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ON THE COHEN-MACAULAYFICATION OF CERTAIN

BUCHSBAUM RINGS

SHIRO GOTO

§ 1. Introduction

Let A be a Noetherian local ring of dimension d and with maximal

ideal m. Then A is called Buchsbaum if every system of parameters is a

weak sequence. This is equivalent to the condition that, for every para-

meter ideal q, the difference £A(A/q) — eA(q) is an invariant I(A) of A not

depending on the choice of q. (See Section 2 for the detail.) The concept

of Buchsbaum rings was introduced by Stύckrad and Vogel [8], and the

theory of Buchsbaum singularities is now developing (c.f. [6], [7], [9], [10],

and [12]).

Recently the author and Shimoda [1] have discovered that certain

Buchsbaum rings are characterized by the behaviour of the Rees algebras

of parameter ideals. The purpose of our paper is to ask for another cri-

terion of such kind of Buchsbaum rings.

Together with that of [1] our result is stated as follows.

THEOREM (1.1). Let Q(A) be the total quotient ring of A. Then the

following conditions are equivalent.

(1) A is a Buchsbaum ring and Hi(A) = (0) for i Φ 1, d.

(2) The Rees algebra R(q) = 0 ^ o <t is a Cohen-Macaulay ring for

every parameter ideal q of A.

(3) There is a Cohen-Macaulay intermediate ring B between A and

Q(A) such that (a) B is of finite type as an A-module, (b) dim Bn =d for

every maximal ideal n of B, and (c) mB c A.

In this case, if d >̂ 2, B is uniquely determined and H^(A) = BjA.

Here HK*) denotes the local cohomology functor. The equivalence of the

statements (1) and (2) is the main result of [1]. The last assertion and

the equivalence of the statements (1) and (3) are new results of the present
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paper, which we prove in Section 2.

Section 3 is devoted to some examples. We will give, in case the ring

A appears as the local ring at the irrelevant maximal ideal of an affine

semigroup ring, a criterion for A to satisfy the conditions of Theorem

(1.1) and an explicit description of B in terms of the corresponding semi-

group. In the final section it will be proved that for every parameter

ideal q of a local ring A which satisfies the conditions of Theorem (1.1)

the ring {G'q(A))M is again a Buchsbaum local ring with I((G'q(A))M) = I(A),

where G'q(A) denotes the associated graded ring of A relative to q and M

is the unique graded maximal ideal of Gq(A). This is an application of

our main result.

Throughout this paper (A, m) will always denote a Noetherian local

ring of dimension d.

§2. Proof of Theorem (1.1)

The concept of Buchsbaum rings was given by Stύckrad and Vogel

[8].

DEFINITION (2.1) ([8]). A local ring A is called Buchsbaum if every

system aί9 α2, , ad of parameters is a weak sequence, i.e., (al9 α2, , α ^ ) :

at = (aί9 α2, , σ<_i): m for every 1 <; ί <, d. This is equivalent to the

condition that, for every parameter ideal q9 the difference £A{Ajq) — eA(q)

is an invariant I(A) of A not depending on the particular choice of q9

where eA(q) denotes the multiplicity of A relative to q. (See [8], Satz 10.

Notice that they used the term of /-rings instead of Buchsbaum rings.)

Clearly Definition (2.1) may be extended to the case of modules, and it is

a routine work to generalize the results on Buchsbaum rings given by [8]

to the case of Buchsbaum modules.

EXAMPLES (2.2). (1) Every Cohen-Macaulay local ring is Buchsbaum.

(2) Let k be a field and A = k[\X19 X29 , Xd9 Yί9 Y29 , Yd\]la, where

k[\Xί9 X29 , Xd9 Yί9 Y2, , Yd\] is a formal power series ring and a =

(Xu X2, , Xd) Π (Yί9 Y2, , Yd). Then A is a Buchsbaum ring of dim A

= d and depth A = 1. Moreover I(A) = d - 1 and Hi(A) = (0) for i Φ 1,

d. Of course, if d ^ 2, A is not a Cohen-Macaulay ring (c.f. [5], p. 469,

Beispiel).

