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DISTANCE FUNCTIONS AND UMBILIC SUBMANIFOLDS

OF HYPERBOLIC SPACE

THOMAS E. CECIL AND PATRICK J. RYAN

In 1972, Nomizu and Rodriguez [5] found the following characteriza-
tion of the complete umbilic submanifolds of Euclidean space.

THEOREM A. Let Mn

0 n > 2, be a connected, complete Riemannίan
manifold isometrically immersed in a Euclidean space Em. Every Morse
function of the form Lp has index 0 or n at all of its critical points if
and only if Mn is embedded as a Euclidean n-subspace or a Euclidean n-
sphere in Em.

Here Lp is the Euclidean distance function, Lp(x) = \p — f(x)\\ where
/ is the immersion of Mn into Em.

Cecil [2] characterized the metric spheres in hyperbolic space Hm

in terms of hyperbolic distance functions Lp as follows.

THEOREM B. Let Mn, n > 2, be a connected, compact, differentiate
manifold immersed in Hm. Every Morse function Lp has exactly two crit-
ical points if and only if Mn is embedded as a metric n-sphere in Hm.

In [2, p. 351], it was pointed out that the non-compact complete um-
bilic submanifolds in hyperbolic space could not be distinguished in terms
of the distance functions alone. The purpose of this paper is to obtain
the appropriate analogue of Theorem A for hyperbolic space through the
introduction of two new natural classes of Morse functions.

Each of these classes is related to a type of umbilic hypersurface as
follows. A function of the first new class will have as level sets a totally
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geodesic hyperplane and its family of equidistant hypersurfaces. A func-
tion of the second new class will have a family of horospheres as level
sets. Both new classes are similar in certain ways to Euclidean linear
height functions, but not in others. The new functions complement the
Lp functions whose level sets are families of hyperspheres, the third type
of umbilic hypersurface in hyperbolic space.

In the course of the paper, we prove an index theorem giving the
location and index of non-degenerate critical points for the new functions.
This not only allows one to characterize the umbilic submanifolds, but
also enables one to define tight immersions into hyperbolic space in a
way similar to the Euclidean case, i.e. require that every Morse function
of the first new class have the minimum number of critical points. In a
subsequent article, we will discuss tight immersions into hyperbolic space
in more detail (to appear in J. London Math. Soc. 19 (1979)).

1. Complete umbilic hypersurfaces as level sets

In this section, we introduce the two new types of distance functions,
which together with the Lp, allow us to characterize spheres, horospheres
and equidistant hypersurfaces as level sets. We also observe that these
hypersurfaces occur in parallel families.

We first recall that the real hyperbolic space Hm may be represented
as follows (for more detail, see [4, vol. II, p. 268]). Consider Rm+1 with a
natural basis eu - - *,em+1 and a nondegenerate quadratic form b defined by

m m+1 m+1

b(χ, y) = Σ *V - χm+ιym+1, for x = Σ *'*«, y = Σ y% .

Then Hm is the hypersurface,

{xeRm+1\b(x, x) = - 1 , xm+1 > 0} ,

on which the restriction of & is a positive definite metric of constant
sectional curvature — 1.

For p in i/m, define a function Lp on Hm by,

Lp(x) = (cosh"1 ( - b(x, p)))2 for x e H™ ,

i.e. Lp(x) is the square of the distance in Hm from p to x. Let
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Then for 0 < r < oo,

(1) S(p, r) is a compact, umbilic hypersurface of constant curvature

- 1/sinh2 r.

(2) The pencil of geodesies through p is orthogonal to S(p, r).

(3) The distance from S(p, r) to S(p, s) is \r - s\ for 0 < s < oo.

(4) Every complete umbilic hypersurface of positive curvature is of

the form S(p, r) with p and r being uniquely determined.

We now characterize the hyperplanes (i.e. totally geodesic Hm~ι in

Hm) and their equidistant hypersurfaces as level sets. Let

Σm = {xeRm+1\b(x,x) = 1} .

For each hyperplane π there exists a point σ in Σm such that

π = {xeHm\b(x, σ) = 0} .

