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THE PRINCIPLE OF LIMITING ABSORPTION FOR

UNIFORMLY PROPAGATIVE SYSTEMS WITH

PERTURBATIONS OF LONG-RANGE CLASS

HIDEO TAMURA

§ 1. Introduction

The aim of this paper is to establish the principle of limiting absorp-
tion for uniformly propagative systems A(x, Dx) = Eix)'1 Σ]=ί AjDj9 D3 =
— id/dXj, with perturbations of long-range class, where the perturbation
of long-range class, roughly speaking, means that E(x) approaches to
Eo, Eo being the NxN identity matrix, as |JC|->OO with order O(\x\~δ),
0 < δ <* 1. (The more precise assumptions will be stated below and we
require some additional assumptions on the derivatives of E(x).) The
spectral and scattering problem for uniformly propagative systems was
first formulated by Wilcox [10]. Since then, the principle of limiting
absorption has been proved by many authors ([5], [7], [8], [11] etc.). The
perturbations discussed in their works belong to the short-range class
with δ > 1.

On the other hand, for the Schrδdinger operators with long-range
potentials, this principle has been already verified by many authors ([2],
[3], [6] etc.). Especially, S. Agmon has extended their results to general
elliptic operators of higher order, using the localization theory in the
momentum space, f-space (lecture given at the Kyoto University, 1977).

In this paper, we also use the localization theory, so we owe much
to Agmon's idea. However, his method cannot be directly applied to our
problem. In particular, when the characteristic equation for the unper-
turbed system ΛO(DX) = 2y=i AJDJ has multiple roots, a few difficulties
occur and we need some modifications.

1.1. Notations. We first list up the notations which will be used
throughout this paper. (1) R% and Rn

ξ denote the n-dimensional euclidean
space with generic points x = (xl9 , xn) and ξ = (ξu , ξn), respectively.
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We often write Rn instead of Rl or Rn

ξ without subscript x or ξ. We

denote by x-ξ the scalar product between x and ζ x ξ — T^^Xjξj, and

by \x\ the length of x. (2) Cn denotes the n-dimensional unitary space

with the usual scalar product (, ). (3) For a multi-index a = (au , an),

a3 being a non-negative integer, we denote by \a\ the length of a; \a\ =

ΣU \etj\. We write dx = (d/dxu , d/dxn), Dx = (A, , Dn), D, = -0/5*,,

and dj = (dldx^*1 (d/dxn)
an for a = (au - - -, an). We occasionally use the

symbol a: to denote real numbers but there will be no fear of confusions.

1.2. Assumptions. We shall formulate the problem to be discussed

here with several assumptions. The operators to be considered are given

in the following form:

(1.1) Λ = E(x)-*±AjDj,

(1.2) A = Eo"1 ± A,D, = Σ AM ,
j = l . 7 = 1

where EQ is the identity matrix of size N X N. We make the following

assumptions:

(A.I) Aj9j = 1, , n, is a symmetric constant matrix of size N X N;

(A.2) The unperturbed system Ao is uniformly propagative in the sense

of Wilcox ([10]).

We do not give the definition of uniformly propagative system here

but some important properties which are necessary to the later argument

will be summarized in § 2.

(A.3) E(x) = {ejk(x)}jfk=ltN is symmetric and positive definite uniformly in

x. Furthermore, it belongs to the long-range class in the following sense:

(1.3) \ejk(x) - δjk\ ^ C(l + | * | ) " δ , δ > 0

(1.4) | 3 ί e i t ( * ) | £ Cβ(l + \x\)-^ , \β\ ^ 1 ,

where δjk is Kronecker's delta.

1.3. Functional spaces. We shall introduce the various functional

spaces in which we work. We denote by Hm(H0 = L2) the usual Sobolev

space of order m over the whole space Rn and the norm is denoted by

|| ||m. We introduce the Sobolev space Hmta with weight a by Hmt<x =

{φ; (1 + \x\Y2φ e Hm} and define the norm || ||m,α by ||^||m,α = ||(1 + \x\ψ2φ\\m.
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We further define the space H%]a as H%]a = ^ θ Hm,a, ί summands, and

denote by | \%a the norm in H£a. When m = 0, we write H$ = U%

In the future argument, the spaces of N summands are most frequently

used, so we simply write | \m>a instead of | \^a for the norms in these

spaces.

1.4. Results. We shall state the main results obtained in this paper.

As is easily shown, the operator A defined by (1.1) has a natural self-

adjoint realization (denoted by the same symbol A) in Lffl with the energy

scalar product

((Φ, Ψ))o = ί (Φ, E(x)ψ)dx

and the domain 2{A) is given by 3f(A) = {u; ueLffl, AueLffl}. Similarly

we denote by the same symbol Ao a self-adjoint realization of Ao defined

by (1.2) with domain @(A0).

With the above notations, we are now able to state the first result.

We always assume that (A.I) ~ (A.3) are satisfied.

THEOREM 1.1. The eigenvalues of A are discrete with possible accumu-

lating points 0 and ±oo.

Next, we consider the equation

(1.5) Au-(λ± iκ)u = f, 0 < K £ 1 ,

with fe L2

(^, a > J. Clearly, for K > 0 there exists a unique solution u =

R(λ ± ίκ)f'= (A — (λ ± ί/c))-^ such that ueL(

2%\ Then, the second result

is stated as follows:

THEOREM 1.2. Assume that λ, λ =̂  0, is not an eigenvalue of A. Let

u = R(λ ± iκ)f be a solution of equation (1.5) with feL^J, a > | . Then,

the following statements hold: (i) There exists a constant Ca independent

ofκ9 0 < K ̂  1, such that \R(λ ± itc)f\0,-a ^ Ca |/|Ofβ; (ii) There exist bounded

operators R(λ ± iO) from L^J to L^la defined by R(λ ± ίθ)f = l im u o R(λ ± iκ)f

strongly in L^2a.

Remark. We can show that the convergence in (ii) is uniform in λ

when λ ranges over a compact interval, not containing the origin and

eigenvalues of A. Hence, we can prove that R(λ ± iθ)f is locally con-

tinuous in λ under the norm in L(

2*2a.
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We prove Theorem 1.2 only for the " + " case; the proof for the " —"

case is done without any essential changes.

1.5. Remarks, (i) The assumption that Eo is the identity matrix loses

no generality. The general case in which Eo is symmetric and positive

definite can be reduced to this case by a simple transformation, (ii) The

assumption in (A.3) seems to be rather restrictive. However, our results

cover the case in which E(x) is of the following form: E(x) = E^x) +

E2(x), where E^x) satisfies (A.3) and E2(x) = O(|*|-(1+δ)) as |* | -> oo. Hence,

by use of mollifier technique, E(x) for which (1.4) with \β\ = 1 only is

valid can be decomposed into the above form.

Finally we note the following fact: We use the symbols C, Cu to

denote positive constants which are not necessarily the same. In par-

ticular, when we specify the dependence of such a constant on a para-

meter, say ε, we denote it by Cβ.

§ 2. Preliminaries

2.1. Systems in homogeneous media. We summarize the results

derived from assumption (A.2) which are necessary to the later argument.

The proof of these results can be found in [10]. Let AQ(ξ) be defined by

(2.1) Λ0(ξ) = ± Ajξj .

Then, by the definition of uniformly propagative system, Λ0(ξ) has r distinct

real eigenvalues with constant multiplicity.

PROPOSITION 2.1. (i) One of the following alternative holds for a system

of the above eigenvalues: (a) when r = 2p + 1 is odd,

(2.2) Λ(f) > > λ,(ξ) > US) = 0 > λ-,{ξ) > " > *-i(ξ)

with the relation λ.j(—ξ) = —λj(ξ), j = 1, , ρ; (b) when r = 2p is even,

(2.3) Λ(f) > . • > λp(ξ) > o > λ_p(ξ) > > u e )

with the same relation as above, (ii) Each λj(ξ) is smooth in Rn — {0}

and positively homogeneous of degree one; λj(μξ) = μλj(ξ), μ > 0. Hence,

when j ^ 1, there exists a constant C3 such that λό{ξ) ^ C, |£|.

We now define the bounded surface Ξjy j = 1, , p, as

(2.4) ^ = {ί;^(?) = l } .
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PROPOSITION 2.2. B5 has the following properties: (a) Ξό is smooth',

(b) Ξj does not intersect with each other and is a closed hypersurface,

enclosing the origin.

For brevity, we restrict our attention to the case (a) in Proposition

2.1 throughout the entire discussion.

Let dj9 j = 0, ± 1 , , ±ρ, be the multiplicity of λj(ξ), d.j = d3, and

hence N = Σ$—„ dj. Let

Γj(ξ) = projection on the eigenspace corresponding to
( 2 ' 5 ) t(ξ)j o ± i

Then, it is easy to see that Γj(ξ) is smooth in Rn — {0} and homogeneous

of degree zero. Moreover, Γ3(ξ) has the following properties: (a) Γό{—ξ)

= Γ.jiS) for j * 0; (b) Γ,(ξ)Γk(ξ) = 3, *Γ,(£); (c) Σ j _ , Λ(?) = E09 EQ being

the N X N identity matrix.

We denote by Iά the dό X dj identity matrix and define ^ ± } ( f ) as

follows:

I-} — IJ

We further define 90(ξ) as

m+)(ξ) o \
(2.6) 0O(£) = λΰ(ξ)I0

\ 0 ®tKS)J

For brevity, we assume that there exists a JV X N unitary matrix ί70(f)

such that U0(ξ) is smooth globally in R" — {0} and that

(2.7) C70(f)J0(f)Z70(f)-] = #,(£) , f # 0 .

If Z70(f) exists, then ί70(f) is homogeneous of degree zero. In the later

argument, we have only to assume that such an UQ(ξ) exists in a small

neighborhood of each ξ0 (ξ0 ^ 0) fixed arbitrarily, not containing the origin

and this assumption is always satisfied for uniformly propagative systems.