(3) For arbitrary integers d9 s with d >̂ s ^ 0 there exists a Buchs-

baum ring A such that dim A = d and depth A = s (c.f. [9], Theorem 3).
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DEFINITION (2.3) ([8]). Let a be an ideal of A and a ~ Γ)peAssA(A/a) a(p)

a primary decomposition. We put AsshA (A/a) = {p e Ass^ (A/a) dim A/p =

dim A/a} and ^ ( α ) = f\eAssw/α) <*(P)

Since dim Ap/aAp = 0 for every /? e Assh^ {Aja)y this definition of UA(a)

does not depend on the particular choice of a primary decomposition a =

ΠpeAssA(A/a) α(p) We will often denote UJa) simply by C7(α).

For a moment we assume that A is a Buchsbaum ring of depth A

> 0. Let a em and suppose that dim A/aA = d — 1.

First we note

LEMMA (2.4). α is A-regular.

This follows from the fact Ass^ (A) = {p e Spec A; dim A/p = d) (c.f. [1],

(3.2) (1)).

LEMMA (2.5). (1) Suppose d I> 2 ami /e£ a, b be a part of a system

of parameters for A. Then U(aA) = aA: b = aA: m.

(2) U(aA)2 = aU(aA).

Proof. (1) αA: 6 = αA: m as 6 is weakly regular on Ala A. On the

other hand, as U(aA)/aA = UA/aA ((0)) and as UA/aA((0)) = [0: mL/^ (c.f. [1],

(3.2) (3)), we see U(aA) = αA: m. Hence the result follows.

(2) It suffices to show that U(aA)2 c αf/(αA). If d = 1, J7(αA) = αA

by definition and we have nothing to prove. Suppose d I> 2 and choose

6 6 m so that α, 6 forms a part of α system of parameters for A. Let /,

g e U(aA). Then we may express bf = αx and &£ = ay (x, y e A). On the

other hand, we have fg = α2 for some z e A. Hence α(622) = &2(/g) = α2(ry),

and so we see b2z = α(ry) as α is A-regular by (2.4). Thus z e a A: b\ and

consequently ze U(aA) as Z7(αA) = aA: b2 by (1). Therefore fgeaU(aA),

and so we have U(aA)2 C aU(aA) as required.

DEFINITION (2.6). Let Q(A) denote the total quotient ring of A. We

put A = {x/a xe U(aA)} (=a1U(aA)) in Q(A). Then

(1) A is an intermediate ring between A and Q(A).

(2) A = £7(αA) as A-modules, and A = End^ U(aA) as A-algebras.

(3) ϊ7(αA) = aλ, and mA c A.

(4) iϊ does not depend on the choice of an element a and is uniquely

determined by A.

Proof (1) This follows from (2.5) (2).
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(2) Let /: U(aA) -> A be the map defined by f(x) = x/a. Then / is a

required isomorphism. Let y e A , then yU(aA) c U(aA) clearly. We

denote by y the endomorphism of U(aA) induced by the multiplication of

y. Then it is easy to check that the map g: A —• End^ U(aA), g(y) — y,

is an isomorphism of A-algebras.

(3) The first assertion is trivial. The second one follows from (2.5)

(1).

(4) If d = 1, U(aA) — aA by definition and so A = A. Thus we may

assume d > 2. Let bem such that dim A/bA = d — 1. First suppose that

a, b is a part of a system of parameters for A and let x e U(aA). Then

bx = αy for some y e A by (2.5) (1). Of course, as b, a is also a part of

a system of parameters for A, we have y e £/(6A) again by (2.5) (1). Thus

x/a = y/beb'ΉφA), and so we have α~1ί7(αA)c b~ιU(bA). By the sym-

metry between a and 6 we get a~1U{aA) = b~xU{bA) as required.

Now consider the general case, and choose c e m so that both {α, c}

and {6, c} are parts of systems of parameters for A. Then a'^iaA) =

c^t/ίcA) and b~ιU{bA) = (^[/(cA) by the result in the special case above.

Hence we have a~ιU(aA) = b~ιU{bA), and this completes the proof of the

assertion (4).

LEMMA (2.7). Suppose d ^ 2. TΛera iϊ^(A) = A/A.

Proof. Apply the functor # ! (*) to the exact sequence 0 ~> A -» A ->

A /A -> 0, and we have the assertion ίί^(A) = A/A since depths A =

depths U(aA) by (2.6) (2) and since depths U(aA) ^ 2 by [1], Theorem (3.1)

(3). (Recall that Hl(A/A) = A/A as A/A is a vector space over Aim.)

PROPOSITION (2.8). Suppose that dim A = d >̂ 2. T&eπ A is a Buchs-

baum A-module with I(A) = I(A) — (d — 1) dim^A/A and depths A =

Proo/. This follows at once from (2.6) (2), (2.7), and [1], Theorem (3.1).