The point σ is called a pole of the hyperplane π, and σ is determined by

7r up to a sign. Fix a choice σ of pole of π, and let

L/a) - sinh"1 ( - b(x, σ)) , for x e i/m ,

i.e. Lπ(x) is the distance from x to the hyperplane π, and let

Thus π = Ω(σ, 0). Then for -oo < r < oo,

(1) Ω(σ, r) is a complete umbilic hypersurface of constant curvature

— 1/cosh2 r.

(2) The ultraparallel pencil of geodesies determined by σ is orthogonal

to Ω(σ, r).

(3) The distance from Ω(σ, r) to Ω(σ, s) is \r — s\ for — oo < s < oo.

(4) Every complete umbilic hypersurface of negative curvature is of

the form Ω(σ, r), with a and r being determined up to a sign. In fact

Ω(—σ, —r) = Ω(σ, r), and a choice of either a or r forces the choice of the

other.

Finally, we consider the horospheres, i.e. complete flat umbilic hyper-

surfaces of Hm. Consider the cone with vertex removed,

Vm = {xeRm+1\b(x, x) = 0, xm+1 > 0} .

One shows by an elementary argument that if v e Vm, x e Hm, then

b(x, ύ) < 0. Let h be an arbitrary horosphere in Hm. Then there is an
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unique ve Vm such that

h = {xeHm\b(x, v) = -1} .

Let

Lh(x) = log ( - b(x, v)) for x e Hm ,

i.e. Lh(x) is the distance from x to the horosphere h, and let

Thus Λ = H(v, 0). Then for - oo < r < oo,

(1) i/(u, r) is a horosphere.

(2) The parallel pencil of geodesies determined by v is orthogonal

to H(v, r).

(3) The distance from H(υ, r) to H(v, s) is \r — s\ for — oo < s < oo.

(4) Every horosphere occurs as an H(v, r). However, i; is determi-

ned only up to a positive scalar factor. Once v is chosen, r is uniquely

determined.

Remark 1. Readers familiar with the relationship between classical

projective and hyperbolic geometry will have no difficulty with the notion

of pencil. For the benefit of those without such experience, we provide

more detail here. Let q be an arbitrary point of Rm+ι — {0}. For each

x € Hm which is not a multiple of q, we get a unique geodesic consisting
of all linear combinations of x and q which happen to lie in Hm. The
set of all these geodesies is called the pencil determined by q. Since all
multiples of q determine the same pencil, we may assume that q lies in
Hm, Σm or Vm. As far as the geometry of Hm is concerned, these three

types of q yield three types of pencils. Specifically,

(1) If q e Hm, the pencil consists of all geodesies through q.

(2) If q e Σm, the pencil consists of all geodesies orthogonal to the

hyperplane Ω(q, 0), and is called a pencil of ultraparallels.

(3) If q e Vm, no two geodesies of the pencil intersect or have a com-

mon orthogonal hyperplane, and the pencil is called a pencil of parallels.

2. Complete umbilic hypersurfaces as orbits

For each pencil P of geodesies in ίfm, let G(P) be the group of iso-

metries generated by the reflections
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x-+x-2b(x,ξ)ξ ,

where 6(f, ξ) = 1, and &(f, g) = 0, where q is the point of Rm+1 deter-

mining the pencil. These are just the reflections in hyperplanes contain-

ing lines of the pencil. The following can be easily checked.

PROPOSITION 2. (1) // P is a pencil of geodesies through p e Hm,

then the orbits of G(P) are {p} and the S(p, r).

(2) // P is the ultraparallel pencil determined by σ e Σm, then the orbits

of G(P) are precisely the Ω(σ, r).

(3) // P is the parallel pencil determined by ve Vm, then the orbits of G(P)

are precisely the horospheres H(v, r).

Remark 3. If P is a pencil of parallels or a pencil of geodesies

through a point q e Hm, then G(P) coincides with the group G(P) of all

isometries which leave the pencil P invariant. If P is a pencil of ultra-

parallels determined by σ e Σm, then G(P) is a subgroup of index 2 in

G(P), the other coset being represented by the reflection

x —> x — 2b(x, σ)σ

in the hyperplane orthogonal to P.

3. The index theorem for distance functions

Because of the local nature of the following theorem, we shall assume

that M is an embedded submanifold of Hm. Let L be a distance func-

tion of one of the three types defined in section 1.

THEOREM C. (Index theorem for distance functions). Let xe M.

