C. RotthausNagoya Math. J.Vol. 76 (1979), 173-180

KOMPLETTIERUNG SEMILOKALER QUASIAUSGEZEICHNETER RINGE

CHRISTEL ROTTHAUS

In [4] EGA IV (7.4.8) hat Grothendieck die folgende Frage gestellt: "A sei ein noetherscher Ring, $I \subseteq A$ ein Ideal, so daß A separiert und komplett in der I-adischen Topologie ist. A/I sei ein P-Ring. Ist dann A ebenfalls ein P-Ring?" In dieser Arbeit beschäftigen wir uns mit dem Fall, daß A ein semilokaler noetherscher Ring ist und P die Eigenschaft "die formellen Fasern von A sind geometrisch regulär" bezeichnet. Wir wollen zeigen: "A sei ein semilokaler noetherscher I-adisch kompletter Ring, wobei I ein im Jacobsonradikal von A enthaltenes Ideal ist. Sind die formellen Fasern von A/I geometrisch regulär, so sind auch die formellen Fasern von A geometrisch regulär."

Im folgenden nennen wir einen semilokalen noetherschen Ring A quasiausgezeichnet, wenn seine formellen Fasern geometrisch regulär sind. Unter dem Radikal rad (A) eines Ringes A verstehen wir immer das Jacobsonradikal von A und mit \hat{A} werde die Komplettierung von A nach der vom Jacobsonradikal auf A induzierten Topologie (auch einfach Komplettierung von A genannt) bezeichnet. Bei den übrigen Bezeichnungen sei auf EGA [3] und [4] bzw. das Buch von H. Matsumura [5] verwiesen.

Herrn Markus Brodmann danke ich für zahlreiche nützliche Gespräche über diese Arbeit.

§1. Vorbereitungen

Wir geben eine Zusammenstellung der zum Beweis des Hauptergebnisses benötigten Sätze:

THEOREM 1 (Marot [7]). A sei ein semilokaler noetherscher Ring; $I \subseteq \operatorname{rad}(A)$ ein im Jacobsonradikal von A enthaltenes Ideal. A sei komplett in der I-adischen Topologie. Sind die formellen Fasern von A/I geometrisch reduziert, so sind die formellen Fasern von A ebenfalls geometrisch

Received December 4, 1978.

reduziert.

Theorem 2 (André [1]). A und B seien lokale noethersche Ringe, $\varphi: A \to B$ sei ein lokaler, in der Topologie der maximalen Ideale formell glatter Homomorphismus. Ist A quasiausgezeichnet, so lokalisiert die formelle Glattheit von φ .

Bemerkung. Die Aussage von Theorem 2 bedeutet: Für alle $\mathfrak{P} \in \operatorname{Spec}(B)$ ist der von φ induzierte Morphismus $\varphi_{\mathfrak{P}} \colon A_{\mathfrak{p}} \to B_{\mathfrak{P}}$ (wobei $\mathfrak{p} = \varphi^{-1}(\mathfrak{P})$) ebenfalls formell glatt in der Topologie der maximalen Ideale. Insbesondere folgt unter den Bedingungen von Theorem 2, daß der Morphismus $\varphi \colon A \to B$ regulär ist, d.h. φ ist flach mit geometrisch regulären Fasern.

Ferner benötigen wir die folgende Charakterisierung quasiausgezeichneter semilokaler Ringe:

Lemma 1 ([5] (33.E)). A sei ein semilokaler noetherscher Ring. Dann sind folgende Aussagen äquivalent:

- (a) A ist quasiausgezeichnet.
- (b) Für alle nullteilerfreien endlichen A-Algebren B ist für alle $\mathfrak{Q} \in \operatorname{Spec}(\hat{B})$ mit $\mathfrak{Q} \cap B = (0)$ der lokale Ring $\hat{B}_{\mathfrak{Q}}$ regulär.

Bemerkung.

