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CONSTRUCTION OF A SOLUTION OF A CERTAIN

EVOLUTION EQUATION II

AKINOBU SHIMIZU

Let D be a bounded domain in Rd with smooth boundary 3D. We
denote by Bt, t ^ 0, a one-dimensional Brownian motion. We shall con-
sider the initial-boundary value problem

du(t,x,ώ) = {aJu + bu(l — bλu — b2u
2)}dt + cudBt ,

( 0 # 1 ) (ί,aOe[0,oo) x f l ,

u(+0, x,ω) = g(x) , x e D ,

u(t, ξ, ω) = 0 , (ί, £) e [0, oo) x 3D ,

where α and δ are positive constants, b19 b2 and c are nonnegative con-
stants, and b\ + 61 ̂ = 0. Let α be the positive root of the equation
1 — &!« — δ2α

2 = 0. We assume that the initial function g(x) is suffi-
ciently smooth and that 0 ^ #(#) < a.

The central aim of this paper is to investigate the asymptotic prop-
erty of the solution as t —> +oo, by using the result [7]. In the deter-
ministic case, that is the case c = 0, the behaviour of the solution is
well-known. If the random disturbance cudBt is involved, the solution
presents somewhat complicated behaviour. Therefore, we are interested
in the contribution of the coefficient c (Theorem 4.2).

The initial-boundary value problem (0.1) is a stochastic model of
population growth with dispersal in theoretical biology (W. H. Fleming
[1]). The domain D is the habitat of individuals. The stochastic proc-
ess u(t, x, ώ) is to be the density of individuals at time t and place x in
the habitat D. The parameter ω stands for fluctuation. The term aΔu,
a constant times the Laplace operator, describes the dispersal of indi-
viduals. The term bu(l — bλu — b2u

2) means the multiplication rate of
individuals. The term cudBt describes random environmental fluctuations
of population growth.
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A stochastic model without geographical structure has been discussed

in [2]. In the paper, a generalized Volterra system, which is a model

of interacting populations of various biological species, is reduced to an

ordinary stochastic differential equation. The difference of our model

from the model in [2] is only a term aΔu.

For the deterministic case, it is well-known [11] that

lim u(t, x, ω) = 0 , if — < λx ,

lim u(t, x, ω) = w(x), a positive stationary solution, if — :> λ19
ί-oo d

where λx is the smallest eigenvalue of — Δ with Dirichlet boundary con-

dition. As soon as the random environmental fluctuations are involved,

the condition for survival of individuals largely changes. According to

Theorem 4.2 in this paper, we see that

lim u(t, xy ω) = 0 a.e., if c2 < λλ ,

u(t,x,ω) never tends to zero a.e., if — — — c 2 > λx .
a 2α

Roughly speaking, this result means that the critical size of the habitat

D for survival must be larger under the random environmental fluctua-

tions than in the deterministic case.

In § 1, we shall establish a comparison theorem. The existence of

a solution will be discussed in § 2. We shall investigate the linear case,

bλ = b2 = 0, in § 3. In this case, we can get the explicit solution. The

algorithm to derive the explicit expression has been obtained by the

author [8], using the integral representation of the multiple Wiener

integral [4]. Once an explicit expression of the solution is given, it is

easy to have a conjecture on the asymptotic behaviour of the solution.

Indeed, we can give the affirmative answer to the conjecture in §4.

The one-dimensional Brownian motion Bt> t >̂ 0, in the stochastic

evolution equation (0.1), which causes the random environmental fluctu-

ations, should now be replaced by a Brownian motion Bt(x,ω) having

the parameter xeD, since geographic structure should be taken into

account. The author has made an attempt in this scheme in [9], where

one is given an explicit form of the solution of a linear stochastic evolu-
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tion equation on a Hubert space. Although the results in this paper

are far from a systematic approach to the theory of infinite dimensional

stochastic differential equations, the property obtained in §4 is well il-

lustrating some evolutionary phenomena arising in population biology.

