GROUPS WITH A (B, N)-PAIR AND LOCALLY TRANSITIVE GRAPHS

RICHARD WEISS

1. Introduction.

Let Γ be an undirected graph and G a subgroup of aut (Γ). We denote by $\partial(x, y)$ the distance between two vertices x and y, by $E(\Gamma)$ the edge set of Γ, by $V(\Gamma)$ the vertex set of Γ, by $\Gamma(x)$ the set of neighbors of the vertex x and by $G(x)^{\Gamma(x)}$ the permutation group induced by the stabilizer $G(x)$ on $\Gamma(x)$. For each $i \in N$, let $G_{i}(x)=\{a \mid a \in G(y)$ for every y with $\partial(x, y) \leqslant i\}$. An s-path is an ordered sequence $\left(x_{0}, \cdots, x_{s}\right)$ of $s+1$ vertices x_{i} with $x_{i} \in \Gamma\left(x_{i-1}\right)$ for $1 \leqslant i \leqslant s$ and $x_{i} \neq x_{i-2}$ for $2 \leqslant i \leqslant s$. For each vertex x, let $W_{s}(x)$ be the set of s-paths $\left(x_{0}, \cdots, x_{s}\right)$ with $x=x_{0}$. We say that the graph Γ is locally (G, s)-transitive if for every vertex $x, G(x)$ acts transitively on $W_{s}(x)$ but not on $W_{s+1}(x)$ (compare [1], [11]). If, in addition, G acts transitively on $V(\Gamma)$, then Γ is called (G, s)-transitive; otherwise Γ is bipartite with vertex blocks V_{0} and V_{1} and G acts transitively on both V_{0} and V_{1}, assuming that Γ is connected and $s \geqslant 1$.

Now let G be a finite group with a (B, N)-pair whose Weyl group is a dihedral group $D_{2 n}$ of order $2 n(n \geqslant 2)$ and Γ be the incidence graph of the associated coset geometry as defined in [3, p. 129] (or [2, (15.5.1)]). The graph Γ has the following properties:
(A) $\quad V(\Gamma)=V_{0} \cup V_{1}$ with $V_{0} \cap V_{1}=\varnothing$ and $\Gamma(x) \subseteq V_{1-i}$ for every vertex $x \in V_{i}(i=0$ and 1$)$. For $i=0$ and 1 there exists a $d_{i} \in N$ such that $|\Gamma(x)|=d_{i}+1$ for every vertex $x \in V_{i}$. The diameter of Γ is n and the girth $2 n$.
(B) Γ is locally $(G, n+1)$-transitive.

A generalized n-gon of order (d_{0}, d_{1}) is, by definition, an incidence structure whose incidence graph has the properties listed in (A).
W. Feit and G. Higman have shown in [3] that finite generalized n-gons of order $\left(d_{0}, d_{1}\right)$ with $d_{0} d_{1}>1$ exist only for $n=2,3,4,6,8$ and 12 , that

[^0]$n=8$ is possible only when the squarefree part of $d_{0} d_{1}$ is equal to two and that $n=12$ is possible only when d_{0} or $d_{1}=1$. The only known finite groups with a (B, N)-pair whose Weyl group is isomorphic to $D_{2 n}$ with $n=3$ (resp. $n=4, n=6$) and whose generalized n-gon is of order (d_{0}, d_{1}) with $d_{0}=d_{1}$ are (essentially) the Chevalley groups $A_{2}(q)$ (resp. $B_{2}(q)$, $G_{2}(q)$) (with $q=d_{0}$). Let $\Gamma_{n, q}$ denote the corresponding graph.

We prove here the following theorems:
(1.1) Let p be a prime, r and $s \in N$ with $r \geqslant 1$ and $s \geqslant 2$ and $q=p^{r}$. Let Γ be a finite undirected connected graph regular of valency $q+1$ and G a subgroup of aut (Γ) such that Γ is locally (G, s)-transitive and PSL $(2, q) \widetilde{\leq} G(x)^{\Gamma(x)} \widetilde{\leq} P \Gamma L(2, q)$ for every vertex x. Then $s \leq 5$ or $s=7$. Let $\left(x_{1}, \cdots, x_{s}\right)$ be an arbitrary $(s-1)$-path. Then $G_{1}\left(x_{1}\right)=1$ if $s=2$ and $G_{1}\left(x_{1}\right) \cap G_{1}\left(x_{2}\right) \cap G\left(x_{3}\right) \cap \cdots \cap G\left(x_{s}\right)=1$ otherwise.
(1.2) Let Γ, G, etc. be as is (1.1) with $q \geqslant 3$ and $s \in\{4,5,7\}$. In addition, suppose that $s \neq 5$ if $q=3$. Let $H_{3, q}=A_{2}(q), H_{4, q}=B_{2}(q), H_{6, q}=G_{2}(q)$ and $G_{n, q}=\operatorname{aut}\left(\Gamma_{n, q}\right) \cong \operatorname{aut}\left(H_{n, q}\right)$ for $n=3,4,6 ; H_{n, q}$ is to be considered as a subgroup of $G_{n, q}$. Let $k=\{x, y\}$ be an edge of $\Gamma, \Delta_{i}=\{w \in V(\Gamma) \mid \partial(i, w)$ $\leqslant s-2\}$ for $i=x$ and y and $\Delta=\Delta_{x} \cup \Delta_{y}$. Then there exists a bijective map $\varphi: \Delta \rightarrow V\left(\Gamma_{s-1, q}\right)$ mapping edges onto edges such that:
(a) For $i=x$ and y and for each $g \in G(i)$ (resp. $g \in G(k)$, where $G(k)$ is the stabilizer in G of the unordered pair $\{x, y\}$), there exists a unique element $h \in G_{s-1, q}((i) \varphi)$ (resp. $\left.h \in G_{s-1, q}((k) \varphi)\right)$ such that $(w) h=(w) \varphi^{-1} g \varphi$ for every $w \in\left(\Delta_{i}\right) \varphi\left(\right.$ resp. $\left.w \in(\Delta) \varphi=V\left(\Gamma_{s-1, q}\right)\right)$.
(b) For $i=x$ and y and for each $h \in H_{s-1, q}((i) \varphi)\left(r e s p . ~ h \in H_{s-1, q}((k) \varphi)\right)$, there exists a unique element $g \in G(i)$ (resp. $g \in G(k)$) such that (w)h $=(w) \varphi^{-1} g \varphi$ for each $w \in\left(\Delta_{i}\right) \varphi$ (resp. $\left.w \in(\Delta) \varphi\right)$.

In particular, $H_{s-1, q}((i) \varphi) \widetilde{\leq} G(i) \widetilde{\leq} G_{s-1, q}((i) \varphi)$ for $i=x$ and y and $H_{s-1, q}((k) \varphi) \leftrightarrows G(k) \leftrightarrows G_{s-1, q}((k) \varphi)$.

In the following theorem, $\hat{G}_{4,2}$ denotes the unique subgroup of aut $\left(\Gamma_{4,2}\right) \cong P \Gamma L(2,9)$ isomorphic to $P G L(2,9)$. The reader can check that $\Gamma_{4,2}$ is $\left(\hat{G}_{4,2}, 4\right)$-transitive.
(1.3) Let Γ, G, etc. be as in (1.1) with $q=2$ and $s \in\{4,5,7\}$. Let (X, Y) be an arbitrary 1-path of $\Gamma_{s-1,2}$. Then there exists a map $\varphi: k=\{x, y\}$ $\rightarrow\{X, Y\}$ such that $H_{s-1,2}((i) \varphi) \cong G(i)$ for $i=x$ and y. Either $H_{s-1,2}((k) \varphi)$ $\widetilde{\leq} G(k) \Im G_{s-1,2}((k) \varphi)$ or $s=4$ and $G(k) \cong \hat{G}_{4,2}(K)$ where K is any edge of
$\Gamma_{4,2}$.
In the first part of the proof of (1.1) we show that $s \leqslant 5$ or $s \in\{7,9,13\}$. Note the remarkable coincidence with the numbers $n=2,3,4,6,8$ and 12 obtained in [3] as the solution to a completely different sort of problem. To exclude $s=9$ when $p=2$ and $q \geqslant 4$ we construct a generalized 8 -gon of order (q, q), thus obtaining a contradiction from [3]. To proceed in the case $q \equiv 3(\bmod 4)$, we require $[6,(8.2 .11)]$ in order to prove that $P G L(2, q) \widetilde{\leq} G(x)^{\Gamma(x)}$ for some vertex x. In the proof of (1.2) we use the characterizations of the graphs $\Gamma_{n, q}$ given in [5, Theorem 1.8], [7, Theorem 2] and [12, (4.4)]. Otherwise, the arguments contained in this paper are elementary and self-contained.

When proving (1.2), we include the case that $q=3$ and $s=5$, making the additional assumption that $G(x)^{\Gamma(x)} \cong P G L(2,3)$ for every vertex x. The conclusion reached is that $G_{4,3}(X)$ induces $P G L(2,3)$ on $\Gamma_{4,3}(X)$ for every vertex X of $\Gamma_{4,3}$. Since this is not so, it follows that $G(x)^{\Gamma(x)}$ $\cong P G L(2,3)$ does not hold for all vertices x of Γ when $q=3$ and $s=5$; in particular, G cannot act transitively on $V(\Gamma)$.

Theorems (1.2) and (1.3) imply that $G_{s-1, q}((k) \varphi)$ contains an element exchanging $(x) \varphi$ and $(y) \varphi$ if $G(k)$ contains an element exchanging x and y. Thus $\Gamma_{s-1, q}$ is $\left(G_{s-1, q}, s\right)$-transitive if Γ is (G, s)-transitive. For $n=4$ and $6, \Gamma_{n, q}$ is ($G_{n, q}, n+1$)-transitive if and only if $p=n / 2$ (see [2]). Hence we have the following corollary:
(1.4) Let Γ, G, etc. be as in (1.1). If G acts transitively on $V(\Gamma)$ (i.e., if Γ is (G, s)-transitive), then $p=2$ if $s=5$ and $p=3$ if $s=7$.

For other relevant results consult [4] and [9] where, however, completely different methods are used from those developed here.

2. Proof of (1.1): $s \in\{2,3,4,5,7,9,13\}$

Let Γ and G satisfy the hypotheses of (1.1). If $W=\left(x_{0}, \cdots, x_{t}\right)$ is any t-path (t arbitrary), we set $G(W)=G\left(x_{0}, \cdots, x_{t}\right)=G\left(x_{0}\right) \cap \cdots \cap G\left(x_{t}\right)$ and $G_{i}(W)=G_{i}\left(x_{0}, \cdots, x_{t}\right)=G_{i}\left(x_{0}\right) \cap \cdots \cap G_{i}\left(x_{t}\right)$ for each $i \in N$. If $b \in G(x)$, x a vertex, we denote by $|b|_{x}$ the order of the permutation that b induces on $\Gamma(x)$. We will often use integers to denote vertices of Γ.

For each vertex x, let $\bar{G}(x)$ be the largest subgroup of $G(x)$ such that $\bar{G}(x)^{\Gamma(x)} \cong P G L(2, q)$ and $f_{x}=\left[\bar{G}(x) \cap G(y, x, z): G_{1}(x)\right]$ where y and z are
any two neighbors of x. A t-path $(0, \cdots, t)$ will be called good if $\left[G(W) \cap \bar{G}(i): G(W) \cap G_{1}(i)\right]=f_{i}$ for each i with $1 \leqslant i \leqslant t-1$.
(2.1) If $W=(0, \cdots, t)$ is a good t-path, then there exists a vertex $t+1$ such that $(0, \cdots, t, t+1)$ is a good $(t+1)$-path.

Proof. Clearly all 1- and 2-paths are good, so that we can assume $t \geqslant 2$. Let $W_{1}=(1, \cdots, t)$. By induction, there exists an element $b_{t} \in G\left(W_{1}\right)$ $\cap \bar{G}(t)$ with $\left|b_{t}\right|_{t}=f_{t}$ and $\left(p,\left|b_{t}\right|\right)=1$. For $1 \leqslant i \leqslant t-1$ there exists an element $b_{i} \in G(W) \cap \bar{G}(i)$ with $\left|b_{i}\right|_{i}=f_{i}$ and $\left(p,\left|b_{i}\right|\right)=1$. The subgroup $\left\langle b_{1}, b_{t}\right\rangle$ contains an element c with $c^{-1} b_{t} c=b_{t}^{c} \in G(0)$. Let $a_{t}=b_{t}^{c}$ and $t+1$ be a fixed point of a_{t} in $\Gamma(t)-\{t-1\}$. For each i with $1 \leqslant i \leqslant t$ -1 there exists an element $c_{i} \in\left\langle b_{i}, a_{t}\right\rangle$ with $a_{i}=c_{i}^{-1} b_{i} c_{i} \in G(t+1)$. For $1 \leqslant i \leqslant t$ we have $a_{i} \in G(0, \cdots, t, t+1) \cap \bar{G}(i)$ and $\left|a_{i}\right|_{i}=f_{i}$.
(2.2) Every s-path is good. If $(0, \cdots, s, s+1)$ is a good $(s+1)$-path, then $G(0, \cdots, s) \leqslant G(s+1)$. If $f_{s} \neq 1$, then $s+1$ is the only vertex in $\Gamma(s)$ $-\{s-1\}$ such that $(0, \cdots, s, s+1)$ is good.