Proof of Theorem (1.1). (1) =φ (3) If d <; 1, A is a Cohen-Macaulay

ring and we have nothing to prove. Suppose d >̂ 2. Then we have depth A

> 0. Thus let B = A, and B has the required properties (a), (b), and (c)

(c.f. (2.6) and (2.8)).

(3) :=> (1) Notice that B is a Cohen-Macaulay A-module of dimension

d. Hence, if d <I 1, A itself is a Cohen-Macaulay ring. Thus we may

assume d ^ 2. Consider the exact sequence 0 —> A —• J3 —• B/A -> 0 of A-



BUCHSBAUM RINGS 111

modules. Then, applying the functor iϊ4(*) to it, we have H^A) = B\A

and Hi(A) = (0) for i Φ 1, d as m(BjA) = (0) by the property (c). Of course

mHl(A) = (0). Thus A is a Buchsbaum ring (c.f. [9], Corollary 1.1).

Now let us prove the last assertions. It suffices to show B = A. As

B c Q(A) and as B is of finite type as an A-module, we may choose a

non-zerodivisor a of A so that αB C A. If α is a unit of A, B = A and

so A is a Cohen-Macaulay ring. In this case A = A by (2.7), as H^A) =

(0). Hence B = A. Now assume that α 6 m and let Λ: e J3. Then, as mx

c A, m(ax) c αA. Hence αxe C/(αA) because C7(αA) = αA: m by (2.5) (1),

and this implies that xe a~ιU(aA) = A. Thus B c A Now consider the

exact sequence 0 -> B —> A —> A/B -> 0 of A-modules, and we have A\B =

(0) since depths B = depths A = <2 ̂  2 and since m{AjB) = (0). Therefore

we have ΰ = A as claimed. This completes the proof of Theorem (1.1).

DEFINITION (2.9). We call A the Cohen-Macaulayfication of A in case

A satisfies the conditions of Theorem (1.1) and dim A = d ^ 2.

EXAMPLE (2.11). Consider the example given by (2.2) (2) and suppose

that d ^ 2. Then A - k]\Xu X2, , Xd|] Θ Ml ̂ i, ϊi, , ^11, and A coin-

cides with the normalization of A in Q(A). This example shows that A

is not necessarily a local ring.

§3. Affine semigroup rings

In this section let k be a field, S a finitely generated (additive) sub-

monoid of Nn, and L the subgroup oΐ H = Zn generated by S. We put

d = rank z L. Let £[#] denote the group algebra of H over k and let Xα

denote the image of a e H in k[H]. For every subset V of if we put k[ V]

— Σaev kXa. Of course k[S] coincides with the monoid algebra of S over

k and may be considered an ίf-graded subring of k[H] (c.f. [2], Introduc-

tion). We put

S = {a e L; ta e S for some integer t > 0} .

S is called the normalization of S. It is known that k[S] coincides with

the normalization of the ring k[S] (c.f. [3], § 1). For simplicity we assume

that S = L f] Nn. (Recall that S, in general, is isomorphic to a monoid

of this form. See [3], § 2.)

We put F, = {((*!, α2, , an) eS;at = 0} and Sέ = S - Ft for 1 ^ ί £ n.

Let ^ denote the subgroup of L generated by Ft (1 ^ i ^ n). We assume
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that Lt Φ Lj for i Φ j . Let S = Π?-i &f Then S is again a finitely gener-

ated submonoid of S containing S (c.f. [2], Proof of Lemma 3.3.8), and it

is known that k[S] is again a Cohen-Macaulay ring of dimension d (c.f.

[2], Conclusion of the proof of 3.3.3).

The purpose of this section is to prove the following

THEOREM (3.1). Let M be the unique H-graded maximal ideal of k[S],

i.e., M = *[S\{0}], and suppose that rank^L = d ^ 2. Then the following

conditions are equivalent.

(1) A = k[S]M is a Buchsbaum ring.

(2) (S\{0}) + SdS.

In this case Hι

m{A) = (0) for i Φ 1, d and I (A) = (d - 1) #(S\S). Moreover

A = k[S]M.

Proof. (2) =̂> (1) Let B = k[S]M, and B has the properties required

in (1.1) (3). Thus A is a Buchsbaum ring. Moreover the last assertions

also follow from (1.1) (c.f. [5], Satz 2).