Before we describe our main results, we list the notations which

are used throughout this paper. Let (Ω, g, P) be a probability space,

endowed with a right continuous increasing family of σ-fields gv {Bt}

is a one-dimensional grBrownian motion. Let 3K°°($, D) be the family

of processes u(t,x,ω) satisfying the conditions (0.2) and (0.3);

(0.2) u(t, x9 ω) is (t, x, ω)-measurable, and it is $rmeasurable for each

fixed (t,x)e[0,T] x 15.υ

(0.3) sup E[\u(t,x,ω)\2k] < +oo for any T < +oo and any positive
(i,cc)e[o,r]xu

integer k.

We denote by C2($, D) the family of processes u(t,x,ω) satisfying the

conditions (0.4) ~ (0.7)

(0.4) uem~(%,D),

(0.5) u(t,x,ώ) is (t, αO-continuous in [0, oo) x D with probability 1,

(0.6) u(t,x,ω) is twice differentiate in D as a function of x, and the

derivatives Dxu, Ό\u are continuous in (t, x) e [0, oo) x D.2)

(0.7) sup ΣEllDiu]2] < +oo for each T < +oo .

Finally, we will state our main results in § 2 — § 4 precisely. Here,

we omit the comparison theorem obtained in § 1, because we need more

notations to describe them.

THEOREM 2.5. The initial-boundary value problem (0.1) has a unique

nonnegative solution in the class C2($,D), if the bounded domain D in

d-dimensional Euclidean space Rd is taken to be a cuboid, the function

g(x) is sufficiently smooth and supp g(x) c Zλ

This theorem is a corollary of Theorem 2.4, which gives a more

1) Throughout this paper, we denote by D the set D U dD.

2) Dx = JL9 Ό\ = -JL-. and Dxu = u.
d dd
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general sufficient condition for the existence and uniqueness of the solu-
tion.

THEOREM 3.1. When the coefficients b1 and b2 are zero, the solution
u(t,x,ω) of the initial-boundary value problem (0.1) can be expressed in
the form,

u(t, x, ω) = exp {cBt(ω) — \&t + bt}p(t, x) ,

where p(t,x) is the solution of the problem,

-^-p(t, x) = aJp(t, x) , (ί, x) e [0, oo) x D ,
ot

p(+0,x) = gix) , xeD ,

p(ί,£) = 0, (t,£)e[0,oo) xdD .

THEOREM 4.2. Let u(t,x,ω) be the solution of the initial-boundary
value problem (0.1). // — aλx + b — \& < 0, then the equality

p\limu(t,x,ω) = 0 for any x e ϋ\ = 1 ,

holds. If —aλi + b — \& > 0, then the equality,

P[u(t, x, ώ) does not converge to zero, as t —» + oo, for any x e D] = 1 ,

holds.

§1. Comparison Theorem

Let u(t, x, ώ) be a stochastic process belonging to the class C2(gί, D),
whose stochastic differential is given by

(1.1) du(t, x, ω) = {aΔxu(t, x, ω) + f(t, x, ω)}dt + h(u(t, x, ώ))dBt .

Here, f(t, x, ω) is (t, x, ω)-measurable, grmeasurable for each fixed t and

x, and I E[\f(t,x,ω)\]dt < +oo for any x and T < +oo. We assume
Jo

that v(t, x, ω) e C2(g, D) be a solution to the stochastic evolution equation,

(1.2) dv(t, x, ώ) = {aΔxv(t, x, ώ) + g(v(t, x, ω))}dt + h(v(t, x, ω))dBt .

We get

THEOREM 1.1. Let a be a nonnegative constant, and τ{ω) be a
Markov time relative to f&. Assume that h(u) is ^-Holder continuous



EVOLUTION EQUATION 185

on R\ that g(u) can be expressed as the sum of a Lipschitz continuous

function and a non-increasing function on R\ that the inequality,

(1.3) f(t9 x, ω) ^ g(u{ty x, ω)) , (ί, x, ω) e [0, r(ω)) x f l x f i ,

holds for some ω-set Ω satisfying Pφ) = 1, and that the conditions

(1.4) P[u(0, x, ω) <* v(0, x, ώ) for any xeD] ~ 1

and

(1.5) P[u(t, ξ, ω) <̂  v(t, ξ, ω) for any ξ edD and any t e [0, r(ω))] = 1

hold. Then, the equality

(1.6) P[u(t, x, ω) ̂  v(t, x, ω) for any x e D and any t e [0, τ(ω))] = 1

holds.