Proof. For every vertex x there exists, according to (2.1), at least one good s-path beginning at x. Since $G(x)$ acts transitively on $W_{s}(x)$, the first claim follows. Let $a \in G(0, \cdots, s, s+1) \cap \bar{G}(s)$ be an element with $|a|_{s}=f_{s}$. Suppose there exists an element $b \in G(0, \cdots, s)-G(s+1)$. Then $\langle a, b\rangle \leqslant G(0, \cdots, s)$ acts transitively on $\Gamma(s)-\{s-1\}$ (for if $f_{s}=1$, then $\langle b\rangle$ itself must act transitively on $\Gamma(s)-\{s-1\}$), contradicting the hypothesis that $G(0)$ acts intransitively on $W_{s+1}(0)$. In particular, if $(0, \cdots, s$, $y)$ is a good path and $f_{s} \neq 1$, then there exists an element in $G(0, \cdots, s)$ whose only fixed point in $\Gamma(s)-\{s-1\}$ is y; thus $y=s+1$.

If we take any 1-path and start extending it to an arbitrarily long good path, the resulting path, since Γ is finite, contains, after a while, no new vertices. Thus we may choose, once and for all, an infinitely long path $W=(\cdots,-1,0,1,2, \cdots)$ such that for each i there exists an element $h_{i} \in G(W) \cap \bar{G}(i)$ with $\left|h_{i}\right|_{i}=f_{i}$.

$$
\begin{equation*}
G_{1}(1)=1 \text { if } s=2 \text { and } G_{1}(1,2) \cap G(0, \cdots, s)=1 \text { otherwise } \tag{2.3}
\end{equation*}
$$

Proof. Let $A=G_{1}(1,2) \cap G(0, \cdots, s)$. Since $h_{s} \in G(1, \cdots, s), G(1, \cdots$, $s)$ acts primitively on $\Gamma(s)-\{s-1\}$. Since $G_{1}(1) \cap G(1, \cdots, s) \unlhd G(1, \cdots, s)$ and $G_{1}(1) \cap G(1, \cdots, s) \leqslant G(0, \cdots, s)$ acts intransitively on $\Gamma(s)-\{s-1\}$, we have $G_{1}(1) \cap G(1, \cdots, s) \leqslant G_{1}(s)$ and in particular $G_{1}(1) \leqslant A$ if $s=2$.

Similarly, $G_{1}(s) \cap G\left(s, \cdots, 2, x_{2}\right) \leqslant G_{1}\left(x_{2}\right), x_{2} \in \Gamma(2)-\{1,3\}$ arbitrary. By (2.2), $G(0, \cdots, s) \leqslant G(-s+4, \cdots, s)$ and thus $A \leqslant G_{1}\left(x_{2}\right) \cap G\left(x_{2}, 2,1,0, \cdots\right.$, $-s+4) \leqslant G_{1}(-s+4)$, hence $A \leqslant G_{1}(-s+4) \cap G(-s+4, \cdots, 3) \leqslant G_{1}(3)$. Choose any $y \in \Gamma(s)-\{s-1\}$. Then $A \leqslant G_{1}(2) \cap G(2, \cdots, s, y) \leqslant G_{1}(y)$, $A \leqslant G_{1}(y) \cap G\left(y, s, \cdots, 3, x_{3}\right), x_{3} \in \Gamma(3)-\{2,4\}$ arbitrary, thus $A \leqslant G_{1}\left(x_{3}\right)$ $\cap G\left(x_{3}, 3,2, \cdots,-s+5\right) \leqslant G_{1}(-s+5), A \leqslant G_{1}(-s+5) \cap G(-s+5, \cdots, 4)$ $\leqslant G_{1}(4)$. Also, $A \leqslant G_{1}(3) \cap G(3, \cdots, s, y) \cap G_{1}(y) \leqslant G_{1}(z), z \in \Gamma(y)-\{s\}$ arbitrary. It should now be clear that $A \leqslant G_{1}(1, \cdots, s, y, z, \cdots, w)$ for every path ($1, \cdots, s, y, z, \cdots, w$) of arbitrary length beginning with ($1, \cdots, s$). Since Γ is connected, it follows that $A=1$.

To prove (1.1), we have only to show now that $s \leqslant 5$ or $s=7$. From now on we assume that $s \geqslant 3$.
(2.4) $G_{1}(1,2)$ is a p.group. For each $t \geqslant 3$ and each i with $1 \leqslant i \leqslant t-2$, $G_{1}(i, i+1) \cap G(0, \cdots, t)=G_{1}(1, \cdots, t-1)$.

Proof. By (2.3), $G_{1}(1,2)$ acts semi-regularly on the set of s-paths beginning with $(0, \cdots, 3)$ and thus $\mid G_{1}(1,2) \| q^{s-3}$. To prove the second claim, we note that $G_{1}(1,2) \unlhd G_{1}(2) \unlhd G(2,3)$ and thus $G_{1}(1,2)^{\Gamma^{(3)}} \leqslant O_{p}\left(G(2,3)^{\left.\Gamma^{(3)}\right)}\right.$ so that $G_{1}(1,2) \cap G(4)=G_{1}(1,2,3)$.
(2.5) If $2 \leqslant t \leqslant s-1$, then $G_{1}(1, \cdots, t-1)$ acts transitively on $\Gamma(t)-\{t-1\}$.

Proof. Let x_{1} and x_{2} be any two vertices in $\Gamma(t)-\{t-1\}$. There exists an element $a_{i} \in G\left(0, \cdots, t, x_{i}\right) \cap \bar{G}(t)$ with $\left|a_{i}\right|_{t}=f_{t}(i=1,2)$. If $f_{t} \neq 1$, the commutator group $\left\langle a_{1}, a_{2}\right\rangle^{\prime} \leqslant \bar{G}(0, \cdots, t)$ of $\left\langle a_{1}, a_{2}\right\rangle \leqslant G(0, \cdots, t)$, therefore any p-Sylow group of $\left\langle a_{1}, a_{2}\right\rangle^{\prime}$ and therefore $G_{1}(1, \cdots, t-1)$ act transitively on $\Gamma(t)-\{t-1\}$. If $f_{t}=1$, then $q \leqslant 3$ so that $G_{1}(1, \cdots, t-1)$ $\in \operatorname{Syl}_{p}(G(0, \cdots, t))$ and the claim follows directly from the fact that $G(0, \cdots, t)$ acts transitively on $\Gamma(t)-\{t-1\}$.

From now on, we set $m=(s / 2)-1$ when s is even and $m=(s-3) / 2$ when s is odd.
(2.6) If $s \geqslant 4$, then $Z O_{p}(G(0,1)) \leqslant G_{m}(0,1)$, where $Z O_{p}(G(0,1))$ denotes the center of $O_{p}(G(0,1))$.

Proof. By (2.5), $G_{1}(0,1) \neq 1$ and thus $O_{p}(G(0,1)) \neq 1$. Let b be a nontrivial element in $Z O_{p}(G(0,1))$. If $w \in \Gamma(1)-\{0\}$ is arbitrary, then $G_{1}(1, w)$ $\leqslant O_{p}(G(0,1))$ and thus $G_{1}(1, w)=G_{1}(1,(w) b)$, so that $b \in G(w)$ by (2.5).

Thus $b \in G_{1}(1)$ and similarly, $b \in G_{1}(0)$. Since $G_{1}(0,1) \cap G(0, \cdots, s-1)=1$, there exists an $n<s$ such that $b \in G(0, \cdots, n)-G(n+1)$. By (2.5), there exists a nontrivial element $a \in G_{1}(1, \cdots, s-2) \leqslant O_{p}(G(0,1))$. Since b $\in Z O_{p}(G(0,1))$, we have $a \in G_{1}(s-2, s-3, \cdots, n,(n+1) b, \cdots,(s-2) b)$. By (2.3), the length of the path $(s-2, s-3, \cdots, n,(n+1) b, \cdots,(s-2) b)$ is at most $s-3$. Therefore $s-1 \leqslant 2 n$.
(2.7) Suppose $s \notin\{2,3,4,5,7\}$. Then s is odd, $Z O_{p}(G(0,1)) \leqslant G_{m+1}(0)$ or $Z O_{p}(G(0,1)) \leqslant \dot{G}_{m+1}(1)$ and G operates intransitively on the vertex set $V(\Gamma)$.

Proof. We assume first that there exists an element $b \in Z O_{p}(G(0,1))$ $-G_{1}(m+1)$. Then $\left[b, Z O_{p}(G(m+1, m+2))\right] \leqslant G_{1}(-m+2, \cdots, 2 m)$ because of (2.6). Since $s \notin\{2,3,4,5,7\}$, the length of $(-m+2, \cdots, 2 m)$ is at least $s-2$. By (2.3), it follows that $\left[b, Z O_{p}(G(m+1, m+2))\right]=1$ and therefore $Z O_{p}(G(m+1, m+2))=Z O_{p}(G(m+1,(m+2) b))$, so that $Z O_{p}$ $\cdot(G(m+1, m+2)) \leq\langle G(m+1, m+2), G(m+1,(m+2) b)\rangle=G(m+1)$. By (2.6), we have $Z O_{p}(G(m+1, m+2)) \leqslant G_{m+1}(m+1)$.

On the other hand, if $Z O_{p}(G(0,1)) \leqslant G_{1}(m+1)$, then $Z O_{p}(G(0,1))$ $\leqslant G_{m+1}(1)$ since $Z O_{p}(G(0,1)) \unlhd G(0,1)$ and $G(0,1)$ acts transitively on the set of ($m+1$)-paths beginning with $(0,1)$. Therefore $Z O_{p}(G(0,1)) \leqslant G_{m+1}(u)$ for $u=0$ or 1 .

Suppose that $Z O_{p}(G(0,1)) \leqslant G_{m+1}(0)$. Since $G_{m+1}(0) \leqslant G_{1}(-m, \cdots, m)$, we have $2 m \leqslant s-3$ so that s is odd and $G_{m+1}(0) \cap G_{1}(m+1)=1$. If G contains an element c which exchanges 0 and 1 , then $Z O_{p}(G(0,1))$ $=Z O_{p}(G(0,1))^{c} \leqslant G_{m+1}(0)^{c}=G_{m+1}(1)$ and thus $Z O_{p}(G(0,1)) \leqslant G_{m+1}(0) \cap G_{1}(m$ $+1)=1$, a contradiction. Therefore G acts intransitively on $V(\Gamma)$.
(2.8) $s \in\{2,3,4,5,7,9,13\}$.

Proof. We may assume that s is odd, $s \geqslant 9$ and $G_{m+1}(0) \neq 1$. Since $G_{m+1}(0) \neq 1, G_{m+1}(i) \neq 1$ for every even i. There exists an element $c \in G_{m+1}(0)$ $-G_{1}(m+1)$. Suppose first that $s \equiv 3(\bmod 4)$ and thus $G_{m+1}(m+2) \neq 1$. Since $\left[c, G_{m+1}(m+2)\right] \leqslant G_{1}(-m+2, \cdots, 2 m)-G_{1}(2 m+1)$, we have $3 m-2$ $\leqslant s-3$, hence $s \leqslant 7$. Therefore $s \equiv 1(\bmod 4)$. It follows that $G_{m+1}(m+3)$ $\neq 1$ and thus $\left[c, G_{m+1}(m+3)\right] \leqslant G_{1}(-m+4, \cdots, 2 m-1)-G_{1}(2 m)$ so that $3 m-5 \leqslant s-3$, hence $s \leqslant 13$.

Before going on to $\S 3$, we prove more lemmas needed later.
(2,9). If $s \in\{5,7,9,13\}$, then $G_{m+1}(u) \leqslant Z O_{p}(G(0,1))$ for $u=0$ and 1 and
$G_{m+1}(u) \neq 1$ for $u=0$ or 1 (or both); if $G_{m+1}(u) \neq 1$, then $\left|G_{m+1}(u)\right|=q$.
Proof. Let $u=0$ or 1 . Since $G_{m+1}(u) \unlhd O_{p}(G(0,1))$, either $Z O_{p}(G(0,1))$ $\cap G_{m+1}(u) \neq 1$ or $G_{m+1}(u)=1$. Suppose that $Z O_{p}(G(0,1)) \cap G_{m+1}(u)$ contains a nontrivial element b. Then $G_{m+1}(u)=\left\langle h_{m_{++u+1}^{-j} b h_{m+u+1}^{j}\left|0 \leqslant j<f_{m+u+1}\right\rangle}\right.$ since $G_{m+1}(u) \cap G_{1}(m+u+1)=1$ and $G_{m+1}(u)^{\Gamma(m+u+1)} \leqslant O_{p}(G(m+u, m$ $+u+1)^{\Gamma(m+u+1)}$. It follows that $\left|G_{m+1}(u)\right|=q$ and $G_{m+1}(u) \leqslant Z O_{p}(G(0,1))$ since h_{m+u+1} normalizes $Z O_{p}(G(0,1))$.

