ON HOMEOMORPHISMS OF THE UNIT CIRCLE PRESERVING ORIENTATION

MASARU HARA

1. Introduction

Let Γ denote the unit circle in the complex plane $C, C(\Gamma)$ the set of complex valued continuous functions on Γ which is a Banach space by the sup-norm $\|\cdot\|, A(z)$ the uniform closure of all polynomials in z on $\Gamma, H(\Gamma)$ the set of homeomorphisms of $\Gamma, H^{+}(\Gamma)$ the set of directionpreserving homeomorphisms and $H^{-}(\Gamma)$ the set of direction-reversing homeomorphisms. For $\psi \in H(\Gamma)$, let $A(\psi)$ denote the uniform closure of all polynomials in ψ on Γ.

Any map ψ belonging to $H^{-}(\Gamma)$ has the following property (A) (Browder and Wermer [2]):
(A) $\overline{A(z)+A(\psi)}=C(\Gamma)$.

The purpose of this paper is to investigate direction-preserving homeomorphisms which have the property (A). We observe the following Lemma 1 which is, in essence, contained in Browder and Wermer [2].

Lemma 1. Any map $\psi \in H^{+}(\Gamma)$ has the property (A) provided it enjoys the following property (B):
(B) $A(z) \cap A(\psi)=C$.

In view of this it is important for our purpose to classify when $\psi \in H^{+}(\Gamma)$ has the property (B). We will give one sufficient condition for $\psi \in H^{+}(\Gamma)$ to the property (B) as follows:

Theorem 1. If, for a given map $\psi \in H^{+}(\Gamma)$, there exists a Blaschke product B such that $\psi \neq B$ and the linear measure of $\{z \in \Gamma \mid \psi(z)=B(z)\}$ is positive, then ψ has the property (B).

Corollary. The set of maps in $H^{+}(\Gamma)$ possessing the property (B) is

[^0]dense in the space $H^{+}(\Gamma)$.
We mention here an example of maps in $H^{+}(\Gamma)$ which do not have the property (A). Consider the linear transformation
$$
U(z ; a)=\frac{z-a}{1-\bar{a} z} \quad|a|<1
$$

Clearly U belongs to $H^{+}(\Gamma)$ and $A(U)=A(z)$ and a fortiori U does not have the property (A). We will later give another such examples in Theorem 2, among which a typical one is following: let $B(z)=\prod_{k=1}^{n} U\left(z ; a_{k}\right)$ be with all different a_{k}. Then the map $(B(z))^{1 / n}$ is an example.

In connection with the welding theory of Riemann surfaces, we will give an example which has the property (B). This example will be constructed from the Jordan curve γ in the following

Theorem 3. On any Jordan curve γ which contains a line segment, there dose not exist any nonconstant function which is bounded and continuous on the complex plane, analytic in the interior of and anti-analytic in the exterior of γ.

Finally we will prove the following theorem in no. 5:
Theorem 4. If, for a given map $\psi \in H(\Gamma)$, there exists a nowhere constant function $f \in C(\Gamma)$ with the property $f(\psi)=f$, then there exists an integer n with the property $\psi \circ \psi \circ \cdots \circ \psi(n$ compositions $)=z$, where a function $f \in(\Gamma)$ is said to be nowhere constant if f is nonconstant on any open set of Γ.

2. Proof of Theorem 1

For $\alpha, \beta \in \Gamma \alpha \neq \beta$, there exist two arcs of Γ whose end points are α and β. Among them we denote by (α, β) the arc starting from α and ending at β in the positive direction and $[\alpha, \beta]$ the closed $\operatorname{arc}\{\alpha\} \cup(\alpha, \beta)$ $\cup\{\beta\}$. Although the proof of Lemma 1 is contained in the proof of Theorem of Browder and Wermer in [2] we include it here for the sake of convenience to the readers.