Proof. Let us define a sequence of functions ψn{u) as follows;

<pn(u) are of C2-class, ψn{u) ^ 0, ψn{u) \ max (0, u) ,

0 ^ φ'niu) ^ 1 , φ'M - 1 (U > 0) ,

uφ"(u) are uniformly bounded, and φ"(u) —> 0 (n -> + oo).

We put τr{ω) = inf {ί sup^smax (|^(ί, a?, ω)\,\v(t, x, ω)\) > r), and t' = t

Λ τ(ω) Λ τr(ω). By using Itό's formula, we get

e~kt'φn(u(t', x, ω) — v(tf, x9 ω))

— — k \ e~ksφn(u — v)ds
Jo

+ Γ e-ks

Ψ'n(u - v){aΔ{u - v) + f - g(v)}ds
Jo

+ f e~ksφ'n(u - v){h(u) - h{v)}dBs

Jo

+ f ie-ksψ^'(u - v){h(u) - h(v)}2ds .
Jo

Hence, we have

E[e-kt'φn(u(fi',x9ώ) - v(fi\ x, ω))]

+ Eli e~ksφf

n(u — ^){αJ(^ — v) + f(s, x, ω) — g(u(s, x, ω))
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e~k^(u - v)\u - v\ds\

e-ksφn(u - v)ds\

e-ksφ'n(u - v){aΔiu - v) + fc"|% - v|

e~ksφ^{u -v)\u- v\ds\ ,

because of the inequality (1.3) and g(u) — g(v) <̂  k"\u — v\9(u> v).

Lett ing n tend to + 0 0 , we have

E[e-kt'mίix(Q,u - v)]

^ (k" - k)E\{C e~ks max (0,u -

+ ί 7 ^ e-ks

X(u>v)aJ(u -

Let the constant k be sufficiently large, then we have

E[e~kt' max (0, u — v)]

Hence, we have

f E[e~kt' max (0, u(t', x, ω) - v(tf, x, ω))]dx

χiu>Ό)ad(u - v)

By the next Lemma 1.2, we must have

I χ(u>v)<t>Δ(u - v)dx ^ 0 ,
JD

therefore, we obtain

I E[e~kt' max (0, u(t Λ τ Λ τr, x, ώ) — v(t Λ τ Λ τ r , a?, ω))]dx ^ 0 .

Noting the fact that τr(ω) —> +00, r —> +00, we get the conclusion of
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this theorem.

To complete the proof of Theorem 1.1, we will prove

LEMMA 1.2. Assume that a function ψ(x) belongs to c\D) Π C2(D),2)

that L dx < +00 (ί = 1,2, , d), and that ψ(ξ) ^ 0 for each

ξ G dD. Then, the inequality

ί Jψ(x)dx ^ 0
J DΠ{x;ψ(x)>0}

holds.

Proof. We will prove the inequality under the assumption ψ(x)
Γ Λ52

e C2(D). It is sufficient to show that —ψ(x)dx <̂  0 for each
J Dr\{ψ(χ)>o} dx\

i. For fixed x19 x2, , xt_19 xi+ί9 , xd9 we put

Lt = {x = (χ19 . , xd) x e D Π {ψ(a;) > 0}} .

Γ d2

Clearly, it is enough to see that —^{x)dx t ^ 0. Since the set Lt is

jLi dx\

expressed as the sum of countably many open intervals, the assertion

of Lemma 1.2 is reduced to the following statement;r
J a

-ψ(x)dXi <; 0, under the conditions ψ(a) = ψ(β) = 0, and ψ(x) > 0,
dx\

Xie(a9β). This is obvious. We omit the proof under the assumptions

of this Lemma, because it is easy to get it modifying the above proof.

When the constant a equals zero, Theorem 1.1 gives a comparison

theorem for ordinary stochastic differential equations [10]. On the other

hand, putting c = 0, Theorem 1.1 turns out a comparison theorem for

partial differential equations of parabolic type, which is well-known.