- 1) Aus (b) in Lemma 1 folgt insbesondere, daß A die Eigenschaft J-2 erfüllt (vgl. [5] (32.B)).
- 2) (33.E) ist nur für lokale Ringe formuliert. Der semilokale Fall ergibt sich jedoch als unmittelbare Folgerung.

Wir stellen nun einige beweistechnisch wichtige Hilfssätze zusammen: Im folgenden sei A immer ein noetherscher semilokaler Ring; $I \subseteq \operatorname{rad}(A)$ sei ein im Jacobsonradikal von A enthaltenes Ideal.

LEMMA 2. A sei I-adisch komplett. $\alpha \subseteq \hat{A}$ sei ein vom Nullideal verschiedenes Ideal in \hat{A} . Für alle $n \in N$ mit $n \geq n_0$ gelte: $(A \cap (\alpha + I^n \hat{A}))\hat{A} = \alpha + I^n \hat{A}$. Dann ist $\alpha \cap A \neq (0)$.

Beweis. Wir setzen $\alpha_n = (\alpha + I^n \hat{A}) \cap A$. Nach Voraussetzung gilt für alle $n \geq n_0$: $\alpha_{n+1} + I^n = \alpha_n$. Wegen $\alpha \neq (0)$ ist $\alpha \not\subseteq (\operatorname{rad}(\hat{A}))^r$ für ein $r \in N$ mit $r \geq n_0$. Wähle $f_r \in \alpha_r \setminus (\operatorname{rad}(A))^r$. Dann gibt es ein $f_{r+1} \in \alpha_{r+1}$ mit $f_r - f_{r+1} \in I^r$, da $\alpha_{r+1} + I^r = \alpha_r$. Wir können also eine Folge $f_n \in \alpha_n$, $n \geq r$, finden mit $f_{n+1} - f_n \in I^n$ und $f_n \notin (\operatorname{rad}(A))^r$ für alle $n \geq r$. Da A I-adisch

komplett ist, existiert $\lim_{n\to\infty} f_n = f \in A \text{ mit } f \neq 0$. Wegen $\bigcap_{n\geq 0} \alpha_n \subseteq \alpha \cap A$ $f \in \alpha \cap A \neq (0)$.

LEMMA 3. A sei I-adisch komplett. $\alpha \subseteq \hat{A}$ sei ein Ideal mit $\sqrt{\alpha + I\hat{A}}$ $= \bigcap_{j=1}^r \mathfrak{M}_j$, wobei die \mathfrak{M}_j maximale Ideale in \hat{A} sind. Dann folgt: $\alpha \cap A \neq (0)$.

Beweis. Die Primärkomponenten von $\alpha + I^n \hat{A}$ sind für alle $n \in N$ \mathfrak{M}_j -primär. Dann ist mit $\alpha_n = (\alpha + I^n \hat{A}) \cap A$: $\alpha_n \hat{A} = \alpha + I^n \hat{A}$, und die Behauptung folgt mit Lemma 2.

Ist $\varphi\colon A\to B$ ein lokaler Morphismus lokaler Ringe, so sagen wir im folgenden " φ ist formell glatt", falls φ in der Topologie der maximalen Ideale formell glatt ist.

DEFINITION. $\Gamma_I = \{(\mathfrak{p}, \mathfrak{P}) | \mathfrak{p} \in \operatorname{Spec}(A); \mathfrak{P} \in \operatorname{Spec}(\hat{A}) \text{ mit } \mathfrak{P} \cap A = \mathfrak{p}; \mathfrak{p} \supseteq I \text{ und } \mathfrak{P} \text{ nicht maximal in Spec } \hat{A}\} \subseteq \Gamma_0 = \{(\mathfrak{p}, \mathfrak{P}) | \mathfrak{p} \in \operatorname{Spec}(A), \mathfrak{P} \in \operatorname{Spec}(\hat{A}) \text{ mit } \mathfrak{P} \cap A = \mathfrak{p}\} \subseteq \operatorname{Spec}(A) \times \operatorname{Spec}(\hat{A}).$