2.2, Symbol class of weighted pseudo-differential operators. In this

subsection, we introduce a special class of pseudo-differential operators

and state some fundamental properties without proofs.
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DEFINITION 2.1. We say that P(x, ξ) = {pjk(x, ξ)}j>k=he, (x, ξ)eRnX R\

belongs to Affi(£), σ :> θ :> 0, when the following conditions are satisfied:

(a) pjk(x, ξ) is smooth in Rn X Rn,

(b) \3ipjt(x9 ξ)\ £ Cr(l + \x\)-\l + |f|)»-iri,

(c) mPjΛx, ξ)\ ̂  cβtr(i + |x|)-(i + \ζ\r-", \β\ ^ l.

We say that a family of P(x, ξ; ε) with parameter ε belongs to A^l{£)

uniformly in ε, if the above constants Cγ and Cβtr are independent of ε.

We now define the pseudo-differential operator P = P(x, Dx) with

symbol P(x, ξ) e Affi(£) as follows:

Pu = (&)- J e^P(x, ξ)ύ(ξ)dζ

for u(x) = '(u^x), , u£(x))e^,^ being the Schwartz space of rapidly de-

creasing smooth functions, where ύ(ξ) is the Fourier transform of u;

ϋ(ξ) = ί e-ίx'ξu(x)dx

and the integration with no domain attached is taken over Rn.

DEFINITION 2.2. We say that P(x, Dx) e OPA(

θ™l(β), when it is a pseudo-

differential operator with symbol P(x, ξ) e A{™l(ί).

For the calculus of pseudo-differential operators of class OPA(

Θ™1(£),

we can obtain formulas similar to those in the standard Hormander class

Sffi (Hormander [1]). We state these formulas below without proofs.

PROPOSITION 2.3. (i) Let Pj(x, Dx), j = 1, 2, be pseudo-differential op-

erators of class OPA^ lβ). Then, the product P = PXP2 is also a pseudo-

differential operator of class OPA(

Θ™1(£), where m = mx + m2, θ = θx + θ2 and

σ = min {θ1 + σ2, θ2 + σ^, and the symbol P(x, ξ) is expressed as P(x, ξ) =

Pι(x9 ξ)P2(x, ξ) + Q(x, ξ) with Q(x, ξ) e A<*1(£)9 m = m1 + m2-l. (ii) Let

P(x, Dx) be a pseudo-differential operator of class OPA(

Θ™1(£). Then, P*, P *

being the adjoint of P in Lffi, is also a pseudo-differential operator of class

OPA(™1(£), and the symbol σ(P*)(x, ξ) is expressed as σ(P*)(x, ξ) = P*(#, ξ)

+ Q(x, ξ) with Q(x, ξ) e A™(£\ m = m - 1, where P*(x, ξ) is the adjoint

matrix of P(x, ζ).

PROPOSITION 2.4. Let P(x, Dx) be of class OPAI™1(£). Then, P(x, Dx)

is a bounded operator from £Γi+m,r °̂ H^r+Θ for any k and γ. Furthermore,

if P(x,Dx;ε) belongs to OPA(™1(£) uniformly in e, then P(x,Dx;ε) is uni-

formly bounded.
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In the later discussion, the class A(^σ(β) is most frequently usedυ, so

we simply write A9jβ{£) and OPAθ,a{i) instead of Af}β(J) and OPAf]a{t),

respectively.

2.3. Preliminary lemmas. We conclude this section by stating some

simple a priori estimates for solutions to the equation

(2.8) Λou - (λ + iκ)E{x)u = f, 0 ^ K ̂  1 .

LEMMA 2.1. Assume that K > 0. Let u e L$ be a solution to equation

(2.8) with fe D£\ a>0. Then, u e Lg> and fc\u\0>a £ C(\f\0,a + |M|Ofβ-i) with

C independent of tc.

LEMMA 2.2. Under the same assumptions as in Lemma 2.1,

The proof of Lemma 2.1 and 2.2 is easy, so we omit it.

Let Γj(Dx),j = 0, ± 1 , , ±/>, be the pseudo-differential operator with

symbol ΓΛ(ξ) defined by (2.5). We define Γ{DX) as Γ(DX) = EQ - ΓO(DX).

Then, we have the following results.

LEMMA 2.3. Let Γ{DX) be as above. Assume that 0 ^ /c <ΞJ 1. Moreover,

assume that u is a solution to equation (2.8) with feLffi such that

u e Z$>. Then, Γ(Dx)u e H{f and

\Γ(Dx)u\UQ ^ C(\f\OiQ + \uU .

Proof We obtain from equation (2.8) that

A0Γ(Dx)u = (λ+ h)Γ(Dx)E(x)u + Γ(Dx)f.

Since A(f)Γ(f) = Σj-i ^(£)Λ(£) + Σ7--^i(f)Λ(fX i* follows from (ii) of
Proposition 2.1 that

\Γ(Dx)u\h0 ^ C(\Λ0Γ(Dx)u\0,0 + \Γ(Dx)u\OtQ) .

This completes the proof.

LEMMA 2.4. Let ΓO(DX) and Γ{DX) be as above. Let φ(ξ) be a smooth

function with compact support such that φ(ξ) = 1 in a neighborhood of the

origin and let χ(ξ) = 1 — φ(ξ). Assume that 0 ^ tc ̂  1. Moreover, assume

that u is a solution to equation (2.8) withfeL^, — oo < γ < oo, such that

ueLffl. Then, the following estimates hold:

1) More precisely, symbols with compact support in £ are used and such symbols
belong to A0,a(£) or A{™l(J) for any m.
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(i) \φ(Dx)u\i,r^C\u\0)ΐ;

(ii) \χ(Dx)Γ(Dx)u\ur ^ C(|/|OfΓ + M0,r).

Proof, (i) is obvious. For the proof of (ii), we set v = χ(Dx)(p(x)u)

with ρ(x) = (1 + |x|2)r/2 and hence veLffi by assumption. Then, v obeys

the equation Aov = χ(Dx)g, where g = (λ + iκ)p(x)E(x)u + p(x)f + [Λo, ρ(x)]u

and [, ] denotes the usual commutator notation. Since g e L$ and since

|g|o,o ^ Cfl/kr + Mol7 ), we obtain by Lemma 2.3 that

(2.9) | Γ ( 2 » | l i o ^ C ( | / | O i r + |M|ol,).

We can write Γ(Dx)v as Γ(Dx)v = p(x)χ(Dx)Γ(Dx)u + R(x, Dx)p(x)u with

R(x,Dx) = [χ(Dx)Γ(Dx),p]p-1. As is easily seen, R(x, Dx) belongs to

OPA^iN) and hence \R(x, Dx)pu\ίίQ £ C\u\Ofΐ. This, together with (2.9),

proves (ii).

§3. Fundamental proposition

In this section we consider an equation of the following form:

(3.1) dtv + κ b ( D t , Dy)v + iA(t, y , Dy)v = κg + f, O ^ Λ ^ I ,

where dt = d/dt, Dt = -ίdt and Dy = -i(dldyu , S/3yTO), m = n - 1. We

write 2 = (£, y), y = (^, , ym) and denote by ζ = (r, η), η = fo, , 37J,

ί/ie coordinate system dual to 2. The following hypotheses are made.

(H.I) A(t, y, Dy) is a pseudo-differential operator with symmetric matrix

symbol A(t, y, -η) = {aJk(t,y,η)}Jttmlti and each component ajk{t,y,η) satisfies

the estimates;

ajk(t,y, η)\ ^ C,,r(l + \t\)-^θ\l + |,|)-'π , |^| ^ 1 ,

for some θ, 0 < θ < 1.

(H.2) 6(1^, Dy) is a pseudo-differential operator with non-negative symbol

b(ζ) = b(τ, η) and 6(ζ) is expressed as b(ζ) = c(ζ)2 for some smooth function

c(ζ), c(ζ) ^ 0, with compact support.

We further assume that

(3.2) / e L f t , α > i ,

(3.3) g G L $ for ^ introduced in (H.I) .
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We use the following notations throughout this section: (a) We work

exclusively in the spaces of ί summands, so we drop the superscript ί to

denote the norm in U%; \ \0>a = \ \^a; (b) We denote by < , > and || ||

the scalar product and norm, respectively, in the space ££ = L^%R™) =

2] Θ L2{Rf), i summands. The next lemma is easily verified.

LEMMA 3.1. (i) Assume that A(t, y, rj) satisfies (H.I). Then, there exists

a constant C independent of t such that

|Im (A(t, y, Dy)ψ, ψ)\ ^ C(l + |φ-(1+*> ||ψ||2

for any ψ e S£. (ii) Assume that b(ζ) satisfies (H.2) and that v = v(t, y) e

L(

2%, σ ^ O . Let φ(t) be a non-negative smooth function such that φ(t) = 0

for t ^ l and φ(t) = (1 + f)σ/2 for t <: 0. Then,

Re Γ <6(A, Dv)υ, φ2v)dt ^ - C Γ (1 + f)v \\v(t)\\2 dt ,
J - 0 0 J -CO

v = σ -

Now, we prove a series of propositions which will be applied to derive

a priori estimates in § 6.

PROPOSITION 3.1. Assume (H.I), (H.2), (3.2) and (3.3). Let υ = v(t, y)

be a solution to equation (3.1) such that v e Li% Then, there exists a con-

stant C independent of t such that

\\v(tW ^ C{\f\l>a + \υ\l_a + A:(|̂ |Sf0 + Ko)} •

Proof. Since v e Li% dtυ e Li% by equation (3.1). According to the

trace theory ([4]), we see that v(t, •) is continuous in t as an ϋ?-valued

function and therefore \\v(t)\\ is well-defined for all t. We take the scalar

product < , ) between equation (3.1) and v and integrate the resulting

equality with respect to t over the interval (a, T), — o o < α < T < o o .