Proof of Lemma 1. Assuming the conclusion is false, by the HahnBanach theorem, there exists a non-zero measure on Γ with the following property:

$$
\int_{|z|=1} z^{n} d \mu=0, \quad \int_{|z|=1} \psi^{n} d \mu=0 \quad(n=0,1,2, \cdots)
$$

By the former condition of the above, we have the Riesz's representation

$$
d \mu=h(z) d z \quad h \in L^{1}(\Gamma)
$$

If we set

$$
H(z)=\int_{[1, z]} h(\zeta) d \zeta,
$$

then $H \in C(T)$ and

$$
\int_{|z|=1} z^{n} H(z) d z=\int_{|z|=1} z^{n} \int_{[1, z]} h(\zeta) d \zeta d z=\int_{|\zeta|=1} h(\zeta) \int_{[\zeta, 1]} z^{n} d z d \zeta=0
$$

Therefore $H \in A(z)$. Clearly H is non-constant and

$$
\begin{aligned}
\int_{|z|=1} H\left(\psi^{-1}\right) z^{n} d z & =\int_{|w|=1} H(w) \psi^{n}(w) d \psi(w) \\
& =-\frac{1}{n+1} \int_{|w|=1} \psi^{n+1}(w) h(w) d w=0
\end{aligned}
$$

Hence $H\left(\psi^{-1}\right) \in A(z)$. If we set $H\left(\psi^{-1}\right)=G$, then $G(\psi)=H$ and $A(\psi)$. $\cap A(z) \neq C$. This is a contradiction.

The proof of Theorem 1. Suppose that $A(z) \cap A(\psi) \neq C$. There exist. non-constant functions $f \in A(z) \cap A(\psi)$ and $g \in A(z)$ with the property $f=g(\psi)$. Since $g(B) \in A(z)$ and $B(z)=\psi(z)$ for $z \in E, f(z)=g(B(z)$) for $z \in E$. By the Fatou theorem, $f=g(B)$ and $g(\psi)=g(B)$. In view of $\psi(\alpha)=B(\alpha)$ and the following Lemma $2, \psi=B$. This is a contradiction.

Lemma 2. Let the function $\tau(t)$ be monotone increasing in $\{t \geqq 0\}$ and satisfy $\tau(0)=0$. If there exists a nowhere constant function f in $\{t \geqq 0\}$ with the property $f(\tau(t))=f(t)$ for $t \geqq 0$, then $\tau(t)=t$.

Proof. We set $F=\{t \geqq 0 \mid \tau(t)=t\}$. Since F is closed, $\{t \geqq 0\}-F^{\prime}$ consists of countably many disjoint open intervals. Among them, we choose an arbitrary interval (a, b). Assuming $\tau(t)>t$ on (a, b), there exists t_{0} such that $a<t_{0}<b, a<\tau\left(t_{0}\right)<b$ and $f\left(\tau\left(t_{0}\right)\right) \neq f(a)$. The sequence $\left\{\tau\left(t_{0}\right), t_{0}, \tau^{-1}\left(t_{0}\right), \tau^{-1} \circ \tau^{-1}\left(t_{0}\right), \cdots\right\}$ is contained in (a, b) and monotone decreasing. We denote by c the limit point of this sequence. Since $f(c)=f\left(\tau\left(t_{0}\right)\right)$ $\neq f(a)$, we conclude that $c \neq a$. On the other hand, $\tau(c)=c$, a contradiction. Similarly it does not hold that $\tau(t)<t$.

Proof of Corollary. Given $\psi \in H^{+}(\Gamma)$ and $\varepsilon>0$, there exist two different points α and β belonging to Γ such that $\left|\psi\left(z_{1}\right)-\psi\left(z_{2}\right)\right|<\varepsilon / 2$ for $z_{1}, z_{2} \in(\alpha, \beta)$. Take a point c in (α, β). We denote by ϕ a linear transformation which is a map from Γ to Γ and maps α to $\psi(\alpha), \beta$ to $\psi(\beta)$ and c to any point of $(\psi(\alpha), \psi(\beta))$. The map ϕ is a finite Blaschke product. We denote by ψ^{*} a map which is equal to ϕ on $[\alpha, \beta]$ and ψ on $[\beta, \alpha]$. The map ψ^{*} belongs to $H^{+}(\Gamma)$ and, by choosing $\psi^{*}(c)$ suitably, satisfies the conditions in Theorem 1 and $\left|\psi^{*}-\psi\right|<\varepsilon$.

