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TRACE FORMULA OF CERTAIN HECKE OPERATORS
FOR I @)

HIROSHI SAITO AND MASATOSHI YAMAUCHI

Introduction

Let S.(I'(q*)) be the space of cusp forms of weight # with respect to
the congruence subgroup 7I',(q*), and S%I'(q*)) its subspace of all new
forms in S.(I'«(q”)), where ¢ is a prime such that ¢ >3. Now for

fe S.(I'(q?)), put (f|W)2) =f (g)(q"z)‘q"'z. Then it is known that W

induces an automorphism of S(I'(g*)). On the other hand, for the char-
acter y of (Z/qZ)* of order 2, let 5, denote the “twisting operator” with
respect to y, which was defined in [15] by Shimura, namely, (f|6,)(2)
= D mm1 @uy(m)et™ for f(2) = 357, @, S(I'(@). If v>2, S(I'(q)) is
closed under d, and if v > 3, using W and J, we can decompose S%/\(g*))
into four subspaces Si, Sy, Su, and Sy in a natural way. For example, S;
is the space consisting of all fe SYI'(q")) satisfying f|W = f and f|5, W
= f|d,. We see these subspaces are closed under Hecke operators T', for
all n. In the case where v = 2, we can also consider such a decomposi-
tion of S%7'(g*)) and we shall discuss this case in §5. The main purpose
of this paper is to give a formula for the trace of the Hecke operator T,
on each subspace S;, Sy, etc.. Noticing the trace tr T, restricted on each
subspace S, Sy, etc. can be expressed as a sum of tr T, tr WT,, tr o, Wo, T,
and tr o, Wo,WT, on S(I'(q)), in §2 and § 3, we shall give explicit for-
mulae for tr o, Ws, T, and tr,Wo,WT, on S(I"(g*)) for v > 2 by means of
Eichler-Selberg’s trace formula and Hijikata’s result [6] on the conjugacy
with respect to I'((IN). As an application of these formulae, we can give
additions to the examples which were discussed by Doi and Yamauchi [4].
Namely, in this paper, we shall give several Fourier coefficients of a
certain primitive cusp form fe SY(I'\(q*)) for ¢* = 11° and ¢ = 19°, and
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discuss on the class field theoretical property of special points of the
abelian variety associated with f. These examples turn out to be relat-
ed to Shimura’s theory on the construction of class fields over real
quadratic fields. In §6, we shall give formulae for tr §, and tr T,W on
S(I'(g"), ¥). As a corollary of these formulae, we obtain another proof
of the theorem of Asai ([2], Th. 4) and Ribet ([9], Prop. 4.4 and Th.
4.5) on the characterization of primitive cusp forms in S.(I",(g*)) correspond-
ing to L-functions of Q(v/—q).

Notation

The symbols Z, Q, R and C denote respectively the ring of rational
integers, the rational number field, the real number field, and the com-
plex number field. The symbol § denotes the upper half complex plane:

Y ={zeC|Imz>0}.

If we discuss a Fuchsian group of the first kind I" on £, then $* denotes
the union of § and the cusps of I'. For an associative ring S with an
identity element, we denote by S* the group of all invertible elements of
S, and by M,(S) the ring of all square matrices of size n with coefficients
in S. Then we put GL,(S) = M,(S)*. For subsets S;; of S, 1 < i, j< n,
(8,;) denotes the subset {(s;;) € M, (S)|s;;€S;;}. Let G be a group and H
be its subgroup. We denote by H the conjugacy with respect to H, i.e.,
gHg’ if and only if h-'gh = g’ for he H For a subset X of G, let X/H
denote the quotient of X by H and sometimes also a complete system of
representatives of X/H. For a finite-dimensional vector space V over C
and a linear operator 7T on V, tr 7'V denotes the trace of 7 on V.

§1. Preliminaries

In this section, we shall recall some facts on “twisting operator”

defined in [15] and abelian varieties associated with primitive cusp forms,
and make preliminary considerations. Let a = (g 3) € GLAR), deta > 0.

For a complex-valued function f(z) on $ and a positive integer r > 2, we
define a function f|[a], on § by

(f1le]l)2) = (det a)"(cz + d)~f(«(2)) ,

where a(2) = (az+b)/(cz+d) for ze . For a positive integer N, put
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I'(N) = {(“ 2) e SL(Z)|c = 0 (mod N)} .
c

For a character 4 modulo IV, we denote by S.({«(V), ) the space of all

holomorphic cusp forms on § satisfying

Al = v@7f  fory=(* b)eraw,
and by SYI(IV), ¥) the space of all new forms in S(I"'(N), ¥). Through-
out this paper, we fix a prime q > 3, and assume NN = ¢* with a non-negative
integer ». Let y be a real primitive character of (Z/gZ)* of order 2, and
assume v > 2 and the conductor {, of  satisfies {, < ¢*"*. Let a, = <g Z)
for ue Z, then as in [15] we can define the twisting operator §, on
S.I"(q"), ) with respect to y by

_ 1 %
flo, = W(;;) uZ=1 wWf e, ,

where W(y) is the Gaussian sum for y. For fe S.(I"(g"), v), put

mv=rllg ol

then W gives an isomorphism of S(I'(¢"), V) onto S(I"(q"), ¥). In the fol-
lowing, except in § 6, we assume +» is the identity character and « is an
even positive integer. Put S(I'(q")) = S.(I"(q"), ). By a result of Atkin-
Lehner [3], we know W induces an isomorphism of S%/'(q")) onto
itself. On the other hand, if v > 3, we can prove

Prorosttion 1.1. If v > 3, §, induces an isomorphism
d3,: SAT'(q)) — SAT(?)) -

Proof. For a primitive form fe S¥I'(q”)), assume f|d, is contained in
the space of old forms, then there exist g,, g, € S.(I'(g"")) such that (f]9,)(2)
= g(2)+8.qz). Applying J, on both sides, we obtain f|§,J, = g,|d,. Since
v>3, fl16,0,=f and g,|6,€ S.(I'(g"""). This contradicts our assumption.

If v > 3, by means of §, and W, we can decompose S¥/",(¢*)) into the
following four spaces, namely,

S (@) = S: D Su @ Suz ® S,
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where

Sy = {fe SATW@N| fIW = f,f|0,W = f|4,}

Su = {fe SATA@N| fIW =, flo,W = —f]3,}
Su, = {fe SN [IW = —f,fI5,W = f14,}
Sur = {fe STAGN| FIW = —f,f|5,W = —fld,} .

Then we see easily that these four spaces are closed under Hecke oper-
ators, and that Sy|d, = Sy,. In the case where v = 2, we can also con-
sider a similar decomposition of S%I\(q%), however the situation is a little
more complicated in this case, so we shall discuss it in detail in §5. To
give a formula of traces of Hecke operators on the above spaces, let us
consider the operators 6,Wd, and d,Ws,W on S(I'(q*)) for v > 2. These
operators have a good property if v > 3, namely we can prove

ProrositioN 1.2. If g is an old form in S(I"|(q") with v > 3, then

g|3,Ws, =0
gls,Wo,W=0.

Proof. 1If g(2) = f(qz) for fe S(['«(qg*™Y)), |5, = 0. Hence we may as-
sume g is a primitive form with the level ¢*, 2 <v. Then we see
(g0, W)(2) = f(qz) for some fe S(I'(g""")), and we obtain g|s,Ws, = 0 and
glo, W5, W = 0.

If v > 3, we can express the traces of Hecke operators on S, Sy, Si,,
and Sy; by using tr T, tr WT,, tr §, W5, T,, and tr 6, W5, WT, on S(I'(q")).
For example, on S;, we have

tr T, S = i{tr T, | SA(q) + tr WT,|SAI'(q))
+tr o, Wo,T, | S(I'(q) + tr6,Wo,WT.,|S(I'«(q)} -

Formulae for tr T, and tr WT, are already given by Hijikata [6] and
Yamauchi [16] respectively. In §2 and §3 we shall give formulae for
tr o, Ws, T, and tro,Wo,WT, on S.(I"(q*)) for v > 2 and for any n prime
to ¢. In the case where v = 2, we can calculate the traces of Hecke
operators on certain subspaces of S,(I"(¢*)) by means of the above traces,
we discuss it in §5.

