace Stolz domains by more general regions the situation changes
dramatically. In this case the boundary behavior of u can be very erratic.
To see this, let us introduce regions R(a,d,7) in B touching the unit
sphere at a.

DerFINITION. For ¢€ S, 6 >0, y =1 let

R(a,d,7) :={zeB:1— |z 2§z — alN\a},
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where 2’ is the radial projection of z on the sphere, i.e. 2 = 2/||z|| if 20
and we define 2’ = a if 2 = 0.

Evidently the radius {re:0 < r < 1} lies in R(a,d,7) for any 6 > 0,
r=1 If y =1 the region R(a,d,7) is essentially a Stolz domain at g,
i.e. a cone with vertex at ¢ and aperture depending on §. As y increases,
R(a, d, y) touches the unit sphere with an increasing degree of tangency,
e.g. for y =2 and n = 2, R(a, d, 7) is essentially the interior of an oricycle
at a. In two dimensions the regions R(a, d, y) were introduced by Cargo
[1] to study tangential limits of Blaschke products.

§2. The distinction between angular and tangential boundary
behavior

We will now make clear the difference between y =1 and 7 > 1 re-
garding the boundary behavior of u. For simplicity we choose the dim-
ension n = 2, the boundary point ¢ =1 and 6§ =1. Let y > 1 be given.
We construct a positive harmonic function u, such that u(z,) — 0 for every
sequence 2, € R(a, 9, 1), 2, — a, but for any number ¢ = 0 (including ¢ =
+ o) there exists a sequence 2, € R(a, J, 7), 2, — a with u(z,) —>c. In other
words, the partial cluster sets of v on R(a,d,1) or R(a,d,y) respectively
consist of only one point 0 or is the whole interval [0, o] respectively.
One should note that the simple example of a harmonic function A given
in Helms ([2], p. 54) does not work here, since the partial cluster set of
h on R(a,d, ) consists of exactly one point in all cases 1 <y < 2.

Construction of the measure. We choose the discrete singular measure

=2, 80y

k=1

with a, = exp (it,), t, = 27%, s, = 1§, 1 < B < 7. 0y is the Dirac measure
associated with the point a,. Let u be the positive harmonic function
with this measure p in its Herglotz representation.

1. Case. Let 0 < r < }, then there exists an index ne N with
Lau<rsit,.
This implies
1

n+1

pld(a, t,)] .

0< L [J@n <
m

A short calculation yields
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L la, t,)] = 2t1 S8, <2810 (n— o).
k=n

2 n+1 n+1 T

Therefore (Dy)(a) =0 and it follows by Fatou’s Theorem u(z,) -0 for
any sequence 2, € R(a,d, 1), 2, —a.

2. Case. We choose points z, = r,e* with 1 — r, =¢;. Thus z, €
R(a, d,7) for all ne N. Let I, be the interval around ¢, defined by

L= {e“: |t —t,| <t}.

For n sufficiently large, i.e. n > (y — 1)7', the only point ¢, belonging to
I, is the point £,. Therefore y(I,) = s,. By standard estimations we obtain

1—r tr
3> » duz| B g
u(z)—fs(l—rn)“r(t,.—t)z "—L., Pt — 2
1

> 1 f dp= L4700 (n—>o0).
- 2t,7; In -2

Thus u(z,) - o (n — ).

For neNlet A, := B(e, 1/n) N R(a,d,7). Since u is continuous on
A, and A, is a connected set, u(4,) is also connected. Since u(4,) C R
and the only connected subsets of R are the intervals, u(A4,) must be an
interval. From the construction above we see that u(4,) = (0, ) for
every neN. Therefore the partial cluster set of v on R(e,d,7) is

(-1 u(4,) = [0, oo].

§3. The problem

Let u be a positive harmonic function in B represented by the measure
g on S and let ae S. We are interested in the behavior of v in the region
R(a, d,7). Of course, this depends on the measure ¢ on S and especially
on the behavior of y in a neighbourhood of a. In view of the possibly
erratic limiting behavior, our main problem is to give a condition on the
measure p such that v is bounded in R(e,d,7). An obvious necessary
condition is that y be continuous at the point @, ie. x({a}) = 0, and an
obvious sufficient condition is that there exist r > 0 such that g[J(a, r)]
= 0. But there are much weaker conditions, e.g. one can show that the
condition

I du(x)

s lla = =™



POSITIVE HARMONIC FUNCTIONS 5

is sufficient. Let us give an interpretation of this condition. Take the
neighbourhood <f(a,r) of the point a. Then the condition says that
(e, r)] tends to zero with some speed as r — 0. It is not hard to show
that the condition above is not necessary. In order to get a necessary
and sufficient condition we introduce the following maximal function.