( i ) , x is a critical point of L if and only if there is a unit normal ξ

to M at x such that

(a) p — cosh t x + sinh t ξ, for some t>0, if L — Lp,

(b) σ = sinh t x + cosh t ξ, for some te R, if L = Lπ, where π

- Ω(σ, 0).

(c) v = t(x + ξ), for some t > 0, if L = Lh, where h = H(υ, 0).

(ii). With ξ and t as in (i), x is a degenerate critical point of L if

and only if there is an eigenvalue λ of Aζ such that9

(a) λ — coth t if L — LP9

(b) λ = tanh t if L = Lπ,

(c) λ = l ifL = Lh.
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(iii). If x is a non-degenerate critical point of L, then the index of L

at x is equal to the number of eigenvalues λt of Aξ, counting multiplicities,

such that,

(a) I
(b) λ,

(c) λ,

i > coth t
s> tanh t

ι> 1

ifL =

The theorem was proven for the Lp functions by Cecil [2, p. 245].

The proofs in the other cases are very similar and are thus omitted. By

using standard methods involving focal points and Sard's theorem, Cecil

showed that the set of p e Hm such that Lp is not a Morse function has

measure zero in Hm. The following corresponding result for Lπ and Lh

is proven by similar methods, and we give only an outline of the proof.

PROPOSITION 4. (a) The set of σeΣm such that Lπ, where π = Ω(σ, 0),

is not a Morse function has measure zero in I™.

(b) The set of v e Vm such that Lh, where h = H(v, 0), is not a Morse

function has measure zero in Vm.

Proof, (a) Let v(M) denote the bundle of unit normal vectors to

M in Hm. Define a map,

F: v(M) X R -> Σn ,

by

F(x, ξ, t) = sinh tx + cosh if .

A straightforward calculation similar to the proof of Proposition 1 of

[2, p. 343] shows that F has a critical point at (x, ξ, t) if and only if

tanh t is an eigenvalue of Aξ. Comparing this with the index theorem,

one sees that Lπ has a degenerate critical point if and only if σ is a

critical value of F, where π = Ω(σ, 0). By Sard's theorem, the set of

critical values of F has measure zero in Σm, and the result follows,

(b) Define a map

G: v{M) x (0, oo)-* Vm

by

G(x, ξ, t) = t(x + ξ) .

As above, a direct computation shows that (x, ξ, t) is a critical point of
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G if and only if 1 is an eigenvalue of Aξ. The result follows through

comparison with the index theorem and use of Sard's theorem.

Using Proposition 4, one can prove the following useful proposition

analogous to the lemma of Nomizu and Rodriguez [5, p. 199]. The proof,

which we omit, is similar to that of [5].

PROPOSITION 5. (a). Suppose Lπ has a non-degenerate critical point

of index k at xeM, and suppose π = Ω(σ, 0) for σ e Σm. Then there is a

point σ' e Σm such that Lπ,, with πr = Ω(σ',0), is a Morse function having

a critical point y e M of index k (σ', and y may be chosen as close to σ

and x, respectively, as desired).

(b) Suppose Lh has a non-degenerate critical point of index k at x e My

and suppose h = H(v', 0) for v e Vm. Then there is a point v' e Vm such

that Lh,, with h' — H(ι/,0), is a Morse function having a critical point

y e M of index k (ι/ and y may be chosen as close to v and x, respectively,

as desired).

4, The characterization in terms of Morse theory

We now prove the main characterization theorem.

THEOREM D. Let Mn, n > 2, be a connected, complete Riemannίan

manifold ίsometrically immersed in Hm. Every Morse function of the form

Lp or Lπ has index 0 or n at all its critical points if and only if Mn is

embedded as a sphere, horosphere, or equidistant hypersurface in a totally

geodesic Hn+1 a Hm.

Proof. If Mn is one of the submanifolds listed, then Mn is umbilic.

It follows from Theorem C that all of the indices in question must be 0

or n.

Conversely, under the assumption on the indices of the critical points

of the Lp and Lπ9 we will prove that Mn must be umbilic. A modifica-

tion of Cartan's proof in the Euclidean case [1, p. 231] then shows that

a complete umbilic submanifold is embedded as one of the three standard

models in a totally geodesic Hn+\

As before, because of the local nature of the calculation, we treat

Mn as an embedded submanifold and dispense with mentioning the immer-

sion.