It remains only to show that $G_{m+1}(u) \neq 1$ for $u=0$ or 1 . Thus we suppose instead that $G_{m+1}(x)=1$ for every vertex x. By (2.7), $s=5$ or 7 . Let $s=5$. Then $Z O_{p}(G(3,4)) \leqslant G(2)-G_{1}(2)$ since otherwise $Z O_{p}(G(3,4))$ $\leqslant G_{2}(3)$. Since h_{2} normalizes $Z O_{p}(G(3,4)), Z O_{p}(G(3,4))$ acts transitively on $\Gamma(2)-\{3\}$. Since $Z O_{p}(G(3,4))$ centralizes $G_{1}(1,2,3)$, we have $G_{1}(1,2,3)$ $\leqslant G_{2}(2)=1$, in contradiction to (2.5). Thus $s=7$ and $Z O_{p}(G(i, i+1))$ acts transitively on $\Gamma(i+3)-\{i+2\}$ for every i. Since $Z O_{p}(G(1,2))$ centralizes $G_{1}(1, \cdots, 5)$, we have $G_{1}(1, \cdots, 5) \leqslant G_{2}(4)$. Since $Z O_{p}(G(0,1))$ centralizes $G_{1}(1, \cdots, 5)$, it follows that $G_{1}(1, \cdots, 5) \leqslant G_{3}(3)=1$, again a contradiction.

Thus we may suppose, from now on, that $G_{m+1}(i) \neq 1$ for every even i whenever $s \in\{5,7,9,13\}$.
(2.10) Let $s \in\{5,7,9,13\}$ and $p=2$. Then there exists an element $a \in G_{1}$ $((s-1) / 2) \cap G(0, \cdots, 2(s-1)) \cap G_{1}(3(s-1) / 2)$ with $|a|_{s-1}=q-1$.

Proof. We may suppose that $q \neq 2$. Let x_{1} and x_{2} be any two vertices in $\Gamma(s-1)-\{s-2, s\}$. By (2.5), there exists for $j=1,2$ an element $g_{j} \in O_{2}\left(G\left(x_{j}, s-1\right)\right)$ such that $(i) g_{j}=2(s-1)-i$ for $s-1 \leqslant i \leqslant 2(s-1)$. Since $O_{2}\left(G\left(x_{j}, s-1\right)\right.$) induces an elementary abelian 2 -group on $\Gamma(s-1)$, we have $(s-2) g_{j}=s$. Therefore both $(0, \cdots, 2(s-1)$) and (2(s-1), \cdots, $0) g_{j}=\left(0, \cdots, s,(s-3) g_{j}, \cdots,(0) g_{j}\right)$ are good paths. By (2.2), (i)g $g_{j}=2(s-1)$ $-i$ also for $0 \leqslant i \leqslant s-3$. Let $a=g_{1} g_{2}$. Then $|a|_{s-1}=q-1$. By (2.9), $G_{m+1}(s-1) \leqslant Z O_{2}\left(G\left(x_{1}, s-1\right)\right) \cap Z O_{2}\left(G\left(x_{2}, s-1\right)\right)$ and thus $\left[a, G_{m+1}(s-1)\right.$] $=1$. Since $s-1$ is even, $G_{m+1}(s-1)$ acts transitively on $\Gamma((s-1) / 2)$ $-\{(s+1) / 2\}$. Since $a \in G((s-3) / 2), a \in G_{1}((s-1) / 2)$. Similarly, $a \in G_{1}(3(s$ $-1) / 2$).

It is in the proof of the next lemma that we require [6, (8.2.11)].
(2.11) If $p \neq 2$ and $s \geqslant 4$, then $|\bar{G}(W)|=|\bar{G}(\cdots,-1,0,1,2, \cdots)|$ is even.

Proof. We first suppose that we can choose $u \in\{0,1\}$ such that f_{u} is even. The reader should check the following simple fact:
(*) Let $q-1=2^{k} w$ with w odd. If σ is an arbitrary element in the stabilizer $P \Gamma L(2, q)_{\infty}$ of $\infty \in P G(1, q)$ but not in $P G L(2, q)$ whose order is a power of two, then $\mid \sigma \| 2^{k}$ and either $k=2,|\sigma|=4$ and $\sigma^{2} \in P G L(2, q)$ or $k \geqslant 3$ and $\sigma^{2 k-2} \in P G L(2, q)$.

We choose an odd $n \in N$ such that $\left|h_{u}\right| / n$ is a power of two. It follows from (*) that $h_{u}^{n f_{u} / 2}$ or $h_{u}^{n f_{u}} \in \bar{G}(W)-\{1\}$.

It remains to show that f_{u} is even for $u=0$ or 1 . To show this, it will be necessary to make only a few minor changes in the proof of $[8$, (6.3)]: Suppose that both f_{0} and f_{1} are odd. Then $q \equiv 3(\bmod 4), \bar{G}(u)^{r(u)}$ $\cong \operatorname{PSL}(2, q)$ for $u=0$ and 1 and $|G(0,1)|$ is odd. Thus a 2-Sylow group of $\bar{G}(u)$ is isomorphic to a 2 -Sylow group of $\operatorname{PSL}(2, q)$, so that $\bar{G}(u)$ is p stable for $u=0$ and 1 (see [6, (2.8.3), (8.1.2)]). Let $u=0$ or 1 and C $=C_{\bar{c}(u)}\left(O_{p}(\bar{G}(u))\right)$, the centralizer of $O_{p}(\bar{G}(u))$ in $\bar{G}(u)$, and $c \in C$. Let w $\in \Gamma(u)$. Since $G_{1}(u, w) \leqslant O_{p}(\bar{G}(u))$, we have $G_{1}(u, w)=G_{1}(u,(w) c)$. By (2.5) and the hypothesis $s \geqslant 4, G_{1}(u, w) \nsubseteq G_{1}(z)$ for $z \in \Gamma(u)-\{w\}$. Therefore $c \in G_{1}(u)$, since w was arbitrary. Now let z and w be any two neighbors of u. Since $G_{1}(u, w)^{\Gamma(z)}=O_{p}\left(G(u, z)^{\Gamma(z)}\right)$, we have $C^{\Gamma(z)} \leqslant O_{p}\left(G(u, z)^{\Gamma(z)}\right)$. Therefore we can find elements $d \in G_{1}(u, w)$ and $e \in G_{1}(u, z)$ such that $c d=e$ and thus $c=e d^{-1} \in O_{p}(\bar{G}(u))$, so that $C \leqslant O_{p}(\bar{G}(u))$. Thus $O_{p^{\prime}}(\bar{G}(u))$ $=1$ and $\bar{G}(u)$ is p-constrained (see [6, p. 268]).

Let $S \in \operatorname{Syl}_{p}(\bar{G}(0))$. By [6, (8.2.11)], we have $J(S) \unlhd \bar{G}(0)$. We may assume that $S \leqslant \bar{G}(1)$ and thus $S \in \operatorname{Syl}_{p}(\bar{G}(1))$. Therefore $J(S) \leq\langle\bar{G}(0)$, $\bar{G}(1)\rangle$. Since Γ is connected, $\langle\bar{G}(0), \bar{G}(1)\rangle$ acts transitively on the set of edges of Γ and thus $J(S)=1$, a contradiction.
(2.12) If $s=3$, then $q(q-1) /(q-1,2)| | G_{1}(u) \cap \bar{G}(1-u) \mid$ for $u=0$ and 1 .

Proof. Let $u=0$ or 1 and $A=\left\langle G_{1}(w) \mid w \in \Gamma(u)\right\rangle$. Let $y \in \Gamma(u)$. Then $\left[G_{1}(u), G_{1}(y)\right] \leqslant G_{1}(u, y)$ and thus, by (2.3), $\left[A, G_{1}(u)\right]=1$. By (2.5), $G_{1}(y)$ acts transitively on $\Gamma(u)-\{y\}$, so that $A^{\Gamma(u)} \geq P S L(2, q)$. Let a be an element in $A \cap \bar{G}(u) \cap G(y)$ such that $|a|_{u}=(q-1) /(q-1,2)$ and $(|a|, p)=1$. Since $\left[a, G_{1}(u)\right] \leqslant\left[A, G_{1}(u)\right]=1$ and $G_{1}(u)$ acts transitively on $\Gamma(y)-\{u\}$, we have $a \in G_{1}(y)$.
(2.13) Let $s=3, q=3, G(x)^{\Gamma(x)} \cong P G L(2,3)$ and $\left|G_{1}(x)\right|=3$ for every vertex x. Let $u=0$ or 1 and y_{1} and y_{2} be vertices such that $\left(u, u+1, u+2, y_{1}\right.$,
y_{2}) is a good 4-path. Then $\left(y_{2}, y_{1}, u+2, u+3, u+4\right)$ is also good.
Proof. Let $u=0$ (the proof is the same when $u=1$), $A=\left\langle G_{1}(w)\right|$ $w \in \Gamma(2)\rangle$ and $B=\left\langle A, G_{1}(2)\right\rangle$; we have $\left[A, G_{1}(2)\right]=1$ and $|B|=\left|B^{\Gamma(2)}\right| \cdot\left|G_{1}(2)\right|$ $=36$. Let $G_{1}(2)=\langle h\rangle$ and $g_{1}=1, g_{2}, \cdots, g_{12}$ be elements of B inducing different permutations on $\Gamma(2)$ which we may choose such that $\left|g_{i}\right|=2$ for $2 \leqslant i \leqslant 4$. Then three divides the order of every element in $B=\left\{g_{i} h^{j} \mid 1\right.$ $\leqslant i \leqslant 12 ; 0 \leqslant j \leqslant 2\}$ except g_{i} for $1 \leqslant i \leqslant 4$. Thus B contains just one 2-Sylow group S. It follows that $A=\left\langle S, G_{1}(1)\right\rangle$, therefore $|A|=|S| \cdot\left|G_{1}(1)\right|$ $=12$ and, in particular, $A \cap G_{1}(2)=1$.

Since ($0, \cdots, 4$) is good, there exists an involution $b \in G(0, \cdots, 4)$. For $i=1$ and 3 , there exists an element $c_{i} \in G_{1}(i)$ mapping $4-i$ to y_{1}. Since $(0, \cdots, 4) c_{3}=\left((0) c_{3}, y_{1}, 1,2,3\right)$ is good, we may assume that (0) $c_{3} \neq y_{2}$. On the other hand, since both $(0, \cdots, 4) c_{1}=\left(0,1,2, y_{1},(4) c_{1}\right)$ and $\left(0,1,2, y_{1}, y_{2}\right)$ are good, we have (4) $c_{1}=y_{2}$ by (2.2). Let c be the element in $G_{1}\left(y_{1}\right)$ mapping 1 onto 3 and $d=c c_{1}^{-1}\left(c_{1} c c_{3}^{-1}\right)^{b} c_{3} c$. Then $d \in A \cap G_{1}(2)=1$. But $b^{c_{1} c^{-1}} \in G\left(2, y_{1}, y_{2}\right)$ and $b^{c_{3} c} \in G\left(2, y_{1},(0) c_{3}\right)$ so that $d=b^{c_{1} c^{-1}} b^{c_{3 c}} \notin G_{1}\left(y_{1}\right)$, a contradiction.

3. The case $s=9$

Since $G_{4}(2) \leqslant Z O_{p}(G(2,3))$ and $G_{4}(2)$ acts transitively on $\Gamma(6)-\{5\}$, it follows that $G_{1}(2, \cdots, 8) \leqslant G_{2}(6)$. Choose an arbitrary element $b_{10} \in G_{4}(10)^{*}$ $=G_{4}(10)-\{1\}$. For any $b_{5} \in G_{1}(2, \cdots, 8)^{*}$, we have $\left[b_{5}, b_{10}\right] \in G_{1}(5, \cdots, 11)$ $-G_{1}(12)$, therefore $\left[b_{5}, b_{10}\right] \notin G_{1}(4)$ and hence $b_{5} \notin G_{1}\left((4) b_{10}^{-1}\right)$. Let b_{2} be the element in $G_{4}(2)$ with $(5) b_{10}^{-1} b_{2}=7$. Since $\left[G_{4}(2), G_{1}(2, \cdots, 8)\right]=1, b_{5}=b_{5}^{b_{2}}$ $\in G_{1}(2, \cdots, 8)-G_{1}\left((4) b_{10}^{-1} b_{2}\right)$. Thus $G_{1}(2, \cdots, 8) \cap G_{1}\left((4) b_{10}^{-1} b_{2}\right)=1$.
(3.1) a) There exist elements $b_{\imath} \in G_{1}(i-3, \cdots, i+3)^{*}$ for $i=3,4$ and 5 such that $\left[b_{3}, b_{5}\right]=b_{4}$.
b) If $b_{4} \in G_{4}(4)^{*}$ and $b_{9} \in G_{1}(6, \cdots, 12)^{*}$, then there exists an element b_{6} $\in G_{4}(6)^{*}$ such that $\left[b_{4}, b_{9}\right]=b_{6}$.
c) If $b_{4} \in G_{4}(4)^{*}$ and $b_{10} \in G_{4}(10)^{*}$, then there exist elements $b_{6} \in G_{4}(6)^{*}, b_{7}$ $\in G_{1}(4, \cdots, 10)$ and $b_{8} \in G_{4}(8)^{*}$ such that $\left[b_{4}, b_{10}\right]=b_{6} b_{7} b_{8}$.
d) If $b_{7} \in G_{1}(4, \cdots, 10)^{*}$ and $b_{11} \in G_{1}(8, \cdots, 14)^{*}$, then there exist elements $b_{8} \in G_{4}(8)^{*}, b_{9} \in G_{1}(6, \cdots, 12)$ and $b_{10} \in G_{4}(10)^{*}$ such that $\left[b_{7}, b_{11}\right]=b_{8} b_{9} b_{10}$.