Furthermore, taking the real part, we have

(3.4) i || v(T) ||2 = Im Γ <A(t, y, Dy)υ, v}dt + J(a, T) + i\\ v(a) | | 2,
J a

where

J(a, T) = Re Γ {</, ι;> + κ(g, v) - κ(b(Dt, Dy)v, v}}dt .
J a

Since b(Dt, Dy) is a bounded operator in L(

2% J(a, T) is estimated as

\J(a, T)\ ^ C{|/|20,α + \υ^_a + κ(\g\l)ΰ + \υ\l>0)} with C independent of a and
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T. We apply (i) of Lemma 3.1 to the first term on the right side of (3.4),

so that

(3.5) \\v(T)\\2 £ C\κ(a) + £ ( 1 + |t|)-<1+ > \\υ(t)\\* dt} ,

where K(a) = \\v(a)\\2 + {\f\*ta + \v\l_a + κ(\g\lt, + \v\l>0)}. We now apply

the well-known Gronwall inequality to (3.5), so that ||u(T)||2 <L CK(a) with

C independent of a and T. Since liminf^.^ ||υ(α)||2 = 0 by vel£% the

desired result follows at once.

PROPOSITION 3.2. Under the same assumptions as in Proposition 3.1,

it holds that for any σ, σ > \,

U ^ Γ (i + *2)-*(H0ll2 + \\dtv{t)\\2)dt
J — oo

Proof. The first inequality is evident by definition. The second one

follows immediately from equation (3.1) and Proposition 3.1.

PROPOSITION 3.3. Assume (H.I), (H.2), (3.2) and (3.3). Moreover, as-

sume that j < a < | (1 + θ) for θ in (H.I). Let μ be a constant such that

0 < μ < 2a — 1 (< θ < 1). Let υ = v(t, y) be a solution to equation (3.1)

satisfying v e L^?/2. Then, there exists a constant C = Cμ independent of tc

such that

Γ. ty-ί)/2\\v(t)\\2dt £ C{\f\l,a + \υ\l,_a + κ(\g\l>θ + \v\lt0)} .

Proof. We first introduce a smooth function φ(t) with the following

properties: (a) φ(t) ̂ 0 ; (6) φ'(t) ̂ 0 ; (c) 0(£) = 0 for t ^ 1; (d) 0(£) =

(1 + ίz)μ μ for £ <̂  0. We take the scalar product < , > between equation

(3.1) and ψ(t)v, ψ(t) — φ(t)2

9 and integrate the resulting equality with re-

spect to t over (— co, oo), noting the fact that liminf^±0O \t\μ \\v(t)\\2 = 0,

μ < 1, which follows from v € L^μ/2. Furthermore, taking the real part

and making use of (ii) in Lemma 3.1, we obtain

Γ (1 + tψ-^\\υ(t)\?dt - Clfc Γ (1 + ί2)^-1

J - o o J - o o

(3.6) ^ C2 J " f(t) {Im (A(t, y, Dv)v, v) + Re «/, ι;> + κ(g, v»}dt
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We estimate each term on the right side. Since feL{

2% and since 0 < μ

< 2a — 1, I2 is estimated as

^ ε Γ (1 + ty-1)/2\\v(t)\\2dt + Ce(\f\l
J — oo

for any ε > 0 small enough and hence the first term is absorbed in the

left side of (3.6). Similarly we have |/8| £ C*(|g|j!,, + |ι;|2,0) since geL$

and μ < θ. To estimate Il9 we use (i) in Lemma 3.1 and obtain

-σ \\v{t)\fdt, σ = i(l + θ-μ)>i,

which, together with Proposition 3.2, implies that

+ |i7|S.— + κ(\g\lo + \v\lo)}

Thus, we have only to combine all the above estimates to conclude the

proof.

Next, we consider the equation (3.1) with K = 0;

(3.7) dtυ+iA(t,y9Dv)υ = f.

The next proposition plays an important role in the proof of the main

theorems.

PROPOSITION 3.4. Assume that (H.I) and (3.2) are satisfied. Moreover,

assume that v = v(t, y) is a solution to equation (3.7) such that

(1 + t2)~° \\v{t)\f is ίntegrable for any σ, a > f, and that

(3.8)

Then,

Γ (1 + tψ \\υ(t)\\2 dt < oo for β, - £ < β < a - 1 .
J —oo

Proof. We fix ε arbitrarily so that 0 < ε < min (θ, 2a - 1). Let φ(t)

= - 1 + (1 + f)-ε/2 for t^ 1, so that φ(t) ̂  0 and -φ'{t) ^ C.(l + * 2)" ( 1 + e ) / 2 .

As before, we take the scalar product < , > between equation (3.7) and

φ(t)v, and integrate the obtained equality with respect to t over (s, oo),

s > 1. Then, making use of Lemma 3.1 and (3.8), we have

^ C2 £ (1 + f)-<^>/2 ||u(0||2 Λ + Re
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Since ε < θ, we can choose s so large that the first term on the right

side is absorbed in the left side and we therefore obtain

(3.9) | | φ ) | | 2 ^ C £ (1 + * T + β ) / 2 11/(0 II2 dt, 1 + ε < 2a ,

with C independent of s, s being large enough. Next, we multiply both

sides of (3.9) by s2r, γ = a — 1 — ε/2 > —1/2, and integrate with respect

to s over (T, S);

£ j~ dt.

Letting S-> oo yields that (1 + t2)r \\v(t)\\2 is integrable over (0, oo). If we

use ψ(t) = 1 — (1 — t)~% t ^ — 1, instead of 0(0, a similar argument gives

the integrability over (—oo,0). Thus, the proof is completed.

§ 4. Diagonalization

4.1. Decomposition. By Assumption (A.3), we can choose a constant

θ, 0 < θ < δ, δ being as in (A.3), so that the following decomposition is

made for each component eJk(x) of E(x), j , k = 1, , JV: For any e > 0

small enough, there exists a constant R — R(θ, ε) such that (a) ejk(x) =

ejk(x;ε) + ejk(x;ε), (b) ejk(x; ε) = ejk(x) for \x\ ̂  i? (and hence eJk(x;ε) is of

compact support); (c) for all x, \ejk(x; ε) — δJk\ ^ εC(l + \x\)~θ and \dξ.ejk(x; ε)|

^ εC/1 + |x | )- f a = 1 + 0, |j9| ^ 1.

We may assume that ^ < 1. We denote by E(x; ε) the matrix with

components ejk(x; ε) defined above. From now on, we fix the constants

6 and σ, σ — 1 + θ, with the meaning ascribed here throughout the later

argument.

4.2. Diagonalization. We now consider the equation

(4.1) Λou -(λ + ίκ)E(x; ε)u = / , 0 ^ K ̂  1 ,

with /e LίfJ, α > 1/2. It is evident that for K > 0, there exists a unique

solution w = Q(λ + iκ; e)f = (Λo - (λ + iκ)E(x; ε))"1/ such that u e L ^ and

therefore u 6 L^? by Lemma 2.1. Let ψ(ξ) be a smooth function with

compact support such that ψ(ξ) — 0 in a neighborhood of the origin.

Then, we have

(4.2) ΛQψ(Dx)u ~(λ + iκ)E(x; e)ψ(Dx)u = ψ(Dx)f + r(x; ε) ,

where r(x; ε) = (λ + iκ)[ψ(Dx), E(x; ε)]u and satisfies the estimate |r|0>v ^
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εC |M|0,-V, v = σ/2 = (1/2)(1 + θ), for C independent of tz and ε (small enough).

The aim of this subsection is to transform (4.2) into an equation of

the diagonalized form. To do this, it is convenient to the later argument

to introduce the following notations: (a) For a vector-valued function

v(x) with component vjlc(x), j = 0, ± 1 , , ±p, k = 1, , dj9 d3 being the

multiplicity, we write

v(x) = '(v^x), , vp(x), vo(x), v.,{x), -, v.p(x)) ,

where υ^x) = Xv^x), , υJdJ(x)); (b) For the solution u of equation (4.1)

such that ueL{$_v with some γ,v = σ/29 we denote by r(ε) = r(x; ε) =

Xr^ε), , r_p(ε)) all terms satisfying an estimate of the following type:

(4.3) \r(ε)\Otΐ+v£εC\u\Qfΐ_v

with C independent of K, 0 ^ tc ̂  1 and ε (small enough).

Remark. In the later argument, such an r(ε) always appears in a

form of r(ε) = R(x,Dx;ε)u with some R(x, Dx; ε) e 0PA^σ(N) for which

ε~1R(x, ξ ε) belongs to Aσ,σ(N) uniformly in ε.

The transformation is made with the aid of the following lemmas.

LEMMA 4.1. Let @0(ξ) be defined by (2.6) and let U0(ξ) be the unitary

matrix given in (2.7). Let ψ(ξ) be the function introduced at the beginning

of this subsection. Set Λ(ε) = A(x, ξ λ, ε) = A0(ξ) - λE(x; ε). Then, for ε

small enough, there exists a N X N matrix U(ε) — U(x,ξ;λ,ε) such that

U(ε)Λ(ε)U(ε)" = ^ ( f ) _ ^ + ^ ( ε ) + ^ ( ε ) ? ξ # Q #

Here U(ε), &(e) = 2£(x, ξ λ, ε) and 3Γ(e) = 2£(x, ξ λ, ε) have the following

properties', (a) ψ(ξ)&(ε) belongs to Aσ,σ(N); (b) &(ε) is of the following

form:

0 \ /-X"±i(e) 0

0 X±/ε

where X±j(ε) = X±J(x, f λ, ε), j = 0,1, , p, is a dό x d3 symmetric matrix

and ψ(ξ)X±j(ε) belongs to Aθ,σ(dj); (c) U(ε) is represented as

(4.4) U(ε)= U0(ε)+ U^ξ λ.ε)

with U0(ξ) given in (2.7), where ψ(?)t7Ί(x, ξ; λ, ε) belongs to Aθ,σ{N). Fur-

thermore, U(ε) satisfies
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(4.5) U*(ε)U(ε) = Eo -

with some ^i(ε) = &i(x,ξ',λ,ε) such that ψ(?)^i(ε) belongs to Aσ,σ(N), where

E7*(e) is the adjoint of U(ε); (d) ε-ιψ(ξ)Z(ε\ ε'1ψ(ξ)X±j(ε)9 e-XfJUlie) and

belong to the corresponding symbol classes uniformly in ε.

A result similar to this lemma has been already verified in Appendix

of [9], so we omit the proof. The next result follows from Lemma 4.1 at

once.

