DUALITY BETWEEN $D(X)$ AND $D(\hat{X})$ WITH ITS APPLICATION TO PICARD SHEAVES

SHIGERU MUKAI

Introduction

As is well known, for a real vector space V, the Fourier transformation

$$
\hat{f}(\alpha)=\int_{V} f(v) e^{2 \pi i<v, \alpha>} d v \quad \alpha \in V^{\vee}
$$

gives an isometry between $L^{2}(V)$ and $L^{2}\left(V^{\vee}\right)$, where V^{\vee} is the dual vector space of V and $\langle\rangle:, V \times V^{\vee} \rightarrow R$ is the canonical pairing.

In this article, we shall show that an analogy holds for abelian varieties and sheaves of modules on them: Let X be an abelian variety, \hat{X} its dual abelian variety and \mathscr{P} the normalized Poincaré bundle on $X \times \hat{X}$. Define the functor $\hat{\mathscr{S}}$ of \mathcal{O}_{X}-modules M into the category of $\mathscr{O}_{\hat{X}}$-modules by

$$
\hat{\mathscr{S}}(M)=\pi_{\hat{X}, *}\left(\mathscr{P} \otimes \pi_{X}^{*} M\right) .
$$

Then the derived functor $\boldsymbol{R} \hat{\mathscr{S}}$ of $\hat{\mathscr{S}}$ gives an equivalence of categories between two derived categories $D(X)$ and $D(\hat{X})$ (Theorem 2.2).

In § 3, we shall investigate the relations between our functor $\boldsymbol{R} \hat{\mathscr{S}}$ and other functors, translation, tensoring of line bundles, direct (inverse) image by an isogeny, etc. The result (3.14) that if X is principally polarized then $\boldsymbol{D}(X)$ has a natural action of $\mathrm{SL}(2, Z)$ seems to be significant.

In $\S \S 4$ and 5 , we shall apply the duality between $\boldsymbol{D}(X)$ and $\boldsymbol{D}(\hat{X})$ to the study of Picard sheaves. We shall compute the cohomology of Picard sheaves (Proposition 4.4), determine the moduli of deformations of them (Theorem 4.8) and give a characterization of them in the case of $\operatorname{dim} X=2$ (Theorem 5.4). Other applications of the duality will be treated elsewhere.

After the original paper was written, the author learned by a letter from G. Kempf that Proposition 3.11 and some results in $\S 4$ had also been proved independently by him.

[^0]Notations. We denote by k a fixed algebraically closed field and mean by a scheme a scheme of finite type over k. For the product variety $X \times Y \times Z, \pi_{X}$ (or p_{1}) and $\pi_{X, Y}$ (or p_{12}) are the projections of $X \times Y \times Z$ to X and $X \times Y$, respectively. For a coherent sheaf F on a variety $X, r(F)$ denotes the rank of F at the generic point of $X . \quad F^{\vee}$ denotes $\mathcal{H}_{\text {fom }}^{\theta_{X}}\left(F, \mathcal{O}_{X}\right)$.

§ 1. Preliminary

Let X and Y be schemes and F an $\mathcal{O}_{X \times Y}$-module. We define the functor $\mathscr{S}_{X \rightarrow Y, F}$ from the category $\operatorname{Mod}(X)$ of \mathcal{O}_{X}-modules into $\operatorname{Mod}(Y)$ by

$$
\begin{equation*}
\mathscr{S}_{X \rightarrow Y, F}(?)=\pi_{Y, *}\left(F \otimes \pi_{X}^{*} ?\right), \tag{1.1}
\end{equation*}
$$

where ? is an \mathcal{O}_{X}-module or an \mathcal{O}_{X}-homomorphism.
Example 1.2. Let Γ_{f} be the graph of a morphism $f: X \rightarrow Y$ and F the structure sheaf $\mathcal{O}_{r_{f}}$ of Γ_{f}. Then $\mathscr{S}_{X \rightarrow Y, F}=f_{*}$ and $\mathscr{S}_{Y \rightarrow X, F}=f^{*}$.

We denote by $\boldsymbol{D}(X)$ the derived category of $\operatorname{Mod}(X)$ and by $D_{q c}(X)$ (resp. $\boldsymbol{D}_{c}(X)$) the full subcategory of $\boldsymbol{D}(X)$ consisting of the complexes whose i-th cohomologies are quasi-coherent (resp. coherent) for all i. $D^{-}(X)$ (resp. $D^{b}(X)$) is the full subcategory of $D(X)$ consisting of the complexes bounded above (resp. bounded on both sides) and $\boldsymbol{D}_{q c}^{-}(X)=\boldsymbol{D}^{-}(X) \cap \boldsymbol{D}_{q c}(X)$, $\boldsymbol{D}_{c}^{b}(X)=\boldsymbol{D}^{b}(X) \cap \boldsymbol{D}_{c}(X)$, etc.

For an object F of $\boldsymbol{D}^{-}(X \times Y)$, we define the functor $\boldsymbol{R} \mathscr{S}_{X \rightarrow Y, F}$ from $\boldsymbol{D}^{-}(X)$ into $D^{-}(Y)$ by

$$
\begin{equation*}
\boldsymbol{R} \mathscr{S}_{X \rightarrow Y, F}(?)=\boldsymbol{R} \pi_{Y, *}\left(F \stackrel{L}{\otimes} \pi_{X}^{*} ?\right) . \tag{1.4}
\end{equation*}
$$

If F is an \mathcal{O}_{X}-flat module, then $\boldsymbol{R} \mathscr{S}_{X \rightarrow Y, F}$ is the derived functor of $\mathscr{S}_{X \rightarrow Y, F}$. To consider the derived functors has the following advantage:

Proposition 1.3. Let Z be a scheme and G an object of $D^{-}(X \times Y)$. Then there is a natural isomorphism of functors:

$$
\boldsymbol{R} \mathscr{S}_{Y \rightarrow Z, G} \circ \boldsymbol{R} \mathscr{S}_{X \rightarrow Y, F} \cong \boldsymbol{R} \mathscr{S}_{X \rightarrow Z, H},
$$

where $H=\boldsymbol{R} \pi_{x, z, *}\left(\pi_{X, Y}^{*} F \stackrel{L}{\otimes} \pi_{Y, Z}^{*} G\right)$.
Proof. We use (1) the commutativity of R and the composition of functors, (2) the projection formula and (3) the base change theorem. (See
[2] Proposition 5.1, 5.3, 5.6, 5.12)
Let ? be an object or morphism in $D^{-}(X)$.

$$
\begin{align*}
& \boldsymbol{R} \mathscr{S}_{Y \rightarrow Z, G}\left(\boldsymbol{R} \mathscr{S}_{X \rightarrow Y, F}(?)\right) \\
& \cong \boldsymbol{R} \pi_{z, *}\left(G \stackrel{L}{\otimes} \pi_{Y}^{*}\left(\boldsymbol{R} \pi_{Y, *}\left(F \stackrel{L}{\otimes} \pi_{X}^{*} ?\right)\right)\right) \\
& \cong \boldsymbol{R} \pi_{Z, *}\left(G \stackrel{L}{\otimes} \boldsymbol{R} \pi_{Y, z, *}\left(\pi_{X, Y}^{*}\left(F \stackrel{L}{\otimes} \pi_{X}^{*} ?\right)\right)\right) \tag{3}\\
& \cong \boldsymbol{R} \pi_{z, *} \boldsymbol{R} \pi_{Y, Z, *}\left(\pi_{Y, Z}^{*} G \stackrel{L}{\otimes} \pi_{X, Y}^{*} F \stackrel{L}{\otimes} \pi_{X}^{*} ?\right) \tag{2}\\
& \cong \boldsymbol{R} \pi_{z, *} \boldsymbol{R} \pi_{X, Z, *}\left(\pi_{Y, Z}^{*} G \stackrel{L}{\otimes} \pi_{X, Y}^{*} F \stackrel{L}{\otimes} \pi_{X, Z}^{*} \pi_{X}^{*} ?\right) \tag{1}\\
& \cong \boldsymbol{R} \pi_{z, *}\left(H \stackrel{L}{\otimes} \pi_{X}^{*} ?\right)=\boldsymbol{R} \mathscr{S}_{X \rightarrow Z, H}(?) \tag{2}
\end{align*}
$$

Proposition 1.4. (1) If F has finite Tor-dimension as a complex of \mathcal{O}_{X}-modules, then we can extend the domain of definition of $\boldsymbol{R} \mathscr{S}_{X \rightarrow Y, F}$ to

$$
\boldsymbol{R} \mathscr{S}_{X \rightarrow Y, F}: D(X) \longrightarrow D(Y)
$$

and $\boldsymbol{R} \mathscr{S}_{X \rightarrow Y, F}$ maps $\boldsymbol{D}^{b}(X)$ into $D^{b}(Y)$.
(2) If F belongs to $\boldsymbol{D}_{q c}^{-}(X \times Y)$, then $\boldsymbol{R} \mathscr{S}_{X \rightarrow Y, F}$ maps $\boldsymbol{D}_{q c}^{-}(X)$ into $D_{q c}^{-}(Y)$.
(3) If X is proper and $F \in \boldsymbol{D}_{c}^{-}(X \times Y)$, then $\boldsymbol{R} \mathscr{S}_{X \rightarrow Y, F}$ maps $\boldsymbol{D}_{c}^{-}(X)$ into $\boldsymbol{D}_{c}^{-}(Y)$.

Proof. For (1), see [2] Proposition 4.2 and Corollary 4.3. (2) and (3) follow from [EGA] III 1.4.10 and 3.2.1, respectively.
q.e.d.

§ 2. Fourier functor

Let X be an abelian variety of dimension g (the business is similar for a complex torus) and \hat{X} its dual abelian variety. Let \mathscr{P} be the normalized Poincaré bundle on $X \times \hat{X}$. Here "normalized" means that both $\left.\mathscr{P}\right|_{X \times \hat{0}}$ and $\left.\mathscr{P}\right|_{0 \times \hat{X}}$ are trivial. For $\hat{x} \in \hat{X}$ (resp. $x \in X$), $P_{\hat{x}}$ (resp. P_{x}) denotes $\left.\mathscr{P}\right|_{X \times \hat{x}}$ (resp. $\left.\mathscr{P}\right|_{x \times \hat{X}}$). We put $\mathscr{S}=\mathscr{S}_{\hat{X} \rightarrow X, \mathscr{P}}$ and $\hat{\mathscr{S}}=\mathscr{S}_{X \rightarrow \hat{X}, \mathscr{P}}$. Since \hat{X} is complete and \mathscr{P} is $\mathcal{O}_{\hat{x}}$-flat, we have by Proposition 1.4,

Proposition 2.1. The derived functor $\boldsymbol{R} \mathscr{S}: \boldsymbol{D}(\hat{X}) \rightarrow \boldsymbol{D}(X)$ of \mathscr{S} can be defined. It maps $D^{b}(\hat{X}), D_{q c}^{-}(\hat{X})$ and $D_{c}^{-}(\hat{X})$ into $D^{b}(X), D_{q c}^{-}(X)$ and $D_{c}^{-}(X)$ respectively.

The following theorem is fundamental:

Theorem 2.2. There are isomorphisms of functors:

$$
\boldsymbol{R} \mathscr{S} \circ \boldsymbol{R} \hat{\mathscr{S}} \cong\left(-1_{X}\right)^{*}[-g]
$$

and

$$
\boldsymbol{R} \hat{\mathscr{S}} \circ \boldsymbol{R} \mathscr{S} \cong\left(-1_{\hat{X}}\right)^{*}[-g],
$$

where $[-g]$ denotes "shift the complex g places to the right". In other words, $\boldsymbol{R} \mathscr{S}$ gives an equivalence of categories between $\boldsymbol{D}(\hat{X})$ and $\boldsymbol{D}(X)$, and its quasi-inverse is $\left(-1_{\hat{X}}\right) * \boldsymbol{R} \hat{\mathscr{S}}[g]$.

