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ON THE UPPER SEMI-LATTICE OF /^-DEGREES

JUICHI SHINODA

S. C. Kleene developed the theory of recursive functionals of finite
types in Kleene [5]. He proved that a set A of natural numbers is
recursive in E if and only if A is hyperarithmetical, where E is the type
2 object defined by

= ί° i f

\l otherwise .

By relativizing this result to a set B of natural numbers, A is hyperari-
thmetical in B if and only if A is recursive in E and B. Therefore, E-
degrees coincide with hyperdegrees. A type 2 object F is said to be
normal if E is recursive in F. The theory of recursive functions based
on a normal type 2 object is an excellent generalization of the theory of
hyperarithmetical functions. Hinman [4] is a good exposition of the theory
of recursive functionals based on a normal type 2 object. It is natural
to investigate F-degrees for a normal type 2 object F a s a generalization
of hyperdegrees. In this article, we shall discuss the upper semi-lattice
of ίJj-degrees and more generally of J$ -degrees, where Eί is Tugue's object
defined in Tugue [13] and Jaiβ e 0s) are type 2 objects defined in Platek
[6] which are obtained from E by consecutive applications of the
superjump S.

The necessary preliminaries are given in § 1. Transfinite iterations
of the F-jump are considered in § 2. In § 3, by using Cohen's forcing
method, independent degrees are discussed. § 4 is devoted to the existence
of minimal degrees. In § 5, we show the existence of incomparable degrees
whose infimum does not exist.

The author expresses his gratitude to Professor T. Tugue for his
valuable suggestions.
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§ i

Let F be an arbitrary normal type 2 object, which we fix throughout

§ 1 and § 2. We let a = (au , an, a19 , ak). A partial functional φ(a)

is said to be partial F-recursive if there exists an index e such that φ(a)

— {eV(a)- If S* is total, we omit the adjunct "partial". A predicate P is

said to be F'-recursive if its representing functional KP is .F-recursive.

The following three lemmas are very useful.

LEMMA l . l υ (S-m-n Theorem). For each m, there exists a primitive

recursive function Sm such that

{Sm(e, blt • , bJV(a) ~ {eV(bu •••,bm,a).

LEMMA 1.2υ (F-Recursion Theorem). If ψ(e, a) is partial F-recursive,

then there exists a number e such that

{e}F(a) ~ ψ(e, α) .

LEMMA 1.3 (Substitution Theorem: cf. Hinman [4; VI. §21]). There

exists a primitive recursive function γ(z, w) such that for all z, w and a

{γ(z, w)Y(a) ~ {2}*(α, λt{wγ(t, a)) .

If {e}F(ά) is defined, the computation of {e}F(a) is represented in the

form of a well-founded tree, whose length we denote by |β:α|F . \e:a\F is

a countable ordinal. If {e}F(ά) is undefined, then we let \e:a\F = oo (=y<1).

The following lemma of Gandy's is fundamental in the recursion theory

based on normal objects.

LEMMA 1.4 (Stage Comparison Theorem: cf. Hinman [4; VI. 3.3]). There

exists a partial F-recursive functional χ(z, α, w, b) such that if {z}F(ά) j or

{w}Fφ) I, then χ (z, α, w, h) I and

(0 if\z:a\F£\w:h\F,

[1 if \z:a\F>\w:b\F,

where a = (aί9 , αm, a» , as)9 B = (6^ , 6n, βl9 , βk) and " I " means

"is defined".

A predicate P is said to be F-semirecursive if it is the domain of a
partial jF-recursive functional. Kleene proved that P is ϋJ-semirecursive

1) For the proofs of these lemmas, see Hinman [4; VI].
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if and only if it is a Π\ predicate. Using Lemma 1.4, Gandy obtained the

following result.

LEMMA 1.5 (see Hinman [4; VI. 4.3-4.6]).

( i ) A predicate P is F-recursiυe if and only if both P and ~\ P are

F-semirecursive.

(ii) If R(n, a) is F-semίrecursive, then so are ynR(n, a) and mR(n, a).

(iii) A partial functional φ is F-recursive if and only if its graph is

F-semirecursive.

From (i) and (ii) of the above lemma, we see that if R(n, α) is F-

recursive, then ynR(n, a) and lnR(n, a) are also F-recursive. But we can

prove this more directly from the definition of normality: let φ(n, α) be the

representing function of R(n, a). Then φ is F-recursive and hence the

function E(λnφ(n, a)) is F-recursive because E is F-recursive. It is obvious

that E(λnφ(n, a)) is the representing function of lnR(n, a).

If u = <e, (jau , α n » , we use \u\F instead of \e: au , an\
F. Let UF

= {<β, <α1? , an)): {e}F(au , an) [ }. Then sup {| u\F:ue UF} = ωt[F]9 where

ωt[F] is the first non-F-recursive ordinal (see Hinman [4; VI. 4.17]). Obvi-

ously UF is F-semirecursive. If P c ω is F-semirecursive, then there

exists a number e such that P(a) iff {e}F(a) j . Then, P(a) iff <β, <α» e t/F.

Thus UF is a complete F-semirecursive set.

Let σ be an ordinal. Define LF(σ) by:

LFφ) = {0}

LF(σ + 1) = {χ(zLF{σ)\ x is first order definable over the struc-

ture (LF(σ), € , F f LF(σ)} with parameters from LF(σ)}

LF(λ) = U {LF(σ): σ < λ} if A is a limit ordinal .

We use J/F(σ) to denote the structure (LF(σ), e, F \ LF(σ)}. If ^#F(<J) is a

model of ifP (Kripke-Platek set theory) formulated in the language { e , F},

which we denote by KP(F), then a is said to be an F-admissίble ordinal.

We use τv[F] to denote the v-th F-admissίble ordinal. In particular, τo[F]

— ω. For the basic knowledge of KP and admissible sets, see Barwise

[21-

In [4; VIII], Hinman developed the theory of recursive functions of

ordinal numbers. We can relativize it to F by adding the following (*) to

the definition of Ωκλ in [4; VIII. 1.1]:
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(*) for any b and β, if (b, n, μ, β(n)) e Ωκλ(F) for all n, then «5, k,b),

μ,F(β))eΩκλ(F).

If we set {a}F

κλ{μ) ~ v iff (a, μ, v) e Ωκλ(F), then {a}ζλ defines a partial function

of ordinal numbers. We define {α}f and {a}ζλ as in Hinman [4; VIII. 1.3].

A partial function of the form {a}F ({α}^) is said to be K-recursiυe in F

((oo, ̂ -recursive in F). Other notions such as "/c-semirecursive" are easily

relativized to F by using {α}f or {a]ίλ, so we omit to define them explicitly.

We say that an ordinal K is F-recursively regular if K is closed under all

partial functions (oo, /^-recursive in F. This definition is equivalent to

each of the following (a) and (b):

(a) for all aeω and all μ < K, {a}ίE(μ) ~ {a}F(μ);

(b) for all aeω and all p, μ < K, if {a}F(π, μ) is defined for all π < p,

then supπ</0 {a}F(π, μ) < /c.

LEMMA 1.6. If K is an F-recursively regular ordinal >ω, then K is F-

admissίble and for every P C κ\

( i ) P is fc-recursive in F in parameters if and only if it is Δx on JίF{κ)\

(ii) P is K-semirecursίve in F in parameters if and only if it is Σx on

Conversely, if K is an F-admissible ordinal > ω, then K is F-recursively

regular.

Proof Let K be an F-recursively regular ordinal > ω, then there

exists a map C from K onto LF{κ) which satisfies the following conditions

(1) and (2):

(1) Vμ < fcC(μ) C C"μ and Vμ < K *V < K [μ < v & C(v) = C"v\

(2) the predicates C(μ) e C(v) and C(μ) — C(v) are ^-recursive in F.

For every ΔQ formula Φ(υu , vn) of the language { e , F}, we see by induc-

tion on the length of Φ that the predicate Φ(C(μx), , C{μn)) is /c-recursive

in F. For example, if Φ(vu , vn) is 3^0 € vxΨ(v^ υί9 , vn), where ¥ is a

ΔQ formula, then

Φ{C(μ,\ , C(μn)) <-+ 3/io < μάC(μo) € Cfa) & Ψ(C(μQ), C(μι)9 , C(μn))] .

Since the set of all predicates Λ -recursive in F is closed under bounded

quantifiers, Φ(C(μΐ), , C(μn)) is /c-recursive in F by the induction hypo-

thesis and (2). From this, the implications from the right to the left in

(i) and (ii) are obvious. In order to prove that K is F-admissible, it suf-

fices to show that the Δo Collection Axiom holds in JCF(κ). Let Φ(vu v29 v3)
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be a ΔQ formula and σ, τ < K. Suppose that

(3) vx e C(σ)ay e LF(κ)Φ(x, y, C(r)).

We have to prove that for some p < K,

(4) vx e C{σ)iy e C{p)Φ{x, y, C(r)).

From (3), we have:

V/i < σlv < κ[C(μ) e C(σ) • Φ(C{μ), C(v), C(τ))] .