Next, we will give some results, which can be immediately deduced

from Theorem 1.1. We shall use them in §2 and §4.

COROLLARY 1.3. (i) Let a be a nonnegative constant, and τ(ω) be

a Markov time relative to $ t. Assume that h{u) is ^-Holder continuous

on [0, 00), that g(u) can be expressed as the sum of a Lipschitz con-

3) f(x) is continuously diίferentiable in D, and twice continuously differentiate
in D.



188 AKINOBU SHIMIZU

tinuous function and a nonincreasing function on [0, oo), that the proc-

esses u(t,x,ω) and v(t,x,ω) are nonnegative, and that the conditions (1.3)

(1.4) and (1.5) are satisfied. Then, (1.6) holds.

(ii) Let a be a nonnegative constant. In addition to the assumptions

on the functions h(u) and g(u) in the above (i), we assume that h(0)

= g(0) = 0. Let a process v{t, x, ω), (t, x) e [0, oo) x D, be a solution of

the stochastic evolution equation (1.2) satisfying the conditions;

P[v(0, x, ώ) ^ 0 for any xeD] = 1 ,

P[v(t, ξ,ω)^Q for any (t, ξ) e [0, oo) x ΘD] = 1 .

Then, the equality

P[v(t, x,ω)^0 for any (t, x) e [0, oo) x D] = 1

holds.

COROLLARY 1.4. ( i ) In the assumptions in Corollary 1.3 (i), we

replace the conditions (1.3)(1.4) and (1.5) by the following conditions;

(1.30 fit, x, ω) = g(u(t, x, ω)) , (t, x, ω) e [0, τ(ω)) X D x Ω ,

holds for some ω-set Ω satisfying P(Ω) = 1,

(1.40 P[u(0, x, ω) = v(0, x, ω) for any x e D] = 1 ,

(1.50 P[^(ί, f, ω) = v(t, f, ω) /or an?/ (t, f) e [0, τ{ω)) X 3J5] = 1 .

ίΛe equality

P[u{t, x, ώ) = ι;(ί, 0J, ω) /or an^/ (t, x) e [0, r(a>)) X JD] = 1

holds.

(ii) Under the same assumptions on the functions h(u), g(u) and the

constant a as in Corollary 1.3 (ii), the uniqueness of nonnegative solu-

tions of the stochastic evolution equation (1.2), which satisfy the initial

condition

P[v(0, x, ω) = gix) ^ 0 for any x e D] = 1

and the boundary condition

P[v(t, ξ, ώ) = 0 for any (t, ξ) e [0, oo) x 3D] = 1 ,
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§2. Existence of a solution

The aim of this section is to establish the existence of a solution

of the initial-boundary value problem (0.1). We can prove the existence,

when the domain is a cuboid. Let pit9xyy) be the fundamental solution

of the heat equation,

(2.1) — u = aΔu ,

dt

with boundary condition,

(2.2) uit,ξ) = 0, ξ edD .

First, we consider the following equation of integral type.

uit,x,ω)=\ pit,x,y)giy)dy
JD

(2.3) + I ds \ pit - s,x,y)fiuis,y,ω))dy
JO J D

+ j if pit - s,x,y)hiuis,y,ω))dy\dBs ,

where the function fin) and the derivative h'iv) are Lipschitz continu-

ous. The existence of a solution of (2.3), which belongs to the class

9K°°(g, D), is proved by the successive approximation. We expect that

the solution of (2.3) satisfies (0.1). If the domain D coincides with Rd,

we can prove this fact by the same argument as in B. L. Rozovskii [7].

But, in this paper, we consider the initial-boundary value problem (0.1)

with bounded domain D, so we can not apply Rozovskii's method.

We assume that the bounded domain D is given by

(2.4) D = {ix19 x2, , xd) e Rd 0 < xk < Lk, k = 1,2, , d} .