Proof. It suffices to show that $\left(\left.\boldsymbol{R} \mathscr{S}\right|_{\boldsymbol{D}-(\hat{\mathbb{S}})}\right) \circ\left(\left.\boldsymbol{R} \hat{\mathscr{S}}\right|_{\boldsymbol{D}-(X)}\right)=\left(-1_{X}\right) *[-g]$. By (1.3) the left side is isomorphic to $\boldsymbol{R} \mathscr{S}_{X \rightarrow X, H}$ with $H=\boldsymbol{R} p_{12, *}\left(p_{13}^{*} \mathscr{P} \otimes p_{23}^{*} \mathscr{P}\right)$, where $p_{i j}$ are projections of $X \times X \times \hat{X}$. Since $p_{13}^{*} \mathscr{P} \otimes p_{23}^{*} \mathscr{P} \cong(m \times 1)^{*} \mathscr{P}$ (which is easily verified by the seesaw principle), $H \cong \boldsymbol{R} p_{12, *}(m \times 1)^{*} \mathscr{P} \cong m^{*} \boldsymbol{R} p_{1, *} \mathscr{P}$. As was shown in the course of the proof of the theorem in [6] § $13, R^{i} p_{1, *} \mathscr{P}$ $=0$ for every $i \neq g$ and $R^{g} p_{1, *} \mathscr{P} \cong k(0)$, i.e., $R p_{1, *} \mathscr{P} \cong k(0)[-g]$. Hence H is isomorphic to $\mathcal{O}_{E}[-g]$, where E is the graph of $-1_{X}: X \rightarrow X$. Therefore $\boldsymbol{R} \mathscr{S}_{X \rightarrow X, H} \cong\left(-1_{X}\right)^{*}[-g]$ (see Example 1.2). q.e.d.

In order to apply the theorem, we need
Definition 2.3. We say that W.I.T. (weak index theorem) holds for a coherent sheaf F on X if $R^{i} \hat{\mathscr{S}}(F)=0$ for all but one i. This i is denoted by $i(F)$ and called the index of F. We denote the coherent sheaf $R^{i(F)} \hat{\mathscr{S}}(F)$ on \hat{X} by \hat{F} and call it the Fourier transform of F.

We say that I.T. (index theorem) holds for F if $H^{i}(X, F \otimes P)=0$ for all $P \in \operatorname{Pic}^{\circ} X$ and all but one i.

Since $\left.\left(\mathscr{P} \otimes \pi_{X}^{*} F\right)\right|_{X \times \hat{x}} \cong P_{\hat{x}} \otimes F$, we see by virtue of the base change theorem, that I.T. implies W.I.T. and \hat{F} is locally free if I.T. holds for F. We always identify \mathcal{O}_{X}-module F with the complex consisting of F in degree 0 , and 0 elsewhere. Hence if W.I.T. holds for F, then $\boldsymbol{R} \mathscr{P}(F)$ is isomorphic to $\hat{F}[-i(F)]$. Hence we have

Corollary 2.4. If W.I.T. holds for F, then so does for \hat{F} and $i(\hat{F})=$ $g-i(F)$. Moreover $\hat{\hat{F}}$ is isomorphic to $\left(-1_{X}\right)^{*} F$.

Corollary 2.5. Assume that W.I.T. holds for F and G. Then $\operatorname{Ext}_{o_{X}}^{i}(F, G)$ $\cong \operatorname{Ext}_{{ }_{o x}{ }_{0}^{+\mu}}(\hat{F}, \hat{G})$ for every integer i, where $\mu=i(F)-i(G)$. Especially, we have an isomorphism $\operatorname{Ext}_{{ }_{o X}}^{i}(F, F) \simeq \operatorname{Ext}_{{ }_{o \hat{X}}^{i}}(\hat{F}, \hat{F})$ for every i.

$$
\begin{aligned}
\text { Proof. } \operatorname{Ext}_{o x}^{i}(F, G) & \cong \operatorname{Hom}_{D(X)}(F, G[i]) \\
& \cong \operatorname{Hom}_{D(\hat{X})}(\boldsymbol{R} \hat{\mathscr{S}}(F), \boldsymbol{R} \hat{\mathscr{S}}(G)[i]) \\
& \cong \operatorname{Hom}_{D(\hat{X})}(\hat{F}[-i(F)], \hat{G}[i-i(G)]) \\
& \cong \operatorname{Ext}_{o X}^{i+\mu}(\hat{F}, \hat{G})
\end{aligned}
$$

Example 2.6. Let $k(\hat{x})$ be the one dimensional sky-scraper sheaf supported by $\hat{x} \in \hat{X}$. Since $H^{i}(X, k(\hat{x}) \otimes P)=0$ for every $i>0$ and $P \in \operatorname{Pic}^{\circ} \hat{X}$, I.T. holds for $k(\hat{x}), i(k(\hat{x}))=0$ and $\widehat{k(\hat{x})} \simeq P_{\hat{x}}$. Hence by Corollary 2.4, W.I.T. holds for $P_{\hat{x}}, i\left(P_{\hat{x}}\right)=g$ and $\widehat{P_{\hat{x}}} \simeq k(-x)$. Note that I.T. does not hold for $P_{\hat{x}}$.

Combining the above with Corollary 2.5, we have
Proposition 2.7. Assume that W.I.T. holds for a coherent sheaf F on X. Then we have

$$
H^{i}\left(X, F \otimes P_{\hat{x}}\right) \cong \operatorname{Ext}_{o \hat{x}}^{\xi-i(\vec{F})+i}(k(\hat{x}), \hat{F})
$$

and

$$
\operatorname{Ext}_{o{ }_{O X}}^{i}(k(x), F) \cong H^{i-i(F)}\left(\hat{X}, \hat{F} \otimes P_{-x}\right)
$$

Proof. By Corollary 2.4, it suffices to show the first isomorphism. Since $P_{\hat{x}}$ is locally free, $H^{i}\left(X, F \otimes P_{\hat{x}}\right)$ is isomorphic to $\operatorname{Ext}_{{ }_{0 X}}^{i}\left(P_{-\hat{x}}, F\right)$. Hence by Corollary 2.5, it is isomorphic to $\operatorname{Ext}_{o \hat{X}}^{i+\mu}\left(\hat{P}_{-\hat{x}}, \hat{F}\right) \cong \operatorname{Ext}_{o \hat{X}}^{i+\mu}(k(\hat{x}), \hat{F})$, where $\mu=i\left(P_{-\hat{\imath}}\right)-i(F)=g-i(F)$.
q.e.d.

Corollary 2.8. The Euler-Poincaré characteristic of F is equal to $(-1)^{i(F)} r(F)$.

Proof. $\quad \chi(X, F)=\sum_{i}(-1)^{i} h^{i}(X, F)$
$=\sum_{i}(-1)^{i} \operatorname{dim} \operatorname{Ext}_{o x}^{i+g-i(F)}(k(\hat{x}), \hat{F})$
$=(-1)^{i(F)} r(\hat{F})$.
q.e.d.

Example 2.9 ([4] § 4). A vector bundle U on X is said to be unipotent if it has a filtration

$$
0=U_{0} \subset U_{1} \subset \cdots \subset U_{n-1} \subset U_{n}=U
$$

such that $U_{i} / U_{i-1} \cong \mathcal{O}_{X}$ for $i=1,2, \cdots, n$. Since the functor $R^{i} \hat{\mathscr{S}}$ is semiexact for all i, W.I.T. holds for $U, i(U)=g$ and the coherent sheaf \hat{U} is supported by $\hat{0} \in \hat{X}$. Hence $R^{g} \hat{\mathscr{S}}$ gives an equivalence of the categories
(Unipotent vector bundles on X) and (Coherent sheaves on \hat{X} supported by $\hat{0})=($ Artinian B-modules $)$, where B is the local ring $\mathcal{O}_{\hat{x}, \hat{0}}$ of \hat{X} at $\hat{0}$. Moreover we have by Proposition 2.7.

$$
H^{i}(X, U) \cong \operatorname{Ext}_{B}^{i}(k(\hat{0}), \hat{U})
$$

§3. Relations between $R \mathscr{S}$ and other functors

The properties of the Poincaré bundle \mathscr{P} give relations between \mathscr{S} and other functors. From this we obtain by the universal property of $\boldsymbol{R} \mathscr{S}$, relations between $\boldsymbol{R} \mathscr{S}$ and other functors. For example, from the isomorphism $T_{(0, \hat{\imath})}^{*} \mathscr{P} \cong \mathscr{P} \otimes \pi_{\hat{x}}^{*} P_{\hat{x}}$, we obtain the isomorphism of functors $\mathscr{S} \circ T_{\hat{x}}^{*}$ $\cong\left(\otimes P_{-\hat{x})}\right) \circ \mathscr{S}$ because $\mathscr{S}\left(T_{\hat{x}}^{*} ?\right)=\pi_{X, *}\left(\mathscr{P} \otimes T_{(0, \hat{\hat{x}})}^{*} \pi_{\hat{x}}^{*} ?\right) \cong \pi_{x, *} T_{(0, \hat{x})}^{*}\left(T_{(0,-\hat{x})}^{*} \mathscr{P} \otimes\right.$ $\left.\pi_{\hat{x}}^{*} ?\right) \cong \pi_{x, *}\left(\mathscr{P} \otimes \pi_{x}^{*} P_{-\hat{x}} \otimes \pi_{x}^{*} ?\right) \cong \mathscr{S}(?) \otimes P_{-\hat{x}}$.
Hence we have
(3.1) (Exchange of translations and $\otimes \mathrm{Pic}^{\circ}$)

$$
\begin{aligned}
& \boldsymbol{R} \mathscr{S} \circ T_{\hat{x}}^{*} \cong\left(\otimes P_{-\hat{x}}\right) \circ \boldsymbol{R} \mathscr{S} \\
& \boldsymbol{R} \mathscr{S} \circ\left(\otimes P_{x}\right) \cong T_{x}^{*} \circ \boldsymbol{R} \mathscr{S} .
\end{aligned}
$$

Example 3.2. W.I.T. holds for every homogeneous vector bundle H on X. The index $i(H)$ is equal to g and \hat{H} is a coherent sheaf supported by a finite set of points. Hence $R^{g} \hat{\mathscr{S}}$ gives an equivalence of categories between $\boldsymbol{H}_{X}=$ (Homogeneous vector bundles on X) and $C_{\frac{1}{f}}^{f}=($ Coherent sheaves on \hat{X} supported by a finite set of points).

Proof. If a coherent sheaf M on \hat{X} is supported by a finite set of points, then $M \otimes P \cong M$ for all $P \in \operatorname{Pic}^{\circ} \hat{X}$ and hence $\mathscr{S}(M)$ is a homogeneous vector bundle by (3.1). Therefore it suffices to show the first statement. Put $M_{i}=R^{i} \hat{\mathscr{S}}(H)$. Since $T_{x}^{*} H \cong H$ for all $x \in X, M_{i} \otimes P \cong M_{i}$ for all $P \in \operatorname{Pic}^{\circ} \hat{X}$ by (3.1). Hence by the lemma (3.3) below M_{i} is supported by a finite set of points. By Theorem 2.2, there is a spectral sequence whose E_{2} term is $R \mathscr{S}^{j}\left(M_{i}\right)$ and which converges to zero when $i+j \neq g$. Since $R \mathscr{S}^{j}\left(M_{i}\right)=0$ if $j \neq 0$, the spectral sequence degenerates and M_{i} is zero for every $i \neq g$. q.e.d.

Lemma 3.3. Let M be a coherent sheaf on an abelian variety \hat{X}. If $M \otimes P \cong M$ for all $P \in \operatorname{Pic}^{\circ} \hat{X}$, then $\operatorname{Supp} M$ is finite.

Proof. Suppose that $\operatorname{dim} \operatorname{Supp} M \geq 1$. Take a curve C contained in Supp M and let \tilde{C} be its normalization. Put $N=M \otimes_{0 X} \mathcal{O}_{\tilde{c}}$ and $L=N /$ "the torsion part of N ". Then N is a vector bundle on \tilde{C} and $N \otimes f^{*} P$
$\cong N$ for all $P \in \operatorname{Pic}^{\circ} \hat{X}$, where f is the natural morphism $\tilde{C} \rightarrow C G X$. Therefore, taking the determinant of both sides, we see that $\left(f^{*} P\right)^{\otimes r(N)}$ is trivial for all $P \in \operatorname{Pic}^{\circ} \hat{X}$. This is a contradiction because the morphism $f^{*}: \operatorname{Pic}^{\circ} \hat{X}$ $\rightarrow \operatorname{Pic}^{\circ} \tilde{C}$ is not zero.