In the rest of this section, we assume ¢ = 2, and recall a few facts
in [15]. Let I' be a group of level ¢* given by
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r= {(“ b) eri@la=d=1 mod g} .
¢ d
Let J be the jacobian variety of $*/I" and S,(I") the vector space of all
holomorphic cusp forms on § of weight 2 with respect to I". Then it is
known that J is defined over Q. Let f(2) = > o ,a,.e"",a, =1, be a
primitive cusp form in S,(I'y(¢g”)), then f is a common eigen-function for
Hecke operators 7', for all n as an element of S,(I"). Let K be the sub-
field of C generated over @ by a, for all n. Then by [15, Th. 1], we have

(1.1) There exists a triple (A, y, 6) formed by the objects satisfying the fol-
lowing conditions.

(i) A is a quotient of J by an abelian variety defined over Q, and
¢ is a natural map J— A.

(ii) 6 is an isomorphism of K into End (A)® Q such that poé&,
= 0(a,)op for all n. (&, is an element of End (J) associated with
T.)

(1iil) dim A = [K: Q].

Now if we take N(= M) =¢*(v > 1),r = q, s = N in the notation of [15,
§ 4], then we see our " satisfies the condition (4.8) in [15, §4]. Suppose
the following condition (the condition (4.9) in [15]) is satisfied:

(%) There is an automorphism p of K, other than the identity map, such
that y(n)a, = at for all n. (This implies especially that o* =1 and
a,=01if (n,q) + 1)

Then by [15, Prop. 8 and Prop. 9], under the assumption (x), there exists
an endomorphism 7 of A which is defined over the quadratic extension &
of Q corresponding to y and satisfies the condition

(1.2) (i) z*= —7n if ¢ is the generator of Gal (k/Q).
(ii) 7" = x(—1)q-id,.
(iil)) no8(a) = 6(a’) oy for every ac K.

Under the assumption (x), we follow the procedure in [15]. Let F
be the invariant subfield of K under p, and ok, 0, be the maximal orders
of K, F respectively. Let b, denote the ideal of K generated by all x in
0 such that x* = —x. We define the odd part b of b, and an integral
ideal ¢ of o, in exactly the same way as in [14, §2] for the present F
and K. We put
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t=1{tec Alo(b)t = 0},

then g is isomorphic to (0g/b)* as an ogx-module. Further we assume as in
[14, §9],

(xx) y(—1)g = €* (mod ¢) for some ec op prime to c,

and put

h={tez|(y — o)t = 0}
3 ={tez|(z + )t =0}.

Then as in [14, Prop. 9.2], we can verify

(1.3) The submodules Y and 3 are og-isomorphic to oz/c, and § = ) D 3.

Let k(r) (resp. k(Y), k(3)) denote the smallest extension of 2 over which
the points of z (resp. 9), 3) are rational. Then k(z) is an abelian extension
of k, and making Gal (k(y)/k) act on Y and 3, we obtain an injective
homomorphism

Gal (k(z)/k) — (0#/c)* X (0g[c)* .

We shall discuss on the class-field theoretical properties of (oz/c)-valued
“character” associated with the abelian extensions k() and k(3) for some
numerical examples in § 4 and §5.

§2. A formula for tro,Wé,WT,

For a rational prime p, let Z, and @, denote the ring of p-adic
integers and the field of p-adic numbers respectively. Let @, (resp. Q%)
be the adele ring (resp. the idele group) of @. For a non-negative integer

p and a prime p, put
Z Z
R =( . p).
W=7 7

For a prime p different from g (resp. p = @), let U, denote R,(0)* = GLL(Z,)
(resp. R,(»)*) and let U. denote the subgroup {ge GL.R)|detg > 0} of
GLy(R). Then U = [[, U, X U. is an open subgroup of GL,(Q,), and I'|(q")
= U N GLAQ).

LemmA 2.1. The notation being as above, one has

(n U, x Uq(g ;) U, % U,,) N GL(Q) = g[’o(q")(g ;) ,

p#Eq
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and the right hand side is a disjoint union.

Proof. It is easy to see that the right hand side is contained in the

left hand side and that the union is disjoint. Let g = <Z 3) be an ele-

ment contained in the left hand side, then det g = ¢®. If ¢ == 0, there exist
a,c’ e Z prime to g such that a = qa’ ¢ = ¢*¢’ with a positive integer
p#>v+1and (e, ) =1. Hence there exists an element A = (—qr?“c’ (:f)

*

e I'(qg") for some m,ne Z. Since hg = (0 I) and det g = ¢°, we may

assume ¢ = 0 and g is of the form <g 2) Now we easily see such ele-

ments are contained in the right hand side. This completes the proof of
our lemma.

For g — (“ 3) e (n U, x U,,(g ;) U, x Um) N GL(Q), we put

¢ p#q

1(8) = x(a/@)x(b) ,

then we can check

1(781) = x(g)  for 7,7 e '(q) .

Let (n U, x Uq<g ;) U, x UM) N GL(Q) = U= I'(¢)a; be a disjoint
pP#q

union, then we have for fe S.(I'|(q")),

_ 14
10 = i & e el

For v > 2, let 5,(5,W5,W) denote the subset of R,(v) given by

<q"+2Z;< qu+1Z‘;<> ’ b > 3
q2u+1Z;< qv+2Z;( -

fge (02 223)
Q°Z; q'ZYf

5,5,Ws,W) =
v (det g) = s} . v=2,

where v, denotes the valuation of Z, such that v,(q) = 1. Then 5,(3,Ws, W)
is a union of U,-double cosets. For i,j,1<i,j<q— 1, put

«= JG G )G o
YT o\ 0/\o ¢ O
B g — qv+2 —ig**!
- jq2u+1 __qv+2 *
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Y12 v+2 —grtl
LEMMA 2.2. Assume v > 2, and put a,; = (”q qu‘ll _qu> for

i,j,1<i,j<q— 1. Then one has
q-1
2.1) 5(6,Ws,W) =ig1 Ua,, ,

and the right hand side is a disjoint union.

Proof. The right hand side is clearly contained in the left hand
side. For i,j,7,j,1<i,j,i,j < q—1, we have
iy = L (€ G =) @ = D)+ iie G =)
i M . . . . " ’
T\ =gt —)) i'q(j —J) + ¢
and the disjointness of the right hand side follows from this easily. Hence

to prove our lemma, it is enough to show 5,6, Wé,W) C Uit Uy,
v+2

v+1
Let @ be an element of 5,(5,Wd,W). We may assume a = (qm?c q»+z>

v+2a v+ 1 u+2al

v+1
with a,ce Z,. For a = (gzmc q””) and o = (qz”“c’ g””)’ by a direct
calculation we can verify easily

Ua = Uyg if and only if ¢ =d/,c= ¢ (modg).

AW F=1v+2 v+1
Since U,e;; = Uq( J q—jj]_z"il 7 g””)’ we obtain 5 (6, Wo, W) = Ui;L.Uay,.

Let n be a positive integer with (n,q) = 1. For a prime p # q, we
put

Fy(n) = {g € M(Z,)|v,(det &) = v,(n)},

where v, is the valuation of Z, given by v,(p) = 1. Then &,(n) is a union
of U,-double cosets.

LEmMA 2.3. The notation being as above, let n be a positive integer
prime to q, and assume v>2. If ([[,e&,(n) X U, X U.) N GL,(Q)
= U0, I'(@)B; is a disjoint union, then one has

(QZ E,(n) X E,(6,W3,W) X U“,> N GL(Q)

-

q

= iU Lj) Fo(qp)“uﬁx ’

j=12=1

and the right hand side is a disjoint union.
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Proof.  Since [[,z £,(n) X U. = Utai (I]p2e U, X UL)B, is a disjoint
union, we see by Lemma 2.2

q-1 d
n Ep(n) X Eq(azW‘szW) X U, = U Ul Uaij‘BI ’

pEq i,j=11=

and the right hand side is a disjoint union. By considering the inter-
sections of both sides with GL,(Q), we obtain our assertion.

For «, = <g 3) € 5,(6,Ws, W), we put

xuleg) = 2(—belg™*?) .
Then for y, e U,, we have
(2.2) 107 = ulay) .
For ae [,z 8x(n) X £,(6,W5,W) X U, we define y,(a) by
2u(e) = 7:(exy)
where «, denotes the g-component of @. Then we can verify
2.3) nulrar’) = (@) for 7" e I'(q) .