Proof. a) We have seen that there exists a vertex $x \in \Gamma(7)$ such that $G_{1}(2, \cdots, 8) \cap G_{1}(x)=1$. Let b_{3} be the element in $G_{1}(0, \cdots, 6)$ such that $(8) b_{3}^{-1}=x$. Then $\left[b_{3}, b_{5}\right] \in G_{4}(4)^{*}$ for every $b_{5} \in G_{1}(2, \cdots, 8)^{*}$. b) is left to
the reader. c) We have $\left[b_{4}, b_{10}\right] \in G_{1}(5, \cdots, 9)-G_{4}(4)-G_{4}(10)$. There exist elements $b_{5} \in G_{4}(6)^{*}$ and $b_{8} \in G_{4}(8)^{*}$ such that $\left[b_{4}, b_{10}\right] b_{6}^{-1} b_{8}^{-1} \in G_{1}(4, \cdots, 10)$. Since $\left[G_{4}(6), G_{4}(8)\right]=\left[G_{4}(6), G_{1}(4, \cdots, 10)\right]=1$, the claim follows. d) is now clear.

We now suppose that $p \neq 2$. By $(2,11), \bar{G}(W)$ contains an involution a. Let $\zeta(i)=(-1)^{|a| i+1}$ for each i.
(3.2) For every even i :
A) $\zeta(i)=\zeta(i-1) \zeta(i+1)$
B) $\zeta(i)=\zeta(i-2) \zeta(i+3)$
C) $\zeta(i) \zeta(i+6)=\zeta(i+2)=\zeta(i+4)$

Proof. A) Choose b_{3}, b_{4} and b_{5} as in (3.1.a). Since $G_{1}(2, \cdots, 8)^{\Gamma(1)}$ $=O_{p}\left(G(1,2)^{\Gamma(1)}\right), G_{1}(2, \cdots, 8)^{\Gamma(9)}=O_{p}\left(G(8,9)^{\Gamma(9)}\right)$ and $G_{1}(1, \cdots, 8)=G_{1}(2, \cdots$, $9)=1$, we have $b_{5}^{a}=b_{5}^{\xi_{5}^{(1)}}=b_{5}^{\text {(9) }}$ and, in particular, $\zeta(1)=\zeta(9)$. Similarly, $b_{3}^{a}=b_{3}^{\zeta(-1)}=b_{3}^{\zeta(7)}$ and $b_{4}^{a}=b_{4}^{\zeta(0)}=b_{4}^{\zeta(8)}$. We have $\left[b_{3}^{(\tau-1)}, b_{5}^{\zeta(1)}\right]=\left[b_{3}, b_{5}\right]^{[(-1) \zeta(1)}$ because $\left[b_{3}, b_{4}\right]=\left[b_{4}, b_{5}\right]=1$. Therefore $b_{4}^{[(1)(-1)}=b_{4}^{a}=b_{4}^{\text {(0) }}$ and thus $\zeta(1) \zeta(-1)=\zeta(0)$. For arbitrary even i, we find, as in (3.1.a), elements $b_{i+j} \in G_{1}(i+j-3, \cdots, i+j+3)^{*}$ for $j=3,4$ and 5 such that $\left[b_{i+3}, b_{i+5}\right]$ $=b_{i+4}$ and proceed as before. B) follows analogously from (3.1.b). C) Choose b_{i} for $i=4,6,7,8$ and 10 as in (3.1.c). Then $b_{6}^{[(2)} b_{7}^{[(3)} b_{8}^{[(4)}$ $=\left(b_{6} b_{7} b_{8}\right)^{a}=\left[b_{4}^{a}, b_{10}^{a}\right]=\left[b_{4}^{\zeta(0)}, b_{10}^{\zeta(\theta)}\right]=\left(b_{6} b_{7} b_{8}\right)^{\xi(0) \zeta(6)}=b_{6}^{\zeta(0) \zeta(6)} b_{7}^{\zeta(0) \zeta(\theta)} b_{8}^{\xi(0) \zeta(6)}$ since $\left[G_{4}(j), G_{1}(k-3, \cdots, k+3)\right]=1$ whenever j is even and $|j-k| \leqslant 4$. Thus $b_{6}^{(0)(1)(6)-\zeta(2)} \in G_{1}(10)$. It follows that $\zeta(0) \zeta(6)=\zeta(2)$. Similarly, $\zeta(0) \zeta(6)=\zeta(4)$.

By (3.2.C), $\zeta(i)=\zeta(0)$ for every even i. By (3.2.B), it follows that $\zeta(i)=1$ for i odd. Therefore, by (3.2.A), $\zeta(2)=1$ and thus $a \in G_{1}(1,2)$. By (2.4), it follows that $a=1$, a contradiction.

Thus $p=2$. First let $q=2$. For each i let b_{i} be the nontrivial element in $G_{1}(i-3, \cdots, i+3)$. Since there exists a vertex $x \in \Gamma(7)$ such that $G_{1}(2, \cdots, 8) \cap G_{1}(x)=1$ and $|\Gamma(7)|=3$, it follows that $b_{5} \notin G_{1}\left((6) b_{11}\right)$. Similarly, $b_{11} \notin G_{1}\left((10) b_{5}\right)$. Thus $\left[b_{5}, b_{11}\right] \in G_{1}(7,8,9)-G_{1}(6)-G_{1}(10)$, so that $b_{6} b_{10}\left[b_{5}, b_{11}\right] \in G_{1}(6, \cdots, 10)$ and $\left(b_{6} b_{10}\left[b_{5}, b_{11}\right]\right)^{2} \in G_{1}(5, \cdots 11)$. Since $\left[G_{4}(i)\right.$, $\left.G_{1}(7,8,9)\right]=1$ for $i=6$ and $10,\left(b_{6} b_{10}\left[b_{5}, b_{11}\right]\right)^{2}=\left[b_{5}, b_{11}\right]^{2}$. If $\left[b_{5}, b_{11}\right]^{2}=1$, then $\left[b_{5},\left[b_{5}, b_{11}\right]\right]=1$ and therefore $b_{5} \in G_{1}\left(2, \cdots, 6\right.$, (5) $\left[b_{5}, b_{11}\right], \cdots,(2)\left[b_{5}\right.$, $\left.b_{11}\right]$), in contradiction to (2.3). Therefore $\left[b_{5}, b_{11}\right]^{2} \neq 1$ and, in particular, $\left[b_{5}, b_{11}\right]^{2} \notin G(3)$. Since $\left[G_{4}(2), G_{1}(2, \cdots, 8)\right]=1$, we have $b_{5} \in G_{1}\left((8) b_{2}\right)$. If (8) b_{2}
$=(4)\left[b_{5}, b_{11}\right]$, then $b_{5} \in G\left((3)\left[b_{5}, b_{11}\right]\right)$ and thus $(3)\left[b_{5}, b_{11}\right]^{2}=(3)\left[b_{5}, b_{11}\right] b_{11} b_{5} b_{11}=3$. It follows that $(8) b_{2} \neq(4)\left[b_{5}, b_{11}\right]$. Since $\left[b_{5}, b_{10}\right] \in G(4, \cdots, 12)-G(13)$, we have $\left[b_{5}, b_{10}\right] \notin G(3)$, so that $b_{5} \notin G_{1}\left((4) b_{10}\right)$ and therefore (4) $b_{10} \neq(8) b_{2}$. Thus (4) $b_{10}=(4)\left[b_{5}, b_{11}\right]$. Hence $\left(b_{10}\left[b_{5}, b_{11}\right]\right)^{2} \in G(3)$. Since $\left[b_{10}, G_{1}(6,7,8)\right]=1$, $\left[b_{5}, b_{11}\right]^{2} \in G(3)$, a contradiction.

When $q>2$, a different argument is required.
(3.3) Let $p=2$. For every i there exists an element $e_{i} \in G_{1}(i) \cap G(i, \cdots$, $i+8) \cap G_{1}(i+8)$ with $\left|e_{i}\right|_{j}=q-1$ for $i<j<i+8$.

Proof. By (2.10), there exists an element $a \in G_{1}(4) \cap G(4, \cdots, 12) \cap G_{1}(12)$ $\leqslant G(W)$ with $|a|_{8}=q-1$. Thus $q-1| | a \mid$. Since $a^{|a|_{5}} \in G_{1}(4,5)$, we have $|a|=|a|_{s}$ by (2.3). If $\sigma \in P \Gamma L(2, q)_{\infty}$ and $q-1| | \sigma \mid$, then $|\sigma|=q-1$. It follows that $|a|_{5}=q-1$. Similarly, $|a|_{11}=q-1$.

For each i let $a_{i}=a^{|a|_{i}}$. Then $\left[a_{i}, G_{1}(i+1, \cdots, i+7)\right]=1$ and thus $a_{i} \in G_{1}(i+8)$. It follows that $a_{i} \in G_{1}(j)$ whenever $j \equiv i(\bmod 8)$.

By (3.1.c), we can find elements $b_{i} \in G_{4}(i)^{*}$ for $i=0,2,4$ and 6 and an element $b_{3} \in G_{1}(0, \cdots, 6)$ such that $\left[b_{0}, b_{6}\right]=b_{2} b_{3} b_{4}$. Since $\left[b_{0}, b_{6}\right]=\left[b_{0}^{a_{10}}, b_{6}^{a_{10}}\right]$ $=b_{2}^{a_{10}} b_{3}^{a_{10}} b_{4}^{a_{10}}, b_{4}^{a_{10}} b_{4}^{-1} \in G_{1}(0)$ and thus $\left[b_{4}, a_{10}\right]=1$. Since $\left[b_{4}, a^{j}\right]=1$ implies $|a|_{8}=q-1 \mid j$, we conclude that $|a|_{10}=q-1$. Similarly, $|a|_{6}=q-1$. By (3.1.b), we can find $b_{i} \in G_{1}(i-3, \cdots, i+3)^{*}$ for $i=8,10$ and 13 such that $\left[b_{8}, b_{13}\right]=b_{10}$. Then $b_{10}^{a_{9}}=\left[b_{8}^{a_{9}}, b_{13}^{a_{9}}\right]=\left[b_{8}, b_{13}\right]=b_{10}$ and therefore $|a|_{6}$ $=q-\left.1| | a\right|_{9}$. It follows that $|a|_{9}=q-1$ and similarly $|a|_{7}=q-1$. Thus the claim is proven for i even.

Let c be an element in $G_{1}(2) \cap G(2, \cdots, 10) \cap G_{1}(10)$ with $|c|_{i}=q-1$ for $3 \leqslant i \leqslant 9$. We can choose c such that $d=a c \in G_{1}(3)$; let $d_{i}=d^{|d|_{i}}$ for each i. Since $\left[d, G_{1}(4, \cdots, 10)\right]=1, d \in G_{1}(11)$. Since $a \in G_{1}(4)$ and $c \in G_{1}(10)$, we have $|d|_{4}=|d|_{10}=q-1$. By (3.1.a), we can find elements $b_{i} \in G(i-3$, $\cdots, i+3)^{*}$ for $i=7,8$ and 9 such that $\left[b_{7}, b_{9}\right]=b_{8}$. Then $b_{8}^{d_{5}}=\left[b_{7}^{d_{5}}, b_{9}^{d_{5}}\right]$ $=\left[b_{7}, b_{9}\right]=b_{8}$ and thus $|d|_{4}=q-\left.1| | d\right|_{5}$ so that $|d|_{5}=q-1$. Similarly, $|d|_{9}=q-1$. By (3.1.b), we can find elements $b_{i} \in G_{1}(i-3, \cdots, i+3)^{*}$ for $i=7,10$ and 12 such that $\left[b_{7}, b_{12}\right]=b_{10}$. Then $b_{10}^{d_{8}}=\left[b_{7}^{d_{8}}, b_{12}^{d_{8}}\right]=\left[b_{7}, b_{12}\right]$ $=b_{10}$ and so $\left.|d|_{6}| | d\right|_{8}$. Similarly, we have $\left.|d|_{8}| | d\right|_{6}$ and therefore $|d|_{6}=|d|_{8}$. If we pick $b_{i}(i=4,6,7,8,10)$ as in (3.1.c), then $\left(b_{6} b_{7} b_{8}\right)^{d_{8}}=\left[b_{4}^{d_{8}}, b_{10}^{d_{8}}\right]=\left[b_{4}\right.$, $\left.b_{10}\right]=b_{6} b_{7} b_{8}$ and so $b_{6}^{d_{8}} b_{6} \in G_{4}(6) \cap G_{1}(10)=1$, thus $|d|_{10}=q-\left.1| | d\right|_{6}=|d|_{8}$. Finally, let b_{i} with $7 \leqslant i \leqslant 11$ be as in (3.1.d). Then $\left(b_{8} b_{9} b_{10}\right)^{d_{7}}=\left[b_{7}^{d_{7}}, b_{11}^{d_{7}}\right]$ $=\left[b_{7}, b_{11}\right]=b_{8} b_{9} b_{10}$ and therefore $b_{8}^{d_{7}} b_{8} \in G_{4}(8) \cap G_{1}(12)=1$, so that $|d|_{4}$ $=q-\left.1| | d\right|_{\tau}$.