We let:

min {v < K: C(μ) e C(σ) • Φ(C(μ), C(v), C(r))} if /. < σ ,

0 otherwise.

Then / is /c-recursive in F. Hence sup/£<σ f(μ, σ, τ) < tc by (b). From (1),

there exists a p < K such that C(f(μ, σ, τ)) e C(ρ) for all μ < σ. It is easy to

see that (4) holds, and thus the Δo Collection Axiom holds in JίF{κ).

Now let K be an F-admissible ordinal > ω. By using the Second Re-

cursion Theorem in JίF{κ) (see Barwise [2; V. 2.3]), we shall show that the

relation {α}f(/j) ~ v is Σx on JtF(κ). Find a 2Ί formula Ψ(vly v2, vs, v4) such

that for all σ, μ, v < K and all a e ω,

JCF(κ) t= ?Γ(σ, α,</,e>, y) iff (α, μ, v) e β XF) ,

where Ωσ

κκ(F) is the σ-th stage of the inductive definition of ΩXK(F). Such

a 2Ί formula Ψ can be obtained by writing down the definition of Ωσ

κκ(F).

For example,

Ψ(σ, <5, ft, 6>, <^>, y) iff Iβvn e ωlτ < σ[Ψ(τ9 b, (n, μ\ β(ή)) & F(β) = v] .

Let X = U*« ΩζXF). We show that X = βΛΛ(F). Let (α, /£, y) e ΩKK(F).

By induction on min {σ| (α, /*, y) e Ωσ

κκ(F)}9 we prove that (α, μ, v) e X. Except

for the case where (a)0 = 3, 4 or 5, the proof is straightforward. We con-

sider the case where (α)0 = 3. Other cases can be treated similarly. Let

beω, p, μ < K and assume that Vπ < plξ(b, π, μ,ξ)eX Then,

JtF{κ) N V7Γ < plξlτ¥(τ, b, <TΓ, μ), ξ) .

But since K is inadmissible, there exist η, a < K such that

JlF(κ) \= Vπ < plζ < η^τ < σ¥(τ, 6, <TΓ, μ), f) .

This means that «3, ft, 6>, p, μ, v) e X, where v = sup^^ {b}ζ(π, μ).

To see that K is F-recursively regular, we must show (b). But it has

been proved in the above.
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The implications from the left to the right in (i) and (ii) are clear

since the relation {a}ζ(μ) ~ v is Σx on JCF(κ). Q.E.D.

LEMMA 1.7. ω\F\ is the first F-recursively regular ordinal larger than

ω, and for every P c ωn:

( i ) P is F-recursive if and only if P is Δλ on JίF(ωx\F\)\

(ii) P is F-semirecursive if and only if it is Σx on JtF{ωλ[F\).

Proof. By a simple application of the ordinary recursion theorem, we

have a primitive recursive function / such that

(c) {f{a)}F{m) - Wim)

for all F-recursively regular ordinal K >ω. Since ω\F] = sup{\u\F:ue UF},

all the computations in ωt[F] can be coded by elements of UF. That is,

there exists a primitive recursive function g such that

(d) { a } F

i m ( \ W i Γ , , I u k \ F ) ~ I { g ( a ) } F ( u u - - , u k ) \ F

for all a e ω and all ux, , uk e UF. The proof of this assertion is same

as that of VEIL 4.2 in Hinman [4] except for the case where {a}F

lίF1(μ) ^

F(λn{b}F

lίFί(n, μ)). So we consider here only this new case, g is defined

by induction on the length of the computation of {a}F

lίF1(μ). We assume

that g(b) is already defined and satisfies:

for all «, v e UF. Also assume that {a}ζlίFΊ(μ) ^ F(λn{b}ζim(n, μ,)). Let a: ω

-> UF be a primitive recursive function such that |α(λi)|F = n for all n. By

Lemma 1.4, the relation \u\F = n is F-recursive, and hence the function

β defined by

n if \u\F = n

it \u\ >̂ o)

is partial F-recursive. Let γ be a primitive recursive function such that

{γ(w)}F(u) ~ F(λnβ({w}F(a(n), «))).

Such a p exists by virtue of Lemma 1.3. We set g(a) = γ{g{b)), where &

Using (d), it is seen that ωx[F] is an F-recursively regular ordinal (cf.

Hinman [4; VIII. 4.4]). From (c) and (d), we have that for all P C ωn,

(e) P is F-semirecursive iff it is ^[FJ-semirecursive in F.

and thus
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(f) P is F-recursive iff it is ωj[F]-recursive in F.

Every function defined on ωx[F] and with constant value < ωx[F] is ωJF]-

recursive: let -< c ω X ω be a well-ordering on ω which is F-recursive.

Then the function h defined by

h(n, μ) = v iff n is the y-th number in the order <

is ωJFJ-recursive. If p is the length of-<, then p = sup {h(n, μ): neω}.

Thus the function with constant value p is ωjfFJ-recursive.

In view of (e), (f) and Lemma 1.6, we have (i) and (ii).

Let tc be an arbitrary F-recursively regular ordinal > ω, and -<Cω X

ω be an F-recursive well-ordering. Then, by (c), -< is ^-recursive in F,

and so -< e JίF{κ) by Lemma 1.6. Hence the order type of -< is less than

tc. Thus ω\F\ < tc. Q.E.D.

For any set A c ω, we use LF(σ, A), JlF(σ, A) and ωx[F,A] instead of

L<F,A>(σ), Λ<FiA>(σ) and ω^F, A}], respectively. Relativizing the above lemma

to A, we have the following corollary.

COROLLARY 1.8. For every set B c ω, B is F-recursive in A if and

only if BeL^ωάF, A], A).

The superjump S(F) of F is a type 2 functional defined by

otherwise.

Let e be an index such that

if F(a) = n ,

otherwise .

Then F(a) = i«^[S(F)(S1(β, ή), a) = 0], and thus F is S(F)-recursive uni-

formly for F. An ordinal K is said to b.e F-recursively inaccessible if K is

F-admissible and is the limit of F-admissible ordinals < K. Recall that

τfe[F] is the /c-th F-admissible ordinal.

LEMMA 1.9. An ordinal K is F-recursively inaccessible if and only if

τk[F] = tc.

Proof. Let tc be an F-recursively inaccessible ordinal. For each v < tc

such that τv[F] < tc, let f(v) = τv[F], As easily seen, /is 2\ on JCF(tc). Sup-

pose that tc < τk[F], then domain (/) < tc. This implies that range (/) e LF(/c)
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by Σ Replacement in JtF{κ). Hence there exists an F-admissible ordinal

c < K such that U range (/) < a. This is a contradiction, and we have

The converse implication is trivial. Q.E.D.

LEMMA 1.10. ω^SiF)] is the first F'-recursively inaccessible ordinal.

Proof. Put K = ω^SiF)]. Since F is recursive in S(F), by a simple

application of the Recursion Theorem, we have a primitive recursive func-

tion / such that

{f(a)}*JP(μ) ~ {a}lAμ) -

Hence K is closed under all partial functions (oo, ̂ -recursive in F. Thus

K is an F-admissible ordinal. By VΠL 4.12 in [4], K is the limit of in-

admissible ordinals < K. Let p be an arbitrary F-recursively inaccessible

ordinal. We want to show it <̂  p. Using the Recursion Theorem, we can

find a primitive recursive function g such that

{g(a, eψp(m, μ) ~ {aV(m, λn{e}ζ(n9 μ)) .

The existence proof of g is quite similar to the proof of the Substitution

Theorem (cf. Hinman [4; VI. §2]), so we consider only the following case

as an example:

{a}F(m9a)~F(λj{b}F(j,m,a)).

Assume that g(b, e) is already defined and satisfies

{g(b, e)}F

p(j, m9 μ) ~ {b}F(j, m, λn{e}ζ(nf μ)) .

Since the predicate v < ω is ^-recursive in F9 there exists an index d such

that

(F(λj{g(b, e)}*(j, m, μ)) if λn{e}*(n9 μ) is a total

{d}F(m, μ) — \ function from ω to ω

[ t otherwise.

Such a d may be computed from α, e and an index for g. Thus we let

g(a, e) be such an index d.

Now we claim that there is a primitive recursive function h such

that

{h(a9 e)γp(μ) ~ S(F)(a9 λn{e}F(n9 μ)) .
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From this, by using the Recursion Theorem, we have a primitive recursive

function k which satisfies:

{k(a)}F

p(m) ~ {α}β<*>(m) .

Therefore, as in the proof of Lemma 1.7, we see that ωλ[S(F)] ^ p.

We return to the proof of our claim. Recall that p is F-reeursively

inaccessible. For each μ < p, we let π(μ) be the least F-admissible ordinal

larger than max (ω, μ). Then π is ^-recursive in F, and

S(F)(a,λn{eYP(n,μ)) = O

<—• {*n*n{e}*(n9μ)) j

The last clause can be written by

lξ<π(μ)R(g(fl,e),μ,ξ)

where R is a relation (oo, O)-recursive in F. This is a generalization of

the usual Enumeration Theorem (for the proof we may refer to Hinman

[4; VΠL 2.6]). Let c be an index such that

O if min {ξ < π(μ): R(z, μ, £)} < π(μ) ,

And let h(a. e) = S\c, g(a, e)). Then it is easy to see that this h has the

desired property. Q.E.D.