Then, the fundamental solution pit,x,y) of (2.1) with boundary condition

(2.2) is represented in the form,

•̂  d +oo rj ( (x

(2.5)

_ e x p [ - ^
4at

For a stochastic process uit,x,ω), xeD, we define an extension vit, x,ω)y

x e Rd, of the process uit, x, ω) such that the process vit, x, ω) satisfies
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the conditions (2.6) ~ (2.8) with probability 1 for any (t, x)e[0, oo) x D;

(2.6) v(t, xf ω) = nit, x, ω) ,

v(t, xx + 2n^Lx, x2 + 2n2L2, , xd + 2ndLd, ω)

= v(fi,xίf x2, - ,%d>ω) for any integer n19n2, . , n d ,

(2.8) v(t, exxlf ε2x29 , εdxd, ώ) = ε ^ e d v( ί , X19 X2, , ̂ d> ω)

for any εk = ± 1 . Furthermore, we define

(2.9) /(„) = ( / < ! t ) ' " i 0

Then, we have

LEMMA 2.1. // u(t,x,ω) ^ 0 almost everywhere for any (t,x)

e [0, oo) x D, then the equality

p(t — s, x, y)f(u(s, y9 ω))dy
D

 f ! f fe . n .
= ^ o y

 λ exp - ) „ y\}/(^(g, 1/,ω))dy ,
Ji2ώ (2v^α(ί — s))d I 4α(ί — ̂ )J

(2.10)

holds, where the process v is the extension of u defined by (2.6) — (2.8).

Conversely, if a process v(t, x,ω), x eRd, satisfies (2.7), (2.8) and v(t,x,ω)

^ 0 a.e. for (t,x) e [0, oo) x D, then the process u(t,x,ω) defined by (2.6)

satisfies (2.10).

We will omit the proof of Lemma 2.1, because it is not difficult.

Making use of Lemma 2.1, we see that the integral equation (2.3)

can be reduced to the equation,

v(t, x, ώ) = I Pott, x, y)g(y)dy

(2.11) + I ds I po(t - s,x,y)f(v(s,y,ω))dy

+ 11 Poif - s, x, y)h(v(s, y, ω))dydBs ,

JO J R*

1 ( (X y)2 Λ

where po(t, x,y) = — ' . exp < — ^—>, the function g(x), x e Rd, is

(2Vτtat)d I 4at )

an extention of g(x), xeD, such that g(x) has the properties correspond-

ing to (2.7), (2.8), and the function h(u) is defined by (2.9).
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Since we can apply the Rozovskii's method to the integral equation
(2.11), we get the following lemma.

LEMMA 2.2. ( i ) Assume that the functions f(u) and h(u) are
Lίpschitz continuous, that /(0) = h(0) = 0, and that the function g(x)
is bounded measurable. Then, the integral equation (2.11) has a unique
solution in the class W{^,Rd).
(ii) In addition to the assumptions in (i), we assume that f(u) and
the derivative h'(u) is Lipschitz continuous, and that g(x) is a suffi-
ciently smooth function with supp g(x)aD. Then, the solution of (2.11)
belongs to the class C2&,Rd) and it satisfies the stochastic evolution
equation,

(2.12) dvit, x, ω) = {aΔv + f(v)}dt + h(v)dBt .

(iii) In addition to the assumptions in (ii), we assume that the func-
tion g(x),xeD, is nonnegative. Then, the solution v(t,x,ω) of (2.12)
is nonnegative in [0, oo) x D almost surely, and it satisfies (2.7)(2.8).

Proof. ( i ) Since the functions fiu) and h(u) are Lipschitz contin-
uous under our assumptions, we can apply the successive approximation.
Let us define an operator S as follows:

Su = I po(t, x, y)g(y)dy

+ \ ds\ po(t - s, x, y)f(u(s, y, ω))dy

+ 11 Po(t - s, x, y)h(u{s, y, ω))dydBs .
J 0 J Rά

We put uγ = po(t, x, y)g{y)dy. We can easily verify that S71^ con-
J Rd

verges in norm \\u\\N = (su^(t^)eLQ^xRdE[\u(t,x,ω)\2N]y/2N

9 where N is an
arbitrary integer. Hence, we get the conclusion.
(ii) Since the support of the function g(x) is contained in D, the ex-
tended function g(x) is sufficiently smooth in Rd. Applying Rozovskii's
method [7], we get the conclusion,
(iii) If a function w(x) satisfies the conditions (2.7)(2.8), it is easy to