Lemma 4. A/I sei quasiausgezeichnet. Dann ist für alle $(\mathfrak{p},\mathfrak{P})\in \Gamma_I$ der vom kanonischen Morphismus $\psi\colon A\to \hat{A}$ induzierte Morphismus $\psi_{(\mathfrak{p},\mathfrak{P})}\colon A_{\mathfrak{p}}\to \hat{A}_{\mathfrak{P}}$ formell glatt. (D.h. ist $(\mathfrak{m},\mathfrak{M})\in \Gamma_0$ mit maximalem Ideal \mathfrak{M} , so lokalisiert die formelle Glattheit von $\psi_{(\mathfrak{m},\mathfrak{M})}$ in einer Teilmenge von Γ_0).

Beweis. Sei $(\mathfrak{p},\mathfrak{P})\in \Gamma_I$. Wähle $(\mathfrak{m},\mathfrak{M})\in \Gamma_0$ mit $\mathfrak{P}\subseteq \mathfrak{M}$ und \mathfrak{M} maximal in Spec (\hat{A}) . Dann ist $\psi_{(\mathfrak{m},\mathfrak{M})}\colon A_{\mathfrak{m}}\to \hat{A}_{\mathfrak{M}}$ formell glatt, da $\hat{A}_{\mathfrak{M}}\simeq (A_{\mathfrak{m}})^{\wedge}$. Nach Voraussetzung ist A/I quasiausgezeichnet; dann ist der von $\psi_{(\mathfrak{p},\mathfrak{P})}$ induzierte Morphismus $(A/I)_{\mathfrak{p}}\to \widehat{(A/I)}_{\mathfrak{P}}$ formell glatt, denn die formelle Glattheit von $(A/I)_{\mathfrak{m}}\to \widehat{(A/I)}_{\mathfrak{M}}$ lokalisiert. Da $\psi_{(\mathfrak{p},\mathfrak{P})}$ flach ist, folgt dann mit [3] EGA O_{IV} (19.7.1) auch die formelle Glattheit von $\psi_{(\mathfrak{p},\mathfrak{P})}$.

FOLGERUNG 4.1. A/I sei quasiausgezeichnet. Dann ist für alle $(\mathfrak{p}, \mathfrak{P})$ $\in \Gamma_I$ der von $\psi_{(\mathfrak{p}, \mathfrak{P})}$ induzierte Morphismus der Komplettierungen $\varphi_{(\mathfrak{p}, \mathfrak{P})} : \hat{A}_{\mathfrak{p}} \to (\hat{A}_{\mathfrak{P}})^{\wedge}$ formell glatt.

Beweis. Nach Lemma 4 ist $\psi_{(p,\mathfrak{P})}$ formell glatt. Die Behauptung folgt mit [3] EGA O_{IV} (19.3.6).

Folgerung 4.2. A/I sei quasiausgezeichnet. Für alle $(\mathfrak{p}, \mathfrak{P}) \in \Gamma_I$ lokalisiert die formelle Glattheit von $\varphi_{(\mathfrak{p}, \mathfrak{P})}$. Insbesondere gilt für alle $(\mathfrak{p}, \mathfrak{P}) \in \Gamma_I$, wenn Spec $\varphi_{(\mathfrak{p}, \mathfrak{P})}$ die von $\varphi_{(\mathfrak{p}, \mathfrak{P})}$ induzierte Abbildung der Spektren:

 $\operatorname{Spec} \varphi_{(\mathfrak{p},\,\mathfrak{P})} \colon \operatorname{Spec} ((\widehat{A}_{\mathfrak{P}})^{\wedge}) \to \operatorname{Spec} (\widehat{A_{\mathfrak{p}}}) \ bezeichnet \colon$

$$(\operatorname{Spec} \varphi_{(\mathfrak{v},\mathfrak{P})})^{-1}(\operatorname{Reg}(\widehat{A}_{\mathfrak{p}})) = \operatorname{Reg}((\widehat{A}_{\mathfrak{P}})^{\wedge}).$$

Beweis. Die erste Behauptung folgt mit Theorem 2. Die zweite Behauptung ergibt sich aus der Regularität von $\varphi_{(p, \mathfrak{P})}$ (vgl. [3] EGA O_{IV} (19.6.4) und (22.5.8)).