§2.

In this section, we define .F-degrees and the F-jump, which are gener-

alizations of hyperdegrees and the hyperjump. We shall extend Shoenfield's

notation system for ω^F] to that for cyj[S(F)], and generalize a result of

Richter [7].

DEFINITION 2.1. For any A, B, c ω} A < FB means that A is F-recur-

sive in B. This is a reflexive and transitive relation. Thus we can con-

sider F-degrees. That is, A and B have the same F-degrees if A < FB

and B < PA, which we denote b y i Ξ FB. We use deg F(A) to denote the

F-degree of A.

We use a, b, c, as variables for F-degrees. a\b, a < b and a < b
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are defined as for Turing degrees.

DEFINITION 2.2. A Θ B = {2n: n e A} U {2n + 1: neB}. When α =
deg F(A) and b = deg F(B), we denote the F-degree of A φ δ by α U ί.

a \J b is the least upper bound of a and b.

DEFINITION 2.3. The F-jump A of A is defined by

A = {eeω: S(F)(e, KA) = 0} .

If « = deg F(A), we denote the F-degree of A by α'.

From the following lemma, the above definition is well-defined.

LEMMA 2.4. If A < ^B, then A < ^B'. Moreover, A is many-one
reducible to B'.

Proof. Let e be an index such that KA{n) = {e}F(n, KB), and / be a
primitive recursive function such that

{f(aψ(KB) ~ {a}F(λn{e}F(n, KB)) .

Then,

aeA <-^f(a)eB .

Thus A is many-one reducible to B'. Q.E.D.

THEOREM 2.5. For any F-degree a, a < ά.

Proof. Let A be such that a = άegF (A), and e be an index such that

0 if a(a) = 0 ,

1 otherwise ,

Now we have

aeA^ {β}'(α, 1Q j <—> {S'(β, α)}p(^) | «—* S>(e, αJeA'.

Hence A is many-one reducible to A'. Suppose that A' ^ .̂A. We let:

0 if S\a, ά)$A' ,
1 I otherwise .

Then 0 is partial F-recursive in A. Take an index d such that {d}F(a, KA)
a φ(a), then

Φ(d) i <—• S^d, d)eA'<-> {d}̂ (d, IζJ t <-> Φ(d) t
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This is a contradiciton. Thus A' £F A. Q.E.D.

Clearly A is F-semirecursive in A. If a predicate P(ά) is F-semi-

recursive in A, then there is an index e such that

P(ά) «—• {e}F(a, KA) i <—• S\e, a)eA .

Therefore P is many-one reducible to A. Consequently A is a complete

F-semirecursive-in-A set. We use 0 to denote the F-degree of F-recursive

sets. Then 0' = άegF (UF).

THEOREM 2.6. If A is F-semίrecursive, then the F-degree of A is 0 or

0'.

Proof. Let / be a recursive function such that

aeA<—>f(a)e UF .

If A is not F-recursive, then sup {|/(α)|F: ae A} = ωx[F] by the Hierarchy

Theorem (Hinman [4; VI. 4.11]). From this, we have

ueUF <-^ 3α(α e A and \u\F ^ \f(ά)\F) .

By lemma 1.4, UF is F-recursive in A. Q.E.D.

THEOREM 2.7. For every A C ω, 07 < deg^ίA) i/ α/zd only if ω^F] <

, A].

Proof. Suppose 07 < degF (A). Let •< C ω X ω be a well-ordering of

order type ω^F] which is F-semirecursive. Then -< is F-recursive in A.

Hence ω^F] < ωx[F, A]. Conversely, suppose that ωx[F] < ωx[F, A]. Then

there exists a v e UFiA such that

\u\F<\υ\F>A

for all w e UF. From this we have

ue UF+^\u\F <\v\F>Λ .

By Lemma 1.4, UF is F-recursive in A. Thus (T < deg F(A). Q.E.D.

COROLLARY 2.8. // a < 0', *&eτι α7 = <K.

Proof. By lemma 2.4, we see that 07 < ά'. Take a set A a ω such

that α = deg F(A). Then ωJF, A] = ωx[F] by Theorem 2.7, so L ^ f F , A], A)

€ LF(ωλ[F, UF], UF). Since A is 2\ on ^(cw^F, A], A), we have that A e

, UF]9 U
F). Thus A < F C/̂  by Corollary 1.8. Q.E.D.
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For any normal type 2 object F, Shoenfield defined a notation system

OF for ωx[F] and a hierarchy {HF: aeOF} for JP-recursive functions (see

Shoenfield [10]). We shall devote the remaining part of this section to

extending this system to that for

DEFINITION 2.9. For each ordinal, σ, Nf and HF(ά) are defined by

induction on σ. (Till further notice, the superscript F will be deleted

throughout this section.) If a e Nβ, we let \a\ = a. Let Ca = U {Nτ: τ < σ}.

Stage 0. No = {1}. H(ΐ) = ω.

Stage σ + 1 . Nσ+1 = {2a: a e Nσ}. H(2a) = {xeω: λn{(x)0}
ma)(ή) is total

and F(λn{(x)0}^(ή)) = (x)J.

Stage Λ(limit). Assume that Nσ is defined for all σ < λ.

Case 1. There is an ordinal a < λ such that for some ae Nσ and e e ω,

( i ) λn{e}H{a)(n) is total;

(ii) for all ny {e}ma)(n) e Cλ;

(iii) {e}HW(0) = α and|{e}*(α)(ra)| < |{β}^(α)(n + l)|for all n;

(iv) ί = sup {\{e}ma)(ή)\: n e ω}.

Then, Nλ = {3a 5e:lσ < λ [aeNσ & a and e satisfy the above conditions

(i)-(iv)]}. H(3« 50 = {xeω: (x\ e H({e}^((x)0))}.

Case 2. Case 1 does not hold, but there is an ordinal σ < λ such

that for some a e Nσ, 7α g Cλ. Let σ < λ be the least ordinal such that

T & Cλ for some a e Na. Then, Nλ = {T: a e iVJ, and #(7α) = {x e ω: (x)0 e

Remark 2.10. (a) Except for Case 2 of Stage λ, the definition is analo-

gous to that of Shoenfield [10]. We have avoided defining < 0 . But this

change is not essential as noted in Platek [6].

(b) C,7, is the set of notations for ordinals ω^F] defined in Platek

[6; p. 260].

(c) N0 Π NT = 0 if a Φ r.

(d) The function σ ^ {xeω: (x\ e Nσ & (x\ e H((x\)} is 2\ definable in

KP(F) + the Axiom of Infinity.

DEFINITION 2.11. For any ordinal σ:

Θo — {n: neω}, where 0 = 1 and n + 1 = 2", Ho = ω;

®, = U {<V,: \a\ <σ}9 Hσ = {xeω: (x)0 €(!?.& (x), €

for a > 0.
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Let 0 = U R : σ is an ordinal}. We let \0β\ = sup{|α|: aeΦσ), and \0\ =

sup{|α|: aeθ).

LEMMA 2.12 (Uniqueness Theorem). There exists primitive recursive

functions f and g such that:

( i ) if b eΦ, then λx{f(b)}H(b+)(x) is the representing function of the set

{aeΦ:\a\ < |6|}, where b+ = 2δ;

(ii) if a, beΦ and \a\ <£ |6|, then H(a) is recursive in H(b) with index

g(a, b).

Proof. The functions / and g are defined by the Recursion Theorem

over Φ as in Shoenfield [10]. All cases not involving a notation of the

form 7d can be treated as in [10] and we consider here only the new cases.

Case 1. a = 7d and b is not of the form T: exactly as in Shoenfield

[10].

Case 2. a is not of the form 7d and b = T:

( i ) \a\< \b\ <-> 3x«α, x) e H(b)). By Shoenfield [10; (2), p. 104], the

right hand side of the equivalence is recursive in H(b+).

(ii) In this case, \a\ < |6|. Hence x e H(a) ̂ > <α, x} e H(b), so H(a) is

recursive in H(b).

Case 3. a = 7d and b = T\

( i ) As in Case 2.

(ii) Note that | α | < | 6 | iff \d\<\e\ and that \a\ = |6|iff |cίi = \e\. Since

\e+\ < 161, H(e+) is computable from H(b) as in Case 2, so by the induction

hypothesis it can be checked from H(b) whether |d| < \e\ or \d\ = |e|. If

|d| < |e|, then

x e fl(o) <—> <α, x> e

and if \d\ - |β|, then H(a) = ff(6). Thus #(α) is computable from
Q.E.D.

LEMMA 2.13. There exists a primitive recursive function α θ b such that

for any α, beΘ:

( i ) a®bed);

(ii) |αθ6|^max{ |o | , |6 | } ;
(iii) b Φ l -> |α | < | α 0 6|.