LEMMA 4.2. Let ψ(ξ), U(ε), #(e) and 3T(e) be as in Lemma 4.1. Set

Λ{κ, ε) = Λ(x, ξ;λ,ιc,ε) = Λ0(ξ) — (λ + iκ)E(x; ε). Then, for ε small enough,

it holds that

U(ε)A(κ, e ) ^ ) " 1 = %{ξ) -(λ + h)E0

where 3Γ(i) — ^(x, ξ; λ, ε) is expressed as

(4.6) n*) = -iU(ε){E(x; ε) -

Moreover, ε~ιψ(ξ)^{e) belongs to Aθ^σ{N) uniformly in ε.

Let χ(ξ) be a smooth function with compact support such that χ(ξ)

= 1 in a small neighborhood of the support of ψ(ξ) (not containing the

origin), ψ(ξ) being the function introduced at the beginning of this sub-

section, so that χ(f)ψ(f) = ψ(f). We define U(x,ξ;λ,ε) as U(x, ξ; λ, ε) =

χ(ξ)U(x, ξ λ, ε) for U(x,ξ;λ,ε) introduced in Lemma 4.1. Similarly we

define Xj(x, ζ λ, ε) and ^(x, ξ λ, ε). Furthermore, we set

v(x) = U(x, Dx; λ, ε)ψ(Dx)u

for the solution u of equation (4.1). With the above preparations, we now

transform equation (4.2).

LEMMA 4.3. Let v(x) — Xv^x), , v_p(x)) be as above. Then, each Vj(x)

obeys the equation

(4.7) {λj(Dx) - (λ + UMDs)υs + Xj(x, Dx;λ, ε)vj = hs + κg5 + r,(ε)

with some r/ε), where λj(ξ) is the eigenvalue of Λ0(ξ) (given by (2.2)), while

h(x) and g(x) are defined by

h(x) = W * ) , , h.p(x)) = U(x, Dx; λ, ε)ψ(Dx)f,

~ &(x, Dx λ, ε)v .
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For the proof, we give only a sketch. Equation (4.7) is derived by

using Lemma 4.2 and by making a simple calculation based on Proposi-

tion 2.3. Indeed, using the relation χ($)ψ(ξ) = ψ(?) a n ( i taking account of

(d) in Lemma 4.1 and of the property of J"(x, Dx λ, ε), we see that all

remainder terms appearing in commutator calculations can be written as

r(ε). (4.7) is the desired equation.

§5. A priori estimates

In this section, we continue to consider the equation (4.1) and derive

various a priori estimates for solutions of this equation, which are valid

uniformly for κ9 0 < K <̂  1. The main result obtained here is stated as

follows:

THEOREM 5.1. Let u = Q(λ + iκ;ε)f, tc > 0, be a solution of equation

(4.1) with feLg}. Assume that i < a < J(l + θ). Then, the following

estimate holds: For any v, \ < ι> < a,

\u\0,-v ^ CX\f\0,a + \u\0,_a) .

This theorem will be proved in § 6. From now on, we always fix a

so that I < a < %(1 + θ) and assume that λ > 0. These assumptions loses

no generality; the case of λ < 0 is dealt with similarly.

5.1. Partition of unity. Let Ξs(λ) = {ξ; λs(ξ) = λ], λ > 0, j =

1, 2, , p. Then, by the homogeneity of λj(ξ), 8,(λ) = λΞό = {λξ;ξe Ξj}

with 3j defined by (2.4). In view of Proposition 2.2, we see that; (a) Ξj(λ)

are smooth and bounded; (b) Ξ5(X) are non-intersecting closed hypersur-

faces, enclosing the origin.

We now introduce the partition of unity

Vj = { ψ j * } , j = l, , p , k = l, ,Kj,

with the following properties: (a) φk(ξ) and ψJk(ξ) are non-negative and

smooth; (b) φk(ξ) and ψjk(ξ) are of compact support except for φκ(ξ); (c)

for all f,

Σ Φ*(S )2 + Σ Σ Ψ.,(ί)2 = i
fc=0 3=1 fc=l

(d) φo(ξ) = 1 in a small neighborhood of the origin and hence φk(ξ), k^O,

and ψJk(ξ) vanish there; (e) the supports of φk(ξ), k — 0,1, , K, do not
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intersect with Ξό{λ), j = 1, , p; (f) the supports of ψjk(ξ) belonging to Wj

only intersect with Ξό{λ)\ (g) for j =̂  i, the supports of ψjk(ξ) and ψu(ξ)

do not intersect with each other.

The existence of such a partition of unity with properties mentioned

above is guaranteed by the geometrical property of Ξό(λ).

We use the localization theory in the f-space to derive a priori esti-

mates, which are divided into the following two types: (I) estimate in

an outside of Ξj(λ); (II) estimate in a neighborhood of Ξj(X).

5.2. Estimate of type (I). The estimates of type (I) are rather easy

to derive. The supports of φk(ξ), k = 0,1, , K, do not intersect with

Ξj(X), so that if e is taken small enough, then the matrix Λ0(ξ) —

(λ + iίc)E(x; ε) is invertible uniformly in K, 0 <I K < 1, and ε for ξ e supp φk.

We define Pk(x,ξ;λ9ιc,ε) as

(5.2) Pk(x, ξ λ9 K, ε) = φk(ξ)(Λ0(ξ) - (λ + iκ)E(x; ε))"1 , h = 0,1, . , K ,

which belongs to AOt9(N). Letting Pk(x, Dx; λ, tc, ε) operate on equation

(4.1), we obtain

(5.3) Φ*(Dx)u = Pk(x, Dx λ, K, ε)f + r(e)

with some r(ε). Thus, we have the following result.

LEMMA 5.1. Let u = Q(λ + iκ\ ε)f, it > 0, be a solution of equation (4.1)

with fe L$. Let Pk(x, Dx; λ, K, ε) be as above. Then, φk(Dx)u is represented

as (5.3) and satisfies

\Φ*(Dx)u\o,a ^ C(\f\0>a + \u\0,_a)

with C independent of K and ε {small enough). Furthermore, the above

result is still valid for K = 0 if it is assumed that there exists a solution

u of equation (4.1) with tz = 0 such that u e L{£la.

We proceed to the estimate of ψjk(Dx)u. We fix one pair (p, q), 1 <̂

P ^ P, 1 ^ Q ̂  Kp. Let χpq(ξ) be a smooth function with compact support

such that χpq(ζ) = 1 in a small neighborhood of the support of ψpq(ξ) and

hence χpq(ξ)ψpq(ξ) = ψ Pβ(f). For notational convenience, we drop the sub-

scripts p and q to denote ψpq(ξ) and χpq(ξ);ψ(ξ) = ψpί(f), etc. We define

the symbol U(x, ξ; λ, ε) e AOtσ(N) as

(5.4) U(x, ξ; λ, ε) = χ(ξ)U(x, ζ; λ, ε)

with U(x, ξ λ, ε) introduced in Lemma 4.1. Similarly we define
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Xj(x, ξ;λ9ε)e A^σ(dj)9 j = 0, ± 1, . ., ± f t a n d f(x9 ξ;λ,ε)e A θ , σ ( N ) . W e

further set

(5.5) v(x) = ^ ( x ) , , u_,(x)) = U(x, Dx;λ, ε)ψ(Dx)u .

Then, in virtue of Lemma 4.3, it follows that each Vj(x) obeys the equation

(5.6) {λj(DJ -(λ + h)}x(Dx)vj + X,(x, Dx;λ, ε)υ, = h, + κgj + r,(ε) ,

where Λ; and g, are given by

(5.7) h{x) = \U*)> , M * » = tf(x, D τ; λ, ε)ψ(Dx)f,

(5.8) ^(x) = ^

When j ^ p, we can choose the support of χ(ξ) so small that it does not

intersect with Ξj(X). Therefore, if ε is taken small enough, the d3 X d5

matrix λj(ξ) — (λ + ifc) + Xj(x, ξ;λ,ε) is invertible uniformly in K and ε for

fesuppχ. We define the symbol Qjp(x, ξ λ, κ9 ε)e A0iσ{d3) as

(5.9) Q,p(x, ξ; λ, *, ε) = χ(ξ)(λj(ξ) - (λ + u) + X,(x9 ξ; λ, ε))"1

for j ^ p. As in the derivation of (5.3), we let Qjp(x, Dx λ, K, ε) operate

on equation (5.6) to obtain

(5.10) ύDxyυs = QJp(x9 Dx; λ9 K, ε){hj + κgj} + r,(ε)

with some r;(ε). Thus, we have the following result.

LEMMA 5.2. Let u = Q(λ + iκ\ ε)f9 K > 0, be a solution of equation (4.1)

with feL(

2*a\ Let vjfhj and gs be defined by (5.5), (5.7) and (5.8), respec-

tively. Let QjP(x, Dx; λ, /c, ε) be as above. If ε is ta£βft small enough and

if J =*F P

(5.11) u, = QJP(x, Dx; λ, κ, ε){hj + κg3) + r,(ε)

and the norm of υs in Lffl is dominated by C(|/|0,α + |^|0>_J with C inde-

pendent of tc and ε. Furthermore, the above result is still valid for K — 0

under the same hypothesis as in Lemma 5.1.

Proof. (5.11) follows from (5.10) at once by use of the relation χ(ξ)ψ(ξ)

= ψ(f). Since Qjp(x, Dx; λy /c, ε) e OPAv^Xdj), it is a bounded operator from

to itself uniformly in K and ε. Hence, we have
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where | | $ } denotes the norm in Lffl. By the definition of hj9 the norm

of hj is dominated by C|/|Ofβ. Moreover, since F{x9 Dx; λ, ε) e OPAθjσ(N),

we see, recalling the definition of gj9 that the norm of gs is dominated by

C\u\0tμ9 μ = a — θ. This together with Lemma 2.1, implies that

* l&lffi* £ C( | / | O f β + \u\OtV) ^ C(\f\Ofa + |u | O f . β )

since v = a — θ — 1 < — a by assumption. Thus, the desired result is

obtained.

§ 6. Continuation of a priori estimates

In this section we consider the equation (5.6) with j == p;

(6.1) {λp(Dx) -(λ+ u)}χ{Dx)υp + Xp(x, Dx; λ, e)vp = hp + κgp + rp(e)

and derive a priori estimates of type (II) by applying the results obtained

in § 3. To do this, we have to transform (6.1) into an equation of the

form like (3.1). The transformation is made through two steps. As in

the preceding section, we drop the subscripts p and q to denote ψpq(ξ)

and χpq(ξ).