Combining Example 2.9 and 3.2, we have
Theorem (Matsushima, Morimoto, Miyanishi, Mukai). A vector bundle F on X is homogeneous if and only if F is isomorphic to $\oplus_{i=1}^{n} P_{i} \otimes U_{i}$ for some $P_{1}, \cdots, P_{n} \in \operatorname{Pic}^{\circ} X$ and unipotent vector bundles U_{1}, \cdots, U_{n}.

Let Y be an abelian variety, $\varphi: Y \rightarrow X$ an isogeny and $\hat{\varphi}: \hat{X} \rightarrow \hat{Y}$ the dual isogeny of φ.
(3.4) (Exchange of the direct image and the inverse image)

$$
\begin{aligned}
& \varphi^{*} \circ \boldsymbol{R} \mathscr{S}_{X} \cong \boldsymbol{R} \mathscr{S}_{Y} \circ \hat{\varphi}_{*} \\
& \varphi_{*} \circ \boldsymbol{R} \mathscr{S}_{Y} \cong \boldsymbol{R} \mathscr{S}_{X} \circ \hat{\varphi}^{*} .
\end{aligned}
$$

Proof. The second isomorphism is obtained from the first in the following manner. Replacing φ by $\hat{\varphi}$ in the first isomorphism, we have $\hat{\varphi}^{*} \circ \boldsymbol{R} \hat{\mathscr{S}}_{Y} \cong \boldsymbol{R} \hat{\mathscr{S}}_{X} \circ \varphi_{*}$. By Theorem 2.2,

$$
\begin{aligned}
\varphi_{*} \circ \boldsymbol{R} \mathscr{S}_{Y} & \cong\left(-1_{X}\right)^{*} \circ \boldsymbol{R} \mathscr{S}_{X} \circ \boldsymbol{R} \hat{\mathscr{S}}_{X} \circ \varphi_{*} \circ \boldsymbol{R} \mathscr{S}_{Y}[g] \\
& \cong\left(-1_{X}\right)^{*} \circ \boldsymbol{R} \mathscr{S}_{X} \circ \hat{\varphi}^{*} \circ \boldsymbol{R} \hat{\mathscr{S}}_{Y} \circ \boldsymbol{R} \mathscr{S}_{Y}[g] \\
& \cong\left(-1_{X}\right)^{*} \circ \boldsymbol{R} \mathscr{S}_{X} \circ \hat{\varphi}^{*} \circ\left(-1_{\hat{Y}}\right)^{*} \\
& \cong \boldsymbol{R} \mathscr{S}_{X} \circ \hat{\varphi}^{*} .
\end{aligned}
$$

Hence it sufficesto show $\varphi^{*} \circ \mathscr{S}_{X} \cong \mathscr{S}_{Y} \circ \hat{\varphi}_{*}$. By the definition of $\hat{\varphi},(\varphi \times$ $1)^{*} \mathscr{P}_{X} \cong(1 \times \hat{\varphi})^{*} \mathscr{P}_{Y}$. Hence we have

$$
\begin{aligned}
\varphi^{*} \mathscr{S}_{X}(?) & =\varphi^{*} \pi_{x, *}\left(\mathscr{P}_{X} \otimes \pi_{\mathcal{Y}}^{*} ?\right) \\
& \cong \pi_{Y, *}\left((\varphi \times 1)^{*} \mathscr{P}_{X} \otimes \pi_{X}{ }^{*} ?\right) \\
& \cong \pi_{Y, *}(1 \times \hat{\varphi})_{*}\left((1 \times \hat{\varphi})^{*} \mathscr{P}_{Y} \otimes \pi_{\frac{X}{X}}^{*} ?\right) \\
& \cong \pi_{Y, *}\left(\mathscr{P}_{Y} \otimes(1 \times \hat{\varphi})_{*} \pi_{\frac{1}{*}}^{*} ?\right) \\
& \cong \mathscr{S}_{Y}\left(\hat{\varphi}_{*} ?\right) .
\end{aligned}
$$

q.e.d.

Remark 3.5. The second isomorphism can be also proved in the same way as the first by the isomorphism $(1 \times \hat{\varphi})_{*} \mathscr{P}_{X} \cong(\varphi \times 1)_{*} \mathscr{P}_{Y}$ which was proved in [7].

Example 3.6. If H is a homogeneous vector bundle on X (resp. Y), so is $\varphi^{*} H$ (resp. $\varphi_{*} H$). Moreover the following diagram is (quasi-)commutative.

Now we investigate other properties of the Fourier functor $\boldsymbol{R} \mathscr{S}$. Let $m: X \times X \rightarrow X$ be the group law of X. For \mathcal{O}_{X}-modules M and N, we define the Pontrjagin product $M * N$ of M and N by $M * N=m_{*}\left(p_{1}^{*} M \otimes\right.$ $\left.p_{2}^{*} N\right) . \quad *$ is a bifunctor from $\operatorname{Mod}(X) \times \operatorname{Mod}(X)$ into $\operatorname{Mod}(X)$. We denote its derived functor by $\stackrel{R}{\stackrel{R}{*}}$.
(3.7) (Exchange of the Pontrjagin product and the tensor product)

$$
\begin{aligned}
& \boldsymbol{R} \mathscr{S}(F \stackrel{R}{\stackrel{R}{\underline{*}}} ?) \cong \boldsymbol{R} \mathscr{S}(F) \stackrel{L}{\otimes} \boldsymbol{R} \mathscr{S}(?) \\
& \boldsymbol{R} \mathscr{E}(F \stackrel{\text { L }}{\otimes} ?) \cong \boldsymbol{R} \mathscr{E}(F) \stackrel{R}{\stackrel{R}{E}} \boldsymbol{R} \mathscr{S}(?)[g]
\end{aligned}
$$

where $F \in \boldsymbol{D}(\hat{X})$ and ? is an object or a morphism in $\boldsymbol{D}(\hat{X})$.
Proof. It suffices to show the first isomorphism. We use the isomorphism $(1 \times m)^{*} \mathscr{P} \cong p_{12}^{*} \mathscr{P} \otimes p_{13}^{*} \mathscr{P}$, where $p_{i j}$'s are projections of $X \times \hat{X} \times \hat{X}$.

$$
\begin{aligned}
& \boldsymbol{R} \mathscr{S}\left(F_{\stackrel{*}{*}}^{\boldsymbol{*}} ?\right) \cong \boldsymbol{R}_{x, *}\left(\mathscr{P} \otimes \pi_{\hat{x}}^{*}\left(\boldsymbol{R} m_{*}\left(p_{1}^{*} F \otimes p_{2}^{*} ?\right)\right)\right) \\
& \cong \boldsymbol{R} \pi_{X, *}\left(\mathscr{P} \otimes \boldsymbol{R}(1 \times m)_{*} p_{23}^{*}\left(p_{1}^{*} F \otimes p_{2}^{*} ?\right)\right) \\
& \cong \boldsymbol{R} \pi_{x, *} \boldsymbol{R}(1 \times m)_{*}\left((1 \times m)^{*} \mathscr{P} \otimes p_{2}^{*} F \otimes p_{3}^{*} ?\right) \\
& \cong R p_{1, *}\left(p_{12}^{*} \mathscr{P} \otimes p_{13}^{*} \mathscr{P} \otimes p_{2}^{*} F \otimes p_{3}^{*} ?\right) \\
& \cong \boldsymbol{R} p_{1, *}\left(p_{12}^{*}\left(\mathscr{P} \otimes \pi_{\hat{X}}^{*} F\right) \otimes p_{13}^{*}\left(\mathscr{P} \otimes \pi_{\hat{X}}^{*} ?\right)\right) \\
& \cong \boldsymbol{R} \mathscr{P}(F) \stackrel{L}{\otimes} \boldsymbol{R} \mathscr{S}(?) \\
& X \stackrel{\pi_{X}}{\leftarrow} X \times \hat{X} \stackrel{1 \times m}{\leftarrow} X \times \hat{X} \times \hat{X}
\end{aligned}
$$

Let Δ_{X} be the dualizing functor. Since the canonical module of X is trivial, $\Delta_{X}(?)=\boldsymbol{R} \operatorname{GGom}_{O_{X}}\left(?, \mathcal{O}_{X}\right)[g]$.
(3.8) (Skew commutativity of $\boldsymbol{R} \mathscr{S}$ and Δ)

$$
\Delta_{X} \circ \boldsymbol{R} \mathscr{S} \cong\left(\left(-1_{X}\right)^{*} \circ \boldsymbol{R} \mathscr{S} \circ \Delta_{\hat{X}}\right)[g]
$$

Proof. We use the isomorphism $\mathscr{P}^{-1} \cong\left(\left(-1_{X}\right) \times 1_{\mathfrak{X}}\right)^{*} \mathscr{P}$ and the Grothendieck duality.

$$
\begin{aligned}
\Delta_{X}(\boldsymbol{R} \mathscr{S}(?)) & =\Delta_{X} R \pi_{X, *}\left(\mathscr{P} \otimes \pi_{X}^{*} ?\right) \\
& \cong R \pi_{X, *} \Delta_{X \times \hat{X}}\left(\mathscr{P} \otimes \pi_{\hat{X}}^{*} ?\right) \\
& \cong R \pi_{X, *}\left(\mathscr{P}^{-1} \otimes \pi_{\mathscr{X}}^{*} \Delta_{\hat{X}} ?\right)[g] \\
& \cong R \pi_{X, *}\left(\left(\left(-1_{X}\right) \times 1_{\mathscr{X}} * \mathscr{P} \otimes \pi_{X}^{*} \Delta_{\hat{X}} ?\right)[g]\right. \\
& \cong\left(-1_{X}\right)^{*} \boldsymbol{R} \mathscr{S}\left(\Delta_{\hat{X}} ?\right)[g]
\end{aligned}
$$

Example 3.9. Let U and V be unipotent vector bundles on X. As we saw in Example 2.9, \hat{U} and \hat{V} are artinian B-modules. $U \otimes V$ and U^{\vee} are also unipotent vector bundles. $\widehat{U \otimes V}$ is isomorphic to $\hat{U} * \hat{V}$ and \widehat{U} is isomorphic to $\left(-1_{B}\right) * \Delta(\hat{U}) . \quad \hat{U} * \hat{V}$ is $\hat{U} \otimes_{k} \hat{V}$ regarded as a \hat{B}-modules via the co-multiplication $\mu: \hat{B} \rightarrow \hat{B} \hat{\otimes} \hat{B}$ of the formal group $\hat{B} . \quad-1_{B}$ is an automorphism of B induced by $-1_{\hat{X}}: \hat{X} \rightarrow \hat{X}$ and Δ is the dualizing functor of $\operatorname{Mod}(B)$.