We are now in a position to obtain a contradiction by constructing a generalized 8 -gon of order (q, q). We will save space, however, by postponing this until later, where we include it as one case in the construction crucial to the proof of (1.2).

4. The case $s=13$

This time we suppose first that $p=2$. If $b_{0} \in G_{6}(0)^{*}$ and $b_{10} \in G_{6}(10)^{*}$, then $\left[b_{0}, b_{10}\right] \in G_{1}(3, \cdots, 7)-G_{1}(2)-G_{1}(8)$. If $-2 \leqslant i \leqslant 6$, then $\partial\left(0,(i)\left[b_{0}, b_{10}\right]\right)$ $\leqslant 6$, so that $(i)\left[b_{0}, b_{10}\right] b_{0}=(i)\left[b_{0}, b_{10}\right]$ and thus $\left[b_{0}, b_{10}\right]^{2} \in G(i)$. If $4 \leqslant i \leqslant 12$, then $\partial\left(10,(i)\left[b_{0}, b_{10}\right]\right) \leqslant 6$, so that $(i) b_{0} b_{10} b_{0}=(i)\left[b_{0}, b_{10}\right] b_{10}=(i)\left[b_{0}, b_{10}\right]$ and thus $\left[b_{0}, b_{10}\right]^{2} \in G(i)$. Therefore $\left[b_{0}, b_{10}\right]^{2} \in G(-2, \cdots, 12) \cap G_{1}(3, \cdots, 7)=1$. It follows that $\left[b_{0},\left[b_{0}, b_{10}\right]\right]=1$ and hence $b_{0} \in G_{1}\left(-5, \cdots, 1,2,(1)\left[b_{0}, b_{10}\right]\right.$, $\left.\cdots,(-5)\left[b_{0}, b_{10}\right]\right)=1$. Contradiction.

Thus $p \geqslant 3$.
(4.1) a) If $b_{0} \in G_{6}(0)^{*}$ and $b_{7} \in G_{1}(2, \cdots, 12)^{*}$, then there exists an element $b_{2} \in G_{6}(2)^{*}$ such that $\left[b_{0}, b_{7}\right]=b_{2}$.
b) If $b_{0} \in G_{6}(0)^{*}$ and $b_{8} \in G_{6}(8)^{*}$, then there exists an element $b_{4} \in G_{6}(4)^{*}$ such that $\left[b_{0}, b_{8}\right]=b_{4}$.
c) If $b_{0} \in G_{6}(0)^{*}$ and $b_{9} \in G_{1}(4, \cdots, 14)^{*}$, then there exist elements $b_{i} \in G_{1}(i$ $-5, \cdots, i+5)$ for $i=2,3,4,5$ and 6 with $b_{6} \neq 1$ such that $\left[b_{0}, b_{9}\right]=b_{2} b_{3}$ $b_{4} b_{5} b_{6}$.

Proof. We leave a) and b) to the reader and turn to part c). Since $\left[G_{1}(4, \cdots, 14), G_{6}(12)\right]=1$ and $G_{6}(12)$ acts transitively on $\Gamma(6)-\{7\}$, we have $G_{1}(4, \cdots, 14) \leqslant G_{2}(6)$. Thus $\left[b_{0}, b_{9}\right] \in G_{1}(1, \cdots, 7)-G_{1}(0)$. There exist $b_{2} \in G_{1}(-3, \cdots, 7)$ and $b_{6} \in G_{1}(1, \cdots, 11)^{*}$ such that $\left[b_{0}, b_{9}\right] b_{2}^{-1} b_{6}^{-1} \in G_{1}(0, \cdots$, 8) and thus $b_{i} \in G_{1}(i-5, \cdots, i+5)$ for $i=3,4$ and 5 such that $\left[b_{0}, b_{9}\right]$ $\cdot b_{2}^{-1} b_{8}^{-1} b_{5}^{-1} b_{3}^{-1}=b_{4}$. Since $\left[b_{2}, b_{i}\right]=\left[b_{4}, b_{i}\right]=1$ for $2 \leqslant i \leqslant 6$, we have $\left[b_{0}, b_{9}\right]$ $=b_{2} b_{3} b_{4} b_{5} b_{6}$.

By (2.11), there exists an involution a in $\bar{G}(W)$. Let $\zeta(i)=(-1)^{|a|_{i}+1}$ for each i.
(4.2) For every even i :
A) $\zeta(i-1)=\zeta(i+4) \zeta(i+6)$ and $\zeta(i+7)=\zeta(i) \zeta(i+2)$
B) $\zeta(i)=\zeta(i+4) \zeta(i+8)$
C) $\zeta(i)=\zeta(i+6)$ if $\zeta(i+3)=1$.

Proof. A) We may take $i=2$. If b_{0}, b_{2} and b_{7} are as in (4.1.a), then $b_{2}^{\zeta(8)}=b_{2}^{a}=\left[b_{0}^{a}, b_{7}^{a}\right]=\left[b_{0}^{\zeta(6)}, b_{7}^{\zeta(1)}\right]=\left[b_{0}, b_{7}\right]^{\zeta(1) \zeta(6)}$ since $\left[b_{2}, b_{0}\right]=\left[b_{2}, b_{7}\right]=1$.

Thus $\zeta(8)=\zeta(1) \zeta(6) . \quad$ By (3.1.a), we can find elements $b_{i} \in G_{1}(i-5, \cdots$, $i+5)^{*}$ for $i=3,8$ and 10 such that $\left[b_{3}, b_{10}\right]=b_{8}$. Then $b_{8}^{\xi(2)}=\left[b_{3}, b_{10}\right]^{a}$ $=\left[b_{3}^{\zeta(9)}, b_{10}^{\Sigma(4)}\right]=b_{8}^{\zeta(9) \zeta(4)}$. B) follows analogously from (4.1.b). For C) we assume $i=0$ and $\zeta(3)=1$. If b_{i} with $i=0,2,3,4,5,6$, and 9 are as in (4.1.c), then $\left(b_{2} b_{3} b_{4} b_{5} b_{6}\right)^{a}=\left[b_{0}^{a}, b_{9}^{a}\right]=\left[b_{0}^{\zeta(6)}, b_{9}\right]=\left[b_{0}, b_{9}\right]^{[(6)}$ since $\left[b_{0}, b_{i}\right]=1$ for $2 \leqslant i \leqslant 6$. Since $\left[b_{i}, b_{6}\right]=1$ for $2 \leqslant i \leqslant 5$, we have $\left(b_{2} b_{3} b_{4} b_{5} b_{6}\right)^{5(6)}$ $=\left(b_{2} b_{3} b_{4} b_{5}\right)^{\zeta(6)} b_{6}^{\zeta(6)}$ and therefore $b_{6}^{(6)-\zeta(6)}=b_{6}^{a} b_{6}^{-\zeta(6)} \in\left\langle b_{2}, b_{3}, b_{4}, b_{5}\right\rangle \leqslant G_{1}(0)$, so that $\zeta(0)=\zeta(6)$.

Suppose that $\zeta(3)=1 . \quad$ By (2.4), we have $\zeta(2)=\zeta(4)=-1 . \quad$ By (4.2.C), $\zeta(0)=\zeta(6) . \quad$ By $(4.2 . \mathrm{B}), \zeta(8)=\zeta(0) \zeta(4)=-\zeta(0)$ and $\zeta(10)=\zeta(2) \zeta(6)=-\zeta(0)$. By (4.2.A), $\quad \zeta(9)=\zeta(2) \zeta(4)=1, \quad \zeta(1)=\zeta(6) \zeta(8)=-1 \quad$ and $\quad \zeta(11)=\zeta(4) \zeta(6)$ $=-\zeta(0)$. Since $a \notin G_{1}(8,9)$, we have $\zeta(8)=-\zeta(0)=-1$ and therefore $\zeta(6)=1$. Since $a \notin G_{1}(5,6)$ and $a \notin G_{1}(6,7)$, we have $\zeta(5)=\zeta(7)=-1$.

We now choose elements b_{i} with $i=0,2, \cdots, 6,9$ as in (4.1.c). Since $\zeta(3)=\zeta(6)=1$, we have $b_{2} \cdots b_{6}=\left[b_{0}, b_{9}\right]=\left[b_{0}^{a}, b_{9}^{a}\right]=\left(b_{2} \cdots b_{6}\right)^{a}=b_{2}^{\zeta(8)} b_{3}^{\text {ᄃ(9) }}$ $\cdot b_{4}^{\zeta(10)} b_{5}^{([1)} b_{6}^{\text {(0) }}=b_{2}^{-1} b_{3} b_{4}^{-1} b_{5}^{-1} b_{6}$. Thus $b_{5}^{2} \in\left\langle b_{2}, b_{3}, b_{4}\right\rangle \leqslant G_{1}(-1)$, so that $b_{5}=1$. Therefore $b_{4}^{2} \in\left\langle b_{2}, b_{3}\right\rangle \leqslant G_{1}(-2)$, so that $b_{4}=1$ and thus $b_{2}=1$. There exists an element $g \in G$ with $(0, \cdots, 13) g=(2, \cdots, 15)$. Since $\zeta(1)=\zeta(2)$ $=-1, f_{i}>1$ for every i and thus, by (2.2), (i)g $=i+2$ for every i. If $c=g a g^{-1}$, then $b_{3}^{-1} b_{6}^{-1}=b_{3}^{c} b_{6}^{c}=\left[b_{0}^{c}, b_{9}^{c}\right]=\left[b_{0}^{-1}, b_{9}^{-1}\right]$. From $\left[b_{0}, b_{9}\right]=b_{3} b_{6}$ it follows that $\left[b_{0}^{-1}, b_{9}^{-1}\right]=b_{9} b_{0} b_{3} b_{6} b_{0}^{-1} b_{9}^{-1}$. Since $\left[b_{6}, b_{i}\right]=1$ for $i=0$ and 9 and $\left[b_{0}, b_{3}\right]=1$, we have $b_{3}^{-1} b_{6}^{-1}=\left[b_{0}^{-1}, b_{9}^{-1}\right]=b_{9} b_{3} b_{9}^{-1} b_{6}$ and thus $b_{3}^{-2} b_{6}^{-2}$ $=b_{3}^{-1} b_{9} b_{3} b_{9}^{-1} \in G_{1}(9)$. Therefore $b_{3}^{-2} \in G_{1}(-2, \cdots, 9)=1$, so that $b_{3}=1, b_{6}^{-2}$ $=b_{9} b_{9}^{-1}=1$ and thus $b_{3}=1$. Contradiction. It follows that $\zeta(3)=-1$ and thus $\zeta(i)=-1$ for every odd i.

From (4.2.A) we have that $\zeta(i)=-\zeta(i+2)$ for every even i. Thus either $\zeta(6)=\zeta(10)=\zeta(14)=-1$ or $\zeta(8)=\zeta(12)=\zeta(16)=-1$, in contradiction to (4.2.B).

5. Proof of (1.2): Preliminaries

(5.1) Let $q \neq 2, s \in\{4,5,7\}, p \neq 2$ if $s=4$ and $G(x)^{\Gamma(x)} \cong P G L(2,3)$ for every vertex x when $s=5$ and $q=3$. Let $u=0$ or 1 . Then $G_{1}(u) \cap G(W)$ $\cap \bar{G}(u+i) \npreceq G_{1}(u+i)$ for every i with $1 \leqslant i \leqslant s-2$ excluding $i=(s-1) / 2$ if $q=3$ and $s=5$ or 7 and $i=2$ and 4 if $q=4$ and $s=7$.

Proof. Suppose $G_{1}(u) \cap G(W) \npreceq G_{1}(u+i)$ for some i. Since h_{u+i} normalizes $G_{1}(u) \cap G(W)$, it follows that $G_{1}(u) \cap G(W) \cap \bar{G}(u+i) \nless G_{1}(u$
$+i$. It thus suffices to prove $G_{1}(u) \cap G(W) \nsubseteq G_{1}(u+i)$ to conclude that $G_{1}(u) \cap G(W) \cap \bar{G}(u+i) \npreceq G_{1}(u+i)$. We choose, once and for all, an element $g \in G$ such that $(0, \cdots, s) g=(2, \cdots, s+2)$ and, in case $p \neq 2$, an involution $a \in \bar{G}(W)$; let $\zeta(i)=(-1)^{|a|_{i+1}}$ for every i.