3. Examples which do not satisfy the property (A)

For a finite Blaschke product $B(z)=\prod_{k=1}^{n} U\left(z ; a_{k}\right)\left|a_{k}\right|<1$, we set $\psi(z)$ $=B(z)^{1 / n}$. The map $\psi(z)$ belongs to $H^{+}(\Gamma)$ and does not satisfy the property (A) because of the following Theorem 2. We denote by $L^{1}(\Gamma)$ the set of integrable functions on $\Gamma, C^{1}(\Gamma)$ the set of continuously differentiable functions on Γ and $H^{1}(|z|<1)$ the subset of $L^{1}(\Gamma)$ with the following property:

$$
\int_{|z|=1} f(z) z^{n} d z=0, \quad n=0,1,2, \cdots
$$

For a function $f(z)$ defined on Γ we denote by $\frac{\delta f}{\delta z}$ the limit

$$
\lim _{y \rightarrow z} \frac{f(y)-f(z)}{y-z}
$$

if it exists. The differential operator $\frac{\delta}{\delta z}$ has the following properties:
1° For $z=e^{i \theta}, \frac{\delta f}{\delta z}(z)=-i e^{-i \theta} \frac{d}{d \theta}\left(f\left(e^{i \theta}\right)\right)$.
$2^{\circ} \quad$ For $f C^{1}(\Gamma), \int_{[1, z]} \frac{\delta f}{\delta z}(z) d z=f(z)-f(1)$.
3° If f is analytic at $z \in \Gamma$, then $\frac{\delta f}{\delta z}(z)=\frac{d f}{d z}(z)$.
4° For $f \in C^{1}(\Gamma)$ and $\phi \in H(\Gamma) \cap C^{1}(\Gamma)$, if we set $z=\phi(\zeta)$,

$$
\frac{\delta}{\delta \zeta}\{f(\phi(\zeta))\}=\frac{\delta f}{\delta z}(\zeta)
$$

Theorem 2. If a map $\psi \in H^{+}(\Gamma)$ is conformal on some neighborhood of Γ and there exists a non-constant function $f(z)$ on Γ with the following
property:

$$
\frac{\delta f}{\delta z}(z) \in H^{1}(|z|<1) \quad \text { and } \quad f(\psi) \in A(z)
$$

then the map ψ does not have the property (A).
Proof. We set

$$
d \mu=\frac{\delta}{\delta z}\{f(\psi(z))\} d z
$$

We will show that the measure μ satisfies

$$
\int_{|z|=1} z^{n} d \mu=0, \quad \int_{|z|=1} \psi^{n} d \mu=0 \quad(n=0,1,2, \cdots)
$$

Since $f(\psi) \in A$, we have

$$
\begin{aligned}
\int_{|z|=1} z^{n} d \mu & =\int_{|z|=1} z^{n} \frac{\delta}{\delta z}\{f(\psi(z))\} d z \\
& =-n \int_{|z|=1} f(\psi(z)) z^{n-1} d z=0
\end{aligned}
$$

We set

$$
g(z)=\int_{[1, z]} \zeta^{n} \frac{\delta}{\delta \zeta}(\zeta) d \zeta .
$$

By the former property of f, the function $g(\dot{z})$ belongs $A(z)$. Therefore

$$
\int_{|z|=1} z^{m} g(z) d z=0 \quad \text { and } \quad \frac{\delta g}{\delta z}=z^{n} \frac{\delta f}{\delta z}
$$