Next we investigate the relation between $\boldsymbol{R} \hat{\mathscr{S}}$ and $\otimes N$ for a line bundle N on X. In the rest of this section we always assume that N is nondegenerate, i.e., $\chi(N) \neq 0$. Hence ϕ_{N} ([6] p. 59, p. 131) is an isogeny.
(3.10) $\quad \stackrel{R}{\underset{\sim}{*}} N \cong\left(\otimes N \circ \phi_{N}^{*} \circ \boldsymbol{R} \hat{\mathscr{S}} \circ \otimes N \circ\left(-1_{X}\right)^{*}\right)(?$
where ? is an object or a morphism in $\boldsymbol{D}(X)$.
Proof. Consider the isomorphism $\psi: X \times X \rightarrow X \times X$ such that $\psi(x, y)$ $=(x, x+y)$. The morphisms p_{1}, p_{2} and m is sent by ψ to p_{1}, μ and p_{2}, respectively, where $\mu: X \times X \rightarrow X, \mu(x, y)=y-x$. Hence $? * N=m_{*}\left(p_{1}^{*} ? \otimes\right.$ $\left.p_{2}^{*} N\right)$ is isomorphic to $p_{2, *}\left(p_{1}^{*} ? \otimes \mu^{*} N\right)$. By the definition of the morphism $\phi_{N}: X \rightarrow \hat{X}$, we have $m^{*} N \cong p_{1}^{*} N \otimes p_{2}^{*} N \otimes\left(1 \times \phi_{N}\right)^{*} \mathscr{P}$ and hence $\mu^{*} N \cong$ $p_{1}^{*}\left(-1_{X}\right) * N \otimes p_{2}^{*} N \otimes\left(-1_{X} \times \phi_{N}\right) * \mathscr{P}$. Therefore the functor ?* N is isomorphic to $(\otimes N) \circ \mathscr{S}_{X \rightarrow X,\left(-1 X \times \phi_{N}\right) * \mathscr{\theta}} \circ\left(\otimes\left(-1_{X}\right) * N\right)$. By our assumption on N, ϕ_{N} is an isogeny, hence a flat morphism. Hence $\mathscr{S}_{X \rightarrow X,\left(-1_{X} \times \phi_{N}\right)^{*} \mathscr{\mathscr { C }}}=\phi_{N}^{*} \circ \hat{\mathscr{S}} \circ\left(-1_{X}\right)^{*}$. q.e.d.

Since I.T. holds for $N([6] \S 16), \hat{N}$ is a vector bundle on $\hat{X} . \hat{N}$ is simple, i.e., $\operatorname{End}_{o \hat{X}}(\hat{N}) \cong k$ by Corollary 2.5.

Proposition 3.11. (1) $\phi_{N}^{*} \hat{N} \cong\left(N^{-1}\right)^{\oplus|x(N)|}$
(2) $\hat{N}^{\oplus|x(N)|} \cong \phi_{N, *} N^{-1}$
(3) If $|\chi(N)|=1$, e.g., N is a principal polarization of X, then $\hat{N} \cong$ $\left(\phi_{N}^{-1}\right)^{*} N^{-1}$.
(4) There is an isogeny $\pi: X \rightarrow Y$ of degree $|\chi(N)|$ and a line bundle L on Y such that $N \cong \pi^{*} L$. Since $\operatorname{Ker}(\pi) \subset K(N)$, there is an isogeny τ : $Y \rightarrow \hat{X}$ such that $\tau \circ \pi=\phi_{N}$. Then \hat{N} is isomorphic to $\tau_{*} L^{-1}$.

Proof. (1) is obtained from (3.10) by putting $?=\mathcal{O}_{X}$, because then the left side is $\mathcal{O}_{X} \stackrel{R}{\underline{R}} N \cong R p_{2, *}\left(p_{1}^{*} N\right) \cong \mathcal{O}_{X} \otimes_{k} H^{i}(X, N)[-i]$ and the right side is $N \otimes \phi_{N}^{*} \hat{N}$ [$\left.-i\right]$, where $i=i(F)$. Replacing N by N^{-1} in (1), we have $N^{\oplus|x(N)|} \cong\left(-\phi_{N}\right)^{*} \widehat{N^{-1}}$. Operating \wedge on both sides, we have (2) because $\hat{N}^{\oplus|\chi(N)|} \cong\left(-\phi_{N}\right)_{*}\left(-1_{X}\right)^{*} N^{-1} \cong \phi_{N, *} N^{-1}$ by (3.4). Since $\operatorname{deg} \phi_{N}=|\chi(N)|^{2}, \phi_{N}$ is an isomorphism if $|\chi(N)|=1$. Hence (3) is a special case of (1) or (2). For the first half of (4), see [6] § 23. It suffices to show the last statements. Since $|\chi(L)|=1$, we have by (3), $\hat{N} \cong \widehat{\pi^{*} L} \cong \hat{\pi}_{*} \hat{L} \cong \hat{\pi}_{*} \phi_{L, *} L^{-1}$. On the other hand, since $N \cong \pi^{*} L$, we have $\phi_{N}=\hat{\pi} \circ \phi_{L} \circ \pi$. Since $\phi_{N}=\tau \circ \pi$ and π is an isogeny, we have $\tau=\hat{\pi} \circ \phi_{L}$. Hence $\hat{N} \cong \tau_{*} L^{-1}$.
(3.10) gives us an interesting relation between two functors $\boldsymbol{R} \mathscr{S}$ and $\otimes N$.
(3.12) $\quad\left(\otimes N \circ \phi_{N}^{*} \circ \boldsymbol{R} \hat{\mathcal{S}}\right)^{3}[g+i(N)] \cong\left(\otimes \mathcal{O}_{X}^{\oplus|x(N)|}\right) \circ \phi_{N}^{*} \circ \phi_{N, *}$.

Especially, when the group scheme $K(N)$ is discrete, e.g., when $\chi(N)$ is prime to the characteristic exponent p of the ground field, then we have
$\left(3.12^{\prime}\right) \quad\left(\otimes N \circ \phi_{N}^{*} \circ \boldsymbol{R} \hat{\mathscr{S}}\right)^{3}[g+i(N)] \cong\left(\underset{x \in \mathrm{~K}(N)}{ } T_{X}^{*}\right)^{\oplus \mid x(N)}$.
Proof. First operate $\boldsymbol{R} \mathscr{S}$ on both sides of (3.10). By (3.7), we have

$$
\boldsymbol{R} \hat{\mathscr{S}}(?) \stackrel{L}{\otimes} \boldsymbol{R} \hat{\mathscr{S}}(N) \cong\left(\boldsymbol{R} \hat{\mathscr{S}} \circ \otimes N \circ \phi_{N}^{*} \circ \boldsymbol{R} \hat{\mathscr{S}} \circ \otimes N \circ\left(-1_{x}\right)^{*}\right)(?)
$$

i.e.,

$$
\otimes \hat{N} \circ \boldsymbol{R} \hat{\mathscr{S}}[-i(N)] \cong \boldsymbol{R} \hat{\mathscr{S}} \circ \otimes N \circ \phi_{N}^{*} \circ \boldsymbol{R} \hat{\mathscr{S}} \circ \otimes N \circ\left(-1_{X}\right)^{*}
$$

Operating $\left(-1_{X}\right)^{*} \circ \boldsymbol{R} \mathscr{S} \circ \phi_{N, *}$ from the right, we have

$$
\begin{aligned}
\otimes \hat{N} \circ \varphi_{N, *}[-g-i(N)] & \cong \boldsymbol{R} \hat{\mathscr{S}} \circ \otimes N \circ \phi_{N}^{*} \circ \boldsymbol{R} \hat{\mathscr{S}} \circ \otimes N \circ \boldsymbol{R} \mathscr{S} \circ \phi_{N, *} \\
& \cong \boldsymbol{R} \hat{\mathscr{S}} \circ \otimes N \circ \phi_{N}^{*} \circ \boldsymbol{R} \hat{\mathscr{S}} \circ \otimes N \circ \phi_{N}^{*} \circ \boldsymbol{R} \hat{\mathscr{S}} \\
& \cong \boldsymbol{R} \hat{\mathscr{S}} \circ\left(\otimes N \circ \phi_{N}^{*} \circ \boldsymbol{R} \hat{\mathscr{S}}\right)^{2} .
\end{aligned}
$$

Hence $\otimes N \circ \phi_{N}^{*} \circ \otimes \hat{N} \circ \phi_{N, *} \cong\left(\otimes N \circ \phi_{N}^{*} \circ \boldsymbol{R} \hat{\mathscr{S}}\right)^{3}[g+i(N)]$. By (1) of Proposi-
tion 3.11, we have $\phi_{N}^{*} \hat{N} \cong\left(N^{-1}\right)^{\oplus|x(N)|}$ and hence $\phi_{N}^{*} \circ \otimes \hat{N} \cong\left(\otimes \phi_{N}^{*} \hat{N}\right) \circ \phi_{N}^{*} \cong$ $\left(\otimes\left(N^{-1}\right)^{\oplus|x(N)|}\right) \circ \phi_{N, *}$, which proves our assertion. q.e.d.

In the case (X, L) is a principally polarized abelian variety, \hat{X} is identified with X by the isomorphism $\phi_{L}: X \rightarrow \hat{X}$. Hence $\boldsymbol{R} \mathscr{S}$ is considered to be an automorphism of $D(X)$. We summarize the results derived in this section for this case.

Theorem 3.13. Let (X, L) be a principally polarized abelian variety of dimension g. Then we have
(1) $(\boldsymbol{R} \mathscr{S})^{2} \cong\left(-1_{X}\right)^{*}[-g]$,
(2) $\boldsymbol{R} \mathscr{S} \circ \otimes P_{x} \cong T_{x}^{*} \circ \boldsymbol{R} \mathscr{S}$ for $x \in X$,
(3) $\boldsymbol{R} \mathscr{S} \circ \varphi \cong \hat{\varphi} \circ \boldsymbol{R} \mathscr{S}$ for an isogeny $\varphi: X \rightarrow X$.
(4) $\boldsymbol{R} \mathscr{S} \circ \Delta \cong\left(\left(-1_{X}\right)^{*} \circ \Delta \circ \boldsymbol{R} \mathscr{P}\right)[g]$, where Δ is the dualizing functor of $D(X)$,
(5) $\hat{L} \cong L^{-1}$ and $\widehat{L^{-1}} \cong\left(-1_{X}\right) * L$,
(6) $(\otimes L \circ \boldsymbol{R} \mathscr{P})^{3} \cong[-g]$.
(1) and (6) implies that the relation modulo the shift [] between two automorphisms $\boldsymbol{R} \mathscr{S}$ and $\otimes L$ is same as the relation between the generators $\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$ and $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ of $\mathrm{SL}(2, Z)$. In other words,
(3.14) if X is principally polarized, then $\operatorname{SL}(2, Z)$ acts on $D(X)$ modulo the shift.

Remark 3.15. The relation between automorphisms of $\boldsymbol{D}(X)$ and semihomogeneous vector bundles on X will be discussed in [5]. Some applications of (3.14) to the vector bundles on an abelian surface will be treated in a forthcoming paper.

§4. Picard sheaves

In this section as an application of Fourier functor, we calculate the cohomology of Picard sheaves and determine the moduli of deformations of Picard sheaves.

Let C be a nonsingular complete curve of genus ≥ 2. We fix a point c of C and put $\xi_{n}=\mathcal{O}_{C}(n(c))$. We identify C with the subvariety $\{(x)-$ (c) $\mid x \in C\}$ of the Jacobian variety $X=J(C)$ and also identify a sheaf on C with a sheaf on X supported by C. The subvariety $W_{i}=\overbrace{C+\cdots+C}^{i}$ of X is said to be the distinguished subvariety of dimension i, for $0 \leq i \leq g-1$.
W_{g-1} is a divisor of X and (X, L) is a principally polarized abelian variety of dimension g, where $L=\mathcal{O}_{X}\left(W_{g-1}\right)$. We denote the canonical point of (X, L) by κ, that is, $\kappa-W_{g-1}=W_{g-1}$.

Definition 4.1. The sheaf $F_{n}=R^{1} \mathscr{S}\left(\xi_{n}\right)$ is called a Picard sheaf of rank $g-n-1$.

Our definition of F_{n} is same as that in [8], because a normalized Poincaré bundle \mathscr{L} on $C \times X$ is isomorphic to $\left.\mathscr{P}\right|_{c \times x}$. Replacing c by another point $c^{\prime} \in C$, we get another Picard sheaf F_{n}^{\prime}.