Suppose first that $s=4$ and $p \neq 2$. Then $b_{i}^{a}=b_{i}^{\zeta(i+2)}$ for every i and every $b_{i} \in G_{1}(i, i+1)$. For each w there exist elements $b_{i} \in G_{1}(i, i+1)^{*}$ for $i=w, w+1$ and $w+2$ such that $\left[b_{w}, b_{w+2}\right]=b_{w+1}$. Then $b_{w+1}^{\ddagger(w+3)}=b_{w+1}^{a}$ $=\left[b_{w}, b_{w+2}\right]^{a}=\left[b_{w}^{\zeta(w+2)}, b_{w+2}^{\zeta(w+4)}\right]=\left[b_{w}, b_{w+2}\right]^{\zeta(w+2) \zeta(w+4)}$ since $\left[b_{w+1}, b_{w}\right]=\left[b_{w+1}\right.$, $\left.b_{w+2}\right]=1$. Thus $\zeta(w+3)=\zeta(w+2) \zeta(w+4)$. Thus there exists a k such that $\zeta(i)=1$ iff $i \equiv k(\bmod 3)$. In particular, $f_{i}>1$ for every i so that, by (2.2), (i)g $=i+2$ for every i. Therefore $a g^{-1} a g \in G_{1}(i)$ iff $i \equiv k+1$ (mod 3).

Now let $s=5$. Since, by assumption, $f_{i}>1$ for every i, we have (i)g $=i+2$ for every i. We claim that it would suffice to show that $G(W) \cap G_{1}(u) \neq 1$ for $u=0$ or 1 when $q>3$ and for $u=0$ and 1 when $q=3$. Let, for instance, $H=G(W) \cap G_{1}(0)$ and suppose that $H \neq 1$. If $\mathrm{a} \in H$, then $\left[a, G_{1}(1,2,3)\right]=1$ and thus $a \in G_{1}(4)$. Thus $H \leqslant G_{1}(i)$ for every $i \equiv 0(\bmod 4) . \quad$ By (2.4), we. have $H \not \leq G_{1}(i)$ for every odd i. Let $\bar{H}=H$ $\cap \bar{G}(1)$. By the remarks at the beginning of this proof, $\bar{H} \neq 1$. Since for each $i,\left[\bar{H}, h_{i}\right] \leqslant G_{1}(0,1) \cap G(W)=1, \bar{H} \leqslant \bar{G}(W)$ and thus $\bar{H}=H \cap \bar{G}(W)$ $=H \cap \bar{G}(i)$ for each odd i. Suppose that $q>3$ and $\bar{H} \leqslant G_{1}(2)$ so that \bar{H} $=\bar{G}(W) \cap G_{1}(i)$ for every even i. Let Σ be the graph with $V(\Sigma)=\{(0) n \mid n$ $\left.\in N_{G}(\bar{H})\right\}$ and $E(\Sigma)=\{\{x, y\} \mid x, y \in V(\Sigma)$ and $\partial(x, y)=2\}$ and let S be the subgroup of aut (Σ) induced by $N_{G}(\bar{H})$. Since $G(i, \cdots, i+4) \leqslant N_{G}(\bar{H})$ for every even i, Σ is ($S, 3$)-transitive and $P S L(2, q) \overparen{\unlhd} S(x)^{\Sigma(x)}$ for every x $\in V(\Sigma)$. By (2.12), $(q-1) /(q-1,2)$ divides $\left|\left(S_{1}(0) \cap \bar{S}(2) \cap S(4)\right)^{\Sigma(2)}\right|$ and hence $\left|(H \cap \bar{G}(2))^{\Gamma(2)}\right|$, too. Choose an element d in $H \cap \bar{G}(2)$ with $|d|_{2}$ $=(q-1) /(q-1,2)$. Then $d^{r} \in H \cap \bar{G}(W)$ (where $q=p^{r}$) and, since $r<|d|_{2}$, $d^{r} \notin G_{1}(2)$. This contradicts the assumption that $\bar{H} \leqslant G_{1}(2)$. It follows that there exists an element $c \in \bar{H}$ not in $G_{1}(2)$. By (2.3), $|c|=|c|_{-1}=|c|_{1}$ and so $|c|_{1}=\left|g^{-1} c g\right|_{1}$. Since $\bar{G}(W)^{\Gamma^{(1)}}$ is cyclic, $\langle c\rangle$ and $\left\langle g^{-1} c g\right\rangle$ induce the same permutation group on $\Gamma(1)$. Hence there exists an integer j relatively prime to $|c|$ such that $c^{j} g^{-1} c g \in G_{1}(1)$. Since $g^{-1} c g \in G_{1}(2),\left|c^{j} g^{-1} c g\right|_{2}=\left|c^{j}\right|_{2}$ $\neq 1$. Hence $G_{1}(1) \cap G(W) \neq 1$ and we can proceed as before. If we start by assuming $G_{1}(1) \cap G(W) \neq 1$, the proof is the same.

When $p=2, H \neq 1$ follows from (2.10). Let $p \neq 2$. There exist elements $b_{i} \in G_{1}(i-1, i, i+1)^{*}$ for $0 \leqslant i \leqslant 3$ such that $\left[b_{0}, b_{3}\right]=b_{1} b_{2}$. Let
$c_{2}=\left[b_{1}, b_{3}\right] \in G_{1}(1,2,3)=G_{2}(2)$. Suppose that $\zeta(i)=-1$ for every i. Then $c_{2}^{-1}=c_{2}^{a}=\left[b_{1}, b_{3}\right]^{a}=\left[b_{1}^{-1}, b_{3}^{-1}\right]=\left[b_{1}, b_{3}\right]$ since $\left[c_{2}, b_{i}\right]=1$ for $i=1$ and 3. Thus $c_{2}=1$. It follows that $\left[b_{i},\left[b_{0}, b_{3}\right]\right]=1$ for $i=0$ and 3 , so that $b_{1}^{-1} b_{2}^{-1}$ $=\left[b_{0}, b_{3}\right]^{a}=\left[b_{0}^{-1}, b_{3}^{-1}\right]=\left[b_{0}, b_{3}\right]=b_{1} b_{2}$. Therefore $b_{1} b_{2}=1$, so that $b_{1} \in G_{1}$ $\cdot(0,1,2,3)=1$, a contradiction. We are thus finished with the case $s=5$ when $q>3$. Let $q=3$. If $\zeta(1)=1$, then $b_{1}^{〔(3)} b_{2}^{(0)}=b_{1}^{a} b_{2}^{a}=\left[b_{0}, b_{3}\right]^{a}$ $=\left[b_{0}^{\xi(2)}, b_{3}\right]=\left[b_{0}, b_{3}\right]^{\zeta(2)}=b_{1}^{\xi(2)} b_{2}^{\zeta(2)}$ since $\left[b_{0}, b_{i}\right]=1$ for $i=1$ and 2 . Thus $\zeta(0)=\zeta(2)=\zeta(3)$. Since $a \notin G_{1}(0,1), \zeta(0)=-1$. Therefore $a g^{-1} a g \in G_{1}(2)$ - $G_{1}(3)$. Thus we may suppose that $G(W) \cap G_{1}(i)=1$ for every odd i. Since W is good and, by assumption, $f_{0}=2$, we may, by replacing a if necessary, assume that $\zeta(0)=-1$. Then $c_{2}^{-1}=c_{2}^{a}=\left[b_{1}^{a}, b_{3}^{a}\right]=\left[b_{1}^{-1}, b_{3}^{-1}\right]$ $=\left[b_{1}, b_{3}\right]$ so that $\left[b_{1}, b_{3}\right]=1$. Thus $b_{1}^{-1} b_{2}^{-1}=\left[b_{0}^{a}, b_{3}^{a}\right]=\left[b_{0}^{(2)}, b_{3}^{-1}\right]=\left[b_{0}, b_{3}\right]^{-\zeta(2)}$ $=b_{1}^{-\zeta(2)} b_{2}^{-\zeta(2)}$, so that $\zeta(2)=1$. Therefore $a g^{-1} a g \in G_{1}(1)-G_{1}(2)$, a contradiction.

Now let $s=7$. This time we claim that it suffices to show that $G_{1}(u) \cap G(W) \neq 1$ for $u=0$ or 1 when $q=3$ or $q \geqslant 5$ and for $u=0$ and 1 when $q=4$. Let, for instance, $H=G(W) \cap G_{1}(1)$ and suppose that H $\neq 1$. Since $\left[H, G_{1}(2, \cdots, 6)\right]=1, H \leqslant G_{1}(7)$ and thus $H=G(W) \cap G_{1}(i)$ for every $i \equiv 1(\bmod 6)$ and $H \npreceq G_{1}(i)$ for every $i \equiv 0 \operatorname{or} 2(\bmod 6)$. If $H \leqslant G_{1}(4)$ and thus $H=G(W) \cap G_{1}(i)$ for every $i \equiv 1(\bmod 3)$, we obtain a contradiction from (2.12) as in the case $s=5$ (when $q \neq 3$). Let $\bar{H}=H \cap \bar{G}(2)$. As in the case $s=5, \bar{H}=H \cap \bar{G}(W)=H \cap \bar{G}(i)$ for every $i \equiv 0$ or $2(\bmod 6)$. Suppose that $\bar{H} \leqslant G_{1}(3)$. Let c be an element with $(i) c=8-i$ for $1 \leqslant i$ $\leqslant 7$. Since $\bar{H}=\bar{G}(1, \cdots, 7) \cap G_{1}(1)=\bar{G}(1, \cdots, 7) \cap G_{1}(7), c$ normalizes \bar{H}. Thus $\bar{H} \leqslant G_{1}(5)$ and hence $\bar{H}=\bar{G}(W) \cap G_{1}(i)$ for every odd i. Let Σ be the graph with $V(\Sigma)=\left\{(1) n \mid n \in N_{G}(\bar{H})\right\}$ and $E(\Sigma)=\{\{x, y\} \mid x, y \in V(\Sigma)$ and $\partial(x, y)=2\}$ and let S be the subgroup of aut (Σ) induced by $N_{G}(\bar{H})$. Then $\operatorname{PSL}(2, q) \widetilde{\unlhd} S(x)^{\Sigma(x)}$ for every $x \in V(\Sigma)$ and Σ is locally ($S, 4$)-transitive. We may thus conclude that $(q-1) /(q-1,3)$ divides $\mid\left(S_{1}(1) \cap \bar{S}(3)\right.$ $\cap S(5))^{\Sigma(3)} \mid$ from the very theorem (i.e., (1.2)) we are busy proving, paying attention that we never use the case $s=7$ in the proof of the case $s=4$. This contradicts the assumption that $\bar{H} \leqslant G_{1}(3)$ as in the case $s=5$ if $q \neq 4$. In particular, $f_{i}>1$ for every i and thus $(i) g=i+2$ for every i. Exactly as in the case $s=5$, we can find an element $c \in \bar{H}$ and an integer j such that $c^{j} g^{-1} c g \in G_{1}(0) \cap G(W)^{*}($ if $q \neq 4)$. Thus we can proceed as before.

If $p=2, G_{1}(1) \cap G(W) \neq 1$ follows from (2.10). Suppose $q=4$. If $a=\left(h_{1}\right)^{2}$,
then $a \in \bar{G}(W)$ and $a \notin G_{1}(1)$. There exists an element $b \in G_{1}(1) \cap G(W)$ such that $a b \in G_{1}(0)$. Hence $G_{1}(0) \cap G(W) \neq 1$. Finally, suppose that $p \neq 2$. Suppose $\zeta(i)=-1$ for every i. There exist elements $b_{i} \in G_{3}(i)^{*}$ for $i=0$, 2 and 4 such that $\left[b_{0}, b_{4}\right]=b_{2}$. Thus $b_{2}^{\zeta(5)}=b_{2}^{a}=\left[b_{0} b_{4}\right]^{a}=\left[b_{0}^{(3)}, b_{4}^{\zeta(7)}\right]$ $=\left[b_{0}, b_{4}\right]^{[(3) \zeta(7)}$ since $\left[b_{2}, b_{i}\right]=1$ for $i=0$ and 4. Thus $-1=\zeta(5)=\zeta(3)$ $\cdot \zeta(7)=+1 . \quad$ Contradiction.

In the next lemma, we include the case $s=9, p=2$ and $q \geq 4$, continuing from where we left off in § 3 .
(5.2) Let $q>2, s \in\{4,5,7\}$ or $s=9$ and $p=2$ and $G(x)^{\Gamma(x)} \cong P G L(2,3)$ for every vertex x when $q=3$ and $s=5$. Let $u=0$ or 1 and y_{1}, \cdots, y_{s-1} be vertices with $y_{1} \neq u+s$ such that $\left(u, u+1, \cdots, u+s-1, y_{1}, \cdots, y_{s-1}\right)$ is a good 2(s-1)-path. Then ($y_{s-1}, \cdots, y_{1}, u+s-1, u+s, \cdots, u+2(s-1)$) is a good 2(s 1)-path.

Proof. By (2.1), there exist vertices $y_{2}^{\prime}, \cdots, y_{s-1}^{\prime}$ such that (y_{s-1}^{\prime}, \cdots, $\left.y_{2}^{\prime}, y_{1}, u+s-1, u+s, \cdots, u+2(s-1)\right)$ is a good 2(s-1)-path.

