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SOME REMARKS CONCERNING DEMAZURE'S CONSTRUCTION

OF NORMAL GRADED RINGS

KEΠCHI WATANABE

Introduction

In [1], Demazure showed a new way of constructing normal graded
rings using the concept of "rational coefficient Weil divisors" of normal
projective varieties and he showed, among other things, the following

THEOREM ([1], 3.5). If R = φw2>0 Rn is a normal graded ring of finite

type over a field k and if T is a homogeneous element of degree 1 in the

quotient field of R, then there exists unique divisor D e Div (X, Q) (X =

ProJCR)), such that Rn = H0(X,(9x(nD))'Tn for every n^O. (See (1.1) for

the definition of Div (X, Q) and Θx(nD).)

Let us denote the ring R above by R — R(X, D). In this note we
want to consider the following problems concerning R = R(X, D).

(1) What is the depth of RΊ In particular, when is R a Macaulay
ring or a Gorenstein ring?

(2) When is R a rational singularity?
The paper is divided into three sections. In § 1, we calculate the

divisor class group of R. Although the contents of this section are in-
cluded implicitly in [1], we need to state the results explicitly to define
the canonical class cl (KR) of R in § 2.

In § 2, we seek the condition for R to be a Macaulay ring or a
Gorenstein ring. First, we express the local cohomology groups of R by
the cohomology groups of Θx(nD) (neZ). Then, using Grothendieck
duality, we calculate the canonical class cl (KR) of R and, in particular,
we can find the condition for R to be a Gorenstein ring.

In § 3, we establish a criterion for R to be a rational singularity when
X is smooth and Supp (D — \D\) has only normal crossings as its singu-
larity. (See (1.1) for the definition of \D\.) This criterion gives us very
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abundant examples of rational singularities and that will be of some in-
terest as there are not many examples of rational singularities known to
us, yet.

§ 1. The divisor class group of R(X, D)

Throughout this paper, we shall use the following notations.

NOTATION (1.1). k is a fixed field.
X is a normal irreducible projective scheme over k. We assume dim

X^l.
k(X) is the rational function field of X.
Irr1 (X) is the set of irreducible subvarieties of codimension 1 of X.
Div (X) is the group of Weil divisors of X.
Div (X,Q) = Div (X) ®z Q is the group of "rational coefficient Weil

divisors on X". If E = 2 rv V and E' = 2 X V are elements of Div (X, Q),
E^tE' means that rv >̂ rf

v for every Velrr^X). We write

L£j = sup{ZeDiv(X)|Z^ E) = 2 [rA-V

(where [r] is the largest integer not larger than r for r e Q).
ΘX{E) = Θ{\E\) for Ee Div(X, Q). We consider ΘX(E) as a subsheaf of

the constant sheaf k(X).
D = 2 pF/<2V V is a fixed element of Div (X, Q) (where pv, qv e Z, qr > 0

and (pΓ, <2v) = 1 ft>r every Velrr 1 ^)) satisf}dng the condition;
(A) There is a positive integer N such that ND is an ample Cartier

divisor.
Throughout this paper, we shall use the letters £), N, pv and qv in

this sense.
R = i?(X, D) = Θ^o H°(X, Θx{nD)). Tw c /KX)[Γ] (Γis an indeterminate).
m = R+ = Θn > 0 H°(X, Gz{nD)) T\
C = C(Z, Z>) = Spec^ (Θnez * X (ΛD) T7") and C+ = Specx (Θ^ o Θx{nD)

-Tn). Note that C is an open subscheme of C+. We put S+ = C+ - C.
C and C+ have the natural Gm-actions induced by the gradings. We have
the natural homomorphism Ψ: C+ -• Spec(jR) which maps C isomorphically
onto Spec(JB) — {m} and contracts S+ to the point m. Note that Ψ is a
projective morphism. In fact, C+ is isomorphic to Proj (i?*) in the notation
of E.G.A. Chapter Π, 8.2.

π:C-+X and τr+: C+ ->X be the canonical projections.
Fv = ir-^V)Λd e Irr1 (C) for Ve Irr1 (X).
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C1(Y) (resp. C1(JB)) is the divisor class group of a normal variety Y
(resp. of R).

P(Y) (resp. P(R)) is the group of principal divisors of Y (resp. of R).
Let us put the letter H to show that something on R or on C is

stable under the (?m-action. For example, HΌϊv(R) is the subgroup of
Div (12) consisting of the homogeneous divisors of R and ίΠrr^C) is the
set of irreducible subsets of codimension 1 on C which are stable under
the GTO-action on C.