see that the function I po(t,x,y)w(y)dy also satisfies (2.7)(2.8). Noting
J Rd

the above fact, we see that ux satisfies (2.7)(2.8), and that Snuλ satisfies
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(2.7)(2.8). Since the sequence Snuλ converges to the solution in norm
\\ \\N9 so the solution satisfies (2.7)(2 8). The fact that v(t,x,ω) ^ 0 a.e.
for (t, x)e[0, oo) x D follows from Corollary 1.3 (ii).

By Lemma 2.1 and Lemma 2.2, we get

PROPOSITION 2.3. Assume that the domain D is given by (2.4), that
fiu) and the derivative hfiu) are Lipschitz continuous, that /(0) = h(0)
= 0, that the function gix) is nonnegative and sufficiently smooth, and
that the support of gix) is contained in D. Then, the initial-boundary
value problem

du(t, x, ω) = {aΔu + f(u)}dt + h(u)dBt ,

(2.13) u(Q,x,ω) = gix) , xeD ,

u(t,ξ,ω) = 0, ξedD,

has a unique nonnegative solution in C2i$,D).

Next, we should relax the condition on the function f(u) in Proposi-
tion 2.3, because the function buQ. — bxu — b2u

2) which appears in (0,1)
is not Lipschitz continuous.

THEOREM 2.4. Assume that the domain D is given by (2.4), that
the function fiu) is written in the form,

with a Lίpschitz continuous function fxiu) and a nonnegative increasing
locally Lipschitz function f2iu), that the derivative h'iu) is Lipschitz
continuous, that /^O) = /2(O) = hiO) = 0, and that the function gix) is
nonnegative and sufficiently smooth, and that supp gix) c D. Then, the
initial-boundary value problem (2.13) has a unique nonnegative solution
in the class C2i$,D).

Proof. We put

ifJLw) > if fι(w) < w + 1
\n + 1 if f2iu) >n + l,

and

We consider the stochastic evolution equation,
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(2.14) du = {aΔu + fn\u)}dt + h(u)dBt ,

with initial condition,

u(+0,x,ω) = gix) , x eD ,

and the boundary condition,

u(t, ξ, ω) = 0 , ξ e 3D .

By Proposition 2.3, we see that (2.14) has a unique solution u{n)(t, xf ω).

We define a Markov time τn(ω) by

τn(ω) = inf {ί ;/2(u(n)(t, x, ω)) > n for some a? e D) .

From Corollaries 1.3 and 1.4, it follows that u{n)(t, x,ώ) ^u(n+Ό(t,x,ω),

that τn(ω) ^ rn+1(ω), and that ^ u ) ( ί , α;,ω) = u{n+1)(t, x,ω) if ί < rn(ω). We

put

(2.15) ^(t, a;, ω) = %(n)(t, x, ω) , if t < τn(ω) ,

and

Too(ω) = l i m r r a(ω) .

The stochastic process u(t,x,ω) defined by (2.15) satisfies (2.13) when

t < Tooία)), so that it is enough to verify τ^iώ) = + co to complete the

proof of the existence. Let w(t, x, w) be the solution of the stochastic

evolution equation,

dw(t, x, ω) = {aΔw + fiίw)}dt + h(w)dBt ,

w(+0,x,ώ) = g(x) , xeD ,

wit, ξ, ω) = 0 , f e 3Z> .

Then, by Theorem 1.1, we get that w(ί, a;, ω) ^ ^(72)(ί, »,ω). Hence,

f2(w(t9x9ώ)) ^f2(u(n)(t,x,ω)). Therefore, we have

τn(ω) ^ inf {ί f2(w(t,x,ω)) > w for some xeD}

= τniω) .

It is easy to see that τn(ω) —» +oo, because w(t,x,ω) is (ί, ̂ -continuous

in [0, +co) x D with probability 1. Hence, we get τ^iω) = +co. The

uniqueness of solutions follows from Corollary 1.4 (ii). The proof is

complete.