6.1. Preparation. Let Φ be a small neighborhood of the support of

χ(f) (not containing the origin) and let Ξ = Ξp(λ) Π (P. Let τ be a vector

transversal to Ξ. We denote by Σ the m-dimensional linear space (hyper-

plane), m = n — 1, orthogonal to τ and by η — {ηu , ηm) a system of

orthogonal bases generating Σ. We take ζ = (τ, η) as an orthogonal co-

ordinate system in Rn

ξ and therefore ζ = Πξ for some unitary matrix Π.

We denote by z = (t, y), y = (yl9 , ym) the orthogonal coordinate system

dual to ζ; z — Π*x. The unitary matrix Π induces naturally the one to

one transformation denoted by the same symbol Π; (Πφ)(z, ζ) = φ(Πz, i7*ζ).

For notational convenience, we denote a representation in terms of the

(z, ζ)-coordinates by the same symbol as an original function which is re-

presented in terms of the (x, ^-coordinates; φ(z, ζ) = (Πφ)(z, ζ) = φ(Πz, Π*ζ)

for φ = φ(x9 ξ). Here we note that this transformation is unitary in D2%

and that the Fourier transformation is invariant with respect to this

transformation.

6.2. The first step. Let Θx be an open set such that ΰ C Θu € being
the closure of Θ. Since r is a transversal vector, we can take Θλ small

enough, if necessary, so that for λp(ζ) — λp(ξ)
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(6.2) λp(ζ) - λ = (r - φ ; i)Vi(C; *)

in Θx with some real functions afy λ) and ^(ζ Λ). Here we choose a

direction of τ so that dλp/dτ > 0 in Θx. Hence, σx(ζ;λ) > 0 and we may-

write

(6.3) *i(C;*) = *i(C;J)2

in Θx with some Si(ζ Λ) > 0. Let Ω and Ωx be the projections of Θ and

0! to 27, respectively. Let ω(η) be a smooth function of η only such that

ω(η) = 1 in Ω and that the support of ω(η) is contained in Ωt. When ω(η)

is regarded as a function of ζ = (τ, η), ω()?)χ(ζ) = χ(ζ) and hence ω(-η)ψ(ζ)

= ψ(ζ), where ψ(ζ) and χ(ζ) are the representations of ψ(ξ) and χ(ξ) in

terms of the ζ-coordinates, respectively.

Now we define the symbol a(η X) as

(6.4) a(v;X) = ω(v)a1(v;X)

with αi(57,# )̂ introduced in (6.2). We further define s(ζ; X) as

(6.5) s(ζ; λ) = χ(ζ)Sί(ζ; X)

with s^ζ X) given in (6.3). We set

(6.6) ΰp = vp(t,y) = s(Dz;X)vp

for vp of equation (6.1). Then, we see from (6.1) that ΰp satisfies the

equation

(6.7) {Dt - a(Dy; λ)}υp - hb(Dz; X)ΰp + Yp(z, Ds; λ, ε)vp = hp + *&, + rp(e)

with another rv(ε) = rp(z; ε), where Yp(z, Ώz\ λ, ε) 6 OPAθ^σ(dp) is the pseudo-

differential operator with symmetric matrix symbol given by Yp(z,ζ;λ,ε)

= χ(ζ)si(ζ; X)-2Xp(z, ζ; λ, e) and b(ζ;X) is the symbol defined by

(6.8) b(ζ;λ) = c(ζ;λγ

with c(ζ;X) = χiQs^ζ Z)-1, while hp and gp are given by

(6.9) hp = hp(t,y) = c(Dz;λ)hp

(6.10) ίp = gp(<,y)

respectively. Equation (6.7) is easily derived by letting c(Dz λ) operate

on (6.1) and by making a simple calculation using Proposition 2.3. This

is the equation transformed through the first step.
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6.3. The second step. The second step is based on the next lemma.

LEMMA 6.1. Let a(η;X) and Yp(z,ζ;λ,ε) be as above. If ε is taken

small enough, then there exist dp X dp matrices Lp — Lp(z, ζ; λ, ε) and Np

= Np(z9 η;λ,e) such that

(I, + Lp){(τ - a(η; λ)) + YP}(IP + Lp) = (τ - a(v; λ)) + Np + Z,

where Ip is the dp X dp identity matrix. Furthermore, Lp, Np and Z =

Z(z,ζ;λ,ε) have the following properties: (a) ε~1χ(ζ)Z(z, ζ; λ, ε) belongs to

Aσ,σ(dp) uniformly in ε; (b) Lp is symmetric and ε~ιχ{ζ)Lp(z,ζ',λ,ε) belongs

to Aθiσ{dp) uniformly in ε. Moreover, (Ip + Lp) is invertible uniformly in

ε; (c) Np is also symmetric and each component nj1c{z, η; λ, ε) = njlc(t, y, η; λ, ε)

satisfies

Rnjk(t, y, η; λ, ε)\ ^ εCr(l + \z\)-° ,

\dffinjk(t, y, η; λ, ε)\ ^ εCβ,r(l + \z\Y° , \β\ ^ 1 .

The proof will be given in Appendix. Before making a transforma-

tion, we need to introduce several new symbols and functions. We first

define the symbols Vp and Wp of class Aθ,σ(dp) as

(6.11) Vp{z, ζ; λ, ε) = χ(ζ)(Ip + Lp(z, ζ; λ, ε))"1 ,

(6.12) Wp(z, ζ; λ, ε) = χ(ζ)(Ip + Lp(z, ζ; λ, e)) ,

respectively, with Lp introduced in Lemma 6.1. For later use, we note

here that since Lp is symmetric, V} — Vp, V* being the adjoint of Vp,

and therefore

(6.13) V*(z, Dz λ, ε) Wp(z, Dz ;λ,ε) = χ(Dzy + R(z, Dz λ, ε)

with some R(z,Dz;λ,ε) such that the symbol ε^Riz, ζ; λ, ε) belongs to

Aσ,σ(dp) uniformly in ε, where V*(z, Dz; λ, ε) is the adjoint operator in

L(

2% £ = dp. (6.13) follows immediately from property (b) in Lemma 6.1.

We set

(6.14) wp = wp(t, y) = Vp(z, Dz; λ, ε)vp

for vp of equation (6.7) and

(6.15) Fp = Fp(t, y) = Wp(z, Dz; λ, ε)hp

for hp defined by (6.9). We further set

(6.16) Gp = Gp(t, y) = WP(z, Dz; λ, ε)gp + Kp(z, Dz; λ, ε)wp
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for gp defined by (6.10), where Kp(z, Όz\ λ, ε) e OPAθ,σ{dp) is the pseudo-

differential operator with symbol given by Kp(z, ζ;λ,e) = ib(ζ; X)LP(2IP + Lp),

b(η;X) being the symbol defined by (6.8).

LEMMA 6.2. Let Fp and Gp be as above. Then, the following estimates

hold: (i) | F X ^ C|/|Ofβ> i = dp; (ii) |Gp |ft £ C\u\Q>0.

Proof, (i) is proved by combining (6.15), (6.9) and (5.7). Since \wp\
{

0%

<L C|w|o,o, (ϋ) is proved if we note that ^(z,Όz\λ,ε) in (5.8) belongs to

OPAQ,£N) and that Kp(z, Dz; λ,ε) belongs to OPAθ^a(dp).

Let ω(η) be the function introduced at the beginning of this subsec-

tion. We define the symbol A(t, y,η; λ, ε) as

(6.17) A(t, y,η\λ,ε) = ω(η){-a(η λ) + Np(t, y,η;λ, ε)} ,

where a(η;λ) is given by (6.4) and Np is introduced in Lemma 6.1. This

definition, together with property (c) of Lemma 6.1, implies that

A(t,y, η;λ,ε) satisfies (H.I) in § 3 with I = dp uniformly in ε. Under these

preparations, we can now transform (6.7) into an equation of the form

discussed in § 3.

LEMMA 6.3. Let wp, Fp and Gp be defined by (6.14), (6.15) and (6.16),

respectively. Let A(t,y,η;λ,ε) be as above and let b(η;X) be defined by

(6.8). Then, wp satisfies the equation

(6.18) 3twp + fcb(Dz; X)wp + iA(t, y, Dy; λ, ε)wp = iFp + uGp + rp(ε) .

Equation (6.18) is derived from (6.7) by use of Lemma 6.1 and the

derivation is similar to that of (4.7) in Lemma 4.3, so we omit the proof.

This is the desired equation and the second step is completed.

6.4. Proof of Theorem 5.1. We are now in a position to apply Prop-

ositions 3.1 — 3.3 to equation (6.18). To do this, we have to check that

all the assumptions in these propositions are satisfied. First we have

stated above that (H.I) is satisfied. (3.2) and (3.3) follow immediately from

Lemma 6.2 and (H.2) follows from the definition (6.8) of b(ζ; λ). Further-

more, for K > 0, ue L$ by Lemma 2.1 and hence wp e L{

2%, £ = dp. (We

use the symbol £ in this sense throughout the remainder.). Thus, we have

the following result.

LEMMA 6.4. (i) For any v,v > j,

(a) \wp\^v
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(b) Γ (l + tr-(\\wpf + \\dtwp\f)dt ̂  C(|/Bf. + |»B._«>.
J — oo

(ii) For μ, 0 < μ < 2α - 1 « 0 < 1),

Γ (l + fy-1"2iKH2 dt £ C(\f\ιa + κ , _ j .
J — OO

iίere || || denotes the norm in Li%(Rf), m = n — 1.

Proof. Proposition 3.2 combined with Lemma 6.2 yields

M?-, ^ c(l/k« + Mo,-. + V^No.o)

which, together with Lemma 2.2, proves (a). The proof for (b) and (ii)

is done in a similar way.