(1) :=> (2) Applying the functor fl£(*) to the exact sequence

0 > k[S] • k[S] • k[S]/k[S] • 0 ,

we see that Hi(k[S]lk[S]) = m\k[S]) for every 0 ^ ί ^ d - 2. Notice

that Supp^s-, (k[S]/k[S]) a {M}. For, assume the contrary and put r =

dim^-] k[S]/k[S], Then 0 < r £ d - 2 (c.f. [2], Conclusion of the proof of

3.3.3), and so Hi(k[S]lk[S]) = Hr

M

+1(k[S]) by the remark above. But this

is impossible as H^iklS]) = ϋ"^+1(A) and as H^(A) is a finite-dimensional

vector space over Ajm for every 0 ^ i < d (c.f. [5], Hilfsatz 3). Thus we

conclude Suppfc[5] (k[S]/k[S]) c {M}, and so fli(ft[S]) = k[S]/k[S]. This

implies Mfe[S] c [̂iS] as mHl^A) — (0). Of course this is equivalent to

the condition that (S\{0}) + S d S, and we have completed the proof of

Theorem (3.1).

COROLLARY (3.2). Under the same situation as (3.1) suppose that (S\{0})

+ S c S . Then A = k[S]M is a Buchsbaum ring with I(A) = (d - 1) #(S\S)

and H^iA) = (0) /or i Φ 1, d. 7n ίΛis case A coincides with the normali-

zation A = ^[S]^ o/ A.

Proo/. It suffices to show that S = S. First notice that Mk[S] c

as M£[S] C fe[S], and we have ΰkί§i(k[S]lk[S]) < oo. Thus the assertion

follows from the fact that k[S] and k[S] are Cohen-Macaulay rings of

dimension d. (See [3], Theorem 1 for k[S].)
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EXAMPLE (3.3). Let d, r be integers with d ^> 2 and r >̂ 1, and let T

= {(αi> «2, , oϋ β iVd 2?=i α< = 0 mod r}. For a subset 7 of {(α1? α2, , ad)

eNd; 2]<=i α* = r}, we put S = Γ\/. Then S is a finitely generated sub-

monoid of Nd with Γ = S, and (S\{0}) + T c S . Thus, by (3.2), A = k[S]M

is a c?-dimensional Buchsbaum ring with I(A) = (d — 1) %I and H^(A) =

(0) for i Φ 1, d. Of course A = k[T]M in this case.

§4. The associated graded rings Gq(A)

In what follows we suppose that A is a Buchsbaum ring of dim A = d

2> 2 and with H^A) = (0) for iφl, d. Let g = (a19 a2, , αd) be a parameter

ideal of A. We denote by G'q(A) the associated graded ring ®i^qίlqί+1

of A relative to q. The purpose of this section is to prove the following

THEOREM (3.1). Let M be the unique graded maximal ideal of G'q(A).

Then (G'q(A))M is again a Buchsbaum ring of dimension d and with I((Gq(A))M)

= I(A). Moreover (G'q(A))M satisfies the conditions of (1.1).

For this purpose we need some notations and a few lemmas. Let A

be the Cohen-Macaulayfication of A, and q = qA. We denote by R (resp.

R) the graded ring φί^oq
i (resp. ©^o<f), and by G\(Ά) the associated

graded ring 0 ^ O Q V ^ ' + 1 of ^ relative to q. Recall that Gq(A) = R/qR and

G'q(Λ) = R/qR.~

Let X be an indeterminate over A. Then we may identify the Rees

ring R (resp. R) with the graded subring Σi*o q*X* (resp. X ^ o ςfX*) of A[X]

(resp. A[X]) canonically. Of course, under these identifications, R is a

graded subring of i?. Notice that qR C R as

~ί+ί c qί c -€

for every integer ί ^ 0 (c.f. (2.6) (3)). We put E = Λ/i?, F - φR/<?i?, and

^ = Σn>0 En-

For a given graded E-module U = 0 n e z U«> we denote by Z7(l) the

graded i?-module whose underlying J?-module is the same as that of U

and whose graduation is given by [U(ί)]n = Un+1 (neZ).

LEMMA (4.2). F = E;{1) as graded R-modules.

Proof. Let x e F and assume that x = c mod qR for some c e φi?. We

express c = 2]<*oc*^ fe e ^ ) Then ĉ  e qί+1 for every £ ̂  0 as c 6 gβ by

the assumption, and so we have cX e R. Let cX denote the residue class

of cX in E = Λ/iϊ. Then c ΐ e £'(1), and it is easy to check that the map
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/: F > E\l), f(x) = cX, is well-defined. Of course / is an isomorphism
of graded .R-modules.