Now, we will recall some facts to calculate Cl(R).

(1.2) As C - Spec(R) - {m} and as dimi? ^ 2 (dimi? = dimX + 1),
Cl(i?)~Cl(C). Also, we have C1(JB) ~ HΌiv(R)IHP(R) ([7], Proposition
7.1).

(1.3) ([1], 2.6 and 2.8) There is a natural bijection between Irr1 (X)
and Hlxi'iC) given by V->FV. The mapping TΓ* : Div (X) -> Div (C) is
given by π*(V) = qv-Fv for Velrr^X). In particular, π*(D) -=ΣxPvFv

eDiv(C).

By 7r*, we can identify the group i/Div (C) with the subgroup
Div (X, D) = {2>F-V€ Div (X,Q) | g Γ r F eZ for every Velrr^X)} of

Div(X,Q). Note that the bijection Div(X, D)-+HΌiv(R) is given by E

(1.4) If we denote the quotient field of R by Q(R), Q(R) = β(C) =
k(X)(T). Every homogeneous element of Q(R) can be written in the form
/•Tn, where fek(X) and neZ.

(1.5) ([1], 2.9) div(T) = π*(D) = ΣPv V in Div(C).

After these observations, we can easily get the following

THEOREM (1.6). There ίs an exact sequence

0 > Z-U d(X) > C1(B) • Coker(α) • 0

where θ is given by 0(1) = LD (L = LCM{qv\Velxv1 {X)}) and a is the
homomorphism Z^®vZlqvZ given by a(ί) = (pv(moάqv))v.

Proof. Look at the following commutative diagram
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0 0

I i
0—> P(X) • Div(Z)

i
0 > HP(R) • HDiv (R) = Div (X, D) • Cl (R) • 0

. 1' I
> φv Z/qvZ >Coker (a) > 0

Y

0 0 0

where the rows and columns are exact. The group I ~ Z is generated by

div(T). As a(άiv(T)) = β(π*(D)), Ker(αr) - Z and is generated by LD.

COROLLARY (1.7). R is factorial if and only if Cl (X) is generated by

LD and qv's are pairwise coprime.

Remark. If k is algebraically closed, we can classify all factorial

graded rings of dimension 2 by this method since the only normal projec-

tive curve X with Cl (X) ~ Z is P\ As the result, we rediscover Theorem

5.1 of Mori [5].

§2. The local cohomology groups and the canonical module of

R(X9D)

First, we note the following fact.

LEMMA (2.1). There is a canonical isomorphism R(ή) ~ Θx(nD) on X =

Proj (R) for every neZ.

Proof. By the assumption (A), we can assume that Θx{mD) is generated

by its global sections for every sufficiently large m. Let us take feRm

and geRm+n. If m is a multiple of N, mD is an ample Cartier divisor

and g\f is a section of Θx(jϊD) on the open set D+(f) of X = Proj (R).

(D+(f) is the standard notation used in E.G.A. Chapter 2.) If m is not a

multiple of N, we can take some f e Rm, such that m + m' is a multiple

of N. As g\f = gf'lff on D+(ff') and as D+{ff) covers D+(f) when f varies,

we can reduce to the case when m is a multiple of N. Thus we have the

natural homomorphism R(n) -* ΘΣ(nD). As Θx{mD) and Θx((m + n)D) are
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generated by global sections for sufficiently large m, this map is surjective

and the injectivity is obvious.

PROPOSITION (2.2). There is a canonical isomorphism of graded R-

modules

m(R) s 0 H>-XX9 ΘΣ(nD)) (p ^ 2) .
neZ

Proof. It is shown in [3], § 5 that there is a canonical isomorphism

Ham = Θ H'-KX, fifth (P ̂  2).
nez

And by (2.1), R(n) ^ Θx(nD) for every n e Z.

COROLLARY (2.3). depth i? = p + 1, where p is the minimal positive

integer such that HP(X,&x(nD)) ψ 0 for some neZ.

COROLLARY (2.4). R(X, D) is a Macaulay ring if and only ίfHp{X, Θx(nD))

= 0 for 1 i j p < dim X and for every ne Z.

EXAMPLE (2.5). In the following cases, R(X,D) is a Macaulay ring

for every D e Div (X, Q) satisfying the condition (A).

(a) X is a curve.

(b) X is a projective space or a Grassmann variety.