Proof of Theorem 5.1. We first recall the definitions of υp9 yn and wp

given by (5.5), (6.6) and (6.14), respectively. And we note that all the

symbols of pseudo-differential operators in these definitions are invertible

in a small neighborhood of the support of ψ(ξ). Thus, taking account

of this fact, we see from (6.14) and (6.6) that χ(DgYvp is expressed as

χ(Dzyvp==c(Dz;X)Wp(z,Dz;λ,ε)wp + rp(ε) with some rp(ε). Therefore, by

Lemma 6.4, \x{Da)%]j>%, v > i, is majorized by C(|/|Of. + M0,.α). This,

together with Lemma 5.2, implies that \χ(DxYv\Ot.v is also majorized by the

same bound as above with another C Furthermore, by use of the rela-

tion χ(f)ψ(f) = Ψ(?)» it follows from (5.5) that

ψ(Dx)u = V(x, Dx; λ, ε)χ(Dxyυ + r(ε) ,

where V(x, Dx; λ, ε) e OPA0fσ(N) is the pseudo-differential operator with

symbol χ(ξ)U(x, ξ λ, ε)~\ Thus, we have

\ψpq(Dx)u\Ot.v £ C(|/|Oiβ + K - J , ψpβ(f) = ψ(f) .

This estimate holds for any pair (p, q). Hence, combining this estimate

with Lemma 5.1, we obtain the desired result and the proof is completed.

§ 7. Discreteness of eigenvalues

In this section, we shall prove Theorem 1.1 stated in § 1.

Proof of Theorem 1.1. Let IC R+ = (0, oo) be a compact interval fixed

arbitrarily. To prove this theorem, it is sufficient to show that there is

a finite number of eigenvalues with finite multiplicity in I. We assume
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the contrary; there is an infinite sequence of eigenvalues with repetition

according to multiplicity; {αn}~βl, an e I (an > 0). Let u{n) be the eigen-

function corresponding to an; Aou
{n) = anE(x)u(n), \uw\OiO — 1. We assert

that {u{n)}ζ=ι forms a precompact set in Lffi. If this assertion is verified,

the proof is completed. In fact, {w(w)}~=1 is an orthogonal system with

respect to the energy scalar product (( ))0 defined in subsection 1.4, which

contradicts the assumption made above. To prove this assertion, we write

(7.1) Λou
{n) - anE(x; ε)uw = f{n)

for ε fixed small enough, where f{n) = an{E(x) — E(x; ε)}u(n\ Throughout

the proof of this theorem, we fix ε small enough and positive constants

Ce appearing below depend on ε but are independent of n.

We first recall the definition of partition of unity introduced by(5.1).

Since f(n) is of compact support and since \f{n)\0,a ^ Ce, it follows from

Lemma 5.1 that

(7.2) IΛΦ,)^|o,. ^ C. , * = 0,1, . - . , * .

Next, we proceed to the estimate for ψjk(Dx)u{n\ We again fix one pair

(p, q) and use ψ(ξ) and χ(ξ) with the same meaning as before. For u{n\

we denote by v{n) = £(ι;{n), , v^\ , υ™) and w™ the functions defined

through transformations (5.5) and (6.14) with λ — an9 respectively. Sim-

ilarly, for f{n\ we denote by F^n) the function defined through a series

of transformations (5.7), (6.9) and (6.15). If j ^ p, it then follows from

Lemma 5.2 that

(7.3) li ̂ l ί f ί ^ Ce .

obeys the equation (6.18) withWe shall make
K = 0 and λ =

(7.4)

an

dtw

estimate

f + iA(t,

of w$

y,Dy; an, ε)ι

[f obeys t

υf = ίFf rp(β) .

Since fin) is of compact support, we see easily that F^n) e U2% A = dp, for

any β and that its norm in this space is bounded uniformly in n. Fur-

thermore, according to (4.3), rp(ε)eU2% by uweL^ and |rp(e)|$ ^ C.

Thus, the terms on the right side of (7.4) belong to Li% uniformly in n.

We now want to apply Proposition 3.4 to equation (7.4). Since u(n) e L^ },

all the assumptions in this proposition are satisfied. Thus, for v, 0 < v <

θ, we have
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(7.5) Γ (1 + ty \\w^(t)f dt ̂  C, .
J - 0 0

As was noted in the proof of Theorem 5.1, the symbols of pseudo-

differential operators in (6.6) and (6.14) are invertible in a small neigh-

borhood of the support of ψ(ζ). Therefore, by the same argument as in

the proof of Theorem 5.1, we see that v$°(t9 y), which is the representation

of vf\x) in terms of the ^-coordinates (z = (t, y)), also satisfies (7.5). An

estimate similar to (7.5) is still valid for another transversal vector τ in

subsection 6.1. Thus, taking n linearly independent transversal vectors

(n being the dimension of the basic space Rn), we may conclude that

vf\x)eU% for v above, ί, = dp, and that K } | $ £ Cβ. We may assume

that v < a. Then, we obtain from (7.3) that \v(n)\Q)V ^ Ce and hence

\ψ(DT)u(n\v <: Ce with another Ce. This, together with (7.2), yields that

(7.6) | ^ ( n ) L ^ C e .

The norm in the Sobolev space Hffi is estimated by ,use of Lemma

2.4. We set χQ(ξ) = 1 — φQ(ξ), where φo(ξ) is a member of the partition of

unity introduced by (5.1) such that φo(ξ) = 1 in a neighborhood of the

origin. Let Γ0(ξ) be the projection on the eigenspace corresponding to

the zero eigenvalue (defined by (2.5)) and let Γ(ξ) = EQ — Γ0(ξ). We write

u(n) as

(7.7) uw = ύ(n) + ύ{n) ,

where ύw = φQ(Dx)uw + χQ(Dx)Γ(Dx)uw and ύ{n) = χo(Dx)Γo(Dx)uw. Then,

Lemma 2.4 combined with (7.6) shows that {ύ(n)}ζ=i forms a precompact

set in L$ } . Thus, to complete the proof, we have only to show that

{ύ(n)}n=i forms a precompact set. To see this, we introduce the subspace

Jί of Z45> as Jί = Γ0(DΛ)Lffi = {Γ0(Dx)u; u e Lfi}} and consider the operator

B = Γ0(Dx)E(x) acting on Jί. Clearly B is bounded and invertible. Letting

ΓO(DX) operate on the equation Λou
(n) = anE(x)u(n), we have Bύ(n) =

-Γ0(Dx)E(x)uw and hence ύw = -B-ψo{Dx)E(x)ύ{n\ This shows that

{ύ(n)}n=i forms a precompact set and the proof is completed.

§ 8. The principle of limiting absorption

In this section we shall prove Theorem 1.2.

Proof of Theorem 1.2. First we make the following simple reduction.

Let Q(λ + ίtc) = (Λo -(λ+ u)E(x))-\ Then, R(λ + ικ) = Q(λ + iκ)E(x). To
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prove statement (i), it is sufficient to show that there exists a constant

C independent of tt such that

(8.1) (Q(Λ + *Wlo,- α ^C|/ | o , α .

We prove this by contradiction. Assume that there exist sequences

{/(w)}~=1 and {*„}£.!, 0 < κn <£ 1, such that f(n) converges to 0 strongly in

Lg> and that \uin\.a = \Q(λ + itcn)fin\.a = 1. We may assume that κn ->0

as n —> oo. We write

(8.2) AQu(n) -(λ + iκn)E(x; ε)uw = f(n) + g{n)

for ε small enough, where g{n) = (λ + iιcn){E(x) - E(x; ε)}u{n\ Clearly gίn)

is of compact support and \gw\0,a ̂  Cs |w
(n)|0>_α. Throughout the proof of

this theorem, we regard ε as a parameter and denote by C positive con-

stants independent of ε, K and n. (Cδ denotes positive constants depending

only on ε.)

As the first step toward the proof, we shall show that {w(n)}"=1 forms
a precompact set in &*la. To see this, we write u{n) in the form of (7.7);

uw _ S(») + (̂«)β Λ(«> s ati sfies the equation

(8.3) Γ0(Dx)E(x)ύ^ = -ΓQ(Dx)E(x)ύ™ - (λ + iκn)'T0(Dx)f^\

Applying Theorem 5.1 to equation (8.2) and using Lemma 2.4, we may

conclude that {w(n)}^=1 forms a precompact set in L£la. Therefore, we can

choose a subsequence denoted by the same symbol {uin)}%ml such that u(n)

converges to some u weakly in Li^2a and ύ{n) converges strongly in L(

2*2a.

The strong limit of {S(B)}n

M

βl is given by w = φo(Dx)u + χo(Dx)Γ(Dx)u. We

write ύ = χo(Dx)Γo(Dx)u, which is well-defined since χo(Dx)Γo(Dx) is a

bounded operator from D£2a to itself. Hence, u = ύ + ύ and ύ(n) con-

verges to ύ weakly in Z f̂2α. Furthermore, u satisfies the equation

(8.4) Λou - λE(x)u = 0

and hence ύ satisfies

(8.5) χo(Dx)Γo(Dx)E(x)ύ = -UD,)Γ^Dx)E(x)ΰ .

We combine equations (8.3) and (8.5) to obtain

χo(Dx)Γo(Dx)E(x)(ύ^ - ύ)

= -χo(DI)Γβ(Dx)S(acχs< ) - ΰ) - (λ + ίκn)-%(Dx)Γa(Dx)f^ .

Here we note that the terms on the right side converge to 0 strongly in
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L^la. We assert that ύ{n) converges to ύ strongly in L^2a. To prove

this, we put p(x) = (1 + |x|2)~α/2 and denote by ( , ) the usual scalar product

in L$ } . We write

ύ™ - u\ p(xY(ύ^ - ύ)) =

where

J, = (χo(Dx)Γo(Dx)E(xW» - ύ), p(xW> - u))

and

I2 = (P(xyE(x)(ύ^ - ύ), P(x)Λp(x)\ χQ(Dx)Γ0(DMu{n) - u)) .

Making use of equation (8.6), we see that /j = I^ή) converges to 0 as

7i -> oo. For the second term J2 = I2(n), we note that the pseudo-differential

operator p(x)-2[p(x)2,χ0(Dx)Γ0(Dx)] belongs to OPAtfiN), which implies

that it is a compact operator in L{

2*2a and hence I2(n) also converges to 0.