Moreover for every σ < |^ | :

(iv) α, & e 0 , + 1 - > α Θ & e 0 , + 1 .
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Proof. We define α φ 6 by recursion on beΘ as follows:

(1) a Φ 1 = a.

(2) a φ 2δ = 2α @ δ.

(3) a Φ 3δ 5e = 3 α @ δ 5*(*'α>δ'e), where p is an index of φ and Θ is a primi-

tive recursive function such t h a t

{θ(p, a, b, e)}ma®b)(ή) ~ a Φ M*(δ)(rc) .

Such α θ exists by Lemma 1.1 and Lemma 2.11.

(4) a φ 7δ = 3(75)+ .5π ( α 'δ ), where π is a primitive recursive function such

that

{π(a,

Ψ®n+1 if | α | < | 7 δ | ,

7 δ φ 2 if \a\ ̂  |7δ | and n = 0 ,

α φ / Γ + T if |σ| ̂  |7δ | and n > 0 .

Such a π exists by Lemma 2.11.

(5) In the case where b is not of the form 1, 2(δ)0, 3(δ)1 5(δ)2 or 7(δ)%

we set a φ b = 0.

(i)—(iv) are easily proved by induction on beΘ. Q.E.D.

COROLLARY 2.14. There exists a primitive recursive function β such that

for any σ < \Θ\, aeΘa+1 and any eeω, if {e}H(a) is a total function from ω

into <9e+1, then β(a,e)eΘσ+1 and \{e}Hia)(ή)\ < \β(a, e)\ for all neω.

Proof. Let d be an index of the partial function φ recursive in H(a)

defined by:

φ(a, e, 0) ̂  a, and φ(a, e, n + 1) ~ φ(a9 e, ή) Φ ({e}ma)(ή) φ 2) .

We let β(a, e) = 3α5^2(ίZ'α'e). It is easy to see that β has the desired pro-

perties. Q.E.D.

LEMMA 2.15. There exists a primitive recursive function h such that

for any σ < \Θ\ and any a e Θσ+l9 λx{h(a)}F(x, Hσ) is the representing function

of iJ(α).(2)

Proof, h is defined by recursion on Θσ+ί. Except for the case where

a = T for some b, the definition is same as Shoenfield [10]. If a = 7δ,

then a e Θa or H(a) = Hσ. If a e Θσ, then H(a) = {x: (a, x} e Hσ}. Therefore,

H(ά) is recursive in Θc and Ha. Θσ is F-recursive in Hσ since (9~={x: iy(x, y)

2) We identify a set with its representing function.
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e Hσ} and F is normal. Thus H(a) is F-recursive in Hσ. Q.E.D.

Remark 2.16. We can take the above h such that

ae(P0+1 <—> λx{h(a)}F(x) is total .

Thus Θσ+1 is F-semirecursive in Ha.

LEMMA 2.17. For each σ < \Θ\, there exists a primitive recursive func-

tion θσ and a partial recursive function χσ such that if {z}F(al9 , an, Hσ) | ,

then

( i ) θσ(z9(aί9 '",an})eΦσ+1

(ii) {z}F(al9 , an9 Ho) = χσ(z, <α1? , an}, H(θσ(z, (aί9 , αn»).

Proof Let η be the representing function of Hσ. Except for the case

where {z}F(al9 , an, η) = η(a^)9 θσ #nd χσ are defined as in Shoenfield [10]

and we consider only this new case. If σ is a successor ordinal, then

there exists a, beθ such that Hσ = H(T). We let θσ(z, (au , an}) = T

and χσ(z, (jau , an}, a) = a(ax). If σ = |3δ 5 d | for some b and d, then we

let e be an index such that

{e}HW(0) = b and {e}mb\n + 1) = 7{c^(δ)(w) .

Then it can be seen that 3b>5ee(9σ+1 and xe0 f f iff \x\ < |3δ 5e|. We

let θa(z, <flu , α n » = (3δ 5e)+. By Lemma 2.12, there exists a partial re-

cursive function φ such that λxφ(x9 iϊ((3δ 5e)+)) is the representing function

of Hβ. Let χσ(z, (au , an), a) ~ φ(aί9 a). In the case where σ = |7δ | for

some 6, by Lemma 2.12, we see that the set {x:|x| < σ} is recursive in

H((T)+). Therefore there exists an index e such that if we put a = (7δ)+,

then 3α 5e e Φσ+1 and Gβ = {x: \x\ < |3α 5e|}. So we let 0,(s, <α1? , α n » =

3α 5e and χσ(2, {α^ , αn>, α) 2̂  ^(α1? a)9 where φ is a partial recursive

function mentioned above. Q.E.D.

Remark 2.18. Examining the above proof, we see that if θσ(z9 (aί9 ,

an}) e (9a+ί9 then {z}F(aί9 , an9 Hσ) | . From this and Remark 2.16, Φa+ί is

a complete set F-semirecursive in Hσ. Thus deg F (^ + 1 ) = (άegF(Hβ))\

DEFINITION 2.19. For each ordinal σ < \(P\, we denote the F-degree of

Ha by 0(σ\

LEMMA 2.20. For each σ < |0 | , 0( f f+1) = (0(ff)X, α îcί | ^ α + 1 | = ω,[F9 Ha].

Proof. Since Θσ+ί = {a: 3x<α, Λ:> 6 Hβ+1}, it holds t h a t (Ptf+1 is F-recursive
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.in£Γβ+1. By Definition 2.11,

x e Ho+1 <^-> (x)0 e Θσ+ί & (*), e H((x)0).

If (x)oe(Pσ+19 then

(x\ e H((x)0) ̂  {h((xW((x)19 ff.) = 0 ,

where h is as in Lemma 2.15. Therefore Hσ+ί is F-semirecursive in Hσ>

s o Ha+1 ^ F(Pσ+1.

If a e 0ff+1, then the relation {(x, y}: \x\ < \y\ < \a\} is a prewellordering

F-recursive in iϊσ of order type \a\ by 2.12 and 2.15. Therefore we have

that \a\ < ω1[F9 Hσ], and |0,+ 1 | <: ω^F, jffj. Conversely, let •< C ω X ω be

an arbitrary well-ordering F-recursive in Hσ. Then, by Lemma 2.17, -< is

recursive in H(a) for some aeΘσ+l9 and hence the order type of •< is less

than ωx[H{a)\9 where w^Hia)] is the first non-iί(α)-recursive ordinal. Let

QH(a) ^ e fae Church-Kleene notation system relativized to H(a). It is easy

to obtain a recursive function / such that if xe OH(a\ then f(x) e(9σ+1 and

l*l?(α) ^ \f(x)\ Therefore, ωx[H{a)} ^ |^σ + 1 | , so the order type of < is less

than |0,+ 1 | and we have that ωi[F, Hσ] £ \0m+1\. Thus ωt[F9 Hσ] = \(Pσ+ί\.

Q.E.D.

THEOREM 2.21. \Θ\ <L ω^SiF)] and for any σ < \<ΰ\;

( i ) 0(0) = 0 and 0( f f+1) = (O^)';

(i i) 0(σ) = sup{0(v): v < a} if σ is a limit ordinal.

Proof. By induction on σ < |0|, we first prove that \Θσ+1\ = τσ+ι[F] if

σ < ω and |0α + 1 | = ^ [ ^ ] if σ ^ ω, that |^ σ + 1 | < ^[S(F)] , and that |0, | =

sup {rv[F]: v < σ} if σ is a limit ordinal.

Case 1. σ < ω: it is clear if σ — 0. By the induction hypothesis, Hσ

={x eω: \(x)0\ < τσ[F] and (x\ e H((x)0)} if σ > 0, and Ho = α>. Hence i/ff e

LA*.+i[F]) f r o m Remark 2.10. (d). By Lemma 2.20, |0, + 1 | = ̂ [ F , fl"J = rσ + 1[F]

< ωMF)].

Case 2. α is a successor ordinal ^ ω: exactly as Case 1.

Case 3. σ = |3α 5e | for some α and e: let f(n) = |{e}ff(α)(^)|. Then |0, |

= sup {r f (w)[F]: n e ωt} ^ ω^SίF)] by the induction hypothesis. Since \a\ <

*>i[S(F)], we have that F(α) € L^ω^Sίί1)]) by Remark 2.10(d). Hence the

function n^τHn)[F] is Δx on ^ ( ω ^ S ί F ) ] , so \0β\ < ωj[S(F)]. By Lemma

1.10, 10,1 is not F-recursively inaccessible, and therefore \Θσ\ < τσ[F], By

Remark 2.10(d), Hσ e L(τσ[F]), so \Θσ+1\ = τσ[F] < ^[SίF)] as in Case 1.
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Case 4. σ = \T\ for some beΘ: put a = (7δ)+, then by Lemma 2.12,

the set {x:|x| <σ} is recursive in H(a). Hence there exists a function /

recursive in H(a) such that \f(ri)\ < σ for all nβω and σ = s\ipn<ωf(n).

Then \Φσ\ = sup {r|/(w) |[F]: nβω} by the induction hypothesis. The rest is

as in Case 3.