For a positive integer n prime to g, put
B, Wa,WT) = (] £, X £6,Ws,W) X U.) N GL(@),
D¥#q

then Z(6,Ws,WT,) is a union of I'(g’)-double cosets. If we put for
fe S(I'(a))
= n**"'y(n)
flx ‘-'(51 Wax WTﬂ) = Z XI(a)fl [C(], ’

W(x)?  acro@n\EGwo,wTa

then by (2.3) the right hand side is independent of the choice of the rep-
resentatives «’s, and by Lemma 2.3, we obtain

f‘ 51 Waz WTn = fll 5(51 Wax WTﬂ) N

By Eichler-Selberg’s trace formula ([5], [7], [10], [11]), we can express
tr 6, W6, WT,|S.(I"(¢")) as a sum extended over some conjugacy classes with

respect to I'(¢"). By noticing £(3, W8, WT,)= (— : (1’) B, W3, WT,)("' : (1’) o

and X,((‘l’ (1))01(2 (1))) — 1(@) for ae £(5,Wa,WT,), we obtain
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tr 3,Wo,WT,| S = 22, + ¢, + t,)

W

1 1 C:—l . 77;—1 ~ )

te _— - Z xl(a) @ a q 2v+4)(e/2~-1)
(2.4) 4 «€ 8 (6, W3y W Tn)e/ Io(@%) [F@:{x1]] C— 7

i, = ._l Z Xl(a) (mln (lCa ls ‘7}41 D)‘—l q—(2v+4)(5/2—1)

2 «€ B @ WO WTm)n/I'o(a% [Ce — 74l

i 1 -
t, = —lim 2 «)——————n*!
D o 2. % )Im(oz)l”‘* ‘

T~/
a€ 8 (3,W3;WT0)p/To(e%)

where 5(6,Ws,WT,), (resp. 5(5,Wo,WT,),; resp. 5(0,Wd,WT,),) denotes
the set of all elliptic elements (resp. hyperbolic elements fixing cusps of
I'(g’); resp. parabolic elements fixing cusps of I'W(q?)) in 5(5,Wé ,WT,).
For ae GL(Q),,, and 7, are the two characteristic roots of a and I'(x)
={rel'(g")|r 'ay = «}. For a parabolic element « in GL,(Q) N U. fixing
a cusp of I'(qg"), there exists ge GL,(Q) N U., such that gl'(a)g™!

_—_{((1) "ih>lme Z} and gag™!' = (%‘ é“) with k& > 0, then m(a) = 2,;'/h.

To express tr 3, W5,WT, in a more explicit form, we follow Hijikata
[6]. First let us introduce some notation. For a quadratic polynomial
O(X) = X* —sX + n in Z[X], we put

K(9) = QIX][(9(X)) ,

then K(®) is a commutative Q-algebra of dimension 2 over @. We denote
by X the class of X in K(#). By a Z-order of K(®) we understand a
subring 4 of K(®#) containing the unity which is a free Z-module of rank
2. For a prime p, we put K(?), = K(?)®,Q, and 4, = A ®; Z,. Let «
be an element of GL,(Q) with the minimal polynomial &(X). For a Z-
order 4 containing X and a non-negative integer u put

Cul, a, ) = {g7'ag|g € GL(Q,), o(4,) = gR,(1)g™ N Q,lal},

where Q,[a] is a @Q,-algebra generated by « and ¢ is a canonical isomor-
phism of K(®), to Q,[«] such that o(X) = «. For the infinite prime, we
put

Co(a, ) = {g7'ag|g € GL(R)} .

TuEOREM 2.4 (Hijikata [6]). The notation being as above, let p be a
non-negative integer such that [4,: Z,,[X’]] = p*. For a non-negative integer

s put
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2, D, 4) = {§ € Z,|D(§) = 0 (mod p***)}
{ne Z,|9(y) = 0 (mod p****")}

29y, @, 4) = , if p7(s* — 4n) =0 (mod p) and x>0
¢, otherwise ,

and let Q and ' be a complete system of representatives of 2,(u, D, 4)
modulo p*** and 2,(x, @, A) modulo p*** respectively. For &e 2,(u, D, 4),
7€ 2y(, D, 4), put
9=yl 12
PR = o) s
$) = (7 D)
g p#‘r.ﬂ 7
Then {p(X)|£ e .Q}U{goﬁ,(X’)lr)e 2’} gives a complete system of representatives
of Cy(p, O, DR, (1)*.

CoroLLARY 2.5. The notation being as above, one has
‘Cp(os «, A)/Rp(o)xl = 1 .

These are the special cases of Th. 2.3 and its corollary of [6].

We put C,(o, 4) = C,(0,a, 4) if p = q and Cya, 4) = C/v, a, 4). Let
R(q”) be a Z-order of My(Q) such that R(¢") ®; Z, = R,(0) for p = q and
R(@") ®; Z, = R(v). For a Z-order A of K(®) containing X, put

Cla, 4) = {g7'ag|g € GL(Q), o(4) = gR(q")g™* N Qlal}
Cule, 4) = {g7'ag|g € GL(Q.), 8, € Cyla, N},

where g, denotes the p-component of g, and define the class number of
4 by

.

EK(®), 4) = |(K(P) ®q QA)X/K(¢)X<I;I Ay X /1::)

Here A% denotes the subgroup of (K(®) ®, R)* consisting of all elements
with positive determinants for the regular representation of (K(®) ®, R).

ProposITION 2.6. Let o be an element of GL,(Q) with the minimal
polynomial &(X) = X* — sX + ne Z[X]. Let 6 be the canonical map from

Cle, ) (q) to Cule, )T induced by the inclusion C(e, 4) C Cy(a, A).
For each prime p, let 5, be a union of U,double cosets and assume 5,
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= U, except a finite number of primes. Put 5,=1],5, X U. and &
= H, N GLYQ), then one has
i) 6 induces a surjective map

0: Cla, 4) N B/ (@) — Cu(a, H) N 8T .
ii) For each class & in Cya, A) N 5,/U,
167(@)| = W(E(®), 4) .
i) [Cue, A) N 5,/T| =[], Coler, 4) N 5,/T,| X |Culer, ) N UJU.].

Proof. Let g'ag be an element of C,a, 4) N 5, then there exist
g€ GL(Q) and g,€ U such that g = g,g,, since GL,(Q,) = GL(Q)U. We
see g-'agUgr'ag, and grlag, e Cla, 4) N &, and i) follows from this. Let
ge GL(Q,) be an element such that g 'ag is contained in @ Then we
see 67%(&) is in one to one correspondence with Q[]*\((Q[¢] ®, Q.)*gU)
N GLQ)/(q). Since gi'ag, € Cla, 4) N 5, we have

|Q[]*\(Qle] ®q Q.)*8U) N GL(Q)/I' ()]
= |Qla]*\(Qla] ®o Q.)*gUg™'[gUg™|
= |Q[a]*\(Qla] ®q Q)*/(Qla] Ve Q)™ N gUE™|
= MK(D), ),

thus we have proved the assertion ii). If p = q and &, = U,, by Cor. 2.4,
we have |C,(a, 4) N 5,/T,] = 1, and iii) follows from this easily.
Now we are ready to give a formula for tr 6 Wo, WT, | S.(I"(q*)).

THEOREM 2.7. Let n be a positive integer prime to q and & be an even
positive integer. Assume v > 2, then one has

e 3, W, WT, | SToa) = ¢, + 1o+ 1,)
W)

where

k=1 __ 51
t, = _.l_ Z _C_ch(d)s) Z h(qz(sz . 4n)/f2)
2 §2—4n<0 C -_— 77 f2l(s2~4n)
Jr)=1
(s2—4n)/f2=10r 0 (mod 4)

th=—(@—-1 ;} d'c)(Dg1nsa)

0<a<Va
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g — (g — ne 0, v =2
t, = —d(n){i(q — 1)*¢"*‘n="072 | v > 4 and even
0 , v odd .

Here for se Z, (X)) = X* — sX + n, and

Z X(@s(x)/qu_z) ’ v>3

(x)=0 ( )
Ds(x)=0 (mod gq¥—2
Cq(Qs) ==

Z X(d)s(x)) ’ v=2.

z mod q
x#s (mod q)

For ¢(X), ¢ and 7 denote the two roots of ®(X) = 0. s runs through all
integers such that s* — 4n < 0, and f runs through all positive integers
such that f*|(s* — 4n), (f,q) =1, and (s* — 4n)/[f* =1 or 0 (mod 4). A(d)
denotes the class number of the order of Q(v'4) with the discriminant A.
d runs through all positive integer such that d|n and 0 < d < 4/n. dn)=1
or 0 according as n is a square or not.