(c) X is a smooth complete intersection in a projective space and

EXAMPLE (2.6). If X is a rational ruled surface and if D is an ample

divisor on X, it is known that R(X,D) is a Macaulay ring. But for De

Div (X, Q) satisfying the condition (A), this is no longer true. For ex-

ample, if X= P1 X P1 and D = 1/2.Δ - 1/δ.Fj - 1/5.F2, where Δ is the

diagonal and Fx and F2 are fibres of the first projection, then H\X, ΘX{D))

= H'iX, Oχ(—Fi - F2)) Φ 0, while 10.D = 5Δ - 2F, - 2F2 is an ample Cartier

divisor.

Now we will calculate the canonical class cl (KR) of R. Recall that

KR is defined by KR = (iϊ^i?))*, where d = dimi? = d i m X + 1. See [2],

(2.1.2) and (1.2) for the definition of the functor ( )* and KR.

First, we recall the following fact.

LEMMA (2.7). If Y is a normal irreducible projective variety over k and

if EeΌiv(Y), then we have the nonsingular pairing
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Hn(Y, ME)) X H°(Y, ΘY(KY -

where d = dim Y and ΘY{KY) = ωγ is the dualizing sheaf on Y.

Proof. By Grothendieck duality (cf. [8], Chapter I, (1.3)), Hd(Y,Θγ(E))

is dual to Ext°φγ((Pγ(E)9Θγ(Kγ)) = E\Y9^omoγ{Θγ{E\Θγ{Kγ)) and it is easy

to see that ^om0γ{Θγ{E\ ΦY(KY)) ^ ΘY{KY - E).

THEOREM (2.8). The canonical module KR of R is given by

KR = e H%X, Θx(Kχ + D' + nD)),
nez

where Kx is the canonical divisor of X and D' = 2 ] F (QV — 1)1 Qv

Proof. We have (KR)n = (H*m(R))* = (H*'\X9 Θx{- nD)))* s H\X9 ΘX(KX

- L-ΛDJ)) = H°(X, ΘX{KX + Όf + nD)) by (2.2) and (2.7) (where ( )* means

the dual vector space. Note that — ι—nD\ is not equal to \nD\ but to

[nD + D'\). As these isomorphisms of all degrees are compatible with the

multiplication of homogeneous elements of R, we get the desired result.

COROLLARY (2.9). If R is a Macaulay ring, R is a Gorensteίn ring if

and only if there is an integer a = a(R) such that Kx + Dr — aD = div (/)

for some fe k(X).

Proof. As R is a Macaulay normal domain, R is a Gorenstein ring
if and only if cl( lQ = 0 in Cl(R). In the notation of (1.3) and (1.6),
Kx + Π e Div(X, D) and cl(lQ = c\{Kx + U) by (2.8). So, cl( lQ = 0
if and only if Kx + Π e Div(X, D) is in the image of HP(R). But if fTa

is a homogeneous element of Q(R) (fek(X)), the image of div(/Tα) in
Div(X,jD) is άivx(f) + aD by (1.5).

Remark (2.10). In [2], (3.1.4), we have defined the invariant a(R) of
R by

a(R) = -min{m\(KB)m φθ} = max{m\{Hi{R))m Φ 0}

and showed that if R is a Gorenstein ring, then KR = R(a(R)). It is easy
to show that the integer a(R) in (2.9) coincides with this definition.

Remark (2.11). If R is a Macaulay ring, then Xis a Macaulay scheme.
In fact, if R is a Macaulay ring, so is the iV-th Veronese subring RiN) =
R(X9ND). As ND is an ample Cartier divisor, we can say that X is a
Macaulay scheme by [2], (5.1.10). But even if R is a Gorenstein ring, X
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need not be a Gorenstein scheme. For example, if R = k[U, V, W], where

we put deg([7) = deg(V) = 1 and άeg(W) = n, then Z = P r o j ( i ? ) is a

Gorenstein scheme if and only if n = 1 or 2.

§3. A criterion for rational singularities

In this section, we assume char (k) — 0 since the definition of rational

singularities is not founded yet in positive characteristics. Recall that R

is a rational singularity if for some (or, equivalently, every) resolution

Φ: Y-> SpecCR), the higher direct images RPΦ*(ΘY) = 0 for all p > 0. We

will say that a scheme has only rational singularities if every singularity

of it is a rational singularity.

The key lemma of this section is the following.

LEMMA (3.1). If X and D satisfy the following conditions, then the

scheme C+ = C+(X,D) has only rational singularities.

(1) X has only rational singularities.

(2) If xeX is a singular point, then D is a Cartier divisor on some

neighborhood of x.