Since the map ψ is conformal on Γ,

$$
\frac{\delta}{\delta \zeta}\{f(\psi(\zeta))\}=\frac{\delta f}{\delta z}(\psi(\zeta)) \frac{d \psi}{d z}(z)
$$

and

$$
\begin{aligned}
\frac{\delta}{\partial \zeta} g(\psi(\zeta)) & =\frac{\delta g}{\delta z}(\psi(\zeta)) \frac{d \psi}{d z}(\zeta) \\
& =\psi^{n}(\zeta) \frac{\delta f}{\delta z}(\psi(\zeta)) \frac{d \psi}{d z}(\zeta)=\psi^{n}(\zeta) \frac{\delta}{\delta \zeta}\{f(\psi(\zeta))\}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int_{|\zeta|=1} \psi^{n}(\zeta) d \mu(\zeta) & =\int_{|\zeta|=1} \psi^{n}(\zeta) \frac{\delta}{\delta \zeta}\{f(\psi(\zeta))\} d \zeta \\
& =\int_{|\zeta|=1} \frac{\delta}{\delta \zeta}\{g(\psi(\zeta))\} d \zeta=0
\end{aligned}
$$

4. Welding

Given a Jordan curve γ on the complex plane, we denote by $\Omega\left(\Omega^{*}\right.$, resp.) the interior of γ (the exterior of γ, resp.), by D (D^{*}, resp.) the interior of Γ (the exterior of Γ^{*}, resp.) and by χ (χ^{*}, resp.) a Riemann's conformal map from D (D^{*}, resp.) to Ω (Ω^{*}, resp.) which is also a homeomorphism on the closure of the given region. From now on we assume that $\chi(1)=\chi^{*}(1)$. If we set

$$
\psi\left(e^{i \theta}\right)=\chi^{*-1} \circ \chi\left(e^{i \theta}\right),
$$

then $\psi \in H^{+}(\Gamma)$. We denote by $H_{w}^{+}(\Gamma)$ all of $\psi \in H^{*}(\Gamma)$ with $\psi=\chi^{*-1} \circ \chi$ for some Jordan curve γ. By the theorem of Oikawa [5], if we define a map ψ by z^{3} on $\left[1, e^{2 \pi i / 5}\right]$ and \sqrt{z} on $\left[e^{2 \pi i / 5}, 1\right]$ whose branches are chosen in such a way that the map ψ is continuous, then $\psi \in H^{+}(\Gamma)$ and ψ $\notin H_{w}^{+}(\Gamma)$. For $\psi \in H_{w}^{+}(\Gamma)$, there exist infinitely many Jordan curves corresponding to ψ, and among them we choose a certain γ and γ^{\prime}. Then there is a homeomorphism Φ on C which maps γ onto γ^{\prime} and the interior of γ (the exterior of γ, resp.) onto the interior of γ^{\prime} (the exterior of γ^{\prime}, resp.) and is analytic off $\gamma .{ }^{\circ}$ The map Φ is not necessarily conformal on C. For example, if the area of γ is positive, the map Φ is not conformal for some γ ([5]). By the welding theory ([5]), it is sufficient for $\psi \in H^{+}(\Gamma)$ to belong to $H_{w}^{+}(\Gamma)$ that the map ψ has the following condition: for any $z \in \Gamma$, there exist $\varepsilon>0$ and $\rho>0$ (dependant on z) such that for any ζ and t with $\left(\zeta e^{-i t}, \zeta e^{i t}\right) \subseteq\left(z e^{-i t}, z e^{i t}\right)$

$$
\frac{1}{\rho} \leqq\left|\frac{\psi\left(\zeta e^{i t}\right)-\psi(\zeta)}{\psi(\zeta)-\psi\left(\zeta e^{-i t}\right)}\right| \leqq \rho
$$

By virtue of this theorem, if ψ belongs to $C^{1}(\Gamma)$ and satisfies $\frac{\delta \psi}{\delta z}(z) \neq 0$, or if Γ is divided into finite intervals and on each interval ψ is equal to a linear transformation, then ψ belongs to $H_{w}^{+}(\Gamma)$.