§2. Das Hauptergebnis

THEOREM 3. A sei ein semilokaler noetherscher Ring, $I \subseteq \text{rad}(A)$ ein im Jacobsonradikal von A enthaltenes Ideal. A sei I-adisch komplett und A/I sei quasiausgezeichnet. Dann ist A ebenfalls quasiausgezeichnet.

Beweis. Um (b) in Lemma 1 zu zeigen, dürfen wir annehmen, daß A ein Integritätsbereich ist. Wir haben dann nachzuweisen, daß für alle $\mathfrak{E} \in \operatorname{Sing}(\hat{A}) \ \mathfrak{E} \cap A = (0)$ ist. Sei also $\mathfrak{E} \in \operatorname{Sing}(\hat{A})$.

- 1. Fall. $\sqrt{\mathfrak{E}+I\widehat{A}}=\bigcap_{i=1}^s\mathfrak{M}_j$, wobei die \mathfrak{M}_j maximale Ideale in \widehat{A} sind. Dann folgt die Behauptung mit Lemma 3.
- 2. Fall. Es gibt ein nicht-maximales Primideal $\mathfrak{P} \in \operatorname{Spec}(\widehat{A})$ mit $\mathfrak{P} \supseteq \mathfrak{G} + I\widehat{A}$.

In diesem Fall konstruieren wir ein geeignetes Ideal $\mathfrak{D} \subseteq \mathfrak{G}$ und zeigen: $\mathfrak{D} \cap A \neq (0)$.

Konstruktion von \mathfrak{D} . Für alle Paare $(\mathfrak{p}, \mathfrak{P}) \in \Gamma_I$ betrachten wir folgendes kommutative Diagramm kanonischer Morphismen:

$$egin{aligned} A & \stackrel{lpha_{\mathfrak{p}}}{\longrightarrow} A_{\mathfrak{p}} \stackrel{
u_{\mathfrak{p}}}{\longrightarrow} \widehat{A}_{\mathfrak{p}} \ \downarrow^{\psi} & \downarrow^{\psi_{(\mathfrak{p},\mathfrak{P})}} & \downarrow^{arphi_{(\mathfrak{p},\mathfrak{P})}} \ \widehat{A} & \stackrel{eta_{\mathfrak{P}}}{\longrightarrow} \widehat{A}_{\mathfrak{p}} \stackrel{\mu_{\mathfrak{P}}}{\longrightarrow} (\widehat{A}_{\mathfrak{p}})^{\wedge} \end{aligned}$$

Für alle nichtmaximalen Primideale $\mathfrak{p} \in \operatorname{Spec}(A)$ mit $\mathfrak{p} \supseteq I$ definieren wir:

$$\mathfrak{D}_{\mathfrak{p}} = egin{cases} \bigcap_{\mathtt{QeSing}\,(\widehat{A_{\mathfrak{p}}})} \mathfrak{Q} & ext{ falls } \widehat{A_{\mathfrak{p}}} & ext{ nicht regulär} \ \widehat{A_{\mathfrak{p}}} & ext{ falls } \widehat{A_{\mathfrak{p}}} & ext{ regulär} \end{cases}$$

und setzen:

$$egin{aligned} \mathfrak{D} &= \bigcap\limits_{(\mathfrak{p},\mathfrak{P}) \,\in\, arGamma_1} (\mu_{\mathfrak{P}} \circ eta_{\mathfrak{P}})^{-1} (arphi_{(\mathfrak{p},\mathfrak{P})} (\mathfrak{D}_{\mathfrak{p}}) (\widehat{A}_{\mathfrak{P}})^{\wedge}) \ &= \bigcap\limits_{(\mathfrak{p},\mathfrak{P}) \,\in\, arGamma_1} [\mathfrak{D}_{\mathfrak{p}} (\widehat{A}_{\mathfrak{P}})^{\wedge} \cap \widehat{A}] \end{aligned}$$

Behauptung 1. $\mathfrak D$ ist ein reduziertes von Null verschiedenes Ideal in $\hat A$.