( i ) is clear from Lemma 2.20.

(ii) Let σ be a limit ordinal < \Φ\. If Hv < FA for all v < σ, then

τ.[F] £ ω,[F, A], so H, e LF{ω,[F9 A], A). Thus Ha < FA Q E.D.

THEOREM 2.22. \φ\ = ωJS^F)] ami /or αray A c ωTO, A is S(F)-recursίve

if and only if A is recursive in H(a) for some ae(9.

Proof. If, cy<|0 | , then by Remark 2.10 and Lemma 2.21, Hσe

LrMSiF)]). Hence each H(a) with a e Θ is S(F)-recursive. Thus if A is

recursive in H(a) for some a e Θ, then A is S(F)-reeursive.

In order to show the converse implication, we define a primitive recur-

sive function Θ and a partial recursive function χ such that if {z}S{F)(al9

• ., an) I, then

(a) θ(z,(al9 ••',α n »e0;

(b) χ(2, <α1? , αw>, #(*(*, <αx, • •, αn») = {^^^(α,, . . , αn).

We define these functions by the Recursion Theorem. We consider only

the case where {z}8iF)(al9 , αn) = S(F)(au λm{w}S{F)(m, au , αn)). Other

cases can be treated as in Shoenfield [10]. Note that the function β defined

in the proof of Corollary 2.14 has the following property: if a e Φ and {e}H{a)

is a total function from ω into Φ, then β(a. e)eΦ and |{e}^(a)(n)| < \β(a. e)\

for all n < ω. By the induction hypothesis and the above note, we can

find a b e Φ calculated from w, (al9 , an} and index of θ such that \θ(w,

(jn, aί9 - , an})\ < |6| for all m. By Lemma 2.12 and the induction hy-

pothesis, we can compute λm{w}SiF)(m9 aί9 . an) from an index of χ and

H(b). Hence {z}S{F)(al9 , an) is calculated from an index of χ and H(T).

So we may take θ(z9 (aί9 , an}) = 7δ.

As in Shoenfield [10], we can show that if A is ιS(i^)-recursive, then

A is recursive in some H(a) with aeΦ.

Suppose that σ = \Φ\ < α>![S(F)], then for any S(F)-recursive set A, we

have that AeLF(τσ[F]). This is absurd. Q.E.D.

Iterating the superjump operation S to ίJ, we can define normal type
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2 objects Eί9 E29 , En9 , Eω. In this section, we consider the 2£n-degrees

and the J^-degrees. The results in this section and the next two sections

can be easily extended to the J£-degrees, where J£(a € 0s) are the type
2 objects defined by Platek [6].

DEFINITION 3.1. A type 2 object En is defined by recursion on n:

Eo = E and En+1 = S(En) = {aeω»: {a(0)}E«(λma(m + 1)H} .

We let Eω = {<*,«>: aeEn}.

It is well-known that Ex in this definition is essentially same as Tugue's

object Ex.

DEFINITION 3.2 (Aczel and Hinman). For any ordinal κ\

(a) K is O-recursively inaccessible iff K > ω and K is admissible;

(b) K is n + 1-recursively inaccessible iff /c is ra-recursively inaccessible

and the limit of ^-recursively inaccessible ordinals < κ;

(c) K is ω-recursively inaccessible iff K is ^-recursively inaccessible

for all n.

LEMMA 3.4 (Aczel and Hinman [1]). For each σ <Ξ[ ω, ω^E^ is the first

σ-recursiυely inaccessible ordinal and for all P c ωk:

( i ) P is E^recursive if and only if Pe L{ωx[Eσ])',

(ii) P is Eσ-semirecursiυe if and only if P is Σx on L(ωτ[Eo\), where

L{v) is the set of all constructible sets of order < v.

DEFINITION 3.3. For any A c ω:

L(0,A) = ω;

L(σ + 1, A) = {A} U {x C L(σ, A): x is first order definable over the

structure <L(σ, A), e ) with parameters from L(σ, A)}

L(λ, A) = U m?> A): σ < λ} if λ is a limit ordinal.

In the case where A = 0, L(σ, A) is simply denoted by L(σ). Following

Sacks [9], we introduce a language S£{κ, G) which is the syntactical counter-

part of L(κ, A).

DEFINITION 3.5. Let K be an admissible ordinal > ω. JS?o0O is the fol-

lowing language:

unranked variables: υ09 v19 , vn9

ranked variables: υl9 v{, , vβ

n9 (σ < K);
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predicate symbol: e

logical symbols: ~], V, 3;

parentheses: (,).

if(/c, G) is the ramified language obtained by adding constant symbols G,

n(n e ω) and the abstraction operator * to S£0(κ). A set C(σ) of constant

terms of ££(κ, G) is defined by recursion on σ:

C(0) == {n: neω};

C(σ + 1) = {xσφ(x% cl9> ., cn): cu. .,cne U * . C(τ) and φ(x% yu ., yn)

is a formula of &Ό(fc) such that all quantified variables are of rank 5g σ}

C(X) = U {C(σ): σ < Λ} if λ is a limit ordinal.

Let C = U{C(σ): σ < Λ:}. The atomic formulas are of the form set where

s and t are variables or elements of C. A formula of ££(ιc, G) is said to

be ranked if it has no unranked quantifiers. If φ is a ranked formula or

a formula of the form (3^)0, where φ is a ranked formula, then φ is said

to be a Σλ formula of jSPfo G).

For each c e C , ^(c) is the least a such that c e C(σ ). If φ is a ranked

sentence of <£{κ, G), then we let ρ(φ) be the greatest element of {σ:(lxσ)

occurs in φ] (J {p(c): c occurs in φ}.

All the above syntactical notions are Δx on L(κ). For any A C ω,

^(/c, G) is interpreted by L(tc, A) as usual. For each element of L(/c, A) is

denoted by an element of C In particular, A is denoted by G. We identify

2ω with P(ω), the power set of ω, and often use L{κ,f) in place of L(/c,

{*:/(*) = <>}).

DEFINITION 3.6. We use p, g, r, to represent finite sequences of O's

and Γs. The Cohen forcing relation p \\—κ φ is defined as usual. For

example,

p ||— K neG <—> n < lh(p) and p(n) = 0 .

If a real /e2ω is generic with respect to this relation ||—c, we say that /

is a Cohen real over L(κ). That is, for every sentence φ of &(κ9 G), there

exists a p e / such that p \\-κ φ or p \\—κ ~] φ, where p a f means that / is

an extension of p.

Let K be a countable admissible ordinal > ω. The following lemma is

proved in the standard way, so we omit prove it.
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LEMMA 3.7. ( i ) For any p, there exists a Cohen real f over L(κ) such

that p C /.

If f is a Cohen real over L(/e), then:

(ii) L(κ, f)\=φ iff lp(p df andp | K Φ)\
(iii) L(fc, f) is an admissible set and f <£ L(κ).

LEMMA 3.8. Let K and λ be admissible ordinals such that ω < K < λ.

If f is a Cohen real over L(X), then it is also a Cohen real over L(κ).

Proof. For each sentence φ of ££(K, G), let φ* be the ranked sentence

of J?(2., G) obtained from φ by replacing each occurrence of an unranked

quantifier (ax) with a ranked quantifier (3#*). Then for any p, p |f—κ φ iff

P \\—x 0* If / is a Cohen real over L(X), then for each sentence φ of J*?(Λ;, G),

there exists some p C / such that p \\—κ φ* or p \\—λ ~\ φ*. Thus / is a Cohen

real over L(κ). Q.E.D.

Definition 3.2 and Lemma 3.3 can be relativized to any / e 2ω.

THEOREM 3.9. Let σ <̂  ω. If f is a Cohen real over £,(<*>![£„]), then

degEσ(f) > 0 and ω,[EσJ] = ωi[E.].

Proof. From Lemma 3.3. (i) and Lemma 3.7. (iii), it is clear that

άegEσ (/) > 0. By the relativized form of Lemma 3.3, ωλ[E,f\ is the first

<7-recursively-in-/ inaccessible ordinal. In order to show that ω^E^ f] =

ωt[EJ\9 it suffices to prove that for any n-recursively inaccessible ordinal.

K < y^j, if / is a Cohen real over L(tc), then K is an n-recursively-in-/ in-

accessible ordinal. We show this assertion by induction on n. In the case

where n — 0, it is obvious from Lemma 3.7 (iii). Suppose that K is n +1-

recursively inaccessible. Then K is n-recursively inaccessible and there

exists a sequence κ0 < ^ < < κt < of n-recursively inaccessible ordi-

nals such that tc = sup {/̂ : ieω}. By the induction hypothesis and Lemma

3.8, K and all fct are n-recursively-in-/ inaccessible ordinals. Thus K is an

n + 1-recursively-in-/" inaccessible ordinal. Q.E.D.

DEFINITION 3.10. We say that a finite set {f19 •• , / J c 2 a is F-inde-

pendent if ft SF <Λ, , Λ+i, Λ+i, •••,/»> for all i. A set X c 2" is F-inde-

pendent if all finite subsets of X are F-independent.