The next theorem is only a corollary of Theorem 2.4. But, it is



194 AKINOBU SHIMIZU

sufficient for the central aim of this paper.

THEOREM 2.5. The initial-boundary value problem (0.1) has a unique

nonnegatίve solution in the class C2&,D), if the bounded domain D in

d-dimensional Euclidean space Rd is a cuboid, the function g(x) is suffi-

ciently smooth, nonnegatίve and supp g(x) c D.

§3 Linear stochastic evolution equation

In this section, we consider the initial-boundary value problem of

the linear stochastic evolution equation;

(3.1) du = {aΔu + bu}dt + cudBt ,

(3.2) u( + 0,x,ω) — g(x) , xeD; g(x) is bounded nonnegative ,

(3.3) u(t,ξ,ω) = 0, ξedD,

where D is a bounded domain in Rd with smooth boundary dD. The

initial-boundary value problem (0.1) is reduced to the problem (3.1)

~ (3.3), if the constants bλ and b2 in (0.1) equals zero.

THEOREM 3.1. When the constants bx and b2 are zero, the solution

u(t,x,ω) of the initial-boundary value problem (0.1) can be expressed in

the form,

(3.4) u(t, x, ω) — exp {cBt(ω) — \c2t + bt}p(t, x) ,

where p(t,x) is the solution of the problem,

p =: aJp(t, x) , {t, x) e [0, oo) x ΰ ,
at

p(+0,x) = gix) , xeD ,

p(t,ξ) = O , (t,ξ)e[0,oo) xdD .

Proof. The integral equation corresponding to (3.1) can be written

as follows

u(t,x,ω) = j p(t,x,y)g(y)dy + \ if p(t - s,x,y)bu(s,y,ω)dy\ds

+ J if p(t - s,x,y)cu(s,y,ω)dy\dBs .

By the same argument as the proof of Theorem 1 in [8], we obtain the
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formula (3.4). We can easily verify by Ito's formula that the process

u(t,x,ω) given by (3.4) satisfies (3.1). Obviously, the process u(t,x,ώ)

satisfies (3.2) and (3.3).

Let {λn} be the eigenvalues of (λ + Δ)u = 0 with boundary condi-

tion u\dD = 0, such that λι < λ2 ^ h ^ •> and {φn} be the eigenfunctions

corresponding to {λn}. Then, the function p(t, x) in Theorem 3.1 can be

expressed in the form,

(3.5) p(t, x) = Σ e"MAnφn(x) .
7 1 = 1

The right-hand side of (3.5) converges uniformly in (t, x)e[d, oo) x D

for each δ > 0. The conditions g(x) and g(x) ^ 0 imply A^(x) > 0, x e D.

COROLLARY 3.2. The inequality —aλι + b — ^c2<Q implies

P\limu(t,x,ω) = 0 for any x e D\ = 1 ,

and — ajϊj + b — \c2 > 0 implies

P lim ^(ί, a?, ω) = +co /or ani/ ajeD = 1 .

Proo/. Combining the fact, p [ l i m ^ ~ = o] = 1, with Theorem 3.1,
u->«> t J

we get the conclusion of Corollary 3.2.

§ 4 . Asymptotic behaviour of the solution

Let u(t,x9ω) be the solution of the initial-boundary value problem

(0.1). Our concern of this section is whether u(t, x,ω) converges to zero

or not as t —> +oo.

First, we assume that — aλx + b — \c2 < 0. By Corollary 1.3, the

solution u(t,x,ω) of (0.1) is not greater than the solution of (3.1) — (3.3).

Combining this with Corollary 3.2, we get

P\ lim u(tf x, ω) — 0 for any x e D \ = 1 .

Next, we assume that — aλx + b — \& > 0. We can choose real

numbers a, β such that b = a + β, a > aλlf and β > \c2. Let us define a

function ύ(t9x) and a process Xt(ω) by (4.1), (4.2);
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= aΛύ(t, x) + aύ(t, x)(l -ύ(t,,
dt \ k

(4.1) ύ( + 0, x) = g{x) , 0 ^ g(x) < min (g(x), k) , g(x) ^ 0 ,

Xo = 1 ,

where fc is a positive constant, and ?Ί, γ2 are nonnegative constants. We
shall determine k,γλ and f2 in the next lemma.