Beweis von Behauptung 1. Da nach Theorem 1 die formellen Fasern von A geometrisch reduziert sind, ist $\widehat{A}_{\mathfrak{p}}$ reduziert für alle $\mathfrak{p} \in \operatorname{Spec}(A)$, denn nach Voraussetzung ist A ein Integritätsbereich. Also ist $\mathfrak{D}_{\mathfrak{p}}$ entweder gleich $\widehat{A}_{\mathfrak{p}}$ oder ein reduziertes Ideal der Höhe ≥ 1 . $\mathfrak{D}_{\mathfrak{p}}(\widehat{A}_{\mathfrak{p}})^{\wedge}$ ist dann für alle $(\mathfrak{p},\mathfrak{P}) \in \Gamma_I$ ebenfalls reduziert (oder gleich $(\widehat{A}_{\mathfrak{p}})^{\wedge}$). Das ergibt sich wie folgt aus der Regularität von $\varphi_{(\mathfrak{p},\mathfrak{P})}$: Sei etwa $\mathfrak{D}_{\mathfrak{p}} = \bigcap_{i=1}^n \mathfrak{D}_i$, $\mathfrak{D}_i \in \operatorname{Spec}(\widehat{A}_{\mathfrak{p}})$. Dann ist $\mathfrak{D}_{\mathfrak{p}}(\widehat{A}_{\mathfrak{P}})^{\wedge} = \bigcap_{i=1}^n [\mathfrak{D}_i(\widehat{A}_{\mathfrak{p}})^{\wedge}]$, und zu zeigen ist, daß für alle $(\mathfrak{p},\mathfrak{P}) \in \Gamma_I$ und alle $\mathfrak{q} \in \operatorname{Spec}(\widehat{A}_{\mathfrak{p}})$ $\mathfrak{q}(\widehat{A}_{\mathfrak{p}})^{\wedge}$ reduziert ist. Mit [3] EGA O_{IV} (19.7.1) folgt, daß der von $\varphi_{(\mathfrak{p},\mathfrak{P})}$ induzierte Morphismus der Restklassenringe

$$\widehat{A_{\mathfrak{p}}}/\mathfrak{q} \to (\widehat{A}_{\mathfrak{p}})^{\wedge}/\mathfrak{q}(\widehat{A}_{\mathfrak{p}})^{\wedge}$$

ebenfalls regulär ist. Daraus ergibt sich unmittelbar, daß $(\hat{A}_{\mathfrak{p}})^{\wedge}/\mathfrak{q}(\hat{A}_{\mathfrak{p}})^{\wedge}$ die Serreschen Kriterien (R_0) und (S_1) erfüllt. Also ist $\mathfrak{D}_{\mathfrak{p}}(\hat{A}_{\mathfrak{p}})^{\wedge}$ reduziert und —nach Konstruktion von $\mathfrak{D}_{\mathfrak{p}}$ —Durchschnitt von Primidealen aus dem singulären Ort von $(\hat{A}_{\mathfrak{p}})^{\wedge}$ (denn $\varphi_{(\mathfrak{p},\mathfrak{p})}$ ist insbesondere treuflach). Damit folgt, daß \mathfrak{D} Durchschnitt von Primidealen aus dem singulären Ort von \hat{A} ist. Da \hat{A} nach Theorem 1 reduziert ist, folgt Behauptung 1.