Proof. We know by (2.2) that for a e [[,., &,(n) X 5,,Ws,W) X U.,
1:(a) depends only on the U, -conjugacy class of the g-component «, of «
and (@) = p(a,). For ae 5(6,Wo,WT,), let f.(X) denote the characteristic
polynomial of «. Then we see f.(X) = ¢*"'?(q *2*X) for some sec Z.
First we treat the contribution #, from the elliptic elements. For
ae H(©G,Wé,WT,), let 0,(X) be as above, then « is an elliptic element if
and only if s —4n <0. For 9(X) = X* —sX + ne Z[X], put T(X)
= ¢**'@(q**X), then we have

{(X € E(ax Wax WTn) lfa = ws}
= U lwe 5, W3,WT)|f. = 7, Qled N R(@) = ¢(A)},

where ¢ is an isomorphism of K(@,) to Q[«] such that go(X') = a, and 4
runs through all Z-order of K(¥') containing X. We note |Cp(a, 4)
N 5,(n)/U0,| =1 for p = ¢q by Cor. 2.5, |C.(a, 4) N U./U.| = 2 and

CI:—I — n,‘-lq—(2v+4)(s/2—l) _ Cl:—l — 77:-1
g - E—1n

for the two roots {’ and 7’ (resp. { and 7) of ¥(X) = 0 (resp. ,(X) = 0).
By (2.4), Th. 2.4 and Prop. 2.6, we obtain
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1t KE@, 4)
“TTR R Ty R ey O

s, 4) = X e E) + 3 X))

where s runs through all integers such that s — 4n < 0, and ¢, » denote
the two roots of @,(X) =0. /A runs through all Z-order of K(¥',) con-
taining X. Let 2,0,¥,4) and 2/, ¥, 4) be as in Th. 24 and for
xe 2,0, ¥,, 1) (resp. y e (v, ¥,, 4)) let ¢, (X) (resp. ¢,(X)) be as in Th. 2.4.
Then x (resp. y) runs through a complete system of representa-
tives of {xeQ,p, ¥., 4)]oX)e 5,06,Ws,W)} (resp. {ye (¥, A)lgo;,(}?)
€ 5,0,Ws,W)} modulo ¢***, where p is a non-negative integer such that
[4,: Zq[X']] = g°. Now by the definition of 5 (5, W3, W), we see [4,: Zq[f{]]

must be ¢**!, hence p =v 4+ 1. Assume 4, is such an order. If (Z 3)

€ 5,06,Ws,W), v(bc) = 3v + 2, hence ga;,()?) ¢ 5,(0,Wé W) for ye 2,(v, ¥, A).
We note

Qq(v, w,, A) = {q”+2xlx € Zq, @s(x) = (mod q»—z)} ,

and for xe {x e Z,|D,(x) = 0 (mod ¢*"%)}, in the case where v > 3 (resp. v = 2),
0./(X), ¥ = ¢"*'x, is contained in 5,5,Ws,W) if and only if ¥ (x)=0
(mod ¢**%) (resp. ¥,(x) =0 (mod¢®) and x %= s (modg)). The condition
¥ (x') = 0 (mod ¢g**°) is equivalent to @,(x) = 0 (mod ¢*~?). Since xl(gox,(}?))
= y ¥ (@ x)[q"*") = (D (x)/q"""), we obtain

> @@y,  v=3

l (x)=0¢( )
®s(x)=0 (mod gv—2
Cq(s7 Q)

o), v=2.

q
x2%s (mod q)

We note for K(¥',) = QIX1/T (X)) and K(®,) = Q[Y1/(#,(Y)) there exists
an isomorphism 1 of K(¥,) to K(®,) such that Z(X') = ¢***Y, and for a Z-
order A of K(¥)), [4,: Zq[X']] = ¢**' if and only if [Zq[?]: A(4)] =q. Our
assertion for f#, follows from this. The contribution from the hyperbolic
elements can be treated in the same way by noting that |C.(«, 4) N U../ (Lt
= 1 for a hyperbolic element o« fixing a cusp of ['(g*) and that the class
number of the order 4 of @ ® Q such that [ZP Z: 4] = m is given by
¢(m) with the Euler function ¢, and we obtain
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f= — z n/;’ . ZoOernd),, 2 dla/d — DI -

0<d 1

Thus we have

th=—@—1 dZ: d*7'c(Pyinsa) -

In _
0<d<¥n

Now we shall calculate the contribution ¢, from the parabolic elements.
If 5(6,W5,WT,), is not empty, n is a square, and the characteristic
polynomial f, of an element « of 5(5,Wd,WT,), is either (X — ¢***y/n)* or
(X + ¢***y/n)*. Since the contributions from the parabolic elements with
the characteristic polynomial (X — ¢***4/n)* and from those with the char-
acteristic polynomial (X 4+ ¢**?4/n)* are the same, it is enough to consider
only the parabolic element « with f.(X) = (X — ¢***v/n)*. Put ¥X)
= (X — ¢**y/n)* and O(X) = (X — 4/n)’, then we have

{C( I @€ 5(51 W‘;z WTn)p’ fa = w}
= LAJ {a|lae B, W5, WT,),, f. =¥, Qla] N R(Q") = ¢(4)},

where ¢ is the isomorphism of K(¥) to Q[a] such that go(f() =a and 4
runs through all Z-order of K(¥) such that 45X. As in the case of
elliptic elements, we see [4,: Z [X']] must be ¢**!, and for such an order
o (X)e B (6, Wo,W) for ye 2,(v, ¥, A). If v is odd, for xe Z, ¥(x) =0
(mod ¢***) implies ¥(x)=0 (mod ¢**®), hence 5(3,Ws,WT,), is empty in
this case. Assume vis even. Put 2 = {xe Z,|¥(x) = 0 (mod ¢**?), T(x) = O
(mod ¢***)} for v >4 and 2 = {xe Z,|¥(x) = 0 (mod ¢°), ¥(x) == 0 (mod ¢°),
x #* 29'yn (mod ¢°)} for v=2. Then {goI(X')|xe 2 (mod ¢**')} gives a
complete system of representatives of Cj«, 4) N & (5, W3, W)/ U, for « with
the minimal polynomial . We see xl(goz(f( ) = 1for x € 2 and |2(mod ¢**')|
=gl — 1/g) if v>4 and |Pmod ¢®)| = (g —2) if v =2 Let «
e 5(0,W35,WT,), be an element such that f, = ¥, Q[a] N R(g*) = ¢(4), and
put [4: Z[)?]] = mqg'*' with a positive integer m prime to q, then m(a)
= ¢**'m/g"**y/7 = m/(qy7n). We note |C.(o, AN U./U.| = 2 for « with the
minimal polynomial ¥ and A(K(¥), 4) = 1 for any Z-order 4 of K(¥'). Thus
we obtain

hd 3 \1+s
t, = —lim % > <‘1\/Tn) |2(mod ¢*1)| ne2-1
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- {“é(q — (g —2n*",  »=2
=g — 1t vy >4 and even .
Thus the proof of our theorem is completed.
CoROLLARY 2.8. If v is odd, v > 3, and q > b, then one has
dim S; + dim Sy = dim Sy + dim Sy, .
Proof. Since we have
tr 6, W5, W|S(I'(q)) = dim S; 4 dim Sy — dim Sy, — dim Sy, ,

and 5(6,Wds, W), is empty, it is enough to prove ¢, = 0. The character-
istic polynomial of an element in 5(5,Wdé,W) is either X* 4 ¢*** or
X:+ @ X + g***. Let ¢, (resp. t,) denote the contribution from the ellip-
tic elements with the characteristic polynomial X* -+ ¢*** (resp. X* + ¢***X
+ ¢*** or X* — ¢*** X + ¢***). Put &(X) = X* + 1. If the equation &(X) =0
{mod ¢*~*) has a solution, then &#(X) = (X — &)(X — p) with some «, fc Z,.
Since we have o — f 2 0 (mod q), all the solutions of &(X) = 0 (mod ¢*~%)
are given by {& + ¢’ |ac Z}U{B + ¢ °F' |5 € Z,}. Hence we obtain

(@ = 3 M)+ T xle—pE)
=0.
Therefore {, = 0 and we can prove f, = 0 in the same way.