LEMMA 4.1. There exist k > 0, ?Ί, 2̂ ^ 0 sm /z, ίfeαί ί/̂ e equality,
P[u(t,x,ω) ^ ώ(ί, x)Xt(ω)9 for any xeD, any t ^ 0] = 1,

Proof. We put w(t, >̂ ω) = ύ(t, x)Xt(ω). Let us calculate the stochastic
differential of w(t,x,ω). Then, we have

dw = {αJw + &w}(W + cwdBt

- wff-a + ^ri^ + βϊ2^ζ]dt.
I A; w ^ 2 J

S ince g ^ k, so w e h a v e 0 <*ύ <L k by t h e c o m p a r i s o n t h e o r e m on p a r -

tial differential equations, which is included in Theorem 1.1. Therefore,
we have

Let k be any positive number, and let γ1 and γ2 be the constants such
that

Then, it follows from Corollary 1.3 that the equality,

P[u(t, x, ω) ̂  w(t, x9 ω) for any x e D and t ^ 0] = 1 ,

holds.

Since a > γu we have

u(t, x) -> S(x) , and 0 < S(x) ^ k , £ e 2? [11] .

4) It is enough to consider only the case
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On the other hand, it is known in the theory of one-dimensional diffusion
processes that the path of Xt(ω) does not converge to zero with proba-
bility 1 under the condition β > \c2. Combining these facts with Lemma
4.1, we obtain

THEOREM 4.2. Let u(t,x,ω) be the solution of the initial-boundary
value problem (0.1). // — aλ1 + b — \& < 0, then the equality

P\lim u{t, x,ω) = 0 for any x e D\ = 1
b->~ J

holds. If — aλ1 + b — \c2 > 0, then the equality

P[u(t, x, ω) does not converge to zero, as t -> + oo ,

for any x e D] = 1

holds.

Acknowledgement: The author thanks the referee for his suggestion
on way of expressing the results of Theorem 1.1, Corollaries 1.3, and 1.4.

Addendum

After this paper was submitted for publication, the author presented
a note (Asymptotic property of the solution of a certain stochastic evolu-
tion equation9 to 'Proceedings of the International Symposium on
Mathematical Topics in Biology, Kyoto, Japan 1978', where he discussed
a stochastic evolution equation similar to Eq. (0.1) in this paper. The
evolution equation, which he discussed in the above note, seems more
natural as a stochastic population growth model in population biology.

REFERENCES

[ 1 ] W. H. Fleming, Distributed parameter stochastic systems in population biology,
m.s., Brown University, Providence, R. I.

[ 2 ] N. S. Goel, S. C. Maitra and E. W. Montroll, On the Volterra and other nonlinear
models of interacting populations, Rev. Modern Phys. 43(2) (1971).

[ 3 ] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Springer-
Verlag, 1973.

[ 4 ] T. Hida, Analysis of Brownian functionals, Carleton University lecture notes, 1975.
[ 5 ] Y. Okabe and A. Shimizu, On the pathwise uniqueness of solutions of stochastic

differential equations, J. Math. Kyoto Univ. 15(2) (1975).
[ 6 ] A. Okubo, Biology and diffusion (in Japanese), Tsukiji-shokan, 1975.
[ 7 ] B. L. Rozovskii, On stochastic differential equations with partial derivatives (in

Russian), Math. Sb. 96(138), 2 (1975).
[ 8 ] A. Shimizu, Construction of a solution of a certain evolution equation, Nagoya



198 AKINOBU SHIMIZU

Math. J. 66 (1977).
[ 9 ] , Construction of a solution of linear stochastic evolution equations on a Hil-

bert space, to appear.
[10] T. Yamada, On a comparison theorem for solutions of stochastic differential equa-

tions and its applications, J. Math. Kyoto Univ. 13 (1973).
[11] M. Yamaguti, Mathematics in non-linear phenomena (in Japanese) Asakura-

shoten, 1972.

Nagoya Institute of Technology