Definition. If there exist no non-constant functions that are bounded and continuous on C, analytic in the interior of γ and anti-analytic in
the exterior of γ, then we denote the fact by $\gamma \in 0$.
Lemma 3. Given $\psi \in H_{w}^{+}(\Gamma)$ and choose a Jordan curve γ correspondent to ψ. Then ψ has the property (B) if and only if $\gamma \in 0$.

Proof. We suppose that $f=g(\psi)$, where f and $g \in A$. Since f $=g\left(\chi^{*-1} \circ \chi\right)$ on Γ, we have $f\left(\chi^{-1}\right)=g\left(\chi^{*-1}\right)=g\left(1 /\left(\bar{\chi}^{*}\right)^{-1}\right)$ on γ. Therefore, by observing that the function is equal to $f\left(\chi^{-1}\right)$ in the interior of γ and $g\left(1 /\left(\bar{\chi}^{*}\right)^{-1}\right)$ in the exterior of γ, we see the validity of our lemma.

Theorem 3. Any Jordan curve containing a line segment satisfies $r \in 0$.

Proof. We suppose that the line segment is on the real axis. There exists an open disk D such that the center of D is on the real axis and D does not have common points with γ except for the line segment. We denote by Ω the interior of γ, Ω^{*} the exterior of γ and Ω_{1}^{*} the domain obtained from Ω^{*} by reflecting it with respect to the real axis. We take a function f which is bounded and continuous on C, analytic in the interior of γ and anti-analytic in the exterior of γ. The function $f(\bar{z})$ is analytic in Ω_{1}^{*} and continuous on $\bar{\Omega}_{1}^{*}$. By considering $f(z)$ and $f(\bar{z})$ in $\Omega \cap D$, we see that $f(z)$ and $f(\bar{z})$ satisfy $f(z)=f(\bar{z})$ on $\partial \Omega \cap D$ and are analytic in $\Omega \cap D$. By Fatou's theorem, $f(z)=f(\bar{z})$ in $\Omega \cap D$ and $f(z)$ is analytic on $\Omega_{1} \cap \Omega^{*}$. We denote by Ω_{1} the domain obtained from Ω by reflection and by Ω^{\prime} the component of $\overline{\Omega \cup \Omega_{1}{ }^{c}}$ containing the point at infinite. The domain Ω^{\prime} is a Jordan region, whose boundary will be denoted by γ^{\prime}. The Jordan curve γ^{\prime} is symmetric with respect to real axis. If two points z_{1} and z_{2} on γ^{\prime} satisfy $z_{2}=\bar{z}_{1}$, then one of them is on γ. We may suppose that $z_{1} \in \gamma$. There exists a curve ℓ which connects the center of D with z_{1} and is contained in Ω^{*} except for its end points. If we denote by ℓ_{1} the curve obtained from ℓ by reflection with respect to the real axis, ℓ_{1} connects the center of D with z_{2} and is contained in Ω_{1}^{*} except for its end points. Since $f(z)=f(\bar{z})$ in $\Omega_{1}^{*}, f\left(z_{1}\right)=f\left(z_{2}\right)$. Hence f is analytic Ω^{\prime}, bounded and continuous on $\bar{\Omega}^{\prime}$ and satisfies $f(z)=f(\bar{z})$ on γ^{\prime}. Since Ω^{\prime} is symmetric, the analytic function $f(z)$ and the anti-analytic function $f(\bar{z})$ has the same boundary values, the function $f(z)$ is constant.

5. Proof of Theorem 4

Since $\psi \circ \psi \in H^{+}(\Gamma)$ for $\psi \in H^{-}(\Gamma)$, we will show the theorem in the case of $\psi \in H^{+}(\Gamma)$. For simplicity we denote by ψ^{n} an n-iterated map $\psi \circ \psi \circ$
$\cdots \circ \psi$.
Lemma 4. Under the assumption of Theorem 4, if $\psi \neq z$, then $f([x, \psi(x)])$ $=f(\Gamma)$.