§3. A formula for tro,Ws, T,

We use the same notation as in §2. For v > 2, let 5,0,Ws,) denote
the subset of R,(y) given by

qu+IZX qZZX
(qv+2Z§< qy+1qu ? v > 3
q q

qSZX qu
g e ( q q

5,(6,Ws,) =
v(det g) = 6} s y=2,

then 5,(0,Wd,) is a union of U,i-double cosets. For i,j,1 <i,j<q—1,

put
= ) TG )
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s v+l

_ (iq”“ iqu . q2)
qv+2 Jq

Multiplying by (g, _'(1))-l on both sides of (2.1), we obtain

s v+ 1 r 1y’ 2
Lemma 3.1. Assume v > 2, and put B, = (Lg,” zqumq), 1<, 5

< q — 1, then one has
~ g-1
aq(alwaz) = iLj)=1 Uq‘Bij ’

and the right hand side is a disjoint union.

By virtue of this lemma, the following lemma can be proved in the
same way as Lemma 2.3.

LEmMA 3.2. Let n be a positive integer prime to q, and assume y > 2.
Let ([]peq &(n) X U, X U.) N GL(Q) = UL, I'(@")B: be a disjoint union,
then one has

(D E(n) X E3,W3) % Uw) N GL(Q)

i

= { 1=1 gro(q")ﬁuﬁz )

B

.

and the right hand side is a disjoint union.

For a, = (Z 3) € 5,(0,Wd,), we put

1(ag) = y(ad/q™*") .
Then for y,e U,, we have
(CAY 1:(ra'aare) = pol@y) -
For ae [[ps, &5(n) X £,0,W3,) X U, we define
1:@) = xq)
where «, denotes the g-component of «. Then we can verify
3.2) 16(ar) = pl@)  for 7,7 e I'(q) .

For a positive integer n prime to g, put
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5(5,Ws,T,) = (n B (n) X B5,W8,) X U) N GL(Q) .
For fe S(I'(q")), we define

fl B@Wo,T) = Xyt 52 [,

W(y)* @€ Fo(q")\E Gy WayTn)

then by (38.2) and Lemma 3.2, we have
flo,We,T, = f|, 5(6,We,T,) .

By Eichler-Selberg’s trace formula, we obtain

tr 3,W8,T, | SAT(q)) = X (s, + 1, + ¢,)

W)
1 1 CK—l l:—l ~ _
t, = —— > x2( ) g~ o
4 “65(51W¢71Tn)3/1'o(q") [F( ) {+1}] Ca
t, = —l. Z % (a\(mln (lCal lﬂal» -’l—(uH)(‘/Z-l)
2 € B @y WoyT o)1/ I 1. — A
« AWy Ta)n/I'o(g)
t, = —lim 2 2. 1@ == n
€ B (B, W, T ) o Folah) |m(a )l
a aWorTn)p/Tolg

where F(6,Wd,T,), (vresp. £(,Ws,T,),; resp. 5(3,W5,T,),) denotes the set
of all elliptic elements (resp. hyperbolic elements fixing cusps of I'(q*);
resp. parabolic elements fixing cusps of I'y(¢*)) in 5(5,Ws,T,) and the other
notation is the same as in (2.4). We can express trd, Ws,T,|S(I"«(q?))
in a more explicit form, namely, we can prove

THEOREM 3.3. Let n be a positive integer prime to q, and x be an even
positive integer. Assume v > 2, then one has

tr 8, W3, T, | ST @) = 21, + 8, + 1),

W()?
where
k=1 £—1
t, = _l Z ¢ — 7 q—(v+4)(:/2-—l) Z x(a(s . a»
D gevrese Igr+an<o C -7 a mod ¢
X 2. h(g™(g*** — 4¢"**n)/f*)

2| (q2v +253—4qv +4n)
7)=1
(q2”+ﬁsﬂ-—4qv+4n)/f"_0 or 1 (mod 4)
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__(q — 1)qu/2~1 Z d;—:ﬂ)z:odqx(a«d + n/d)/q»ﬂ—l _ C())

din

0<d< Vn
d+n/d=0(mod gv/{2—1)

= , if v is even
0 , if vis odd
0, v>3

b= {—%5(7»)(!1 = Dnt0% 55 qx(a(zﬁ —), v=2.

Here s runs through all integers such that ¢**’s* — 4¢"**n < 0, and ¢,y
are the solutions of X* — ¢**'sX + ¢"**n = 0. [ runs through all positive
integers prime to q such that f*|(¢g**’s* — 4q"**n) and (¢***s* — 4¢"**n)[f* =0
or 1(mod 4). d runs through all positive integers such that d|n,0 < d < y/n,
and d + n/d = 0 (mod ¢**7").

Proof. As in the case of y, for ae [[,., 5,(n) X 5,06,Ws,) X U.,
x(e) depends only on the U,i-conjugacy class of the g-component «, of
a and y(a) = x(e,). By the definition of 5(é,Ws,T,), the characteristic
polynomial f, of « in 5(9, W5,T,) is of the form ¥(X) = X* — ¢**'sX + ¢"**n
for some integer s. Let 4 be a Z-order of K(¥,) such that Q[a] N R(g*)
= ¢(/), then we see [/Iq:Zq[X']] must be ¢’, where ¢ is an isomorphism
of K(¥',) to Q[a] such that ;a()?) = a. First we calculate the contribution
t. from the elliptic elements. An elements a e 5(3,Ws,T,) with f, =¥, is
elliptic if and only if ¢***s* — 4¢***n < 0. Let 4 be a Z-order of K(¥,)
such that [4,: Zq[X]] =q’. For xeQ,, ¥, A) (vesp. yc 2,(v, ¥, 4)), we
see U (x) = v(@"'s —x) = v+ 1 (rvesp. v, (y) = v, (¢ 's —y)=v -+ 1) if
0(X) e B,(6,W5)) (resp. ¢)(X)e 5,(6,Ws). If v>3,¢(X)e5,0, Ws,) for
ye (T, ), and put Q = {g"*'x'|x' € Z,, ¥’ = s (mod ¢)}, then {p,(X)|x
€ 2 (mod ¢**?)} gives a complete system of representatives of {« € 5,(5,W3,)|f.
=T YU, and y(p.(X)) = 7(x'(s — &)). Ifv =2, put Q = {¢°x' |x' e ZX,x' % s
(mod @), x* — sx’ + n =0 (mod q)} and ' ={¢% |y eZ,y*— sy +n=0
(mod q)}, then we see {p(X)|xe 2 (mod ¢} U {¢(X)|ye 2 (mod ¢*)} gives
a complete system of representatives of {ae 5,(5,Ws)|f. = ¥ }U, and
1(pAR)) = 1% (s — &), 1pyR) = 1(¥'(s — ¥). Our assertion on ¢, fol-
lows from this in the same way as in the case of §, Wo,WT,. If v is odd,
we see easily £(3,W3,T,), is empty, hence ¢, = 0. Assume v'is even, and
let @ be an element of 5(3,W3,T,), with f, = ¥, for some integer s. Let
g"n, and ¢"n, be the solutions of ¥(X) =0, then », +v,=v 4+ 4 and
n = mn, Since (¢"n, — q@*n,)* = (q**'s)* — 4¢"**n = @"**(¢*"%s* — 4n), v, = v,
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= (v + 4)/2 and s = ¢"***(n, + n,). Hence ¥, is of the form X*4q®“*¥”
(d + n/d)X + ¢’**n for d, where d satisfies d|n,0 < d < 4/n and d + n/d
= 0 (mod ¢**"). Thus our assertion on ¢, can be proved in the same way
as above. Finally we treat the contribution from the parabolic elements.
If (¢**%s)* — 4¢"**n = 0 for an integer s, v must be 2 since we assume n is
prime to q. Hence 5(6,Wo,T.,), is empty if v > 3, and ¢, = 0. Assume
v=2 and n is a square, then the characteristic polynomial f, of « in
5@, Wa,T,), is of the form ¥(X) = X* — ¢*sX + ¢°n for s = +24/n. Let
A be a Z-order of K(¥',) such that Q[a] N R(q") = ¢(4), then [4,: Zq[f(]] = ¢°.
If we put [4: Z[X]] = mq® with m prime to g, then m(e) = m{(y/ng). In
the same way as above, we obtain

t, = —lim £ nel21 i

§—0 2 me=1
(m,q)=1

= —4(q — 1)n“’”’2“§iqx(a(2«/ﬁ — a)).

(29)™ 5 ey — o)

a mod ¢

Thus the proof of our theorem is completed.