THEOREM 3.11. For each σ ^ ω, there exists an E^independent set with

cardinality of the continuum.

Proof. We set K = ω^E,]. We consider the ramified language S£(K, Gl9 ,
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Gn) defined in the same way as £?{κ, G). We can extend the forcing relation

||— κ to the language j£?(Λ:, GU , G J . We denote this extended forcing

relation by ζp19 , pn> | h ? Φ It is well-known (cf. [11]) that if <£, ••.,/„>

is generic with respect to |f—?, then

(1) each ft is a Cohen real over L(/c);

(2) U e L(κ, /, ,-. . , / U fι+u . ., /n) for all i;

(3) L(/c,/i, - ,fn) is an admissible set.

Let 0n be the sentence of S£(κ, G19 , Gn) defined by:

θn = Λ [Gt ̂ ( G , , G,^, G<+1, , Gn)].
i = l

Let P be the set of all finite sequences of O's and Γs. For any pί9 -,pne P,

there are reals fu , fn such t h a t p, c £, , p n c fn and </15 ••-,/„> is

generic with respect to 11— ?. Then L(/c,fu ,/n) |=tfn by (2). Hence there

are g1? •• , g B e P such t h a t A C ql9 - >,pn c gn and <^1? * , qn y\\-n

κθn.

Thus we have proved the following (4):

(4) (VA, - , V A 6 P)(3ft, , ί n e P ) [ A dq.& - &pn^qn& (qί9 ,

Let <^ i } : i e ω) be an enumeration of all sentences of J£(fc, Gu , GJ.

We define a p s e P for each s e P.

Let p o = <>.

Assume that all ps with Z/ι(s) = n wee already defined. Put m = 2n+1.

By (4), we can find incompatible extensions p°s and p] of ps such that

<P<o,..,o>,P<o, ,o>, * ,P<i,...,i>,P<i,...,i>>lh-Γ^m, where <0, , 0>, , <1, , 1>

is the enumeration of {s e P : lh(s) = n} in the lexicographical ordering.

There exist extensions ql of pi (lh(s) = n,ί <* 1) such that for each k<Ln

and for any combination qu , q2k of ql's such that qx Dp<o,...,o>, -JA* Z)

<7<i,...,i> «0, , 0>, , <1, ••-,!> is the enumeration of {t e P : lh(t) = fe} in

the lexicographical ordering), <g1? , q2*) decides φ$\ . ^ . 3 ) We set

PS*Φ = ^SJ where s*ί is the concatenation of s and L

Clearly {ps: s e P} defines a perfect set A c 2*. It is easy to verify

that A is ^-independent. Q.E.D.

LEMMA 3.12. // / is a Cohen real over L(ωλ[Eβ]), then f®0' =Eaf,

where 07 and f are the Eσ-jumps of 0 and f, respectively.

Proof. Put K = ωx[Eβ]. It is trivial that / Θ V <j?αΛ Let 0(x) be a

3) In any forcing relation If- we say that p decides φ if p |h- Φ or p
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Σ1 formula of &(κ9 G) such that

g' = {neω:Hκ,g)\=θ(ή)}

for all g with ωx[Eβ, g] = tc. Then,

nef <^(lp a f){p\\-J(n)\ .

Since {<>, Λ>:p | K ^ ) } is 2Ί on L(/e), we have that f <,EJ® 0'. Q.E.D.

THEOREM 3.13.4) There exist Eσ-degrees a and b such that (a U bj =

a! U V and a\b.

Proof. Put tc — ωx[Eσ]. Let </, g} be generic over L(/c) with respect

to I \—2

K. Then both / and g are Cohen reals over L{κ). Put α = deg#ff (/)

and b = deg^ (g), then α | ί (see the proof of Theorem 3.11). It is clear

that af U V < (a U 6)/# Since P X P - P in L(/c), / Θ ^ is a Cohen real over

L(fc) (c/. [11]). By Lemma 3.12, (αU*)7 = (αU^UO7 = «U(^UO0 = α U ^ <

af U y. Thus, af U ̂  = (α U £/. Q.E.D.

Remark 3.14. We can take the above a and A such that α, 6 < 0' (see

the proof of Theorem 3.16).

An admissible ordinal tz is said to be projectίble into λ if there exists

an injection from K into Λ which is Δx on L(/c). The least λ <̂  Λ; such that

Λ: is projectible into λ is called the projectum of Λ: and denoted by Λ:*. An

admissible ordinal K is called a recursively Mahlo ordinal if every closed

unbounded subset of K which is Δx on L(κ) contains an admissible ordinal.

Aczel and Hinman [1] showed that every ω^J^] is less than the first re-

cursively Mahlo ordinal > ω.

LEMMA 3.15. // K, is less than the first recursively Mahlo ordinal > ω,

then K is projectible into ω.

Proof. If not, then tc* is a recursively Mahlo ordinal > ω, which is

a contradiction (see Barwise [2; V. 7.25]). Q.E.D.

THEOREM 3.16.4) For each σ ^ ω, there are Eσ-degrees a and b such

that a'Ub' < aUb < 0'.

Proof We put K = ω^JSJ. Let θ(x) be a Σx formula as in the proof

of Lemma 3.12. We will construct two Cohen reals / and g over L(κ) such

that f'Φg'tζzJΘg^E,, 07. Let (φn:neω}e L(tc+) be an enumeration of

4) These are analogues of Spector's results (see Spector [12]).
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all sentences of ££(κ, G), where κ+ is the first admissible ordinal larger

than K. Such an enumeration exists because K is projectible into ω by

Lemma 3.15. By recursion on n, we define two sequences (pn: neω) and

(qn: neω) of forcing conditions.

Stage 0. p0 = q0 = < >.

Stage 2n + 1. Assume that p2n and g2w are already defined and have

the same length. Let pr be an extension of p2n such that pf decides φ2n,

say p' = p2n*s. Put tf = q2n*s. Let q" be an extension of q' which decides

φiny say q" = q'*t. We put p" = p'*t. Then it is clear that both p" and

q;/ decide φ2n. See whether there exists an extension p of p" such that

If so, let p be the least such extension. Define:

A«+i = P*<0> and # 2 w + 1 = g"

where p = p"*u. If not, define:

P2»+i = p " * < l > and g27Z+1 = ^

Stage 272 + 2. The definition for stage 2n + 2 is as for Stage 2n + 1

with the symbols p and g interchanged throughout.

It is easy to see that the above constructions of pn and qn are ac-

complished in L(/c+) since {(p9 φ}:p \\— κ φ) is a set in L(/c+). We l e t / =

U{pn 'neω} and g = {J{qn: neω}. Then / and ^ are Cohen reals over L(κ)~

Let i09 iί9 , in, be the members of {i eω:f(ΐ)Φg(ΐ)} in increasing order.

Then,

f = {neω: L(κ,f) N θ(n)} = {neω:f(i2n) = 0} .

Hence, /' < ^ σ / Θ ^ <Eσ 0'. Similarly, gf <EJ®g<Eσ 0'. Q.E.D.

COROLLARY 3.17. There exist Eσ-degrees a and b such that

( i ) a'Ub'Φ(aUb);

(ii) a < 0', b < 07 cmcϊ a U b = 0'.

Proo/. Let α and b be as in Theorem 3.16.

( i ) a' Όb' = alJ b<(al) b)'.

(ii) Since af < α U b, we see that 0 ; < α (J ί and hence α U b = 0^

If α = 0', then 0" = ar < 07. This is a contradiction. Q.E.D.
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§4.

In [3], Gandy and Sacks constructed a minimal hyperdegree by the
forcing method with perfect sets. We shall extend this result to minimal
J£-degrees. As in the preceding section, we shall consider only the cases
where \a\s < ω.

DEFINITION 4.1. A set P of finite sequences of O's and Γs is called a
tree iΐpeP&qap-+qeP, where q C p means that p is an extension
of q. A tree P is said to be perfect if p e P -> 3#, r e P[p C q &p c r&q
and r are incompatible]. For each perfect tree P, we denote the set {/:
(Vn)f(ή)eP} by [PI

Let K be a countable admissible ordinal > ω which is projectible into
ω. We use P,Q,R, to represent perfect trees in L(tc).

DEFINITION 4.2 (Gandy and Sacks). For any ranked sentence φ of

( i ) P\\-φif£(yfe[P])L(κ,f)\=φ.
For unranked sentences φ and ψ:

(ii) P |μ ~| φ iff for all subtrees Q of P, Q\\-s- φ;

(iii) P |h- φ V Φ iff P |h- £ or P | μ 0.
If 0(#σ) and </>(#) are unranked formulas, then:

(iv) P |h- (3xσ)^(^0 iff P Ih- ̂ (c) for some c e C(σ);
(v) P | h (3*)0(x) iff P |h- φ(c) for some c e C.

We say that a real / is Sacks over L(tc) if for any sentence φ of J£?(Λ;, G),
there exists a perfect tree P in L(/c) such that /e [P] and P decides 0.