PROPOSITION 4.2. $\quad F_{n}^{\prime} \cong T_{n\left(c^{\prime}-c\right)}^{*} F_{n} \otimes P_{c-c^{\prime}}$
Proof.

$$
\begin{align*}
F_{n}^{\prime} & =R^{1} \mathscr{S}\left(T_{c^{\prime}-c}^{*} \xi_{n}^{\prime}\right) \\
& \cong R^{1} \mathscr{S}\left(\xi_{n}^{\prime}\right) \otimes P_{c-c^{\prime}} \\
& \cong R^{1} \mathscr{S}\left(\xi_{n} \otimes P_{n c^{\prime}-n c}\right) \otimes P_{c-c^{\prime}} \\
& \cong T_{n\left(c^{\prime}-c\right)}^{*} F_{n} \otimes P_{c-c^{\prime}} .
\end{align*}
$$

We summarize some fundamental properties of F_{n}.
Theorem 4.2 (See [8].)
(1) F_{n} is zero for $n>2 g-2$. Supp F_{n} is $\kappa-W_{2 g-2-n}$ for $g-1 \leqq n \leqq$ 2g-2. Supp F_{n} is X and the rank of F_{n} at the generic point of X is $g-n$ -1 for $n<g-1 . \quad F_{n}$ is locally free for $n<0$.
(2) The i-th Chern class $c_{i}\left(F_{n}\right)$ is rationally equivalent to W_{g-i} for i $\leqq g-1$. Especially, $\operatorname{det} F_{n} \cong L$ for $n \leq g-1$.
(3) The projective fibre space $\boldsymbol{P}\left(\alpha^{*} F_{n}\right)$ associated with $\alpha^{*} F_{n}$ is isomorphic to the $(2 g-2-n)$-th symmetric product $\operatorname{Sym}^{2 g-2-n}(C)$. Where α is the automorphism of X for which $\alpha(x)=\kappa-x$.

By the following proposition, we can apply the theory of Fourier functor to Picard sheaves.

Proposition 4.3. (1) For $n \leq g-1, F_{n}$ is $\hat{\xi}_{n}$, W.I.T. holds for F_{n}, $i\left(F_{n}\right)=g-1$ and $\hat{F}_{n} \cong\left(-1_{X}\right)^{*} \xi_{n}$.
(2) For $n \geq g-1, F_{n}$ is isomorphic to $\alpha^{*} \mathcal{E}_{x t_{O X}^{1}}^{1}\left(F_{2 g-2-n}, \mathcal{O}_{X}\right)$ and $\mathscr{S}\left(\xi_{n}\right)$ $\cong \alpha^{*} \mathcal{H}_{o_{O_{X}}}\left(F_{2 g-2-n}, \mathcal{O}_{X}\right)$.
(3) $\mathcal{E}_{x t_{O_{X}}^{i}}\left(F_{n}, \mathcal{O}_{X}\right)$ is zero for $i \geq 2, n \geq g-1$.

Proof. Since $\operatorname{dim} \operatorname{Supp} \xi_{n}=1, R^{i} \mathscr{S}\left(\xi_{n}\right)$ is zero for $i>1$. On the other hand, $\mathscr{S}\left(\xi_{n}\right)$ is zero for $n<g([8] \S 3)$. Hence, when $n<g$, W.I.T. holds for
ξ_{n} and $i\left(\xi_{n}\right)=1$. Therefore (1) follows from Corollary 2.4. Since $\Delta\left(\mathcal{O}_{c}\right)$ is isomorphic to $K_{C}[1] \cong \xi_{2 g-2} \otimes P_{r}[1], \xi_{n}$ is isomorphic to $\Delta\left(\xi_{2 g-2-n} \otimes P_{k}\right)[-1]$. Hence, by (3.8), we have

$$
\begin{aligned}
\boldsymbol{R} \mathscr{P}\left(\xi_{n}\right) & \cong \boldsymbol{R} \mathscr{S}\left(\Delta\left(\xi_{2 g-2-n} \otimes P_{\kappa}\right)[-1]\right) \\
& \cong\left(\left(-1_{X}\right)^{*} \Delta \boldsymbol{R} \mathscr{P}\left(\xi_{2 g-2-n} \otimes P_{\star}\right)\right)[-g-1] \\
& \cong\left(-1_{X}\right)^{*} \boldsymbol{T}_{\kappa}^{*}\left(\Delta \boldsymbol{R} \mathscr{S}\left(\xi_{2 g-2-n}\right)\right)[-g-1] \\
& \cong \alpha^{*}\left(\Delta \boldsymbol{R} \mathscr{S}\left(\xi_{2 g-2-n}\right)\right)[-g-1] .
\end{aligned}
$$

When $n \geq g-1, \boldsymbol{R} \mathscr{S}\left(\xi_{2 g-2-n}\right)$ is isomorphic to $F_{n}[-1]$ by (1). Hence we have

$$
\begin{aligned}
\boldsymbol{R} \mathscr{S}\left(\xi_{n}\right) & \cong \alpha^{*}\left(\boldsymbol{R} \mathscr{G}_{\operatorname{om}_{0_{X}}}\left(F_{2 g-2-n}[-1], \mathcal{O}_{X}\right)[g]\right)[-g-1] \\
& \cong \alpha^{*} \boldsymbol{R} \operatorname{Gom}_{o_{X}}\left(F_{2 g-2-n}, \mathcal{O}_{x}\right) .
\end{aligned}
$$

Therefore, $R^{i} \mathscr{S}\left(\xi_{n}\right)$ is isomorphic to $\alpha^{*} \mathcal{E}_{x t_{o X}^{i}}\left(F_{2 g-2-n}, \mathcal{O}_{X}\right)$, which shows (2) and (3).

Applying the result in § 3 and §4, we have the following three propositions.

Proposition 4.4 (Cohomology of Picard sheaf). Assume that $n \leq g$ -1 .
(1) $h^{g}\left(X, F_{n} \otimes P_{x}\right)=0$ for all $x \in X$. When $0 \leq i \leq g-1$, we have

$$
h^{i}\left(X, F_{n} \otimes P_{x}\right)=\left\{\begin{array}{cc}
\binom{g-1}{i} & \text { if }-x \in C \\
0 & \text { if }-x \notin C
\end{array}\right.
$$

(2) $h^{i}\left(X, F_{n} \otimes L^{-1} \otimes P_{x}\right)=h^{i-g+1}\left(C, \xi_{n+g} \otimes P_{x+x}\right) \quad$ for all $x \in X$
(3) $h^{i}\left(X, F_{n} \otimes L \otimes P_{x}\right)=\left\{\begin{array}{cc}2 g-n-1 & \text { for } i=0 \\ 0 & \text { for } i>0\end{array}\right.$.

Proof. By Proposition 2.7, $H^{i}\left(X, F_{n} \otimes P_{x}\right)$ is isomorphic to $\operatorname{Ext}_{o_{x}^{i+1}}^{i+}(k(x)$, $\left(-1_{X}\right)^{*} \xi_{n}$), which shows (1). By Corollary 2.5 and (5) of Theorem 3.13, $H^{i}\left(X, F_{n} \otimes L^{-1} \otimes P_{x}\right) \cong \operatorname{Ext}_{\sigma_{X}}^{i}\left(L \otimes P_{-x}, F_{n}\right)$ is isomorphic to $\operatorname{Ext}_{o_{X}}^{i-g+1}\left(\widehat{L \otimes P_{-x}}\right.$, $\left.\hat{F}_{n}\right) \cong \operatorname{Ext}_{o_{X}^{i-g+1}}\left(L^{-1} \otimes P_{x},\left(-1_{X}\right)^{*} \xi_{n}\right)$. Since $\left.L\right|_{c} \cong \xi_{g}$, we have $H^{i}\left(X, F_{n} \otimes L^{-1}\right.$ $\left.\otimes P_{x}\right) \cong H^{i-g+1}\left(X, L \otimes P_{-x} \otimes\left(-1_{X}\right)^{*} \xi_{n}\right) \cong H^{i-g+1}\left(C,\left.\xi_{n} \otimes\left(-1_{X}\right)^{*} L\right|_{C} \otimes P_{x}\right) \cong$ $H^{i-g+1}\left(C, \xi_{n+g} \otimes P_{k+x}\right)$, which shows (2). In a similar manner, we have $\left.H^{i}\left(X, F_{n} \otimes L \otimes P_{x}\right) \cong \operatorname{Ext}_{o_{X}^{i+1}}^{i+}\left(-1_{x}\right)^{*}\left(L \otimes P_{x}\right),\left(-1_{X}\right)^{*} \xi_{n}\right) \cong H^{i+1}\left(C, \xi_{n-g} \otimes P_{-x}\right)$. Since $\operatorname{deg} \xi_{n-g}=n-g<0$, we have by Riemann-Roch theorem, $h^{0}\left(C, \xi_{n-g}\right.$ $\left.\otimes P_{-x}\right)=0$ and $h^{1}\left(C, \xi_{n-g} \otimes P_{-x}\right)=2 g-n-1$. Hence we have proved (3). q.e.d.

Proposition 4.5 (Local property of Picard sheaf).

$$
\operatorname{Tor}_{i}^{0 x}\left(F_{n}, k(x)\right) \cong \begin{cases}H^{1}\left(C, \xi_{n} \otimes P_{x}\right) & i=0 \\ H^{0}\left(C, \xi_{n} \otimes P_{x}\right) & i=1 \\ \operatorname{Tor}_{i-2}^{o x}\left(\mathscr{S}\left(\xi_{n}\right), k(x)\right) & i \geq 2\end{cases}
$$

Proof. Assume that $n \leq g-1$. Then we have by Proposition 2.7, $\operatorname{Ext}_{o_{X}}^{i}\left(k(x), F_{n}\right) \cong H^{i-g+1}\left(X,\left(-1_{X}\right)^{*} \xi_{n} \otimes P_{-x}\right)$. Hence by the duality theorem, $\operatorname{Tor}_{o_{X}}^{i}\left(F_{n}, k(x)\right)$ is isomorphic to $\operatorname{Ext}_{\sigma_{X}-i}\left(k(x), F_{n}\right) \cong H^{1-i}\left(C, \xi_{n} \otimes P_{x}\right)$, which proves our assertion for $n \leq g-1$ because $\mathscr{S}\left(\xi_{n}\right)$ is zero for $n \leq g-1$. By what we have shown, the minimal resolution of $F_{n} \otimes \mathcal{O}_{x, x}$ is

$$
0 \longleftarrow F_{n} \otimes \mathcal{O}_{X, x} \longleftarrow \mathcal{O}_{X, x} \otimes_{k} H^{1}\left(C, \xi_{n} \otimes P_{x}\right) \longleftarrow \mathcal{O}_{X, x} \otimes H^{0}\left(C, \xi_{n} \otimes P_{x}\right) \longleftarrow 0 .
$$

By (2) of Proposition 4.3, the sequence
(4.6) $\quad 0 \leftarrow F_{2 g-2-n} \otimes \mathcal{O}_{X, \alpha(x)} \leftarrow \mathcal{O}_{X, \alpha(x)} \otimes H^{0}\left(C, \xi_{n} \otimes P_{x}\right)^{\vee} \leftarrow \mathcal{O}_{X, \alpha(x)} \otimes H^{1}\left(C, \xi_{n}\right.$ $\left.\otimes P_{x}\right)^{\vee} \leftarrow \mathscr{S}\left(\xi_{2 g-2-n}\right) \otimes \mathcal{O}_{X, \alpha(x)} \leftarrow 0$ is exact.

It is easy to see that the left three terms of (4.6) is the minimal resolution of $F_{2 g-2-n} \otimes \mathcal{O}_{X, \alpha(x)}$. Hence $\operatorname{Tor}_{i}^{0_{X}}\left(F_{2 g-2-n}, k(\alpha(x))\right)$ is isomorphic to $H^{i}\left(C, \xi_{n} \otimes P_{x}\right)^{\vee} \cong H^{1-i}\left(C, K_{C} \otimes \xi_{-n} \otimes P_{-x}\right) \cong H^{1-i}\left(C, \xi_{2 g-2-n} \otimes P_{\alpha(x)}\right)$ for $i=$ 0,1 and isomorphic to $\operatorname{Tor}_{i-2}^{0 x_{2}}\left(\mathscr{P}\left(\xi_{2 g-2-n}\right), k(\alpha(x))\right)$. Hence our assertion has been proved for $n \geq g-1$, too.
q.e.d.

Proposition 4.7. Assume that $n \leq g-1$. Then I.T. holds for $F_{n} \otimes$ L, its index is zero and $F_{n} \otimes L \cong \alpha^{*} F_{n-g} \otimes L^{-1}$.