§4. The case ¢" =11°

In this section, we shall make some numerical observation on
S¥I",(11%)), which is of dimension 100, using the formulae obtained in §2
and §3. As was shown in §1, S}(I"(11%)) decomposes into 4 subspaces S;,
Su, Suy, and Sy We find dim S; = 15, dim S;; = dim S, = 25, and dim Sy,
= 35. Now we take the space S; and give the characteristic polynomials
of the Hecke operators T, acting on S; for several n, whose roots give
n-th Fourier coefficients a, for some primitive form f(z) = >.2_, a,e*" in
S;.

- characteristic polynomial of T,
n n
x Sll i Slz
X" — 16X® + 98X° — 285X*
2| -t X + 390X — 199
3 1 X® 45Xt — X* — 34X? (X* + X* — 4X* — 3X*?
+ — 39X +1 + 83X + 1)
5 +1 XP 44Xt — 99X — 27X? (X° 4+ 6X* + 10X* + X?
+ 31X + 23 — 6X — 1)
X® 4+ 23X* — 400X (X* + 56X* + 502X3
199 +1 — 5811X* 4 52209X — 20441X? — 426566X
+ 120077 — 2148299)°
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For an explanation of this table, we remark the space S; decomposes
into the 5-dimensional space S;, and the 10-dimensional space S;,. As was
proved in [13], we have ten primitive forms in S/ (11%)), which corre-
spond to the L-functions of Q(v'—11) with Grossencharacters. By the
following lemma, we know five such primitive forms spann the space S;,
and the remaining five primitive forms are contained in Si.

LEMMA 4.1. Let q be a prime such that q = 3 (mod 4), g > 3, and & be
an even positive integer. Let 2 be a Grossencharacter of Q(y/ —q) with the
conductor (q) which satisfies

@y = (&)

lal
for ae Q(v/—q) with a = 1mod* (q) and y(a)i((a)) =1 for ac Z. For an
integer a in Q(+/—q), put i(a) = 2((a))<|i|>_(‘_l) and let x, be a rational
a
integer such that

(1 + ay=q) = eriesre

for ae Z. Then the primitive cusp form f(z) = >, Aa@)N(a)*"V72e* ¥ @z cop-
responding to A is contained in S%I"(q*) and satisfies

HLlW= (_i)‘X(_Z)X(xo)fz .

Proof. Comparing the functional equation of the L-function of 2
with that of cusp forms in SY/'(¢%), we obtain

LIW = (=i T

where T(2) = 1 37 A(a)ei@e?=0, By an easy calculation, we have
q a mod (q)

T) = y(—2)x(x,), and this completes the proof.

Hereafter we restrict our discussion to the 10-dimensional space Sy,
which is closely related to Shimura’s theory on the construction of class
fields over real quadratic fields. Let us fix a primitive form f(2)
= > .0, e Sy, and let K denote the field generated over @ by a,
for all n. Then as the table shows, K and f(z) satisfy the assumption
(x) in §1. Let F,, be the maximal real subfield of @Q(*¥'), and put «,
= e/ | e ¥, Since /3 — a, satisfies X — 16X® + 98X° — 285X*
+ 390X* — 199 = 0, we may put @, = V3 — @, and K = F,(+3 — «,). Then
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we find

G=V3—a, a=a, 0 =oaf—4a2+1,
Qg = — 1205 — af + 44af — 9, — 33 .

(These Fourier coefficients are obtained from tr T, for several composite
integers n, which are not given here.) We remark f(z) and its compan-
ions f,(2) = > o, aie™"* spann the space S;,, where ¢ runs over all iso-
morphisms of K into C, and the invariant subfield F' of K under p which
is defined in §1 is F = F,;. In the following we follow the notation in
§1. Since f satisfies (x), we can associate with f a triple (A, g, 6) and an
endomorphism 7 of A defined over k = Q(v' —11) corresponding to y. Let
o, denote the ring of all integers in k. In the present case, we see b = b,
= (V3 — a,) and ¢ = (8 — a,), and the condition (xx) is satisfied with, e.g.,
e = 136. Hence we can define an og-module g = {te A|6(b)t = 0} and an
o-module ) = {teg|(p — 6(e))t = 0}. Let k(y) be as in §1, then from the
action of Gal (k(9)/k) on f, we obtain an injective homomorphism

r’: Gal (k(y)/k) — (0x/0)* ~ (Z/199Z)* ,
and put r(@) = r’ ((E(—?I)ﬂg))

ProposITION 4.2. The field k(y) is a ray class field over k of conductor
110 with a prime factor [ of 199 in k, and one has

r((@) = ple)pu(e mod 1) ,

for every a in k prime to 11[, where p is the isomorphism of o/l onto
07/(3 — ) and ¢ is a homomorphism of (0,/(11))* into (0z/(8 — a,))* of order
22 such that

o(m) = y(m)

for me Z.

Proof. Since every prime factor of the conductor f of k(y)/k divide
N(ON = 199-11° (see Shimura [12, §7.5, p. 181 and Prop. 7.23]), we may
put f = [, p’», where p runs through all prime factors of 199-11. By the
same argument as in the proof of [14, Th. 2.3] we first obtain

r((m)) = x(m)p(m mod 1)
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for every me Z prime to 199-11. So we have [k(Y): k] = 99 or 198, and
the [-component f; = 1 by [14, Lemma 7.32]. To determine f,., we use the
following fact which is nothing but [14, Th. 2.8] for the present case.

Let 1 be a rational prime which divides N(c) but not N = 11°. Suppose
that y(I) = 1, and a, is prme to ¢ = (3 — o). Then | is divisible by only
one of the prime factors of 1 in k. Moreover if | denotes the factor of 1
which divides i, then

r(l) = a, modc.

Take [ =199. Since a, is prime to 199, one has f. =0. Hence
f = (W —=11)™ for some positive integer m. Owing to Hasse’s conductor
ramification theorem, we have 1 < m < 2. Thus we have

r((@) = p(a)p(a mod 1)

for every a in k prime to 11l with a homomorphism ¢ of (0,/(11))* into
(0g/c)* and the isomorphism p of 0,/{ onto og/c. The order of ¢ is deter-
mined as follows. Because r((*) = a,, = 133 mod (8 — «,), we have ¢(I) = 136
(mod 199). Therefore the order of ¢ is 22. Hence m = 2 and f = 11l
This completes the proof of our proposition.

Remark 4.3. Let p (3 199) be a rational prime such that y(p) =1,
then p decomposes into two distinct primes p = (y) and p* = (¥*) in %
= Q(v/—11). 7 can be so chosen as p = 77°, z(r + 7°) = 1. Observe that
") = y(—r — ) = —1. Let n and o’ be the solutions of X* — ¢, X + p
= 0mod (3 — «,). Then by [14, Th. 2.3], we have

4 M = _7,11 . (T:)u mod (3 _ ao) .

Remark 4.4. Let a, = e**/"* 4+ e %'/ a5 above. We note «, is one of
the fundamental units of F};, and we have N, (' — 1) = 23*-67-199. As
was indicated in [4] for the case of ¢ = 7°, the prime N(¢) = 199 seems to
be closely related to the factor 199 of Ny, (' — 1).

Let us consider the endomorphism algebra End, (A). Put § = +/3 — a,
then 6(d) and » generate a quaternion subalgebra U of End, (A) over
F = F,. Since & = (8 — a,) € Ny v=m,z(F(+—11)), ¥ is isomorphic to M,(F).
Denote by ’ the canonical involution of %. Then we can find an element
& =a 4+ b0 + cp + d6(d)y in A with a, b, ¢, de€ 6(o;) N End (A) such that
¢ =0 and & = e with ee 6(o;) N End (A). Define an abelian subvariety
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B of A by
EB=A.

Then B is rational over k, A = B+ B* and B* = &A. We can easily
verify that B N B¢ is a finite group annihilated by (e — 2b6(6)). Denote
by 6x(a) the restriction of 6(a) to B for a € F, then we have an isomorphism
6r of F into End, (B).

PropositioNn 4.5. The notation being as above, the abelian variety B
is simple and Endgy (B) = 0:(F).

Proof. Let ¢, be the p-th power Frobenius endomorphism of B modulo
», where p is a prime ideal in %k such that Np = p. By the table, we
know that F(p,) # F(¢;). Therefore by the same argument as that of [12,
Th. 7.39], we obtain our proposition.