We first assume that $s=4$ and $p=2$. By (2.5), $\left\langle G_{1}\left(y_{1}, y_{2}\right), G_{1}(3+u\right.$, $\left.\left.y_{1}\right)\right\rangle$ contains an element a with $(1+u, 2+u) a=(5+u, 4+u)$. Since $\left[G_{1}\left(y_{1}, y_{2}\right), G_{1}\left(3+u, y_{1}\right)\right] \leqslant G_{i}\left(3+u, y_{1}, y_{2}\right)=1, a$ is an involution. By (2.2), a exchanges u and $6+u$. Thus a exchanges y_{2} and y_{2}^{\prime}. But $a \in G_{1}\left(y_{1}\right)$ so that $y_{2}=y_{2}^{\prime}$. Now taking ($6+u, 5+u, 4+u, 3+u, y_{1}, y_{2}, y_{3}^{\prime}$) in place of ($u, u+1, \cdots, u+6$), $2+u$ in place of y_{1} and $1+u$ in place of y_{2}, we conclude that $\left(1+u, 2+u, 3+u, y_{1}, y_{2} y_{3}^{\prime}\right)$ is good. Since $(1+u, 2+u$, $3+u, y_{1}, y_{2}, y_{3}$) is also good, it follows from (2.2) that $y_{3}=y_{3}^{\prime}$.

We may thus assume that $p \neq 2$ if $s=4$. By (3.3) and (5.1), there exists an element $a \in G_{1}(u+s-1) \cap \bar{G}\left(y_{1}\right) \cap G\left(y_{2}\right)-G_{1}\left(y_{1}\right)$ with $(|a|, p)$ $=1$. Since $(|a|, p)=1$, there exists an $(s-1)$-path $\left(x_{u}, x_{u+1}, \cdots, x_{u+s-2}\right.$, $\left.x_{u+s-1}\right)$ with $x_{u+s-1}=u+s-1, x_{u+s-2} \neq y_{1}$ and $a \in G\left(x_{u}, x_{u+1}, \cdots, x_{u+s-2}\right.$, x_{u+s-1}). Since Γ is locally (G, s)-transitive, we may assume that $x_{i}=i$ for $u+1 \leqslant i \leqslant u+s-2$. By (2.2), $x_{u}=u$ since $f_{x}>1$ for every vertex x, by assumption when $s=5$ and by (5.1) when $s \in\{4,7\}$. Since $a \in G(u$, $\cdots, u+s), a \in G(u, \cdots, u+2(s-1))$ and thus $a \in G\left(y_{2}^{\prime}\right)$. But y_{2} is the only fixed point of a in $\Gamma\left(y_{1}\right)-\{u+s-1\}$. Thus $y_{2}=y_{2}^{\prime}$. Again using (3.3) and (5.1), we can find an element in $G(u, \cdots, u+s-1) \cap G_{1}(u+s$ $-1) \cap G\left(y_{1}, y_{2}, y_{3}\right) \cap \bar{G}\left(y_{2}\right)-G_{1}\left(y_{2}\right)$, so that $y_{3}=y_{3}^{\prime}$. Continuing, we obtain $y_{i}=y_{i}^{\prime}$ for $1 \leqslant i \leqslant s-1$ except when $q=3$ and $s \in\{5,7\}$ or $q=4$ and $s=7$.

If $q=3$ and $s \in\{5,7\}$, we have only $y_{i}=y_{i}^{\prime}$ for $1 \leqslant i \leqslant v$ where v $=(s-1) / 2$ from (5.1). If we knew that $G_{1}(u) \npreceq G(W) \cap G_{1}(u+v)$ (which, however, a posteriori is not the case), we would be finished as before. Thus we may assume that $G_{1}(u) \cap G(W)=G_{1}(i) \cap G(W)$ for every $i \equiv u$ $(\bmod v)$. Let $H=G_{1}(u) \cap G(W), S=N_{G}(H) / H$ and Σ be the graph with $V(\Sigma)=\left\{(u) n \mid n \in N_{G}(H)\right\}$ and $E(\Sigma)=\{\{x, y\} \mid x, y \in V(\Sigma)$ and $\partial(x, y)=v\}$. The graph Σ is locally ($S, 3$)-transitive. Since $S(x)^{\Sigma(x)} \cong P G L(2,3)$ and $\left|S_{1}(x)\right|=3$ for every vertex, there exists, by (2.13), an involution in $S\left(y_{2 v}\right.$, $\left.y_{v}, u+2 v, u+3 v, u+4 v\right)$. Thus there exists an element in $G\left(y_{v}, \cdots, y_{1}\right.$, $u+s-1, u+s, \cdots, u+2(s-1)$) whose only fixed point in $\Gamma\left(y_{v}\right)-\left\{y_{v-1}\right\}$ is y_{v+1}. Thus $y_{v+1}=y_{v+1}^{\prime}$. Using (5.1), we can then conclude that $y_{i}=y_{i}^{\prime}$ for $v+2 \leqslant i \leqslant s-1$.

If $q=4$ and $s=7$, we may assume that $G_{1}(u) \cap G(W)=G_{1}(i) \cap G(W)$ for every $i \equiv u(\bmod 2)$. Let $H=G_{1}(u) \cap G(W), S=N_{G}(H) / H$ and Σ be the graph with $V(\Sigma)=\left\{(u) n \mid n \in N_{G}(H)\right\}$ and $E(\Sigma)=\{\{x, y\} \mid x, y \in V(\Sigma)$ and $\partial(x, y)=2\}$. The graph Σ is $(S, 4)$-transitive. By the case $s=4$ of the lemma we are busy proving, ($y_{6}, y_{4}, y_{2}, u+6, u+8, u+10, u+12$) is a good 6-path in Σ. It follows that ($y_{6}, y_{5}, \cdots, y_{2}, y_{1}, u+6, u+7, \cdots, u+12$) is a good 12 -path in Γ.

6. Proof of (1.2): The construction

We assume that $q \neq 2, f_{x}=2$ for every vertex x when $s=5$ and $q=3$ and $s \in\{4,5,7\}$ or $s=9$ and $p=2$. For each $i \in N$ and each vertex x, let $\Gamma_{i}(x)=\{y \mid \partial(x, y) \leqslant i\}$. We point out that the girth of Γ is at least $2(s-1)$ (see, for instance, [10, p. 61]). Let $F=\Gamma_{s-2}(0) \cup \Gamma_{s-2}(1)$ and Π be the undirected graph with vertex set $V(\Pi)=F$ and $\{x, y\} \in E(\Pi)$ iff x or y or both are in $\Gamma_{s-3}(0) \cup \Gamma_{s-3}(1)$ and $x \in \Gamma(y)$ or there exists a good $(2 s-3)$-path $\left(x_{0}, \cdots, x_{2 s-3}\right)$ with $x_{s-2}=0, x_{s-1}=1$ and either $x_{0}=x$ and $x_{2 s-3}=y$ or $x_{0}=y$ and $x_{2 s-3}=x$. By (2.2), Π is regular of valency $q+1$. Let $P=\operatorname{aut}(\Pi)$.

Let a be any element in $G(1)-G(0)$. We define a permutation \hat{a} of F as follows: If $x \in \Gamma_{s-2}(1)$, we set $(x) a=(x) \hat{a}$. If $x \in F-\Gamma_{s-2}(1)$, we set $(x) \hat{a}=\left(x_{2(s-1)}\right) a$, where $\left(x_{0}, \cdots, x_{2(s-1)}\right)$ is the uniquely determined $2(s-1)$ path with $x_{0}=x, x_{s-2}=0, x_{s-1}=1$ and $x_{s}=(0) a^{-1}$. It is straightforward to check, using (5.2), that \hat{a} is an element of P. Thus $P(1) \not \leq P(0)$. Similarly, $P(0) \not \leq P(1)$.

If $a \in G(\{0,1\})$, then clearly the permutation which a induces on F is
an element of P. Since, for $u=0$ and $1, P(u) \npreceq P(1-u)$, it follows that $P(u)$ acts transitively on $\Pi(u)$. Since Π is connected, P acts transitively on $E(\Pi)$. Thus the girth of Π is $2(s-1)$ and Π is the incidence graph of a generalized ($s-1$)-gon of order (q, q). By [3], $s \in\{4,5,7\}$. Since, by (2.5) and (2.9), P contains sufficiently many "generalized elations", it follows from [5, Theorem 1.8], [7, Theorem 2] and [12, (4.4)] that Π $\cong \Gamma_{s-1, q}$ and $P \cong G_{s-1, q}$.

Let $u=0$ or 1 . We have seen that for each $a \in G(u)$ there exists an element $\hat{a} \in P(u)$ such that a and \hat{a} agree on $\Gamma_{s-2}(u)$. The map τ mapping a onto $\hat{\alpha}$ is an injective homomorphism from $G(u)$ into $P(u)$. For each $w \in \Gamma(u)$, an element $a \in G(u, w)$ lies in $O_{p}(G(u, w))$ iff for $i=u$ and w, a induces a permutation on $\Gamma(i)$ contained in $O_{p}\left(G(u, w)^{\Gamma(i)}\right)$. Thus τ maps $O_{p}(G(u, w))$ into $O_{p}(P(u, w))$. But, by (2.3) and (2.5), $\left|O_{p}(G(u, w))\right|=q^{s-1}$ $=\left|O_{p}(P(u, w))\right|$. Theorem (1.2) follows now from the next lemma whose proof is left to the reader:
(6.1) Let $n=s-1$ and (X, Y) be a 1-path in $\Gamma_{n, q}$. For $U=X$ and Y, let $\tilde{G}_{n, q}(U)=\left\langle O_{p}\left(G_{n, q}(U, W)\right) \mid W \in \Gamma_{n, q}(U)\right\rangle$. Then $\tilde{G}_{n, q}(U) \leqslant H_{n, q}(U)$ for $U=X$ and Y and $H_{n, q}(X, Y)=\left\langle\tilde{G}_{n, q}(X) \cap G_{n, q}(Y), G_{n, q}(X) \cap \tilde{G}_{n, q}(Y)\right\rangle$.

7. Proof of (1.3)

When $q=2$, we are in the unfortunate situation that every path is a good path, so that the construction used in the proof of (1.2) does not work. We leave undecided the question whether (1.2)-with an appropriate clause for the exceptional case $s=4$ and $G(k) \cong \hat{G}_{4,2}(K)$-nevertheless remains true when $q=2$.

First let $s=4$ and, for every i, b_{i} be the nontrivial element in $G_{1}(i, i+1)$. Then $\left[b_{i}, b_{i+2}\right]=b_{i+1}$ for every i. We have $\left|b_{0} b_{3}\right|_{2}=3$. Thus $\left(b_{0} b_{3}\right)^{3} \in G_{1}(2)=\left\langle b_{1}, b_{2}\right\rangle$ and therefore $\left(b_{0} b_{3}\right)^{6}=1$. Suppose $\left(b_{0} b_{3}\right)^{3} \neq 1$. Let $a \in G$ be an element with $(0, \cdots, 4) a=\left(0,1,2,(1) b_{3},(0) b_{3}\right)$. Then $b_{3}^{a}=b_{0}^{b_{3}}$ and hence $\left(\left(b_{0} b_{3}\right)^{3}\right)^{a}=\left(b_{0} b_{3} b_{0} b_{3}\right)^{3}=\left(b_{0} b_{3}\right)^{6}=1$, a contradiction. Thus $G(x)$ $\cong\left\langle t_{0}, t_{1}, t_{2}, t_{3}\right| t_{i}^{2}=1$ for $0 \leqslant i \leqslant 3$; $\left[t_{i}, t_{j}\right]=1$ if $|i-j|=1$; $\left[t_{i}, t_{i+2}\right]=t_{i+1}$ for $i=0$ and $\left.1 ;\left(t_{0} t_{3}\right)^{3}=1\right\rangle$ for every vertex x. If Γ is $(G, 4)$-transitive, then there exists an element $c \in G$ with $(0,1, \cdots, 4) c=(5,4, \cdots, 1)$. Thus c^{2} $\in G(1, \cdots, 4)=\left\langle b_{2}\right\rangle$ and $c b_{i} c=b_{4-i}$ for $1 \leqslant i \leqslant 3$. We have $G(\{2,3\})$ $\cong G_{3,2}(\{X, Y\})$ if $c^{2}=1$ and $G(\{2,3\}) \cong \hat{G}_{4,2}(K)$ otherwise.