Thus, we can prove that ύ{n) converges to ύ strongly and this shows that

{uin)}n=ι forms a precompact set.

The second step is to prove that the limit u (u ^ 0) belongs to L$ } .

If this is verified, it then follows that u must be equal to 0 since by as-

sumption λ is not an eigenvalue. This contradicts the assumption made

above and statement (i) is proved.

To use the results obtained in sections 3 — 6 for the proof of the

above statement, we rewrite (8.4) as

(8.7) Λou- λE(x;ε)u = f(ε)

for ε small enough, where

(8.8) f(ε) = λ{E(x)-E(x;ε)}u.

We recall the definition of partition of unity introduced by (5.1).

First, applying Lemma 5.1 to equation (8.7), we see that φk(Dx)ue L(

2*a\

k = 0,1, , K. Next, to estimate ψjk(Dx)u, we fix, as usual, one pair

(p, q) and use ψ(ξ) and χ(ξ) with the same meaning as before. We denote

by v the function defined through transformation (5.5) for u above;

(8.9) v = <(vl9 , vp9 , v_p) = U(x, Dx; λ, e)ψ(D)xu .

Then, applying Lemma 5.2 to equation (8.7), we know that vό e L£$ for

j ±r P Our next task is to show that vp e L(

2% £ = dp. If this is verified,

it then follows that ψ φ J u e L ^ and hence ueLffl.
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We denote by wp(ε) = wp(t, y; ε), z = (t, y), the function defined by

transformations (6.6) and (6.14) for υp above;

(8.10) wp(ε) = Vp(z, Dz λ, ε)s(Dz λ)vp .

Similarly, we denote by Fp(ε) = Fp(t,y;ε) the function defined by trans-

formations (5.7), (6.9) and (6.15) for /(ε) given by (8.8);

(8.11) Fp(ε) = Wp(z, Dz λ, ε)c(Dz λ)hp(ε) ,

where hp(ε) = hp(x; ε) is defined by

(8.12) h(ε) = \K(ε\ . . , hp(ε), ., h_p(ε)) = U(x, Dx; λ, e)ψ(DJ/(e) .

Then, wp(ε) obeys the equation (6.18) with K = 0;

(8.13) 3twp(ε) + ίA(t, y, Dy; λ, ε)wp(ε) = iFp(ε) + rp(e)

with some rp(ε) 6 U2%. Since /(ε) is of compact support, Fp(ε) e LQ for any

v and hence the term on the right side of (8.13) belongs to Lί%. To prove

that υp 6 Lί% it is sufficient to show that wp(ε) 6 U2% since the symbols of

pseudo-differential operators in (8.10) are invertible in a small neighbor-

hood of the support of ψ(f). We apply Proposition 3.4 to equation (8.13)

to prove this fact.

LEMMA 8.1. If ε is taken small enough, then wp(ε) = wp(t; ε) e L(

2%R™),

m = n — 1, for all t and liminf^±O0 \\wp(t\ε)\\ = 0, where \\ \\ denotes the

norm in Li%R%).

The proof of this lemma will be given after the completion of the

proof of this theorem. If we admit the validity of Lemma 8.1, we see that

all the assumptions in Proposition 3.4 are satisfied. Indeed, the fact that

(1 + f)~v \\wp(t; ε)||2 is integrable for any v, v > j , follows from Lemma 6.4

by a limit procedure (n -> oo). Hence, this proposition enables us to

obtain that (1 + f)β \\wp(t; ε)||2 is integrable for β = a - 1 - μ, 0 < μ < θ.

If β < 0, this implies that vp e L $ with β above (and hence u e L^) since

wp(ε) e L(

2%. (If β ^ 0, wp(ε) e L $ and hence vp e L(

2%) Hence, according

to (4.3), rp(e) 6 L^ with γ = a + (β - μ) since u € L(
2%\ Thus, the term on

the right side of (8.13) belongs to L$ with γ above, γ > a. We repeat the

above argument (boot-strap argument) until we obtain that rp(ε) e L $ for

some v, v > 1, and then apply Proposition 3.4 once again to conclude that

wp(ε) e L(

2% Thus, the second step is completed and statement (i) is proved.

For the proof of statement (ii), it is sufficient to show that the limit



168 HIDEO TAMURA

Q(λ + iO) of Q(λ + itc) as K -> 0 exists in the topology of strong conver-

gence in L(

2fla. As is easily seen from the proof of statement (i), there

exists a subsequence {tcn}ζ=ι such that Q(λ + iκn)f converges strongly in

L^la. Hence, to show that Q(λ + iO) is well-defined, we have only to

prove that the above limit is independent of the choice of a subsequence.

To see this, assume that there exist two limits w(1) and u(2) and put u =

u(ί) — u(2). Then, by an argument similar to the proof of statement (i),

we may conclude that u — 0. Thus, statement (ii) is proved and the proof

of this theorem is completed.

Finally we must prove Lemma 8.1. The proof is rather long and is

divided into several steps.

LEMMA 8.2. For ε small enough, wp(ε) = wp(t; ε) e L{

2%R™) for all t and

Proof. All the estimates in Lemma 6.4 are still valid for wp(ε) by a

limit procedure. The first assertion follows from (b) in Lemma 6.4 by use

of the trace theory and the second one follows from (ii) in Lemma 6.4 at

once.

Thus, to complete the proof of Lemma 8.1, we have only to show

that liminf^oo \\wp(t; e)|| = 0. Here we introduce new notations; (, )j9 j =

0, ± 1 , , ±p, denotes the scalar product in Lff and ( , ) the scalar

product in L$ } .

LEMMA 8.3. Let Fp(ε) be as in equation (8.13) (defined by (8.11)). If ε

is small enough, then

lim||a;p(*;ε)||2 = - 2 I m ( F p ( 4 iι;p(e))p + O(ε) .
ί —oo

Proof. We simply write wp and Fp instead of wp(ε) and Fp(e), respec-

tively. We take the scalar product < , ) in L^%(R™) between equation

(8.13) and wp and then real part;

R<w p , wp) = Im (A(t, y, Dy; λ, e)wp, wp)

- Im (Fp, wpy + Re < rp(e), wp) .

Here we recall the definition of the symbol A(t, y, η λ, ε) given by (6.17)

and note, in particular, that A(t, y, η\λ, ε) is symmetric. Taking account

of this fact and making use of property (c) in Lemma 6.1, we can estimate

the first term on the right side of (8.14) as Im <A(ί, y, Dy; λ,ε)wp, wp)dt

= 0(ε)|w|o,_α. Using this fact and Lemma 8.2, we integrate (8.14) with
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respect to t over (—00, T) and then let T-> 00. Then, we have

lim II wp(t)\\2 = - 2 Im (Fp, wp)p + 2 Re (rp(ε), wp)p + O(ε) .
£-κκ>

According to (4.3), |(rp(e), wp)p | ̂  |rp(e)|$ |κg£Lβ = O(ε). Thus, the desired

result is obtained.

LEMMA 8.4. Let vp — vp(ε) and hp = hp(ε) be defined by (8.9) and (8.12),

respectively. Then, (Fp(ε), wp(ε))p = (hp(ε), vp(ε))p + O(ε).

Proof. First, recall the expression (4.4) for U(x, ξ λ, ε) and the de-

finition (8.8) of f(e) and note that e^xffiUax, ξ λ, ε) belongs to Aβ9,(N)

uniformly in ε. Then, it follows from the relation χ(ξ)ψ(ξ) = ψ(ξ) that

χ(Dx)hp(ε) = hp(ε) + rp(ε). Making use of this fact and the relation (6.13),

we obtain

(Fp(ε), Wp(ε))p = (s(Dz; λ)c(Dz; λ)hp(ε), Wp(ε))p + O(ε) .

Since s(ζ; X)c(ζ; X) = χ(ζ)2 by definition, the desired result follows at once.

We combine Lemmas 8.3 and 8.4 to obtain

(8.15) Im (hp(ε), wp(ε))p ^ εC .

We assert that

(8.16) Im(/ιp(ε), υp(e))p = O(ε) .

To prove this, we shall prepare two lemmas.

LEMMA 8.5. Let Φ = {φk} and Ψi — {ψjk} be the partition of unity

introduced by (5.1). Let v = υ(ε) = \υu , vp, , v_p) be defined by (8.9)

and let h(ε) = %hu , hp, , h_p) be defined by (8.12). Then,

(8.17) Im (φk(Dx)f(e), Φ«(Dx)u) = O(ε) , h = 0,1, . •, K ,

(8.18) Im (A/e), υ,(*)), = O(ε) for j * p .

Proof. φk(Dx)u is expressed as (5.3) with K = 0 and /' = /(ε); φk(Dx)u

= Pk(x, Dx; λ, ε)/(ε) + r(ε), where Pk(x, Dx; λ, ε) is the pseudo-differential

operator with symbol defined by (5.2) with /c = 0. Here it should be noted

that the symbol Pk(x,ξ; λ, ε) is symmetric. Hence, the symbol σ(P£)(x, ξ;λ,ε)

of the adjoint operator Pfc*(x, Dx; λ, ε) is represented as σ(P^)(x, ξ; λ, ε) =

Pk(x, ξ; λ, ε) + Rk(x, ξ; λ, ε) w i t h s o m e Rk(x, ξ;λ,e)e Aβjβ(N) for w h i c h

e^RtiXyξ λye) belongs to A^a(N) uniformly in ε. Hence, by use of this

fact, (8.17) is easily verified. For the proof of (8.18), we use the relation
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(5.11) with K — 0 and hά = hό(ε). Then, by the same argument as above,

we can prove (8.18).

Let Ujk(x, Dx λ, ε) be the pseudo-differential operator with symbol

defined by Ujk(x, ξ λ, ε) = χjk(ξ)U(x, ξ λ, ε) with U(x, ξ λ, ε) introduced in

Lemma 4.1, where χjk(ξ) is a smooth function with compact support such

that χJk(ξ) = 1 in a small neighborhood of the support of ψjk(ξ). In par-

ticular, when (j, k) = (p, q), (p, q) being the fixed pair, Upq(x, Dx; λ, ε) =

U(x,Dx;λ,ε) as defined by (5.4).