Let x be an arbitrary point of Mn, and ξ a unit normal to Mn at x.

Let λ be the eigenvalue of Aξ with largest absolute value. If λ = 0, then
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all of the eigenvalues are equal as desired. If not, we may assume that
λ > 0, otherwise, we simply change the sign of ξ.

If λ > 1, the proof of Proposition 4 of [2] using the index theorem for
the Lp functions shows that Aξ = λl. If 0 < λ < 1, we use the Lπ func-
tions in a similar way to get the result. To be specific, let μ be the sec-
ond largest eigenvalue if such exists. Choose t such that

μ < tanh t < λ .

Let a e Σm be given by

a = sinh tx + cosh t ξ ,

and let π = Ω(σ, 0). By (iii) (b) of Theorem C, Lπ has a nondegenerate
critical point of index k at x, where k is the multiplicity of λ. By Prop-
osition 5, there is a Morse function Lπ, having a critical point of index
k near x. By the hypotheses, we must have k = n, and thus Aξ — λl.
Hence, Mn is an umbilic submanifold.

Remark 6. The theorem could also be formulated using the Lh func-
tions as well as the others, i.e. every Morse function of the form LP9 Lπ

or Lh has index 0 or n at all of its critical points if and only if Mn is
an umbilic submanifold. The fact that the Lh are not needed in the
characterization is similar to the Euclidean situation, where it is not
necessary to use the linear height functions to characterize the umbilic
submanifolds. Geometrically, the Lh are not necessary because a horo-
sphere can be approximated arbitrarily closely by a sphere, and likewise
by an equidistant hypersurface.

5. Concluding remarks

The framework developed here can also be used to encompass the
Euclidean and spherical cases. We list the results for completeness.

In the Euclidean case, Lp{x) = |x — pf and Lπ(x) = <x, σ>, where a is
any unit normal to the hyperplane π. The level sets are the spheres
centered at p, and the planes parallel to π, respectively. There are two
kinds of pencils, namely, all lines through a point, and all lines orthog-
onal to a hyperplane. Each complete umbilic hypersurface is an orbit
of the group of isometries G(P) generated by reflections in hyperplanes
containing lines of P. In the notation of Section 2, if P is a pencil of
lines orthogonal to hyperplane, then G(P) includes, in addition, the reflec-
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tions in hyperplanes orthogonal to P. Thus, G(P)/G(P) = R.
In the sphere, there is essentially one kind of distance function and

one kind of pencil. A hyperplane in Sm with pole pe Sm is of the form

π = {xeSm\(x,p) = 0} .

The geodesies orthogonal to π coincide with the geodesies through p, and
the collection of level sets of Lp and Lπ are the same, i.e. the spheres
centered at p. Finally, a sphere centered at p is an orbit of the group
G(P) while G(P) is of index 2 in G(P).

Noting that on Sm,

we see that the following Morse theoretic characterization of metric
spheres in Sm follows directly from the Euclidean Theorem A.

THEOREM E. Let Mn, n>2, be a connected, complete Rίemannian mani-
fold isometrίcally immersed in Sm. Every Morse function of the form Lp

has index 0 or n at any of its critical points if and only if Mn is embedded
as a metric sphere Sn.

Finally, we note that results of this nature for complex submanifolds
of complex projective space may be found in [3].

REFERENCES

[ 1 ] E. Cartan, Leςons sur la geometrie des espaces de Riemann, deuxieme edition,
Gauthier-Villars, Paris, 1946.

[ 2 ] T. Cecil, A characterization of metric spheres in hyperbolic space by Morse theory,
Tohoku Math. J. 26 (1974), 341-351.

[ 3 ] , Geometric applications of critical point theory to submanifolds of complex
projective space, Nagoya Math. J. 55 (1974), 5-31.

[ 4 ] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vo. II, John
Wiley and Sons, Inc., New York, 1969.

[ 5 ] K. Nomizu and L. Rodriguez, Umbilical submanifolds and Morse functions, Na-
goya Math. J. 48 (1972), 197-201.

Department of Mathematics
College of the Holy Cross

Department of Mathematics
Indiana University at South Bend