Let $s=5$ and, for every i, b_{i} be the nontrivial element in $G_{1}(i-1$,
$i, i+1)$. Then $\left[b_{i}, b_{i+3}\right]=b_{i+1} b_{i+2}$. Since $G_{1}(i-1, i, i+1)=G_{2}(i)$ for every even i, we have $\left[b_{i}, b_{j}\right]=1$ when $|i-j| \leqslant 2$, i even. Suppose $\left[b_{1}, b_{3}\right]$ $=b_{2}$. Then $\left[b_{0}, b_{3}\right]=\left(b_{0} b_{3}\right)^{2}=b_{1} b_{2}=b_{1}\left(b_{1} b_{3}\right)^{2}=b_{3} b_{1} b_{3}$ and thus $b_{0} b_{3} b_{0}=b_{3} b_{1}$. Squaring both sides, we have $1=\left(b_{3} b_{1}\right)^{2}=b_{2}$, a contradiction. Thus [b_{i}, b_{j}] $=1$ when $|i-j| \leqslant 2$, i arbitrary. If Γ is ($G, 5$)-transitive, then there exists an element $c \in G$ with $(0, \cdots, 5) c=(5, \cdots, 0)$ and thus $c^{2}=1$ and $c b_{i} c=b_{4-i}$ for $1 \leqslant i \leqslant 4$. Thus the structure of $G(\{2,3)\}$ is completely determined. We have $\left(b_{1} b_{5}\right)^{3} \in G_{1}(3)=\left\langle b_{2}, b_{3}, b_{4}\right\rangle$ and thus $\left(b_{1} b_{5}\right)^{6}=1$. Suppose that $\left(b_{1} b_{5}\right)^{3} \neq 1$. Let $b_{5}^{\prime}=b_{5} b_{1} b_{5}$. Then $\left(b_{1} b_{5}^{\prime}\right)^{3}=1$. There exists, however, an element $a \in G$ with (1, $\cdots, 5) a=\left(1,2,3,(2) b_{5},(1) b_{5}\right)$ and thus $b_{1}^{a}=b_{1}$ and $b_{\overline{5}}^{a}=b_{5}^{\prime}$ since $\left[b_{i}, b_{i+2}\right]=1$ and thus $G_{2}(i)=\left\langle b_{i}\right\rangle$ for every i. Thus $\left(b_{1} b_{5}\right)^{a}=b_{1} b_{5}^{\prime}$. Contradiction. It follows that $\left(b_{1} b_{5}\right)^{3}=1$. Similarly, $\left(b_{0} b_{4}\right)^{3}$ $=1$. Thus $G(x) \cong\left\langle t_{0}, \cdots, t_{4}\right| t_{i}^{2}=1$ for $0 \leqslant i \leqslant 4 ;\left[t_{i}, t_{j}\right]=1$ if $|i-j| \leqslant 2$, $\left[t_{i}, t_{i+3}\right]=t_{i+1} t_{i+2}$ for $i=0$ and $\left.1 ;\left(t_{0} t_{4}\right)^{3}=1\right\rangle$ for every vertex x.

Now let $s=7$ and, for every i, b_{i} be the nontrivial element in $G_{1}(i-2, \cdots, i+2)$. For every even $i, G_{1}(i-2, \cdots, i+2)=G_{3}(i)$ and thus $\left[b_{i}, b_{j}\right]=1$ when $|i-j| \leqslant 3$ and $\left[b_{i}, b_{i+4}\right]=b_{i+2}$. Also, there exist u and $v \in\{0,1\}$ such that $\left[b_{0}, b_{5}\right]=b_{1} b_{2}^{u} b_{3}^{v} b_{4}$. Hence $b_{5} b_{0} b_{5}=b_{0} b_{1} b_{2}^{u} b_{3}^{v} b_{4}$. Squaring both sides, we have $\left(b_{0} b_{1} b_{2}^{u} b_{3}^{v} b_{4}\right)^{2}=1$. Since $\left(b_{0} b_{4}\right)^{2}=b_{2},\left[b_{2}, b_{i}\right]=1$ for $0 \leqslant i \leqslant 4$ and $\left[b_{i}, b_{j}\right]=1$ for $i \in\{1,3\}$ and $j \in\{0,4\}$, we have $b_{2}\left(b_{1} b_{3}^{v}\right)^{2}=1$. Thus $v=1$ and $\left(b_{1} b_{3}\right)^{2}=b_{2}$. Therefore $\left(b_{i} b_{i+2}\right)^{2}=b_{i+1}$ for every odd i. In particular, $b_{i} \notin G_{2}(i-1)$ and $b_{i} \notin G_{2}(i+1)$ whenever i is odd. It follows that $\left[b_{1}, b_{5}\right] \in G(1, \cdots, 5)-G_{1}(1)-G_{1}(5)$ and thus $\left[b_{1}, b_{5}\right]=b_{2} b_{3}^{w} b_{4}$ with w $\in\{0,1\}$. Therefore $b_{5} b_{1} b_{5}=b_{1} b_{2} b_{3}^{w} b_{4}$. Squaring both sides, we have $1=\left(b_{1} b_{3}^{w}\right)^{2}$ and thus $w=0$.

Suppose $\left(b_{0} b_{6}\right)^{3} \in G_{1}(3)=\left\langle b_{1}, \cdots, b_{5}\right\rangle$ has even order. Let $b_{6}^{\prime}=b_{6} b_{0} b_{6}$. Then $\left|b_{0} b_{6}^{\prime}\right|=\left|b_{0} b_{6}\right| / 2$. There exists, however, an element $a \in G$ with ($0, \cdots$, 6) $a=\left(0, \cdots, 3,(2) b_{6}, \cdots,(0) b_{6}\right)$ and thus $\left(b_{0} b_{6}\right)^{a}=b_{0} b_{6}^{\prime}$. Contradiction.

Let $\left(x_{0}, \cdots, x_{8}\right)$ be an arbitrary 8-path. Since $\left|G\left(x_{1}, \cdots, x_{7}\right)\right|=2$, there exist exactly two elements g_{1} and g_{2} such that $\left(x_{1}, \cdots, x_{7}\right) g_{i}=\left(x_{7}, \cdots, x_{1}\right)$ for $i=1$ and 2. If d is any involution in $G\left(x_{4}\right)-G_{1}\left(x_{4}\right)$, then there exists a 6-path $\left(y_{1}, \cdots, y_{7}\right)$ with $y_{4}=x_{4}$ such that $\left(y_{i}\right) d=y_{8-i}$ for $1 \leqslant i \leqslant 7$. Since G contains an element mapping (y_{1}, \cdots, y_{7}) onto (x_{1}, \cdots, x_{7}), g_{1} and g_{2} must be involutions. If $\left(x_{8}\right) g_{1}=\left(x_{8}\right) g_{2}$, then $g_{1} g_{2} \in G\left(x_{0}, \cdots, x_{8}\right)=1$, a contradiction. Thus $\left(x_{0}, \cdots, x_{8}\right) g_{i}=\left(x_{8}, \cdots, x_{0}\right)$ for $i=1$ or 2 .

Thus there exists an element g mapping $(-1, \cdots, 7)$ onto (7, $\cdots,-1$). Since $G_{1}(i-2, \cdots, i+2)=G_{3}(i)$ for even $i, G_{1}(i-2, \cdots, i+2)^{g}=G_{1}(4-i$,
$\cdots, 8-i$) for $0 \leqslant i \leqslant 6$ and thus $\left[b_{1}, b_{6}\right]=\left[b_{5}, b_{0}\right]^{g}=\left(b_{4} b_{3} b_{2}^{u} b_{1}\right)^{g}=b_{2} b_{3} b_{4}^{u} b_{5}$. Therefore, for $u=0$ or $1, G(3)=\left\langle b_{0}, \cdots, b_{6}\right\rangle \cong H_{u}$ where $H_{u}=\left\langle t_{0}, \cdots\right.$, $t_{6} \mid t_{i}^{2}=1$ for $0 \leqslant i \leqslant 6 ;\left[t_{i}, t_{j}\right]=1$ for $|i-j| \leqslant 3$, i even; $\left[t_{i}, t_{i+4}\right]=t_{i+2}$ for $i=0$ and $2 ;\left[t_{i}, t_{i+2}\right]=t_{i+1}$ for $i=1$ and $3 ;\left[t_{1}, t_{5}\right]=t_{2} t_{4} ;\left[t_{0}, t_{5}\right]=t_{1} t_{2}^{u} t_{3} t_{4}$; $\left.\left[t_{1}, t_{6}\right]=t_{2} t_{3} t_{4}^{u} t_{5} ;\left(t_{0} t_{6}\right)^{3}=1\right\rangle$. The map $\xi:\left\{t_{0}, \cdots, t_{6}\right\} \rightarrow H_{0}$ given by $\left(t_{1}\right) \xi=t_{1} t_{2}$ and $\left(t_{i}\right) \xi=t_{i}$ for $0 \leqslant i \leqslant 6, i \neq 1$, induces an isomorphism from H_{1} onto H_{0}. Thus the structure of $G(3)$ (and therefore also that of $G(2,3)=\left\langle b_{0}, \cdots, b_{5}\right\rangle$) is uniquely determined. Since $b_{1} \notin G_{2}(0)$ and $G_{3}(1) \leqslant G_{1}(-1, \cdots, 3)=\left\langle b_{1}\right\rangle$, $G_{3}(1)=1$. Thus Γ cannot be ($G, 7$)-transitive.

Let h be the involution mapping $(0, \cdots, 8)$ onto $(8, \cdots, 0)$. Let $x_{i}=i$ for $0 \leqslant i \leqslant 9, x_{-1}=(9) h$ and c_{i} be the nontrivial element in $G_{1}\left(x_{i-2}, \cdots, x_{i+2}\right)$ for $i=1$ and 7. Suppose that $\left|c_{1} c_{7}\right|$ is even. If we set $y_{i}=x_{i}$ for $-1 \leqslant i$ $\leqslant 4, y_{i}=\left(x_{8-i}\right) c_{7}$ for $5 \leqslant i \leqslant 9$ and let d_{i} be the nontrivial element in $G_{1}\left(y_{i-2}, \cdots, y_{i+2}\right)$ for $i=1$ and 7 , then $\left|d_{1} d_{7}\right|=\left|c_{1} c_{1}^{c_{7}}\right|=\left|c_{1} c_{7}\right| / 2$. In addition, $\left(y_{i}\right) c_{7}=y_{8-i}$ for $-1 \leqslant i \leqslant 9$. Repeating, if necessary, we obtain a 10-path $\left(z_{-1}, \cdots, z_{g}\right)$ with $z_{4}=4$ such that there exists an involution a with $\left(z_{i}\right) a$ $=z_{8-i}$ for $-1 \leqslant i \leqslant 9$ and $\left|e_{1} e_{7}\right|=3$ where e_{i} is the nontrivial element in $G_{1}\left(z_{i-2}, \cdots, z_{i+2}\right)$ for $1 \leqslant i \leqslant 7$. There exists a $w \in\{0,1\}$ such that $\left[e_{2}, e_{7}\right]$ $=e_{3} e_{4}^{w} e_{5} e_{6}$. Thus $\left[e_{1}, e_{6}\right]=\left[e_{7}, e_{2}\right]^{a}=\left(e_{6} e_{5} e_{4}^{w} e_{3}\right)^{a}=e_{2} e_{3} e_{4}^{w} e_{5}$. Therefore $G(4)$ $=\left\langle e_{1}, \cdots, e_{7}\right\rangle \cong J_{w}$ where $J_{w}=\left\langle t_{1}, \cdots, t_{7}\right| t_{i}^{2}=1$ for $1 \leqslant i \leqslant 7 ;\left[t_{i}, t_{j}\right]=1$ for $|i-j| \leqslant 3$, i even; $\left[t_{2}, t_{6}\right]=t_{4} ;\left[t_{i}, t_{i+2}\right]=t_{i+i}$ for $i=1,3$ and $5 ;\left[t_{i}, t_{i+4}\right]$ $=t_{i+1} t_{i+3}$ for $i=1$ and $\left.3 ;\left[t_{1}, t_{6}\right]=t_{2} t_{3} t_{4}^{\omega} t_{5} ;\left[t_{2}, t_{7}\right]=t_{3} t_{4}^{\nu} t_{5} t_{6} ;\left(t_{1} t_{7}\right)^{3}=1\right\rangle$. The map $\theta:\left\{t_{1}, \cdots, t_{7}\right\} \rightarrow J_{0}$ given by $\left(t_{5}\right) \theta=t_{4} t_{5}$ and $\left(t_{i}\right) \theta=t_{i}$ for $1 \leqslant i \leqslant 7, i \neq 5$, induces an isomorphism from J_{1} onto J_{0}. Thus the structure of $G(4)$ is uniquely determined.

References

[1] I. Z. Bouwer and D. Ž. Djoković, On regular graphs III, J. Comb. Th. B 14 (1973), 268-277.
[2] R. W. Carter, Simple Groups of Lie Type, John Wiley and Sons, New York, 1971.
[3] W. Feit and G. Higman, The nonexistence of certain generalized polygons, J. Alg. 1 (1964), 114-131.
[4] A. Gardiner, Doubly primitive vertex stabilizers in graphs, Math. Z. 135 (1974), 257-266.
[5] A. M. Gleason, Finite Fano planes, Amer. J. Math. 78 (1956), 797-807.
[6] D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.
[7] D. G. Higman, Finite permutation groups of rank 3, Math. Z. 86 (1964), 145-156.
[8] W. Knapp, On the point stabilizer in a primitive permutation group, Math. Z. 133 (1973), 137-168.
[9] W. T. Tutte, A family of cubical graphs, Proc. Cambr. Phil. Soc. 43 (1947), 459-
474.
[10] W. T. Tutte, Connectivity in Graphs, University of Toronto Press, Toronto, 1966.
[11] R. Weiss, Über lokal s-reguläre Graphen, J. Comb. Th. B 20 (1976), 124-127.
[12] A. Yanushka, Generalized hexagons of order (t, t), Israel J. Math. 23 (1976), 309-324.
II. Mathematisches Institut der Freien Universität Berlin

[^0]: Received February 22, 1977.