§5. The case ¢ = 19°

In this section, we shall study particularly the case v = 2, and give
an example for ¢* = 19. Let 4 be a character modulo q. Then for f
= 2on=10,6" " € S(I'(Q), ¥), put fz = 271 @,y (n)e™™, then by [13, Prop.
3.64], we know f,eS(I'(g9). Put S.(I'«(q), ¥)" = {f|fe S« ¥}
S(SL(Z))* = {f,|f e S(SL((Z))} and SAI'«()* = {f;|f € Si("(g))}. Then by
[8, Prop. 7.1 and Prop. 7.2], we know S%I"(q%)) contains a subspace iso-
morphic to (D) ys SL(Q), ¥)) @ SUT(P)* © S(SLy(Z))*, where the sum
@y, 421 Tuns over a set of representatives of the pairs {y, ¥}, ¥* # 1, of
the characters of (Z/qZ)*. Let S™(I'\(¢*)) denote the orthogonal comple-
ment of SYI"«(q))* ® S,(SLy(Z))* in SYI"(g")) with respect to the Petersson
inner product. Then S™(I"y(¢*)) is closed under the action of W, s, and
Hecke operators T,. Hence as in the case v > 3, we can define the sub-
spaces Si, S, Snxa Sy satisfying SHI"(q%) = S: @ S @ SII, ® S by

Sy = {fe SiT(gN| fIW = [, f10,W = [|8,}

Su = {fe SUT(gN| fIW = f,f|6,W = —f]5,}
Su, = {fe ST(aN| fIW = —f,f|0,W = f5,}
S = {fe SIT@N| fIW = —f,fl5,W = —f|3,} .

By the following lemma we know to which subspace f;, ¥* # 1, be-
longs.
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LemmaA 5.1. Let  be a character modulo q and f be an element of
S(I'(q), v?). Then one has

fIW = 4(=Df; .

Proof. For uec Z, put a, = ((1) u{q)’ then we have

fr= s L@l

W(«If)

where W(vy) is the Gaussian sum of . Hence we have

FIW = gy 2o [« (0 7).

W(«p) 0

Since (u, @) = 1, there exist ¢, d e Z such that ud — gc = 1. Then we see
e T G DG (T 2
[f‘u(q —1)] = (u)fl [( 1 df q>] Therefore we obtain
W = Lo Sy @

i) (%o 291

= iy =7l YL

= Y(=Df; .

and f

This completes the proof.
To calculate tr T, on each subspace S;, Sy, etc., we need the follow-
ing lemma.

LEMMA 5.2. Let n be a positive integer prime to q.
i) Put SQ1) = S(SLAZ)) D S(SLAZ))* ® S(SLLZ))" D S(SL(Z))*, where
S{SL(Z))™ = {f(mz)|f e S(SLZ))} for a positive integer m. Then one has

tr o, Ws,T,|S(1) = (x(—1) + g7 tr T',| S(SL(Z))
tr 5, Wo,WT,|S(1) = 2¢~'%(—1) tr T, | S(SL(Z)) .

il) Put S(q) = SAI'(Q)) ® SAL(@)*D SAL'«(q))*, where SYI"(q))* = {f(q2)|
fe SUT'(Q)}. Then one has
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tr 8, W3, T, | S(g) = ((—1) + q”') tr T, | SYT'(@)
tr 5,W3,WT,| S(@) = 2¢" (1) tr T,| SA'(a)) -

Proof. We prove only the formula for trd,Wo,T, in the case of ii).
The other cases can be treated in the same way. If f is contained in
S%I"(q))?, obviously f|o,Ws,T, = 0. Let f be a primitive form in SYI"\(q)),
then we have by Lemma 5.1

(6.1) f16,Wo, = y(=Df, 16, = 2(—1)(f(2) — a.f(g?)) .
Let f = g, for a primitive form g(z) in S¥/'y(q)), and b, be the g-th Fourier

coefficient of g. Put g‘[(g —1

O)] = ¢g, then we have

f16,Wé, = (8(2) — b,8(q2))| W3, = (eq”"g(q2) — b,eq™*°g(2))
=qf,

since e = —b,q'"*2. Our assertion follows from (5.1) and (5.2) easily.

By virtue of this lemma, we can express tr T), on each space S;, Sy,
etc. by using formulae for tr T, tr WT,, tr 6, Wo,T,, and tr 5, Wo,WT,. For
example, on S;, we have

5.2)

tr T, | Sy = i{tr T, | SAI'(q%) + tr WT.| SI'«(q)
+ tr 6, Wo, T, | S(I'(q") + tr 6, W5, WT,| S(I'W(q"))
— (=D + ¢7" + 2(—Dg ) tr T, | SASL(Z)) © SAI'(q))} -

Now let us discuss a numerical example in the case where g = 19*
and £ = 2. We find dim SY(/",(19%)) = 20 and dim SY([",(19))* = 1. In the
following we give the characteristic polynomials of Hecke operators T,
acting on S; and S;;; for several n. We note Sy = @y yer1,v =1 So(L(19),
¥ and SIIX = Dy, ve01,9-n=-1 Se(L(19), ¥°)*.

characteristic polynomial of T,
n | ()
St ’ St
2 —1 X X¢—b5X2+5 X2—5 X2—5 X2+ X~1 X:—X—-1
5 +1 | X+1 | (X242X—4)2 X2—X-—1 X2—X-—1 X2—2X—4| X2—-2X—4
71 41 | X—3| (X244X—1)2 | X242X—4 | X242X—4 | (X—3) (X—8)2

The one-dimensional part in S; is obtained by a primitive form correspond-
ing to an L-function of the field Q(v —19).
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Let f= > 7., 0,6 be a primitive form in the four-dimensional part
of S;. We may assume

(5.3 az=\/ﬁ§‘/—5, @ =—1—+5, a,=—-2++5.

(These coefficients are obtained from tr 7, for several n, which are not
given here.) Let K be the field generated over @ by a, for all n, then

K= Q(\/ itz_‘ﬁi) and we see f and K satisfy the condition (+) in § 1.

In this case we have F = Q(5),c=(+5), and k& = Q(+/—19) in the
notation of §1 and §4. Since the condition (xx) is satisfied by taking
e =1, we can consider the oy-module §, the extension k(y)/k, and an
injective homomorphism

r’: Gal (k(9)/E) — (0z/0)* = (Z[5Z)* .
Put r(a) = r’((k—(t;)—/}i».

ProrosiTioNn 5.3. The field k(y) is a ray class field of conductor
(v —=19){ with a prime factor | of 5, and one has

r((@) = g(a)u(e mod 1)

for every o in k prime to 19!, where p is the isomorphism of o./l onto oz/c
and ¢ is a homomorphism of (0,/(v —19))* into (0z/c)* of order 2.

This proposition can be proved by virtue of (5.3) in the same way as
Prop. 4.2, and we omit the proof. We can show also in this case that
there exists a simple abelian subvariety B defined over k& of the abelian
variety A associated with f such that A = B + B* and End, (B) = Q(v5),
where ¢ is the generator of Gal (k/Q).

§6. Formulae for trj, and tr T,W

For a character  modulo ¢° and a positive integer & > 2, let
S(I'(g"),¥) be as in §1. We assume (—1) = (—1)* and the conductor
f, satisfies f, < ¢*7'. If v > 2, we can define the twisting operator 5, on
S(I'(g"),¥) as in §1. Let us express §, as an action of double cosets.

We use the same notation as in §2. Put &, = Uq(g ;) U,, then we see
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E = qZ3 VA
. y+1 x] *
¢VZ, qZ;

For g = (Z 3) e &, put

Ag) = ()~ (alx(®) ,
and for ge [[,, U, X &, X U., put

Ag) = Ag,) ,

where g, denotes the g-component of g. For y = (‘CZ 3) e I'(q”), put ¥(y)
= y(a@)”!. Then for ge (o=, Up X &, X U.) N GL(Q), we have

(6.1) 2812 = V(AN (r.) .