Behauptung 2.

$$\mathfrak{D}_{\wp}(\hat{A}_{\mathfrak{P}})^{\wedge} = \begin{cases} (\hat{A}_{\mathfrak{P}})^{\wedge} & \text{falls } (\hat{A}_{\mathfrak{P}})^{\wedge} \text{ regul\"ar} \\ \bigcap\limits_{\mathfrak{Q} \in \operatorname{Sing}(\hat{A}_{\mathfrak{P}})^{\wedge}} \mathfrak{Q} & \text{falls } (\hat{A}_{\mathfrak{P}})^{\wedge} \text{ singul\"ar} \end{cases}$$

Beweis von Behauptung 2. Wie im Beweis von Behauptung 1 gezeigt, folgt " \supseteq ". Da $\varphi_{(p,\mathfrak{P})}$ regulär ist, erhalten wir:

$$\varphi_{\scriptscriptstyle{(\mathfrak{p},\mathfrak{P})}}^{-1}\Big(\bigcap_{\scriptscriptstyle{\mathfrak{Q}\in\operatorname{Sing}}((\hat{A}_{\mathfrak{P}})^{\wedge})}\mathfrak{Q}\Big)\supseteq\mathfrak{D}_{\mathfrak{p}}=\bigcap_{\scriptscriptstyle{\mathfrak{q}\in\operatorname{Sing}}(\hat{A_{\mathfrak{p}}})}\mathfrak{q}$$

und es folgt Behauptung 2.

Behauptung 3. $\mathfrak{G} \supseteq \mathfrak{D}$.

Beweis von Behauptung 3. $\mathfrak{P} \in \text{Spec}(\hat{A})$ sei ein nichtmaximales Primi-

deal, das $\mathfrak{E} + I\hat{A}$ umfaßt. Mit $\mathfrak{p} = A \cap \mathfrak{P}$ ist dann $(\mathfrak{p}, \mathfrak{P}) \in \Gamma_I$, und wegen $\mathfrak{E} \in \operatorname{Sing}(\hat{A})$ ist $\mathfrak{E}(\hat{A}_{\mathfrak{p}})^{\wedge}$ Durchschnitt von Primidealen aus dem singulären Ort von $(\hat{A}_{\mathfrak{p}})^{\wedge}$. Mit Behauptung 2 ergibt sich nun:

$$\mathfrak{D}_{\mathfrak{p}}(\hat{A}_{\mathfrak{B}})^{\wedge} \subseteq \mathfrak{E}(\hat{A}_{\mathfrak{B}})^{\wedge}$$

und es folgt Behauptung 3.

Behauptung 4. $\mathbb Q$ sei ein $\mathbb D+I^n\hat A$ umfassendes Primärideal in $\hat A$. Dann folgt: $(\mathbb Q\cap A)\hat A\supseteq \mathbb D+I^n\hat A$ (dabei ist $n\in N$ beliebig, aber fest).

Beweis von Behauptung 4. $\mathbb Q$ sei $\mathfrak P$ -primär mit $\mathfrak P \in \operatorname{Spec}(\widehat{A})$. Ist $\mathfrak P$ maximal in $\operatorname{Spec}(\widehat{A})$, so ist nichts zu zeigen. Sei also $\mathfrak P$ nicht maximal; dann ist mit $\mathfrak P = \mathfrak P \cap A$ ($\mathfrak P, \mathfrak P$) $\in \Gamma_I$. Wir setzen $\mathfrak q = \mathfrak Q \cap A$ und betrachten wieder folgendes kommutative Diagramm:

$$\begin{array}{ccc}
A & \xrightarrow{\alpha_{\mathfrak{p}}} A_{\mathfrak{p}} \xrightarrow{\nu_{\mathfrak{p}}} \widehat{A}_{\mathfrak{p}} \\
\downarrow^{\psi} & & \downarrow^{\psi_{(\mathfrak{p},\mathfrak{P})}} & \downarrow^{\varphi_{(\mathfrak{p},\mathfrak{P})}} \\
A & \xrightarrow{\beta_{\mathfrak{P}}} \widehat{A}_{\mathfrak{B}} \xrightarrow{\mu_{\mathfrak{P}}} (\widehat{A}_{\mathfrak{B}})^{\wedge}
\end{array}$$

Da D P-primär ist, erhalten wir:

$$\mathfrak{q}=\mathfrak{Q}\cap A=\mathfrak{Q}(\widehat{A}_{\mathfrak{P}})^{\wedge}\cap A$$
 .