LEMMA 8.6. Let Ujlc(ε) = Ujk(x, Dx; λ, ε) be as above. Then,

(8.19) Σ 2 Im (Ujk(ε)ψjk(Dx)f(ε), Ujk(ε)ψjk(Dx)u) = O(ε) .
j=l k=l

Proof. By the definition (8.8) of /(ε), Im (/(ε), u) = 0 and

0 = Σ Im (φk(Dx)f(ε), φk(Dx)ύ) + Σ 2 Im (ψjk(Dx)f(ε), ψjk(Dx)ύ) .

By (8.17), the first term is of order O(ε) and hence the second term is also

of order O(ε). Furthermore, making use of relation (4.5) in Lemma 4.1,

we obtain the desired result at once.

We can now prove the assertion (8.16). Combining (8.15) with (8.18),

we see that Ipq = Σ $ — , Im(Λ/e), u/ε)) = Im(Uψ(Dx)f(ε), Uψ(Dx)u) <; εC,

where U = Upq(x, Dx; λ, ε) and ψ = ψpq. Since this estimate holds for any

pair (p, q), we have by (8.19) that Ipq — O(ε) and hence (8.16) is proved.

Thus, we obtain

(8.20) lim\\wp(t;εW=O(ε).
ί—oo

Since wp(t; ε) depends on ε, we cannot yet conclude from (8.20) that

lim^oo \\wp(t; ε)|| = 0. So we need to introduce some new functions not

depending on ε. It is convenient to represent these functions in terms

of the ̂ -coordinates and we use the notation L2,r(Rt; ^), Jt being a Hubert

space, to denote the functional space of square integrable ^-valued func-

tions with weight (1 + tψ\ We first introduce v(0) = v(0)(t, y) as

(8.21) v™ = '(υ?>, . - . , < , . . . , uί?,) = U0(Dz)ψ(D2)u

for u = u(t, y) represented in terms of the ^-coordinates, where U0(ζ) is

given by U0(ζ) = χ(ζ)U0(ζ) with U0(ζ) defined in (2.7). We further define

w^ = w^Ht, y) as
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(8.22) wp

0) = χ(Dz)s(Dz; λ)v(

p

0) .

LEMMA 8.7. Let v(t;ε) = v(t,y ε) be the representation of v = υ(ε) de-

fined by (8.9) in terms of the z-coordίnates. Let vm(t) = v(0)(t, y) be defined

by (8.21). Then, the difference v(t; ε) - ι/0)(ί) belongs to L2,μ{Rt\Jί) with

J( = LψJ(Rf) for some μ,μ> —\, and hence vp(t; ε) - v(

p

0)(t) belongs to

L2>μ(Rt;J?) with se = U%Kf).

Proof. Since w(ε) = w(t;ε)e L2f_v(Rt; £*) for any v,v>\, we have

ψ(Dz)u e L2f.v(Rt; Jί) by the same way as ψ(Dx)u e Lffl was obtained from

w(ε) e L $ . We write v(t; ε) - v^(t) = (U(z, Dz; λ, ε) - U0(Dz))ψ(D2)u. By

the expression (4.4) for U(x,ξ;λ,ε), we know that the symbol U(z, ζ; λ, ε)

— U0(ζ) belongs to Aβ,σ(N). Thus, there exists μ, μ> — J, for which v(t; ε)

LEMMA 8.8. Let S£ be as in Lemma 8.7. Then, the difference wp(t; ε)

— wp

0)(t) belongs to L2,μ(Rt; S£) for some μ, μ > —\.

Proof. According to the respective definitions of wp(t; ε) and wp

0)(t),

we write

wp(t; ε) - wp°\t) = Vp(z, Dz;λ, ε)s(Dz; λ)(vp - vp

0))

+ (Vp(z, Dz; λ, ε) - x(Dz))s(Dz; λ)υ<?> .

By Lemma 8.7, the first term belongs to L2,μ(Rt; Se) and for the second

term, we recall the definition (6.11) of Vp(z, ζ; λ, ε). Then, we see that

Vp(z, ζ; λ, ε) — χ(ζ) e Aθ,σ(£), which implies that the second term also belongs

to L2)μ(Rt;<&) for some μ,μ> — J. This completes the proof.

The proof of Lemma 8.1 is completed as an immediate consequence

of Lemma 8.8.

Completion of the proof of Lemma 8.1. We use the notation I(u) to

denote

I(u) = lim sup — Γ || ^ ) | | 2 dt.

Γ-oo T JO

Since l i π w \\wp(t; ε)||2 = O(ε), it follows that

I(wp(ε)) = lim\\wp(t;ε)f= O(ε) .
ί-co

On the other hand, Lemma 8.8 shows that I(wp(ε) — wf) = 0 and hence

I(wp

0)) = I(wp(ε)) = O(ε). Since I(wf) does not depend on ε, we may con-

clude that I{w^) = 0 and the desired result follows at once.
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Appendix; Proof of Lemma 6.1

We shall prove Lemma 6.1. Before proving this, we introduce two

symbol classes and state one proposition from which the statement of

Lemma 6.1 follows immediately.

DEFINITION A.I. We say that A(z, ζ) = {ajk(z, ζ)}Jffc=M, z = (t,y), ζ =

(r, η), belongs to sίv,μ{fi), μ I> v Ξ> 0, when the following conditions are

satisfied:

The class *$/v,μ(£) is different from AViμ(£) in Definition 2.1 in one

respect that the decay for |ζ| -> co is not assumed and it is easily seen

that AVtμ(£) C <stfVφ(£). We introduce another symbol class, which is a

subclass of <stfv,μ(£).

DEFINITION A.2. We say that A(z, ζ) e J*VΦ{£) belongs to aVtμ(£), if

A(z, ζ) does not depend on τ A(z, ζ) = A(t, y> η).

We say that a family of symbols with parameter ε belongs to sfy,μ(£)

uniformly in ε, if the above constants Cr and Cβjr are independent of ε.

PROPOSITION A.I. Let θ9 θ > 0, be the constant fixed in subsection 4.1

and σ = l + 0. Let s(rf) be a real-valued smooth function with compact

support. Let Y — Y(z, ζ) e <stfv,μ{£) and assume that Y is symmetric. Then,

there exist two symmetric matrices L — L(z, ζ) and N = N(t, y, η) such that

(I + L){(τ - s(V)) + Y}(I + L) = (r - s(v)) + N+Z

with some Z = Z(z, ζ) e s/,tσ(£), where I is the £ X £ identity matrix. Fur-

thermore, L and N have the following properties: (a) L is symmetric and

belongs to si9^(£)\ (b) N is symmetric and belongs to SS9,JJ£).

The proof uses the following simple results.

LEMMA A.I. Let s(η) be as in Proposition A.I and A(z, ζ) = A(t, y, τ, η)

e s/Vtμ(£). Then,

(i) B(t, y, η) = A(t, y, s(rj), rj) 6 #,„(£);

(ii) (r - s(v))-\A(z, 0 - A(z, s(v), η)) e ^VJ£).

Proof of Proposition A.I. We choose an integer J so large that Jθ

;> σ and write L and N formally as L — Σy.i L3 and N = ΣUi fy, respec-
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tively. Here we determine Lj = Lj(z, ζ) and Nj = Nά(t, y, η) to satisfy the

following equation:

N, = (r - s(v))ί2L3 + Σ LkL}λ + M, ,
(A.I)

N, = 2(τ - 8{η))Lx + Λίi ,

where

Σ
(A.2) Λ=I

M1 = Y, M2 = LίY + YL, .

Furthermore, we require Lό and Nj to have the following properties: (a)

Lj is symmetric and belongs to <z/jθ,σ(£); (b) Nj is symmetric and belongs

to &jβyσ(£). If Lj and iV} are determined to satisfy (A.I) and if L and N

are defined as above, it then follows that

(J + L){(r - β(,)) + F}(/ + L) = (r - β(,)) + N + Z ,

where Z = Z(z, ζ) is given by

(A.3) Z = (r - β(9)) Σ Σ W a , - « + Σ Σ i*Yl,+,-» , (Lo = I)
p=l k=p p = 0 Jc=p

First, we shall show that there exist solutions Lj and Nj to equation

(A.I) with the required properties. We consider the case j = 1. In this

case, we easily see that Lx and Nx are given by

N, = Nt(t9 y, η) = Mx(t, y, s(η), η) = Y(t, y, s(v), η), M1 = Y,

L, = L,fe ζ) = i(τ - s(v))-XMi(*, s(v)> V) -

According to Lemma A.I, ~Nx£@ie,a{ί) and L^^sί^JJE) since Yes/βtσ(£).

Furthermore, since Y is symmetric, so are both Lx and JVlβ Thus, we can

determine Lx and JVΊ with (a) and (b). Next, we consider the case j —

2. We put K2 = 2L2 + LλLx (and hence L2 = \(K2 — LXL^). Then, equation

(A.I) with 7 = 2 becomes N2 = (T — s{η))K2 + M2. Since Lj e sί9iβ{£) is

symmetric, it follows from the expression (A.2) for M2 that M2 is also

symmetric and belongs to ^2θ,X-β). We can determine K2 and N2 in the

same way as Lx and iVΊ are constructed. Then, we see that K2 is sym-

metric and belongs to s^ϊ9yβ(t!) and hence it follows that L2 also has the

same property as K2. Therefore, we can determine L2 and N2 with (a)

and (b) for j = 2. Thus, Lj and Nj can be determined to satisfy (A.I)

with the required properties (a) and (b) inductively.
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To complete the proof, we must show that Z = Z{z, ζ) given by (A.3)

belongs to jtfσ^(β). To see this, we use (A.I) and write

(r - βfo))L, = 1 { # , - (r -

If we use this relation, an inductive argument shows that (r — s(^))L; 6

<^jθ,a(4)' Hence, applying this fact to (A.3), we have the desired result

and the proof is completed.

Remark. If Y in Proposition A.I depends on a parameter ε and if Y

belongs to s/βtJJ) uniformly in e, then L and N also belong to the cor-

responding classes uniformly in ε, which is easily seen from the construc-

tion of L and N.

Lemma 6.1 is an immediate consequence of Proposition A.I and

Remark after it, so we omit the proof.
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