(3) If xeX is a smooth point, then there is a regular parameter system

(z, , zd) of the local ring ΘXiX such that Supp (D — \D\) is defined by

Z\ - z>t (t^d) at x.

Proof. First, notice that if E is a Cartier divisor on X, C+(X,D) has

only rational singularities if and only if so does C+(X, D + E) as the

problem is local with respect to X. If Φx\υ = ΘΣ{D)\Ό for some open set

U of X, then C+(X9D)\U s Ux A1. Thus C+(X,D) has only rational

singularities over some neighborhood of a singular point x of X by (1)

and (2). If x is a smooth point of X, we may assume that D = ΣlUiPίlQi' Vt

near x, where (pu qt) = 1, 0<Pi<qi9 0<:t<^d and the defining equation

of Vi is zt at x by (3). Then,

C+(X, D)χx Spec (ΘXtX) = Spec {Θx,x[zϊai zra< - Tn \ npt ^ a.q,

for i = l, ••-,*]).

As the completion of this ring is isomorphic to that of a normal semigroup

ring, this ring is known to be a rational singularity ([4], Chapter I, § 3).

Remark (3.2). If S u p p φ - |Z)j) has "bad" singularities, C+ does have

non-rational singularities even if X is smooth. For example, let U =

A\u,v) and D = 1/g Z, where Z is defined by f(u9v) = 0. Then C+ =
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Spec(k[u,v, TJ-'T*]) is a hypersurface in A\u,v,T,w) defined by Tq -
w f(u, v) = 0, which is not a rational singularity if q and deg(/) are large.

THEOREM (3.3). If X and D satisfy the conditions of (3.1) and if Φ:Y

-> Spec (R) is a resolution of Spec (R), then we have canonical isomorphisms

R*Φ*(ΘY) s Θ H»(X, Θx{nD))

for all p^O. In particular, R is a rational singularity if and only if R

is a Macaulay ring and the invariant a(R) is negative.

Proof. As RPΦ%(ΘY) does not depend on the choice of the resolution

Φ, we may assume that Φ is the composition of Θ: Y-» C+ and ¥: C+ —•

Spec (2?). As C+ has only rational singularities, RPΘ*(ΘY) = 0 (p > 0) and

we have isomorphisms

R'ΦJflr) = RpΨ*(®+) = H p (C + , Θc+) = Hp(X, 0 Θx{nD)) s 0 H p ( ^ <W>))

by the definition of C+.

EXAMPLE (3.4). If X is a curve, the conditions of (3.1) are always

satisfied. So, R is a rational singularity if and only if a(R) < 0. This has

been proved by Pinkham [6].

EXAMPLE (3.5). Let X = Pd and Ht (i = 1, , s) be hyperplanes of

X in general position. If D is a rational coefficient linear combination

of Ht's and satisfies the condition (A), X and D satisfy the conditions of

(3.1) and R(X9D) is a rational singularity if and only if deg(ιnDι)}> —d

for every n >̂ 0. For example, let p, q be positive integers with (p, q) = 1,

H9HU - , Hp be hyperplanes in general position and D = bH + 2]?=i a\qHu

where α, 6 are integers which satisfy ap + bq = 1. Then i? = R(X, D) =

β[S, To, , Td]l(S9 — Λt /ιp), where Γo, , Γd are homogeneous coordi-

nates of P d and /^ = Λ* (To, , Td) is the equation of #"< (i = 1, ,p). As

deg(S) = p and deg(T,) = q (i = 0, . . ,d), α(l?) = p g - p - (d + ί)q. So,

i? is a rational singularity if and only if pq — p — (d + ί)q < 0.

EXAMPLE (3.6). Let (Xl9 A) and (X2, D2) be pairs of a variety and a

divisor satisfying the conditions of (3.1). Then, if we put (X, D) = (Xj X

X*2>P*(A) +P*(A)) (where p^X-^X^ (/ = 1,2) are the projections), then

it is easy to see that C+(X9D) has only rational singularities and the re-

sulting ring R(X, D) is the Segre product R(XU A ) # i?(^2, A). As the local
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cohomology groups of Segre products are computed in [2], (4.1.5), we can
easily check if R(X9 D) is a rational singularity or not. For example,
though R = k[x, y, z]l(x2 +f + zΊ) (deg (x) = 21, deg (y) = 14 and deg (z)
= 6) is not a rational singularity, the Segre product R # R is a rational
singularity for any rational double point R'.

CONJECTURE (3.7). If R is a Macaulay graded ring with isolated sin-
gularity and if a(R) < 0, then is R a rational singularity?
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