DerFINITION. For a finite positive Borel measure g on S and a region
R = R(a, d, r), we define the real function M = M(R, 4, x) on S and the
number N = N(R, z) by

M(B, 4, %) := sup {-L [, 7)]:r > 8 |x = alf} ,

N(R, p) := sup {M(R, p, '): z€ R(a, 6, 1)} ,

where 2’ is the radial projection of z onto the sphere S (with the agre-
ement 2’ = a if z = 0).

Remark. In the special case n = 2, y = 1 and y absolutely continuous,
M(R, p, x) is the Hardy-Littlewood maximal function.
Some auxiliary results will be given in the next section.

§4. Auxiliary results

LEMMA 1. There exist positive constants C, and C,, depending only on
the dimension n, such that for all ze B, xe€ S the Poisson kernel can be
estimated as follows:

1— |z

1 1—|z|
A== + %= 2T

< P(z,x)< C, ,
e ey ey P

where Z' is the radial projection of z onto S. In case of z=0 the ine-
quality holds for any 22€ S. One can choose C, = 1/n and C, = 2.3".

Proof. We note that ||z — 2’| = 1 — ||z| = dist (2, §) and
(1) 1—-Jzlslxe—2].

The triangle inequality implies

(2) lx— 2| S llx— 2| + @ — ||zl
and
(3) lx—2[Zllx—2|+A—(z) = 2]x—2|.

Now (1), (2), (8) imply
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e =2+ Q= lz} S llx— 2l < {lx— 2|+ Q@ —||2ID} -
After exponentiating and further estimating we obtain
@z = 2"+ @ = [2ID)7} = l|x — 2" < n{|x — 2|* + 0 — [|2)"},
and from this the result follows.

LemMmA 2. If u is a positive harmonic function in B with associated
measure y in the Herglotz representation, then
Wz) < CM(R, 1, 2)

holds for all ze R(a,d,7). C is a constant depending only on the dimen-
sion n.

Remark. In the special case of a Stolz domain, i.e. y = 1, and for g
absolutely continuous, the estimate in Lemma 2 is essentially known.
See E. Stein ([3], p. 62, Theorem 1a) for an analogous n-dimensional
statement.

Proof. Fix a point ze€ R(a,d,7). We decompose the sphere S in a
union of subsets S, depending on z. Let S, = S.(2) be defined as follows:

={xeS:lx — 2| <1—z|},
={xe8:2"'1 — | 2|) = llx — 2| < 2*(1 — ||zID} ,

where 2=1,2,.--. For k=0,1,2,-.. let I, := |J*,S,. We note that
I, is the open polar cap J[2/, 2%(1 — ||z|)) of radius 2*(1 — ||z|). Let p be
the smallest integer k& with 2%(1 — ||z|) = 1. We put I, = S. Therefore,

m(L) < 7,281 — |zl)" (B<p).

Using Lemmas 1 and 2 we can estimate as follows:

[ Penaw=al - )

EDESE
—c Izl 12l y
< { So——(l P du(x) + Z L 2 ,a(x)}
< C2 /J(Io) ﬂ(Ik)
= o{ 5 2 2 g G )

#(Io) z 2"#(11:)
”"{ mdy T & 2"m(I,,)}

< (14205 ) sup { £ 1@, i r > @ — 2D
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< Cr.(1 + 2 )M(R, p, 2) .

This yields u(2) < CM(R, p, 2’) with C = Cy,(1 + 2")/s,. Since the constant
C is independent of the special point ze R(a,d, y), the inequality holds
for all ze R(a, 3, 7).

§ 5. The main result

THEOREM. A positive harmonic function u in B with measure p in its
Herglotz representation is bounded in the region R(a,d,y) if and only if
NR, ) < oo.

Proof. One direction follows from Lemma 1. To prove the converse,
assume that u is bounded in R(e,d,y). Then there exists an absolute
constant M, such that

(1) [ P vdun <M

holds for all z€ R(a, d,7). To prove N(R,p) < oo we have to show that
there exists an absolute constant C such that

(2) g, < C
m

holds for all ze R(a,d,7) and all r > §||2’ — a|f. It is clear that we may
assume r < 1. Let such a pair z,r be given. We choose a special point
2z, =1 —r)z. It follows that ||z,]|=1—r<1, ie. zeB and 1 — ||z,]| =
r. Since r > §||2’ — a|f we have z,€ R(a,d,7), i.e. 1 — |2, =d|2 — all.
Using our assumption (1) for the point z, and Lemma 1 we obtain

1— izl
M= | P(z, x)du(x) = C s
= C, T =1 G ,
= W f||x-,;“<,- re+re Au(x) ) rn_ll,l[J(zn r)]

= Leg L, .
2 m
Note that 2’ = z/. Thus we have
EJ@,m<c
m

with the constant C = 2M/C,y,, which is independent of z and r. There-
fore we have established (2).
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