LEMMA 4.3. The following relation Force^ is Σt on L(/c):

FoτceΣ (P, φ) <—> P is a perfect tree in L(tc) 8c φ is a Σx sentence of

Se{μ, G)&P\\- φ.

Proof From clause (v) of 4.2, ranked φ's need be considered. Since
K is projectible into ω,

L(fc) |= every set is countable .

Hence for any set x e L(κ)9 there exists a set A 6 L(/c) Π P(ω) such that x e
L((yi[A], A). Let Φ(x, y, 2) be a 2\ formula such that for any A e L(Λ:) Π P(ω),
if P e LίωjfA], A) and φ is a ranked sentence of u?(/t, G) with p(φ) < ωJA],
then

Lίω.IA], A) N Φ(P, ̂ , A) iff v/e [P] ^ [ A ] , / ) N φ .
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For the existence of such a formula Φ, see Gandy and Sacks [3; Lemma 1],

where it is proved that if P e L{ω^) and φ is a ranked sentence of ^(ωu G),

then v/e [P] L(ωl9f) \= φ is a Π\ relation of P and φ. It is well-known

that every Π\ relation is 2\ on L{ω^). Relativizing this result to A, we

can find a required Σ1 formula Φ(x, y, z).

Then for any P and any ranked sentence φ, we have:

P |h- φ iff (3A € L(κ) Π P(ω))[P, φ e L(ωx[Al A) & L{ω,[Al A) N Φ(A, P, 95)] .

Thus the relation P \\— φ restricted to ranked sentences φ is Σx on L{ιc).

Q.E.D.

LEMMA 4.4.5) (V^)(vP)(3Q c P)[Q decides $ .

LEMMA 4.5.5) If f is a Sacks real over L{κ), then:

( i ) L(κ,f) ^φiff ( 3P)[/e [P] and P\hφh

(i i) L(/c,f) is admissible and feL(tc);

(iii) g € L(Λ;, /) > g e L(Λ ) or / 6 L(κ9 g).

For every perfect tree P in L(/c), Sacks defined the local forcing relation

P If—ί Φ where peP and φ is a sentence of <$f(κ, G) (see Sacks [9: 2.8]). We

say that a real / is P-Cohen over L(κ) if / is generic with respect to |f—f.

Obviously, every P-Cohen real belongs to [P].

LEMMA 4.6. If K is σ-recursively inaccessible and P is a perfect tree in

L(tc), then there exists a perfect tree P*dP in L(κ+) such that for any f e

[P*], / is P-Cohen over L(κ) and tc is σ-recursίvely-in-f inaccessible, where

tc+ is the first admissible ordinal larger than K.

Proof Note that {<p, φ}:p e P and p ||—f φ) e L(κ+). Let (φn:neω)e

L(tc+) be an enumeration of all sentences of &(/c, G). Such an enumeration

exists since K is projectible into ω. For each s e Seq (2), we define pse P

by recursion on lh(s), where Seq (2) is the set of all finite sequences of O's

and Γs.

Assume that lh( s) = n and ps is already defined. Let ps<0> e P and

psH1> e P be incompatible extensions of ps such that both pw<0> and ps<1>

decide φn.

We set P * = {p e P: (3s e Seq (2))[p c ps or ps c p]}. Then P * is a per-

fect subtree of P. Obviously the above construction oΐps (seSeq(2)) can

5) See Gandy and Sacks [3].
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be performed in L(κ+). Thus, we see the that P* € L(/c+). By a similar
proof to that of Theorem 3.9, K is σ-recursively-in-/ inaccessible for all
/e[P*]. Q.E.D.

THEOREM 4.7. For each σ <L ω, there exists a Sacks real f over L(ωλ[Eσ])
such that ωάE^fl = ωx[Eσ].

Proof. Put K — ω^EX In the case where σ = 0, the existence of such
an / is due to Gandy and Sacks [3].

Now we consider the case where a = m + 1 for some meω. Let κ0 <
ΛΓI < < £n < be a sequence of m-recursively inaccessible ordinals
such that K = sup {κn: neω}, and (φn: neω} be an enumeration of all sen-
tences of U?(Λ;, G). We define a sequence (ji^.ieωy of natural numbers
and a sequence <P*: i e ω) of perfect trees in L(tc). We let n0 = 0 and Po

= Seq(2). Suppose that 7̂  and Pt are already defined. Let ni+1 is the
least n such that n> nt and P* 6 L(Λ;n). By Lemma 4.6 and Lemma 3.15,
there exists a perfect tree Q c P4 such that Q e L(/c) and Aτni is m-recur-
sively-in-/ inaccessible for all fe[Q]. Then, by Lemma 4.4, there is a
perfect tree R c Q such that i? 6 L(A ) and 2? decides &. We let Pi+ί = R.
Since 2ω is compact, there exists an fe C\{[Pt]: ieω}. It is easy to verify
that such an / has the desired property.

In the case where a = ω, let κ0 < κx < < κn < be a sequence of
ordinals such that each κn is ^-recursively inaccessible and Λ;=SUP{Λ:TO : n e ω}.
By the same argument as above, there exists a Sacks real / over L(κ) and
a subsequence (tcnί:ieω} of (κn: neω} such that κni is n^-recursively-in-/
inaccessible for each / e ω, so K is ω-recursively-in-/ inaccessible.

Q.E.D.

In the above proof, every fe Γ\{[Pi]: ίeω} is P^-Cohen over L(tcn.) and
hence does not satisfy the minimality condition:

g e Uκno f) — > g 6 L(fcni) or fe L(κno g).

But we can construct a sequence <P^:ieω} such that the minimality con-
dition holds as follows: by induction on σ <̂  α>, we can show that for every
^-recursively inaccessible ordinal K less than the first recursively Mahlo
ordinal and for every perfect tree P e L(κ), there exists a perfect tree Qd P
such that QeL(/c+) and every fe [Q] is a Sacks real over L(κ). Then the
construction of <P*: i e ω) is similar to that in the proof.

Moreover we can construct <Pέ: ί e ω> such that Π {[PJ: i e ω) is a
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perfect set, and so there are 2*° /'s which satisfy the condition of Theorem
4.7.

COROLLARY 4.8. For each a <I ω, there exists a minimal Eσ-degree a
such that a < 0'.

Proof. Let / be a Sacks real over L(ωx[Ea]) such that ωι[Eσ,f]=ωι[Eσ\.
As is known from the proof of Theorem 4.7. we can take such an / so
that /eL(ω1[Eσ]

+). We let a = deg Eσ(f). Then a is a minimal Z^-degree
by Lemma 4.5, and a < 0'. By Corollary 3.17, there is an 2^-degree between
0 and 0'. Thus we see that a < 0'. Q.E.D.

§5.

In this section, we shall prove that for each σ rgi ω, the set {0(ι°: v <

A of ϋ^-degrees does not have the least upper bound. In the case
where σ = 0, this result was proved by Sacks in [9]. We use the forcing
method with absolutely pointed perfect trees.

DEFINITION 5.1. A perfect tree P is said to be Eσ-pointed if:

(V/6

When we require that:

we say that P is absolutely Z?σ-pointed. Obviously, absolute i?σ-pointedness
implies j^-pointedness.

Let fc be a σ-recursively inaccessible ordinal projectible into ω.

LEMMA 5.2. Let PeL(κ) be an Ea-pointed perfect tree and XeL(κ) be
a subset of ω such that P <#ff X. Then there exists an absolutely Eσ-poίnted
perfect tree Q e L(fc) such that Q c P and X <#σ Q.

Proof By Proposition 2.12 of Sacks [9], there is a YeL(κ) Π P(ω)
such that X is recursive in Y and Ye Liω^Y]) C L(ω1[£<r, Y]). Hence there
exists an Eσ-pointed perfect tree QeL(/c) such that Q C P and Q =Eσ Y
(Sacks [9; 2.3]). Take an fe [Q] to see that Q is absolutely ^-pointed.
Since Q is Eσ-pointed, we see that ωΛ[Eσ9 Q] < ωx[Eo9f\. On the other hand,
QeL(ωλ[Eσ, Y]). Since Q=Eσ Y and YeL{ωx[Eσ, Y]). Consequently, Qe

f]). Q.E.D.
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LEMMA 5.3. The set of all absolutely E^pointed perfect trees in L(/c) is

Σ, on UK).

Proof. Firstly we shall show that for each τ < /c, there exists a ranked

formula Θτ{x) of ^(/c, G) such that

L(/e, f) |= θτ{v) <—> v is (7-recursively-in-/ inaccessible

for all fe 2ω and v < τ. As an example, we consider the case a — ω.

Let Φ be the predicate defined by

Φ(v> f)<—> i> > ω & y is a limit ordinal & Vφ(φ is an axiom

of KP >L(v,f)hφ).