Proof. The first half has been proved in (3) of Proposition 4.4. By (6) of Theorem 3.13, we have $(\otimes L \circ \boldsymbol{R} \mathscr{S} \circ \otimes L)\left(\widehat{F_{n} \otimes L}\right)=(\otimes L \circ \boldsymbol{R} \mathscr{S})^{3}\left(\xi_{n}\right)[1] \cong$ $\xi_{n}[1-g]$. Hence $F_{n} \widehat{\otimes}$ is isomorphic to $\left(\otimes L^{-1} \circ \boldsymbol{R} \mathscr{S}^{-1} \circ \otimes L^{-1}\right)\left(\xi_{n}\right)[1-g]$ $\cong\left(\left(-1_{X}\right) * \boldsymbol{R} \mathscr{S}\left(\xi_{n} \otimes L^{-1}\right) \circ \otimes L^{-1}\right)[1] \cong\left(\left(-1_{X}\right) * \boldsymbol{R} \mathscr{S}\left(\xi_{n-g} \otimes P_{k}\right) \otimes L^{-1}\right)[-1] \cong \alpha^{*} F_{n-g}$ $\otimes L^{-1}$.
q.e.d.

Next we consider the moduli of deformations of Picard sheaves. Define the functor $\mathscr{S}_{p} l_{x}$ from the category of schemes (of finite type over k) into the category of sets by
$\mathscr{S}_{p} l_{X}(T)=\left\{E \mid E\right.$ is a T-flat coherent $\mathcal{O}_{X \times T}$-module and $E_{t}=\left.E\right|_{X \times t}$ is simple for every $t \in T\} / \sim$,
for every scheme T, where $E \sim E^{\prime}$ if and only if $E \cong E^{\prime} \otimes_{o_{T}} L$ for some line bundle L on T, and $\mathscr{S}_{p} l_{X}(f): \mathscr{S}_{p} l_{X}\left(T^{\prime}\right) \rightarrow \mathscr{S}_{p} l_{X}(T)$ is the usual pull back for every morphism $f: T \rightarrow T^{\prime}$. For every simple coherent sheaf F
on $X, \mathscr{S}_{p} l_{X}^{F}$ denotes the connected component of $\mathscr{S}_{p} l_{X}$ containing F. The following is the main theorem in this section.

Theorem 4.8. Assume that $n \leq g-1$ and (*) $g(C)=2$ or C is not hyperelliptic. Then $\mathscr{S}_{p} l_{X}^{F_{n}}$ is represented by $X \times X$ and the coherent sheaf $\tilde{F}_{n}=p_{12}^{*} m^{*} F_{n} \otimes p_{13}^{*} \mathscr{P}$ on $X \times(X \times X)$.

Let $A_{F}: X \times \hat{X} \rightarrow \mathscr{S}_{p} l_{X}^{F}$ be the morphism of functors such that $A_{F}(f, g)$ $=T_{f}^{*} F_{T} \otimes P_{g}$ for every scheme T and T-valued point (f, g) of $X \times \hat{X}$, where we always identify a scheme S and the contravariant functor h_{s} on the category of schemes for which $h_{s}(T)$ is the set of T-valued points of S, i.e., morphisms from T to S. Theorem 4.8 says that A_{F} is an isomorphisms for $F=F_{n}(n \leq g-1)$ under the assumption (*). The following three lemmas are essential for the proof of the theorem.

Lemma 4.9. Picard sheaf $F_{n}(n \leq g-1)$ is simple and we have

$$
\begin{aligned}
\operatorname{dim}_{k} \operatorname{Ext}_{o_{X}}^{1}\left(F_{n}, F_{n}\right) & =3 g-2 & & \text { if } C \text { is hyperelliptic } \\
& =2 g & & \text { otherwise } .
\end{aligned}
$$

Proof. By Corollary 2.5 and Proposition 4.3, it suffices to show the equality for $\operatorname{dim}_{k} \operatorname{Ext}_{o_{X}}^{1}\left(\xi_{n}, \xi_{n}\right)$. Since there is a spectral sequence

$$
H^{i}\left(X, \mathscr{E}_{x t_{o_{X}}^{j}}\left(\xi_{n}, \xi_{n}\right)\right) \Rightarrow \operatorname{Ext}_{o_{X}}^{i+j}\left(\xi_{n}, \xi_{n}\right)
$$

we have the exact sequence

$$
\begin{aligned}
0 & \longrightarrow H^{1}\left(X, \mathscr{E}_{n} d_{o_{X}}\left(\xi_{n}\right)\right) \longrightarrow \operatorname{Ext}_{o_{X}}^{1}\left(\xi_{n}, \xi_{n}\right) \longrightarrow H^{0}\left(X, \mathcal{E}_{x t_{o X}^{1}}^{1}\left(\xi_{n}, \xi_{n}\right)\right) \\
& H^{2}\left(X, \mathscr{E}_{n d_{o_{X}}}\left(\xi_{n}\right)\right) \longrightarrow 0
\end{aligned}
$$

Since $\mathscr{E} n d_{O_{X}}\left(\xi_{n}\right)$ is isomorphic to $\mathcal{O}_{C}, H^{2}\left(X, \mathscr{E}_{n} d_{O_{X}}\left(\xi_{n}\right)\right)$ is zero and we have

$$
\begin{aligned}
\operatorname{dim}_{k} \operatorname{Ext}_{o_{X}}^{1}\left(\xi_{n}, \xi_{n}\right) & =h^{1}\left(C, \mathcal{O}_{C}\right)+h^{0}\left(X, \mathscr{E}_{x t_{o_{X}}^{1}}\left(\xi_{n}, \xi_{n}\right)\right) \\
& =g+h^{0}\left(X, \mathscr{E}_{x t_{o_{X}}^{1}}\left(\xi_{n}, \xi_{n}\right)\right)
\end{aligned}
$$

Sublemma. Let ξ be a line bundle on a subscheme C of X. Then there is a canonical isomorphism $\varphi: \mathscr{E}_{x t_{O_{X}}^{i}}\left(\mathcal{O}_{c}, \mathcal{O}_{C}\right) \widetilde{\rightarrow} \mathscr{E} \times t_{\sigma_{X}}^{i}(\xi, \xi)$ for every i.

Since $\mathscr{E}_{x t}$ commutes with localizations, it suffices to give the canonical isomorphism in the case X is affine and $\xi \cong \mathscr{O}_{c}$. Let $f: \mathcal{O}_{C} \leftrightharpoons \xi$ be an isomorphism. Since $\mathscr{E}_{x t t_{X}{ }^{i}}\left({ }^{*}, *\right)$ is a bifunctor, we have two isomorphisms

$$
\begin{aligned}
& f_{a}=\mathscr{E}_{x x t_{O X}}^{i_{X}}(\mathrm{id}, f): \mathscr{E}_{x x t_{O X}}^{i_{X}}\left(\mathcal{O}_{c}, \mathcal{O}_{C}\right) \leftrightharpoons{\mathscr{E} x t_{O_{X}}^{i}}\left(\mathcal{O}_{c}, \xi\right) \\
& f_{b}=\mathscr{E} x t_{O_{X}}^{i}(f, \mathrm{id}): \mathscr{E}_{x} t_{O_{X}}^{i}(\xi, \xi) \leftrightharpoons \mathscr{E}_{x} t_{O_{X}^{i}}^{i}\left(\mathcal{O}_{C}, \xi\right) .
\end{aligned}
$$

Put $\varphi=f_{b}^{-1} \circ f_{a}$. If $g: \mathcal{O}_{c} \widetilde{\leftrightharpoons} \boldsymbol{\xi}$ is another isomorphism, then there is a unit \bar{u} of \mathcal{O}_{C} such that $g=f \circ(\times \bar{u})$. There is an affine neighbourhood Y of C and a unit u of \mathcal{O}_{Y} whose image by the natural homomorphism $\mathcal{O}_{Y} \rightarrow \mathcal{O}_{C}$ is \bar{u}. Since $\left.\left(g_{b}^{-1} \circ g_{a}\right)\right|_{Y}=\left(\left.(\times u) \circ f_{b}\right|_{Y}\right)^{-1} \circ\left(\left.f_{a}\right|_{Y} \circ(\times u)\right)=\left.\varphi\right|_{Y}$ and $\mathscr{E}_{x t_{O_{X}}^{i}}\left(\mathcal{O}_{c}, \mathcal{O}_{c}\right) \otimes$ $\mathcal{O}_{X, x}$ is zero for every $x \notin Y, \varphi$ does not depend on the choice of the isomorphism f. This proves the sublemma.

By this sublemma, we have only to compute the dimension of

$$
H^{\circ}\left(X, \mathscr{E}_{0 x t_{o_{X}}^{1}}\left(\mathcal{O}_{C}, \mathcal{O}_{C}\right)\right) \cong H^{0}\left(C, N_{C / X}\right)
$$

There is a natural exact sequence

$$
0 \longrightarrow\left(N_{C / X}\right)^{\vee} \longrightarrow \Omega_{X} \otimes \mathcal{O}_{C} \longrightarrow K_{C} \longrightarrow 0
$$

Since Ω_{x} is trivial, tensoring K_{c}, we have the exact sequence

$$
0 \longrightarrow\left(N_{C / X}\right)^{\vee} \otimes K_{c} \longrightarrow K_{\cdot}^{\oplus g} \longrightarrow K_{C}^{\otimes 2} \longrightarrow 0
$$

In the long exact sequence

$$
\begin{aligned}
H^{0}\left(K_{c}\right)^{\oplus g} \xrightarrow{\alpha} H^{0}\left(K_{\bullet}^{\otimes 2}\right) & \longrightarrow H^{1}\left(\left(N_{C / X}\right)^{\vee} \otimes K_{c}\right) \\
& \longrightarrow H^{1}\left(K_{c}\right)^{\oplus g} \longrightarrow H^{1}\left(K_{C}^{\otimes 2}\right) \longrightarrow 0,
\end{aligned}
$$

the map α is just the natural map $H^{0}\left(K_{c}\right) \otimes H^{0}\left(K_{c}\right) \rightarrow H^{0}\left(K_{C}^{\otimes 2}\right)$. By RiemannRoch theorem, we have $h^{0}\left(N_{C / X}\right)=h^{1}\left(\left(N_{C / X}\right)^{\vee} \otimes K_{c}\right)=\operatorname{dim}$ Coker $\alpha+g h^{1}\left(K_{c}\right)$ $-h^{1}\left(K_{C}^{\otimes 2}\right)=\operatorname{dim}$ Coker $\alpha+g$. In the case C is hyperelliptic, dim Coker α is $g-2$ and otherwise α is surjective by a theorem due to Noether, [3] p. 502, which completes our proof.
q.e.d.

Lemma 4.10. If $n \leq g-1$ and $T_{x}^{*} F_{n} \otimes P_{y} \cong T_{x^{\prime}}^{*} F_{n} \otimes P_{y^{\prime}}$ for x, x^{\prime}, y, $y^{\prime} \in X$, then $x=x^{\prime}$ and $y=y^{\prime}$.

Proof. The assumption implies that $P_{x} \otimes T_{-y}^{*} \xi_{n} \cong P_{x^{\prime}} \otimes T_{-y^{\prime}}^{*} \xi_{n}$ by (3.1). Since Supp $\xi_{n}=C, y$ equals to y^{\prime} and since $\operatorname{Pic}^{\circ} X \rightarrow \operatorname{Pic}^{\circ} C$ is injective, x is equal to x^{\prime}. q.e.d.

We denote the tangential map of A_{F} at $(0, \hat{0})$ by α_{F}. Since the tangent spaces of X at 0 , of \hat{X} at $\hat{0}$ and of $\mathscr{S}_{p} l_{x}$ at F are identified with $H^{0}\left(X, T_{X}\right)$, $H^{1}\left(X, \mathcal{O}_{X}\right)$ and $\operatorname{Ext}_{o_{X}}^{1}(F, F)$, respectively, α_{F} is a k-linear map from $H^{\circ}\left(X, T_{X}\right)$ $\oplus H^{1}\left(X, \mathcal{O}_{X}\right)$ into $\operatorname{Ext}_{{ }_{o X}^{1}}^{1}(F, F)$.