Proof. We will show that $f([x, \psi(x)]) \subset f([\psi(x), x])$ for any x and any $\psi \in H^{+}(\Gamma)$ with $f(\psi)=f$. Then from $\psi^{-1} \in H^{+}(\Gamma)$ and $f=f\left(\psi^{-1}\right)$, it follows that the reverse inclusion holds if we take $\psi(x)$ in place of x. We suppose that $\alpha \in f([x, \psi(x)])$ and $\alpha \notin f([\psi(x), x])$. When three points α, β and x satisfy $[x, \alpha] \subset[x, \beta]$, we say that α is closer to x than β. We denote by t_{0} the closest point to x among $\{t \in[x, \psi(x)] \mid f(t)=\alpha\}$. The map ψ sends $\left(x, t_{0}\right)$ to $\left(\psi(x),\left(t_{0}\right)\right)$ preserving direction. Since $f\left(\psi\left(t_{0}\right)\right)=f\left(t_{0}\right)=\alpha$ and $\alpha \oplus f\left([\psi(x), x], \psi\left(t_{0}\right) \oplus[\psi(x), x]\right.$ and $\psi\left(t_{0}\right) \in[x, \psi(x)]$. If $t_{0}=\psi\left(t_{0}\right)$, then from Lemma 2 it follows that $\psi=z$. We may assume that $\psi\left(t_{0}\right) \in\left(t_{0}, \psi(x)\right)$. It follows that $t_{0} \in\left(\psi(x), \psi\left(t_{0}\right)\right)$ and $\psi^{-1}\left(t_{0}\right) \in\left(x, t_{0}\right)$. Since $f\left(\psi^{-1}\left(t_{0}\right)\right)=\alpha$, this contradicts that t_{0} is the closest to x.

Proof of Theorem 4. If there exist a point $x \in \Gamma$ and an integer n with $\psi^{n}(x)=x$, then $\psi^{n}=z$ because of $\psi^{n} \in H^{+}(\Gamma)$ and Lemma 2. We now discuss the rest. Given $x_{0} \in \Gamma$, we may assume that $f\left(x_{0}\right)=0$. From $f \in c(\Gamma)$, it follows that there exists a positive number δ such that $\mid f(x)$ $-f(y) \mid<1 / 2\|f\|$ for $|x-y|<\delta$. The sequence $\left\{\psi^{n}\left(x_{0}\right)\right\}$ has the following property: (1) if $m \neq n, \psi^{m}\left(x_{0}\right) \neq \psi^{n}\left(x_{0}\right)$, (2) $f\left(\psi^{n}\left(x_{0}\right)\right)=f\left(x_{0}\right)=0$. If we take m and n with $\left|\psi^{m}\left(x_{0}\right)-\psi^{n}\left(x_{0}\right)\right|<\delta$, then any $y \in\left(\psi^{m}\left(x_{0}\right), \psi^{n}\left(x_{0}\right)\right)$ satisfies $|f(y)|<1 / 2\|f\|$. But from $\psi^{n-m} \in H^{+}(\Gamma)$ and Lemma 4 it follows that $f\left(\left[\psi^{m}\left(x_{0}\right), \psi^{n}\left(x_{0}\right)\right]\right)=f(\Gamma)$, this is a contradiction.

References

[1] L. Ahlfors, Lectures on quasiconformal mappings. Van Nostrand, 1966.
[2] A. Browder and J. Wermer, A method for constructing Dirichlet algebras, Proc. Amer. Math. Soc., 15 (1964), 546-552.
[3] N. Dunford and J. Schwartz, Linear operater, Part 1, Interscience, 1958.
[4] J. Garnett and A. O'Farrell, Sobolev approximation by a sum of subalgebras on the circle, Pacific J. Math., 65 (1976), 55-63.
[5] K. Oikawa, Welding of polygons and the type of Riemann surfaces, Kōdai Math. Sem., 13 (1951), 37-52.

Mathematical Institute

Division of General Education at
Faculty of Science and Engineering
Meijô University

[^0]: Received July 10, 1978.