Let ([Tprq Up X &, X U.) N GL(Q) = | Ji_, I'(@")x, be a disjoint union.
Then by Lemma 2.1 and (6.1), we obtain

1 d
f16, = —— >, ) flla]. .
W) =
Now in the case where v =1 and ¢ = y, we consider the operator T, W.
Put

g fee (1 %)

v,(det g) = 2} .
¢z, ¢z, "o

For g = (Z 3) € &,, define

Ag) = () ,
and for ge [[,., U, X &, X U., put
Ag) = Ag,) ,

where g, denotes the g-component of g. Then we have
Argr) = 1))  for 1, e I'(Q),

where 1) = (@) for 1 = (¢ 5) e Iu@). Let(ITyeq U, X £, X U.) N GL(@)
= J¢_, I'(q)a, be a disjoint union, then we can verify for fe S (I"(q), )
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ATW = g 3 2) el

THEOREM 6.1. Let + be a character modulo ¢* with the conductor f,
such that {, < q"', and r be a positive integer such that £ > 2. Assume
qg>5 and ¥(—1) = (=1)y. If v> 2, one has

"_1'["/2]1__._1(_'__12 — : [v/2]
©2)  tra,|ST), V) = {q g M-, iffisa

0, otherwise ,
and if v =1, one has

wA=DWg"'h(—q), g =3 (mod4)

6.3 tr T,W|SL(I'(a), 1) = {0 g =1 (mod4)

where h(—q) is the class number of Q(v/—q).

1
(=D W(g”
tr T,W|S.(I'(q), x) if v > 1. Let &, denote the set [][,., U, X &, X U., and
put & = 5, N GL(Q). We note 5 contains neither scalars nor hyperbolic
elements whose characteristic roots are contained in @. By Eichler-

Proof. Put T =trd,|S.(I'(g?),¥) if v>2, and T=

Selberg’s trace formula, we have T = ¢, + ¢,, where

1 Z(a)—l v;—l N 7 o §

te = — @ q—(s—2)
W@ .o, T =1 7. — L.
1 . 1 _, sgn (C()‘ i 1+s
t,= 1 lim (_) (@) £_<#,> ,
i W) ° \ 2z aesp%ﬁf) 2 m(c)

Here Z, (resp. £,) denotes the set of all elliptic elements (resp. parabolic
elements fixing cusps of I'(q”)) in 5. &, and 7, are the characteristic

roots of o determined by pap™ = (%‘ CO ), where p = G :;") for the
@ 0.

fixed point z, of « in . For a parabolic element «, m(a) has the same
meaning as in (2.4), and sgn (¢) = sgn{, for the characteristic root ¢, of
. First we show £, = 0. Let f(X) be the characteristic polynomial of
an elliptic element in &, then f(X) = X® 4+ ¢*, or X®* 4+ gX + ¢°. For a
Z-order A of K(f), we see by the theorem of Hijikata quoted in §2 that
if Cye, 4) N &, is not empty, then 4, = Z[X]/(f(X)). Put U} ={ge U,
|x(det g) =1} and U* = [[,4, U, X U7 X U.. Then U* is a subgroup of
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U of index 2 and for ye U* and ge 5,, we have
Agr) = Xg) -

For a Z-order 4 of K(f), let 6 be the map 6: C(e, 4) N & /I%") — Cy(a, A)
N &,/U0. Let 6, and 6, be the natural maps 6,: C(e, ) N 5 /1%”) — Cy(a, A)
N &,/0*, and 6,: Cia, A) N 5,JU* — Culer, 4) N 5,/U induced by the inclu-
sion, then 4 is the composite of 6, and 6,. Let N denote the norm map
of K(f) to Q, and @} denotes the subgroup ([],., ZX X Z; X RY)@* of Q%,
where Z; = {xe Z,|x(x) = 1} and RX = {xe R|x > 0}. Since 4, = Z [X]/
(f(X)) is not the maximal order of K(f),, we have N([], 4y X K(f)%) C Q.
Hence for a class g of Cy(a, 4) N 5,/U, 6;%(8) consists of two classes 3, and
g of Cle,A) N 5,/U* and (&) = —i(&). We claim [6;(3)| = |6;(3,)
= 3W(K(f), 4). Our assertion on ?, follows from this. Since we assume
q =5, N(K(f)7)Q: = Qf, hence det(Q[al})Qi = QX, where Qla], = Q[]
®q Q.. Therefore we have GL,(Q,) = Qe]iGL,(Q)U*, so 6, is surjective.
Let u, be an element of U such that u,2 U*. Then we may assume g,
= h'ah, g, = uy*h~'ahu, for he GL(Q,) and we see |6;'(g)| = |Q[a]*\
(QIal;hU*) N GL(Q)/I'(¢")| and 6:%(g,)| = |Qle]*\(Q[aihw) N GLLQ)/I'())-
Put G, = {xe Q[a]}|det (xh) e Q}}, then (Q[a]iAU*) N GL(Q) = (G,hU)
N GL,(Q). By the same calculation as in Prop. 2.6, we obtain |0;‘(§,);
= |G,/Qle]*(hUR™ N Q[al)| = $W(K(f), 4), and in the same way |67%(g,)|
= $h(K(f), 4). Now let us calculate ¢,. Let @ be an element of 5,, then
the characteristic polynomial f, is either X* — 29X + ¢%, or X* + 29X + ¢~
Since the contribution from the parabolic elements « with f, = X* — 2¢X
+ ¢* is the same with that from the parabolic elements a with f, = X*
4+ 29X 4+ ¢*, we may assume f= X*— 29X + ¢°. Put f(X) = X*— 2¢X
+q% and 2 ={xe Z|f(x) =0 (mod ¢**)} if v > 2, and £ = {gx|x € Z, (x, @) = 1}
if v=1. For xe £, put

% = (——;(x) 21q — x)

then «, is contained in C(a, 4,) N & for 4, = Z[X]/(f(X)). For me Z, put
@pm = q + m(a, — g) and for a positive integer m, let A(m) denote the Z-
order of K(f) such that [4A(m): 4] = m. Then we see easily that for a
positive  integer m prime to ¢, {&, .|x€ 2 (mod @*)} U {a,, _~|x € £ (mod ¢")}

gives a complete system of representatives of C(a, A(m)) N E/I%”). We
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have m(a,,.) = m/q and Aa,,.) = v + m(x — q)/q)x(m) for me Z, where
we put ¢ = the identity character if v = 1. Therefore we obtain

p= b lim 2 > L ( > Y@+ m(x — @)fg)y(m)ert
G = 2= (g =1 m'** \sealmod ¢
- 2 @ —mx— Q)/Q)x(—m)e"‘“’z) .
x € 2(mod q¥)

Since we have for me Z

[2(mod )|,  fu < g™
0, otherwise ,

wa+m@~®m={

2 €2 (mod ¢¥)

and |2(mod ¢*)| = ¢*~*"%, we obtain

_ 1 qi v—1—[/2]
f =1 @ 1 — y(—1)L(,
"= W o (1 — (=D)L, x)
= UYL — Y~ 1)H(—q) .
This completes the proof.
Put q = (/—¢q). Let A be a Grossencharacter of Q(y/—q) satisfying

(6.4) (@) = (ﬁ)“ for @ = 1 mod* ¢!

(6.5) A(n)) = (n)y(n) for ne Z.

For 2, put fi(2) = > . (a)N(a)« V12V @2 " then we know by [14] f, is con-
tained in S.(I".(q*), ¥). If v > 2, we see [ = [, satisfies

(6.6) (f19,) = f(@ + cf(g2) for some c.
If v =1, f = f; satisfies
6.7) f=f,

where f, = > >, @6 for f= > 7 a,.e". On the other hand, we can
prove

COROLLARY 6.2. Let q and  be as in Th 6.1. Let M be the subspace
of S(I'(q"), V) spanned by the common eigen-functions of T, for all n prime
to q satisfying (6.6) if v>2 or (6.7) if v=1and = x. Then M is spanned
by fi for all 2 satisfying (6.4) and (6.5).

Proof. If v>2, it is easy to see trd,|S.(I'(¢"), V) =dim M. Ifv=1,
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by [1, Th. 2] for a primitive form f in S(I"\(q), x), we have
fITW = ((—D)WX)g"*"’f, .

1
W=D W(pg”!
isfying (6.4) and (6.5), f; is contained in M and we see there exist exactly
@~ Bp(—q) such Gréssencharacters if |, < ¢™* and otherwise there are
no such Griéssencharacters. Since f,’s are linearly independent over C for

Hence we obtain

tr T,W|S.(I'«(q), x) = dim M. For 2 sat-

such 4’s, our assertion is proved.

Remark 6.3. The trace of the twisting operator has been given in
Shimura [15] in the case where v = 2 by another method. The special
case of Cor. 6.3 was proved by Asai [2] as an application of Doi-Naga-
numa lifting for imaginary quadratic fields. In [9], Ribet proved a general
result on the characterization of cusp forms associated with L-functions
with Grossencharacters of imaginary quadratic fields. Cor. 6.3 gives
another proof of the results of Asai and Ribet in the special cases.
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