Lemma 4.11. $\alpha_{F_{n}}$ is injective for the Picard sheaf $F_{n}(n \leq g-1)$.
Assume that W.I.T. holds for F. By (3.1), we have $T_{x}^{*} \widehat{F \otimes} P_{y} \cong T_{y}^{*} \hat{F}$
$\otimes P_{-x}$. This is easily extended to scheme valued points and we have $T_{f}^{*} F_{S} \widehat{\otimes} P_{g} \cong T_{g}^{*} \hat{F}_{S} \otimes P_{-f}$ for every scheme S and S-valued point (f, g) of $X \times \hat{X}$. As a special case $S=\operatorname{Spec} k[\varepsilon] /\left(\varepsilon^{2}\right)$, we have

Proposition 4.12. Assume that W.I.T. holds for a coherent sheaf F on X. Then the diagram

is commutative, where $j(a, b)=(b,-a)$.
By this proposition, the injectivity of $\alpha_{F_{n}}$ is equivalent to that of $\alpha_{\xi_{n}}$. Let

$$
0 \longrightarrow H^{1}\left(X, \mathscr{E n d}_{o_{X}}(F)\right) \longrightarrow \operatorname{Ext}_{o_{X}}^{1}(F, F) \xrightarrow{\varepsilon} H^{0}\left(X, \mathscr{E}_{x} x t_{o_{X}}^{1}(F, F)\right)
$$

be the exact sequence obtained from the local-global spectral sequence with respect to Ext. The following proposition is easily verified.

Proposition 4.13. (1) $\alpha_{F}\left(H^{1}\left(X, \mathcal{O}_{X}\right)\right)$ is contained in $H^{1}\left(X, \mathscr{E n d}_{O_{X}}(F)\right)$.
(2) The diagram

is commutative, where β_{F} and γ_{F} are the restrictions of α_{F} to $H^{1}\left(X, \mathcal{O}_{X}\right)$ and $H^{0}\left(X, T_{x}\right)$, respectively.
(3) β_{F} is equal to $H^{1}(i)$, where i is the natural homomorphism from \mathcal{O}_{X} into $\mathscr{E}^{\circ} d_{O_{X}}(F)$.
(4) $H^{0}\left(X, T_{X}\right)$ is the set of derivations of \mathcal{O}_{X}. For $D \in \operatorname{Der}_{k}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)$, $\gamma_{F}(D)$ is the extension class of

$$
0 \longrightarrow F \longrightarrow F_{D} \longrightarrow F \longrightarrow 0
$$

where F_{D} is $F \oplus F$ as a sheaf of abelian groups and regarded as an $\mathcal{O}_{X^{-}}$ module by $a\left(m, m^{\prime}\right)=\left(a m+D(a) m^{\prime}\right.$, am') for every $a \in \mathcal{O}_{X}$ and $\left(m, m^{\prime}\right) \in F$ $\oplus F$.
(5) $\varepsilon \circ \gamma_{F}$ is equal to $H^{0}\left(\tilde{\gamma}_{F}\right)$, where $\tilde{\gamma}_{F}$ is an \mathcal{O}_{X}-homomorphism from T_{X} into $\mathscr{E}^{\circ} x t_{o_{X}}^{1}(F, F)$ such that $\left.\tilde{\gamma}_{F}\right|_{U}$ is equal to $\gamma_{F_{U}}: \operatorname{Der}_{k}\left(\mathcal{O}_{U}, \mathcal{O}_{U}\right) \rightarrow \operatorname{Ext}_{\sigma_{U}}^{1}\left(F_{U}, F_{U}\right)$ for every affine open subset U of X.
(6) If Y is a subscheme of X and F is a line bundle on Y, then $\tilde{\gamma}_{F}$ is the composition of the natural morphisms $T_{X} \rightarrow T_{X} \otimes \mathcal{O}_{Y}$ and $T_{X} \otimes \mathcal{O}_{Y} \rightarrow$ $N_{Y / X} \cong \mathscr{E}_{x t_{O X}^{1}}(F, F)$.

In the case F is ξ_{n}, a line bundle on $C, \beta_{F}=H^{1}\left[\mathcal{O}_{X} \rightarrow \mathcal{O}_{C}\right]$ is an isomorphism, $H^{0}\left[T_{X} \rightarrow T_{X} \otimes \mathcal{O}_{C}\right]$ is also an isomorphism and by the exact sequence

$$
0 \longrightarrow T_{c} \longrightarrow T_{x} \otimes \mathcal{O}_{c} \longrightarrow N_{C / X} \longrightarrow 0,
$$

$H^{0}\left[T_{X} \otimes \mathcal{O}_{C} \rightarrow N_{C / X}\right]$ is injective. Hence by (6) of Proposition 4.13, $\varepsilon \circ \gamma_{F}=$ $H^{0}\left(\tilde{\gamma}_{F}\right)$ is an injection. Therefore by the diagram (2) of the proposition, α_{F} is an injection. This completes the proof of Lemma 4.11.

For the proof of Theorem 4.8, we need the following general facts about the flat deformation of a simple coherent sheaf.
(4.14) (Relative representability of $\mathscr{S}_{p} l$) Let $f: V \rightarrow S$ be a proper integral morphism and F and G coherent \mathcal{O}_{V}-modules. Assume that F is S-flat and $F \otimes k(s)$ is simple for every $s \in S$. Then there exists a subscheme W of S such that for every morphism $\alpha: T \rightarrow S, F_{T}$ is isomorphic to G_{T} $\otimes_{O_{T}} L$ with some line bundle L on T if and only if α factors through the inclusion $W \subsetneq S$. We call W the maximal subscheme over which F and G are isomorphic to each other.
(4.15) (Pro-representability of $\mathscr{S}_{p} l$) Let F be a simple coherent $\mathcal{O}_{X^{-}}$ module. The functor \mathscr{D} on artinian local rings A over k such that
$\mathscr{D}(A)=\left\{E \mid E\right.$ is an A-flat coherent $\mathcal{O}_{X_{A}}$-module such that $E \otimes_{A} A / m$ is isomorphic to $F\}$ /isom.
is representable by a complete local ring R whose Zariski tangent space t_{R} is canonically isomorphic to $\operatorname{Ext}_{o_{X}}^{1}(F, F)$. We call R the local moduli of F.
(4.16) (Jumping never happens) Let E be an element of $\mathscr{S}_{p} l_{X}(T)$. If $\left.E\right|_{X \times t} \cong F$ for every closed point t of an open dence subset U of T, then $\left.E\right|_{x \times t} \cong F$ for every $t \in T$.

The proofs are not so difficult and those of (4.14) and (4.15) are similar
to the case of simple vector bundles. The stronger fact that the étale sheafification of $\mathscr{S}_{p} l_{V / s}$ is representable by an algebraic space has been proved in [1]. Since the fact does not make our business so easy, we prove our theorem directly by (4.14), (4.15) and (4.16).

Step I. The functor $A_{F_{n}}$ is injective.
Let f and g be two morphism from T to $X \times X$ such that $A_{F_{n}} \circ f=$ $A_{F_{n}} \circ g$. Since $X \times X$ is a group scheme and $A_{F_{n}}$ is an $X \times X$-morphism with respect to the natural action of $X \times X$ to $\mathscr{S}_{p} I_{X}^{F_{n}}$, we may assume that g is the constant map to (0,0). Let $\Phi\left(F_{n}\right)$ be the maximal subscheme of $X \times X$ over which \tilde{F}_{n} and $p_{1}^{*} F_{n}$ on $X \times(X \times X)$ are isomorphic to each other. Since $A_{F_{n}} \circ f$ is the constant map to F_{n} by our assumption, f factors the inclusion $\Phi\left(F_{n}\right) \subsetneq X \times X$. By Lemma 4.10, $\Phi\left(F_{n}\right)$ is supported by the origin $(0,0)$ and by Lemma 4.11, the tangent space of $\Phi\left(F_{n}\right)$ is zero. Hence $\Phi\left(F_{n}\right)$ is $(0,0)$ and f is zero. (It is easily seen that $\Phi\left(F_{n}\right)$ is a group subscheme of $X \times X$. Hence Lemma 4.11 is not necessary for the proof of our assertion in the case char $k=0$.)

Step II. $A_{F_{n}}$ is an open immersion.
$A_{F_{n}}$ induces the homomorphism $f: R \rightarrow Q$ of complete local rings, where (R, \mathfrak{m}) is the local moduli of F_{n} and (Q, \mathfrak{n}) is the completion of $\mathcal{O}_{x \times X,(0,0)}$. Since $A_{F_{n}}$ is injective, the fibre $Q / \mathfrak{m} Q$ of f is isomorphic to Q / \mathfrak{n}. Hence f is a surjection. By Lemma 4.9, we have

$$
2 g=\operatorname{dim} Q \leq \operatorname{dim} R \leq \operatorname{dim} t_{R}=2 g
$$

Hence $\operatorname{dim} R=2 g, R$ is regular and f is a bijection. For every morphism
 scheme U. By what we have shown, $\hat{\mathcal{O}}_{r, h(u)} \rightarrow \hat{\mathcal{O}}_{U, u}$ is an isomorphism for every $u \in U$.

Hence h is étale. By Step I, h is an open immersion.
Step III. $A_{F_{n}}$ is a closed immersion.
In the above situation, we have to show that U is a union of con-
nected components of T. Hence we may assume that T is irreducible and it suffices to prove that the set of k-rational points $U(k)$ of U is empty or equal to $T(k)$. Hence we may also assume that T is reduced. Assume that $U(k) \neq \phi . \quad$ Since $X \times X$ is an abelian variety, every rational map from T to $X \times X$ is a morphism. Hence there is a morphism $e=\left(e_{1}, e_{2}\right): T \rightarrow X$ $\times X$ whose restriction to U is equal to ℓ. Let $\mu: X \times X \times\left.\left.\mathscr{S}_{p}\right|_{X} ^{F_{n}} \rightarrow \mathscr{S}_{p}\right|_{X} ^{F_{n}}$ be the natural action of $X \times X$ on $\mathscr{S}_{p} l_{X}^{F_{n}} . \quad$ Put $c=[T \xrightarrow{(-e, g)} X \times X \times$ $\left.\left.\left.\mathscr{S}_{p}\right|_{X} ^{F_{n}} \xrightarrow{\mu} \mathscr{S}_{p}\right|_{X} ^{F_{n}}\right]$. Then $c(U(k))=\left\{F_{n}\right\}$ and hence by virtue of (4.16), we have $c(T(k))=\left\{F_{n}\right\}$, that is, $g(a)=T_{e_{1}(a)}^{*} F_{n} \otimes P_{e_{2}(a)}$ for every $a \in T(k)$. Hence $U(k)$ is equal to $T(k)$.

Step IV. $A_{F_{n}}$ is an isomorphism.
It suffices to show that $A_{F_{n}}(k):(X \times X)(k) \rightarrow \mathscr{S}_{p} l_{X}^{F_{n}}(k)$ is a surjection. By the definition, $\mathscr{S}_{p} l_{X}^{F_{n}}$ is connected. Hence, for every $F \in \mathscr{S}_{p} l_{X}^{F_{n}}(k)$, there exist a connected scheme T and a morphism $g: T \rightarrow \mathscr{S}_{p} l_{X}^{F_{n}}$ such that $g(T(k))$ contains both F and F_{n}. By what we have shown in Step II and Step III, g factor through $A_{F_{n}}$. Hence F is contained in $\operatorname{Im} A_{F_{n}}(k)$.

We have completed the proof of Theorem 4.8.
Remark 4.17. Even if the condition (${ }^{*}$) does not hold, $A_{F_{n}}(k)$ is bijective for $n \leq g-1$. But if C is hyperelliptic and $g(C) \geq 3$, then the dimension of the tangent space of $\mathscr{S}_{p} l_{X}^{F_{n}}$ is greater than $2 g$, hence $\mathscr{S}_{p} l_{X}^{F_{n}}$ is not reduced.

§5. A characterization of Picard sheaf

In this section we give a characterization of the Picard sheaf in the case $g(C)=2$.