(4.1)
$$\mathfrak{Q}(\widehat{A}_{\mathfrak{p}})^{\wedge} \cap \widehat{A}_{\mathfrak{p}}$$
 ist ein $\mathfrak{p}\widehat{A}_{\mathfrak{p}}$ -primäres Ideal, das $\mathfrak{D}_{\mathfrak{p}} + I^{n}\widehat{A}_{\mathfrak{p}}$ umfaßt .

Beweis von (4.1). $\mathfrak{D}(\hat{A}_{\mathfrak{P}})^{\wedge}$ ist ein Durchschnitt von Primidealen aus dem singulären Ort von $(\hat{A}_{\mathfrak{P}})^{\wedge}$. Nach Behauptung 2 gilt dann: $\mathfrak{D}(\hat{A}_{\mathfrak{P}})^{\wedge}$ $\supseteq \mathfrak{D}_{\mathfrak{p}}(\hat{A}_{\mathfrak{P}})^{\wedge}$. Da $\mathfrak{D} + I^{n}\hat{A}$ in \mathfrak{Q} enthalten ist, erhalten wir damit $\mathfrak{Q}(\hat{A}_{\mathfrak{P}})^{\wedge}$ $\cap \widehat{A}_{\mathfrak{p}} \supseteq \mathfrak{D}_{\mathfrak{p}} + I^{n}\widehat{A}_{\mathfrak{p}}$. Ferner ist $\mathfrak{Q}(\hat{A}_{\mathfrak{P}})^{\wedge} \mathfrak{P}(\hat{A}_{\mathfrak{P}})^{\wedge}$ -primär, also ist auch $\mathfrak{Q}(\hat{A}_{\mathfrak{P}})^{\wedge}$ $\cap \widehat{A}_{\mathfrak{p}} : \widehat{A}_{\mathfrak{p}}$ -primär.

$$\mathfrak{q}\widehat{A_{\mathfrak{p}}}=\mathfrak{Q}(\widehat{A_{\mathfrak{p}}})^{\wedge}\cap \widehat{A_{\mathfrak{p}}}.$$

Der Beweis von (4.2) ergibt sich unmittelbar aus der Tatsache, daß $\mathfrak{Q}(\widehat{A}_{\mathfrak{P}})^{\wedge} \cap \widehat{A}_{\mathfrak{p}}$ primär ist.

$$\mathfrak{q} \hat{A} \supseteq \mathfrak{D} + I^{n} \hat{A} \; .$$

Beweis von (4.3). Da q p-primär ist, ist Ass $(\hat{A}/q\hat{A}) = \{\mathfrak{P}_1, \dots, \mathfrak{P}_m\}$, wobei die \mathfrak{P}_i die minimalen Primoberideale von $\mathfrak{p}\hat{A}$ in Spec (\hat{A}) sind. Das ergibt sich sofort mit Theorem 1 aus [2] Chap. IV, § 2, no. 6, Theorem