Then Φ(v,f) says that v is O-recursively-in-/ inaccessible. Note that all
quantifiers in Φ(v, f) can be restricted to L(τ, /) whenever v < τ. Similarly,
for each n, the predicate which says that v < τ and v is n-recursively-in-/
inaccersible is represented by a bounded formula all of whose quantifiers
are restricted to L(τ,f). Let ¥ be the following predicate:

¥(s, n, v, f, i) <—> s is a function & dom (s) = (n + 1) X τ & rng (s) C 2

& i € 2 & s(τι, v) = i&Va< τ[s(0, a) = 0 ̂ —> Φ(α, /)]

&VJ <n Va< τ[s(j + 1, α) = 0 <—• s(j, α) = 0

& V/3 < α 3 r < α^ ̂  r & </, r) = 0)]

Then it is easily seen that for all v < τ and fe 2ω,

v is ω-recursively-in-/ inaccessible

<—> Vn < ωls e L(τ,f)Ψ(s, n, v, f 0) .

From this, we can obtain a required ranked formula θτ{x). The sequence
(θτ(x): τ < K) is Σ, on L(/c).

Now, for each perfect tree in L(κ), we let h(P) = min {v < κ\ PeL(v)}.

Obviously, h is Σ1 on L(Λ ). Let φP be a ranked sentence of J£?(Λ;, G) such

that for any /e2 ω ,

L(ΛΓ, /) |= φP <—> \fv < h(P) {v is not σ-recursively-in-/ inaccessible) .

Such a φP can be constructed using θh{P)(x). Therefore, the function P »-•

^ P is 2Ί on L(Λ:). By the definition of /ι(P), we have:

Ufi, f) 1= ̂ p <—• Λ(P) ^ α i , ^ , /]
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Consequently, for every perfect tree P in L{κ),

P is absolutely ^-pointed <-—• v/e [P]L(ιc,f) N φP .

But the right hand side means JP ||— φP see Definition 4.2). Thus the lemma

follows from Lemma 4.3. Q.E.D.

We define a forcing relation P\\—σφ as in 4.2 except that P varies

through absolutely Eσ-pointed perfect trees in L(/c). We use P,Q,R,

to represent absolutely Eσ-pointed perfect trees in L(/c).

DEFINITION 5.4. We say that a real / is σ-Sacks over L(/e) if for each

sentence φ of «=£?(*;, G), there exists a P such that fe [P] and P decides

^(i.e., P |Kσ Φ or P |[- σ 1 ^).

It is well-known ([8]) that the above definition is equivalent to: / i s

σ-Sacks real over L(/c) if and only if fe U {[P]:PeD] for any dense set

D of absolutely Eσ-pointed perfect trees which is definable in L(tc), where

we say that D is dense if (vP)(3Q)[Qeΰ & Q a P].

From 4.3 and 5.3. we obtain the following lemma.

LEMMA 5.5. The relation P \\—* φ restricted to Σx sentences φ of ££{κ, G)

is 2Ί on L(K).

LEMMA 5.6. (V^)(vP)(3Q)[Q c P & Q decides φ].

For the proofs of this lemma and the following lemma, see Sacks [9].

Although his proofs are for hyperdegrees, we can easily modify them for

ίJσ-degrees by using Lemma 5.2.

LEMMA 5.7. / / / is a σ-Sacks real over L(fc), then:

( i ) L(κ,f) \= φ if and only if (3P)[/e [P] and P \\-σ φ];

(ii) L(ιc,f) is an admissible set and f &L(/c);

(iii) g e L(κ, f) > g e L(κ) or (iX)[Xe L(tc) Π P(ω) and f<Eσg, X].

THEOREM 5.8. If K is a σ-recursively inaccessible ordinal projectible

into ω, then there exists a σ-Sacks real f over L(κ) such that o>ι[Eσ,f] = K.

Proof. The proof is similar to that of Theorem 4.7, but we must ar-

range for all perfect trees to be absolutely ^-pointed. Let δ be an arbitrary

ordinal less than K. Then, by Lemma 5.2, the set {Pe L(κ)\ P is absolutely

^-pointed and δ < ωt[Eβ9 P]} is dense and definable in L(Λ ). Consequently,

for every σ-Sacks real / over L(/c), it holds that K <J ωx{Eσ9f\. Hence we
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need to show the existence of a σ-Sacks real / over L(κ) such that K is

σ-recursively-in-/ inaccessible. In the case where σ = 0, it is clear from

Lemma 5.7. We consider the case where σ = m + 1 for some m < ω. Let

^o<^i< < ^ < b e a sequence of ordinals such that tc = sup {δn: n e ω}.

For each n < ω, we define an m-recursively inaccessible ordinal κn and

an absolutely i?m+1-pointed perfect tree Pn by recursion on n. Let Po =

Seq(2) and κ0 = min{y < Λ::^ is m-recursively inaccessible}. Assume that

κn and PTO are already defined and that κn = min{y < Λ:: V is m-recursively

inaccessible and Pn e L(v)}. By Lemma 4.6, there exists a perfect tree Q C

Pn such that QeL(/c+) and κn is m-recursively-in-/ inaccessible for all fe

[Q]. Note that < <e>j[J5TO+1,/] for all fe[Pn] because Pn is absolutely

^TO+rPointed. Consequently, Q is also absolutely i?m+1-pointed. In view

of Lemma 5.2, there exists an absolutely Z?m+1-pointed perfect tree R c Q

such that R e L(Λ:) and ^w < ω1[.ETO+1, 22]. From Lemma 5.6, we can find an

absolutely 2?m+1-pointed perfect tree Pn+1d R such that Pn+ί e L(κ) and Pn+1

decides φn, where φn is the π.-th sentence of 3?(ιc, G) in an enumeration

of all sentences of £?(κ9 G) which we fix throughout the proof. We set

/cn+ί = min{y < K: V is m-recursively inaccessible and Pn+1 eL(v)}.

It is easy to verify that for any fe ΓΊ {[Pn]: τι < ω}, / is an m + 1-Sacks

real over L(κ) and each κn is m-recursively-in-/ inaccessible, and hence K

is m + 1-recursively-in-/ inaccessible.

By the same way as in the case where σ < ω, we can construct a

sequence (Pn: n e ω) of absolutely 2?ω-pointed perfect trees and a sequence

</cn: new} of ordinals such that /c = sup {κn\ n eω}, and that for every / €
Π {[Pn]

: neω}9 f is an ω-Sacks real over L(κ) and each κn is n-recursively-

in-/ inaccessible. Hence, ωx{Em9f\ = A: for all / e Π {[PJ: neω}. Q.E.D.

THEOREM 5.9. For βαc/i σ ^ ω, ^Ziere are Eσ-degrees aQ and aγ such that:

( i ) 0(v) < a, for all v < ωx[Ea+ι] and all i <; 1;

and that for any Eσ-degree b:

(ii) ί < a0 and b <, a, • (iv < ω1[Eβ+J)[b < ° ( v )];

(iii) (vί ^ 1)(3P < ω J E ^ J ) ^ < a, • ί < 0<">].

Proof We set Λ:=ω1[£Jσ+1] and consider the ramified language J?(κ, Go, Gj)

defined in the same way as ££(κ9 G). For each pair <P0, Px> of absolutely

Eσ-pointed perfect trees in L(κ) and for each sentence φ of jSf(isr, Go, G^, we

define a forcing relation <P0, Pj> |K7 Φ For ranked sentence ^, <P0, Pj>

|h σ / ^ iff (V/o e [PoίXvΛ 6 [PJ)[L(A:,/o, Λ) N φ]. For unranked sentences, the
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definition of \\-a/ is similar to 4.2. It is well-known (cf. [11]) that if </0> /Ί)

is generic with respect to \\—σ\ then

(1) fi is σ-Sacks over L(κ) (i = 0,1)

(2) Lfc/jnLfc/^LW,
By the same way as Theorem 5.9, we see that there exists a pair </ό>/Ί>

of reals such that </0,/Ί> is generic with respect to \\-a/ and ω^E^fo] =

ωλEoJλ = K. We set a0 = degEσ (f0) and a, = degEσ (/•). Recall that 0(υ) =

degEσ (Hv), where {Hv: v < K) is the hierarchy for 2?σ-recursive sets obtained

in § 2. By Lemma 5.7, 0(υ) < at (v < K, i ^ 1). If b < α0 and A < al9 then

£ < 0(i° for some i; < K by (2). Thus we have proved (i) and (ii). (iii) is

clear from Lemma 5.7. Q.E.D.

COROLLARY 5.10. For each σ ̂  ω, there are Έβ-degree a0 and ax such

that {α0, α j does not have the greatest lower bound.

Proof. LET aQ and a1 be as in Theorem 5.9. If b < a0 and b < α1? then

* < 0(y) for some v < ω1[Eσ+1]. Then A < 0(v+1) and 0(υ+1) < a, (i = 0,1).

Thus b is not the greatest lower bound of {aQ, α j . Q.E.D.

COROLLARY 5.11. For each σ<Lω, the set {0(v): v < ω^E^J} does not

have the least upper bound.

Proof. Let a0 and ax be as in Theorem 5.9. Then each at is an upper

bound of the set {0(υ): v < ω^E^,]}. If b < at (i = 0,1), then b can not be

an upper bound of {0(υ): v < ω^^+J} as is known from the proof of 5.10.

Q.E.D.
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