Let ξ_{n} be the same as in the beginning of $\S 4$. There is a natural exact sequence

$$
0 \longrightarrow \xi_{n-1} \longrightarrow \xi_{n} \longrightarrow k(0) \longrightarrow 0 .
$$

This gives the exact sequence

$$
0 \longrightarrow \mathscr{S}\left(\xi_{n-1}\right) \longrightarrow \mathscr{S}\left(\xi_{n}\right) \longrightarrow \mathcal{O}_{X} \xrightarrow{f} F_{n-1} \longrightarrow F_{n} \longrightarrow 0 .
$$

If $n \leq g-1$, then $\mathscr{S}\left(\xi_{n}\right)$ is zero ([8] §3). Hence, for $n \leq g-1$, we have the exact sequence
(5.1) $0 \longrightarrow \mathcal{O}_{X} \xrightarrow{f} F_{n-1} \longrightarrow F_{n} \longrightarrow 0$.

By (1) of Proposition 4.4, both $\operatorname{dim} \operatorname{Hom}_{o_{X}}\left(\mathcal{O}_{X}, F_{n}\right)=h^{0}\left(F_{n}\right)$ and $\operatorname{dim} \operatorname{Ext}_{{ }_{o x}}^{1}\left(F_{n}, \mathcal{O}_{X}\right)=h^{g-1}\left(F_{n}\right)$ is equal to 1 for $n \leq g-1$. Hence we have

Lemma 5.2. Assume that $n \leq g-1$. Then f is the unique (up to constant multiplications) nonzero homomorphism from \mathcal{O}_{x} into F_{n} and (5.1) is the unique nontrivial extension of F_{n} by \mathcal{O}_{x}.

We denote the set $\left\{T_{x}^{*} F_{n} \otimes P_{y} \mid x, y \in X\right\}$ by Φ_{n}.
The above lemma is generalized for members of $\mathrm{Pic}^{\circ} X$ and Φ_{n}.
Proposition 5.3. Assume that $n \leq g-1$.
(1) Every nonzero homomorphism from $P_{x} \in \operatorname{Pic}^{\circ} X$ to $F \in \Phi_{n-1}$ is injective and Coker f is isomorphic to a member of Φ_{n}.
(2) If $P_{x} \in \operatorname{Pic}^{\circ} X, F \in \Phi_{n}$ and the exact sequence

$$
0 \longrightarrow P_{x} \longrightarrow F^{\prime} \longrightarrow F \longrightarrow 0
$$

does not split, then F^{\prime} is isomorphic to a member of Φ_{n-1}.
Proof. We prove only (2), because (1) can be proved in a quite similar manner. First we may assume that $F=F_{n}$. Since $\operatorname{Ext}_{0_{X}}^{1}\left(F_{n}, P_{x}\right) \neq 0$, we have by (1) of Proposition 4.4, that x belongs to C and $\operatorname{dim} \operatorname{Ext}_{o_{X}}^{1}\left(F_{n}, P_{x}\right)$ is equal to 1 . Since $x \in C$, there is a surjection $\xi_{n} \rightarrow k(x)$ and we have the non-splitting exact sequence

$$
0 \longrightarrow \xi_{n-1} \otimes P_{x} \longrightarrow \xi_{n} \longrightarrow k(x) \longrightarrow 0 .
$$

Operating $\boldsymbol{R} \mathscr{P}$, we have the exact sequence

$$
0 \longrightarrow P_{x} \longrightarrow T_{x}^{*} F_{n-1} \longrightarrow F_{n} \longrightarrow 0 .
$$

Since this does not split, F^{\prime} is isomorphic to $T_{x}^{*} F_{n-1}$. q.e.d.

For every nontorsion coherent sheaf F on X, let $\mu(F)$ denote the rational number $\left.r(F)^{-1} \operatorname{deg}(\operatorname{det} F)\right|_{c}$. Umemura has showed that F_{n} is $\mu-$ stable for $n \leq g-1$ in the case $g(C)=2$ ([9]). The following theorem says that the converse is also true.

Theorem 5.4. Assume that $g(C)=2$ and F is a torsion free coherent sheaf with $r(F)=r \geqq 1$, $\operatorname{det} F$ algebraically equivalent to $\mathcal{O}_{X}(C)$ and $\chi(F)$ zero. Then the following conditions are equivalent to one another:

1) F is μ-stable, i.e., $\mu(E)<\mu(F)$ for every $E \subseteq F$ with $r(E)<r$.
$\left.1^{\prime}\right) \quad F$ is μ-semi-stable, i.e., $\mu(E) \leq \mu(F)$ for every $E \subseteq F$.
2) $\operatorname{Hom}_{e_{X}}(F, P)$ is zero for every $P \in \operatorname{Pic}^{\circ} X$. If H is a homogeneous vector bundle with $r(H)<r$ contained in F, then the quotient F / H is torsion free.
3) $F \cong T_{x}^{*} F_{1-r} \otimes P$ for some $x \in X$ and $P \in \mathrm{Pic}^{\circ} X$.

Proof. Obviously 1) implies 1^{\prime}). Assume that F is μ-semi-stable and H is a homogeneous vector bundle with $r(F)<r$ contained in F. Since $\mu(F)=2 / r$ is greater than $\mu(P)=0, \operatorname{Hom}_{o_{X}}(F, P)$ is zero for every $P \in \operatorname{Pic}^{\circ} X$. Let $f: F \rightarrow F / H$ be the projection and T the torsion part of F / H. Then $H^{\prime}=f^{-1}(T)$ contains H and $r\left(H^{\prime}\right)$ is equal to $r(H)$. We have a nonzero homomorphism $\operatorname{det} H \rightarrow \operatorname{det} H^{\prime}$. Hence $\operatorname{det} H^{\prime} \cong \operatorname{det} H \otimes \mathcal{O}_{X}(D)$ for some divisor $D \geq 0$. Since $\operatorname{det} H \in \operatorname{Pic}^{\circ} X$ and F is μ-semi-stable, we have

$$
\frac{\left(\mathcal{O}_{X}(D) \cdot \mathcal{O}_{X}(C)\right)}{r(H)}=\frac{\left(\operatorname{det} H^{\prime} \cdot \mathcal{O}_{X}(C)\right)}{r\left(H^{\prime}\right)} \leq \mu(F)=\frac{2}{r}
$$

Since $D \geq 0$, ($\left.\mathcal{O}_{x}(D) . \mathcal{O}_{x}(C)\right)$ is not less than zero and different from one ([9] Lemma 3.5). Hence by the inequality above ($\mathcal{O}_{X}(D) . \mathcal{O}_{X}(C)$) is zero. Hence $D=0$ and $\operatorname{det} H \rightarrow \operatorname{det} H^{\prime}$ is an isomorphism. Since H is locally free, H^{\prime} is isomorphic to H. Therefore T is zero. Hence 1') implies 2). 3) implies 1), because if F is μ-stable, so is $T_{x}^{*} F \otimes P$ for every $x \in X$ and $P \in \operatorname{Pic} X$. Hence we have only to show that 2) implies 3). We prove it by induction on r.

Case $r=1 . \quad$ Sym $^{2} C \rightarrow X$ is the blowing up whose center is the canonical point κ. Hence, by (3) of Proposition 4.2, F_{0} is isomorphic to $N \otimes \mathfrak{m}_{X, 0}$ with some line bundle N, where $\mathfrak{m}_{X, 0}$ is the maximal ideal of \mathcal{O}_{X} at 0 . By (2) of Proposition 4.2, N is isomorphic to $\mathcal{O}_{X}(C)$. Since $r(F)=1$ and F is torsion free, F is contained in $\operatorname{det} F$. By the assumption, $\operatorname{det} F \cong$ $\mathcal{O}_{X}(C) \otimes P$ for some $P \in \operatorname{Pic}^{\circ} X$. Since length $(\operatorname{det} F / F)=\chi(\operatorname{det} F)-\chi(F)$ -1 , $\operatorname{det} F / F$ is isomorphic to the one dimensional sky-scraper sheaf $k(x)$ supported by a point $x \in X$. Hence F is isomorphic to $\operatorname{det} F \otimes \mathfrak{m}_{x, x} \cong$ $T_{x}^{*} F_{0} \otimes P \otimes P_{-x}$.

Case $r \geq 2$. We need the following easy but useful lemma.
Lemma 5.5. Let F be a nonzero coherent sheaf on an abelian surface. If $\chi(F)$ is zero, then $\operatorname{Hom}_{e_{X}}(P, F)$ or $\operatorname{Hom}_{o_{X}}(F, P)$ is not zero for some $P \in$ Pic $^{\circ} X$.

Assume the contrary. Since $\operatorname{dim} \operatorname{Hom}_{o x}(F, P)$ is equal to $h^{2}\left(F \otimes P^{-1}\right)$
by virtue of the duality theorem and since $\chi\left(F \otimes P^{-1}\right)$ is zero, $h^{1}\left(F \otimes P^{-1}\right)$ is zero for all $P \in \mathrm{Pic}^{\circ} X$. Hence $R^{i} \hat{\mathscr{S}}(F)$ is zero for every i. This means that $\boldsymbol{R} \hat{\mathscr{S}}(F)$ is zero. Therefore by virtue of Theorem $2.2, F$ is zero. This shows Lemma 5.5.

By the assumption and the above lemma, $\operatorname{Hom}_{o_{X}}(P, F)$ is not zero for some $P \in \operatorname{Pic}^{\circ} X$. Let $f: P \rightarrow F$ be a nonzero homomorphism. Since F is torsion free, f is injective. Since P is homogeneous, $F^{\prime}=\operatorname{Coker} f$ is torsion free. We have the exact sequence

$$
0 \longrightarrow P \xrightarrow{f} F \xrightarrow{g} F^{\prime} \longrightarrow 0 .
$$

Since $\operatorname{Hom}_{o_{X}}(F, P)$ is zero, this exact sequence does not split. Hence by (2) of Proposition 5.3, it suffices to show $F^{\prime} \cong T_{x}^{*} F_{2-r} \otimes Q$ for some $x \in X$ and $Q \in \operatorname{Pic}^{\circ} X . \quad F^{\prime}$ is torsion free, $\operatorname{det} F^{\prime}=\operatorname{det} F \otimes P^{-1}$ is algebraically equivalent to $\mathcal{O}_{X}(C)$ and $\chi\left(F^{\prime}\right)=\chi(F)-\chi(P)$ is equal to zero. By induction hypothesis, we have only to show that 2) holds for F^{\prime}. Obviously $\operatorname{Hom}_{o x}\left(F^{\prime}, Q\right)$ is zero for every $Q \in \operatorname{Pic}^{\circ} X$. Let H^{\prime} be a homogeneous vector bundle contained in F^{\prime}. $H=g^{-1}\left(H^{\prime}\right)$ is an extension of H^{\prime} by P. Hence by the theorem after Lemma 3.3, H is also homogeneous. By the assumption on $F, F^{\prime} / H^{\prime} \cong F / H$ is torsion free. Hence 2) holds for F^{\prime}, which completes the proof of Theorem 5.4.
q.e.d.

References

[EGA] A. Grothendieck and J. Dieudonne, Éléments de géométrie algébrique, Publ. Math. I.H.E.S.
[1] A. Altman and S. Kleiman, Compactifying the Picard scheme, to appear in Adv. Math.
[2] R. Hartshorne, Residues and duality, Lect. Note in Math., 20, Springer-Verlag, Berlin-Heidelberg-New York, 1966.
[3] K. Hensel and G. Landsberg, Theorie der algebraischen Functionen, Leipzig, 1902.
[4] S. Mukai, Semi-homogeneous vector bundles on an abelian variety, J. Math. Kyoto Univ., 18 (1978), 239-272.
[5] - Semi-homogeneous vector bundles on an abelian variety, II, in preparation.
[6] D. Mumford, Abelian varieties, Oxford University Press, 1974.
[7] T. Oda, Vector bundles over an elliptic curve, Nagoya Math. J., 43 (1971), 41-71.
[8] R. L. E. Schwarzenberger, Jacobians and symmetric products, Illinois J. Math., 7 (1963), 257-268.
[9] H. Umemura, On a property of symmetric products of a curve of genus 2, Proc. Int. Symp. on Algebraic Geometry, Kyoto, 1977, Kinokuniya, Tokyo, 709-721.

[^0]: Received October 9, 1979.