2. Also ist $q\hat{A} = r_1 \cap \cdots \cap r_m$, wobei die $r_i \mathcal{P}_i$ -primär sind. Wegen $(\mathfrak{p}, \mathcal{P}_i) \in \Gamma_I$ betrachten wir wieder folgendes kommutative Diagramm:

$$\begin{array}{ccc} A \stackrel{\alpha_{\mathfrak{p}}}{\longrightarrow} A_{\mathfrak{p}} \stackrel{\nu_{\mathfrak{p}}}{\longrightarrow} \widehat{A}_{\mathfrak{p}} \\ \downarrow^{\psi} & \downarrow^{\psi_{(\mathfrak{p},\mathfrak{F}_{\ell})}} & \downarrow^{\varphi_{(\mathfrak{p},\mathfrak{F}_{\ell})}} \\ A \stackrel{\beta_{\mathfrak{F}_{\ell}}}{\longrightarrow} \widehat{A}_{\mathfrak{F}_{\ell}} \stackrel{\mu_{\mathfrak{F}_{\ell}}}{\longrightarrow} (\widehat{A}_{\mathfrak{F}_{\ell}})^{\wedge} \end{array}$$

Mit (4.1) und (4.2) folgt: $q(\hat{A}_{\mathfrak{P}_i})^{\wedge} = \mathfrak{r}_i(\hat{A}_{\mathfrak{P}_i})^{\wedge} \supseteq \mathfrak{D}_{\mathfrak{p}}(\hat{A}_{\mathfrak{P}_i})^{\wedge}$. Daraus ergibt sich, daß $\mathfrak{D} + I^n \hat{A}$ in $\mathfrak{r}_i = q(\hat{A}_{\mathfrak{P}_i})^{\wedge} \cap \hat{A}$ enthalten ist. Insgesamt folgt die Behauptung 4: $q\hat{A} \supseteq \mathfrak{D} + I^n \hat{A}$. Da die Behauptung 4 insbesondere für die Primärkomponenten von $\mathfrak{D} + I^n \hat{A}$ erfüllt ist, folgt fur alle $n \in N$: $[(\mathfrak{D} + I^n \hat{A}) \cap A]\hat{A} = \mathfrak{D} + I^n \hat{A}$, und die Behauptung des Satzes ergibt sich aus Lemma 2.

Folgerungen.

- (3.1) A sei ein semilokaler quasiausgezeichneter Ring. Dann ist der formale Potenzreihenring $A[[T_1, \dots, T_n]]$ in endlich vielen Unbestimmten ebenfalls quasiausgezeichnet.
- (3.2) A sei ein semilokaler quasiausgezeichneter Ring, $I \subseteq \text{rad}(A)$ ein im Jacobsonradikal von A enthaltenes Ideal. Dann ist die I-adische Komplettierung von A wieder quasiausgezeichnet.

LITERATUR

- [1] André, M., Localisation de la lissite formelle, Manuscripta Math. 13 (1974), 297-307
- [2] Bourbaki, N., Elements of Mathematics: Commutative Algebra, Paris, Hermann, (1972).
- [3] Grothendieck, A., Éléments de Géométrie algébrique, Inst. haut. Étud. sci., Publ. math. 20 (1964).
- [4] —, Éléments de Géométrie algébrique, Inst. haut. Étud. sci., Publ. math. 24 (1965).
- [5] Matsumura, H., Commutative Algebra, New York, Benjamin (1970).
- [6] —, Formal power series rings over polynomial rings I, in: Number Theory, Algebraic Geometry and Commutative Algebra, in honour of Y. Akizuki, Tokyo, Kinokuniya (1973), 511-520.
- [7] Marot, J., Sur les anneaux universellement japonais, Bull. Soc. math. France 103 (1975), 103-111.
- [8] Nomura, M., Formal power series rings over polynomial rings II, in: Number Theory, Algebraic Geometry and Commutative Algebra, in honour of Y. Akizuki, Tokyo, Kinokuniya (1973), 521-528.
- [9] Rotthaus, C., Nicht ausgezeichnete, universell japanische Ringe, Math. Z. 152 (1977), 107-125.

- [10] Rotthaus, C., Universell japanische Ringe mit nicht offenem regulärem Ort, Nagoya Math. J. 74 (1979), 123-135.
- [11] Valabrega, P., A few theorems on completion of excellent rings, Nagoya Math. J. 61 (1976), 127-133.

Mathematisches Institut der Universität Münster