COROLLARY (4.3). There is an exact sequence

0 • E'(ΐ) > Gq(A) • G~(A) > E > 0

of graded R-modules.

Proof. Consider the following commutative diagram

0 • qR - ^ > qR • F > 0

0 • R • R >E >0

of graded .R-modules with exact rows, where all the i's denote inclusion
maps. Then j = 0 as qR c R. Thus, identifying G'q(A) = R/qR and G~(A)
= R/qR and using (4.2), we get the required exact sequence by virtue of
the snake lemma.

Let V be an A-module. We denote A (resp. V) by A* (resp. V*) if
we regard A (resp. V) as a graded ring (resp. a graded A*-module) trivially,
i.e., [A*]o - A (resp. [V*]o = V) and [A*]n = (0) (resp. [V*]n = (0)) for n Φ
0. Let p: R-> A be the canonical projection. Then, a s p : R—>A* is a
homomorphism of graded rings, we may consider V* via p a graded R-
module, which we shall denote by PV. Let N be the unique graded maximal
ideal of R, i.e., N = mR + R+. For every graded JR-module U and for
every integer i, we denote by Hι

N(U) the i-th local cohomology module of
U relative to N, which we consider a graded jR-module. Recall that, for
a non-zero graded i?-module U of finite type, U is a Cohen-Macaulay R-
module of dimension r if and only if UN is a Cohen-Macaulay iϊ^-module
of dimension r (c.f. [4], Theorem). Of course the latter is equivalent to
the condition that HZ

N(U) = (0) for i Φ r.

LEMMA (4.4). (1) E is a Cohen-Macaulay R-module of dimension d.

(i Φ 1, d).

Proof (1) As E — RjR by definition it suffices to show that both of
R and R are Cohen-Macaulay .R-modules of dimension d + 1. For R this
follows from (1.1), since A is a Buchsbaum ring with fl^(A) = (0) for i Φ 1,
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d by our standard assumption. For R first recall that au α2, , ad is an

A-sequenee, as aly α2, , , ad is a system of parameters for A and as

A is a Cohen-Macaulay A-module of dimension d. Hence R is a Cohen-

Macaulay ϋ-module of dimension d + 1 as aua2 + fli-X, , &a + α<z-i X, adX

is an jR-sequence (c.f., for example, [11]. Theorem 2.5). (Of course R is of

finite type as an i?-module. This follows from the facts that R = RA and

that A is of finite type as an A-module.)

(2) As NP(A/A) = (0) (c.f. (2.6) (3). Notice that p(N) = m), we have

H°N(P(AIA)) = P(iϊ/Λ) and H^AlA)) = (0) for i > 0. On the other hand

Hι

N(E) = (0) for i Φ d, because E is a Cohen-Macaulay i?-module of dimen-

sion d by (1). Hence, applying the functor H&(*) to the exact sequence

0 • E' > E > P(A/A) • 0 (Here we identify E\Ef = P(A/A).), we

have the assertion.

Proof of Theorem (4.1). First we split the exact sequence given by

(4.3) into two short exact sequences

0 __> E\l) • G'q(A) > U—> 0 ,

0 > U >G~(A) >E >0.

Then it follows from the second sequence that U is a Cohen-Macaulay R-

module of dimension d because E and G~(A) are Cohen-Macaulay i?-modules

of dimension d. (See (4.4) (1) for E. For G~(Ά), recall that G~(A) is a

polynomial ring with d variables over A\q as q is generated by an A-

sequence aua2, , ad of length d.) Hence, applying the functor J3^(*) to

the first short exact sequence, we see by (4.4) (2) that

Because Hi(G q(A)) = HJι{Gq{A)) as graded G^(J4)-modules, we have by [9],

Corollary 1.1 that (G'q(A))M is a Buchsbaum local ring. Notice that

I((G-t(A))M) = (d - 1) d i r n ^ , ^ HXG'q(A)) (by [5], Satz 2)

= (d-ϊ) dimΛ,MAlA (by(*))

= (d - 1) • dim./m ^ ( A ) (by (2.7))

= I(A) (by [5], Satz 2).

This completes the proof of Theorem (4.1).

COROLLARY (4.5) (to the proof).
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