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LOCAL ENERGY DECAYS FOR WAVE EQUATIONS

WITH TIME-DEPENDENT COEFFICIENTS

HIDEO TAMURA

§ 0. Introduction

We consider the decay of the local energy for the following equa-
tion in three dimension:

utt + but- Ju = 0

u(Q, x) = f(x) and utφ, x) = g(x) .

Here we make the following assumption on δ = b(t, x):

ASSUMPTION (A), (i) b(t, x) is a bounded smooth function, (ii)
bit, x) is non-negative, (iii) For each t > 0,

the support of b(t, x) is contained in [x\\x\ < it + γ)a),

0 < a < 1, γ > 1.

(Throughout this paper the constants a and γ are used with the mean-
ing ascribed here.)

The condition 0 < a < 1 means that the support of b(t, x) expands
at a speed strictly less than the wave speed. Therefore, it is expected
that the local energy for solutions of problem (0.1) with initial data of
compact support decays rapidly as £-»oo. The purpose of this paper
is to give a partial answer to this problem.

The problem of the decay of the local energy for wave equations
with time-dependent coefficients or with moving obstacles has been
studied in Bloom and Kazarinoίf [1], Cooper [2] and Cooper and Strauss
[3], etc. In their works it has been assumed that coefficients are
asymptotically stationary or that obstacles remain in a fixed bounded
region for t > 0.

Now we shall state the main theorem.
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MAIN THEOREM. Suppose that Assumption (A) is satisfied and that

0 < a < | . Let u be a smooth solution of problem (0.1) with the initial

data f and g (e CQ(R3)) such that the support of f and g is contained

in \x\ < γa. Then, there exist constants θ and β9 0 < β < 1, such that

the local energy for the solution u decays at the rate of exp (~θtB) as

t —> oo.

The explicit expression of the constant β will be given in the proof

of this theorem (§2).

Remark. The above result is valid for a weak solution with

feH\R") and geL\Rz).

Next we consider the exterior problem with Dirichlet boundary

conditions. Let $ be a domain exterior to a star-shaped bounded do-

main with smooth boundary and let u be a solution of the following

equation:

(0.3) utt + but - Ju=0 in (0, oo) x i

(0.4) u(t, x) = 0 on (0, oo) x dS , d£ being the boundary of £ .

(0.5) u(Q, x) = f(x) , ^(0, x) = g(x) .

Here b(t, x) satisfies Assumption (A). Then the same result as Main

Theorem holds. Since the proof for the exterior problem is done with

a slight modification of the proof for the whole space problem, we con-

sider only the whole space problem in this paper. The method presented

here will be useful for the problem with expanding obstacles with time

and details will be discussed in the next papere.

The proof of Main Theorem is done by a generalization of the

method used in Morawetz [5]. In § 1 we show the uniform decay of

order t~μ

9 μ > 0, and in § 2 we prove Main Theorem. In § 3 we show

that our method can be applied to wave equations with potentials of a

special form.

Finally we note the following facts: (a) The symbols C, C19 C2,

are used to denote (unessential) positive constants which are not neces-

sarily the same, (b) Integration with no domain attached is taken

over the whole space, (c) We use the summation convention, (d) All

the functions considered here are real-valued.
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§ 1 . Uniform decay

Let s > 0 be fixed and let v(t s) be a smooth solution of the equa-
tion

(1.1) vtt + Ht;s)vt -vjj = 0

with the initial data v(0 s) and vt(0 s) of compact support, where
VJJ = Av, b(t; s) = δ(£ + s, x), b(t,x) being the function in equation (0.1),
and by (0.2)

the support of b(t; s) is contained in {x\\x\ < (t + s + γ)a) for

each t > 0.

It is convenient to introduce the following notation:

E(v;h, T,8) = f (|i;t(Γ; s)|2 + \Fv(T; s)f)dx
J \x\<h

for 0 < h < oo.

LEMMA 1.1. Lei 'y(ί s) δβ α solution of problem (1.1). Γfeen,

(1.3) S(v oo, T, s) < E(v oo, 0, s)

for each T > 0, and

(1.4) Γ ί bit s) \vtit s)\2 dxdt < \E(y oo, 0, s) .

Proof, We multiply the equation (1.1) by vt. Then we have

Kvdt + b(t)s)v\ - (vjvt)j + i(vj)ί - 0 .

Integrating this identity over J?3 x (0, Γ), we easily obtain the conclu-
sion.

We use the next identities.

LEMMA 1.2 (cf. Strauss [6], Lemma 1). Let ζ(r) be a smooth func-

tion of r = \x\ and let ŷ  = ζ(r)^-. Then the equation

r

(1.5) (utt + but - UjjMxtUi + χtiu) = Xt(u; t) + FΎ(u) + Z(u)ι)

holds, where
" Xt(u; t) = —X(u; t) and Y(u) = (Yi(u), F2(u), F3(u)). The same notation will be

dt
used in what follows.
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X(u t) = u&XiUt + χuu)

Yj(u) = -Uj&XiUt + χuu) + XjQFuf - uf) + \xujU2

Z(u) = 2χίjuiuj - iχ ί W w 2 + 2butχiui + butχuu .

LEMMA 1.3 (cf. Lax and Phillips [4], Appendix 3). The equation

iutt + but - UjjXir2 + t2)ut + 2trur + 2tu)

= Ft(u;t) + F'G(u) + H(u)

holds, where

F(u; t) = i(r2 + t2)(\Fu\2 + u)) + 2trurut + 2tutu

+ r'\r2 + t2)((Fu-x)u + \u2)

Gj(u) = -Uj((r2 + t2)ut + 2trur + 2tu) + Xjt(\Fu\2 - u])

- \r~\{r2 + t2)u2)txj

H{u) = (r2 + t2)bu\ + 2trbutur + 2tbutu ,

and x = (x19 x2> x3) is a position vector.

LEMMA 1.4. Let 0 < δ < 1 and let v(t s) be a solution of problem

(1.1). Then, there exists a constant C independent of T and s such that

for T > 1,

Γ f (1 + r)"1"5 \vr(t s)\2 dxdt + Γ ί (1 + r)-"'δ \v(t s)\2 dxdt

<C(T + s)aa+δ)E(v; oo,0,s) ,

where the constant C depends on δ and the bound of b(t, x).

Proof. We use Lemma 1.2 with ζ(r) = 1 — (1 + r)~δ. Then we note

the following facts:

(1.7) ζ(r) > 0 and ζ(r) < δr for r < 1 .

(1.8) XijViVj = ^-(\Fv\2 - vl) + ζr(r)v2

r > δ(l + r)-ι~δvl .
r

(1.9) χuj = (Crr(r) + -ζΛr) - lζ(r))-?L .

(1.10) Z ( W = ζ r r r(r) + i-Crr(r) < -δ(l + δ)(l + r)"3"5 .

We integrate the identity (1.5) with u = v(t;s) and 6 = 6(ί;s) over
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{x\\x\ > ε} x (0, Γ), ε, ε > 0, being arbitrary (small enough), we have

[ (X(v T) - X(i; 0))dx + Γ ί (Yj(v) -n^dSdt

+ Γ ί Z(v)dxdt = 0 ,
JO J |a?|>s

where n = (nlfn29n3) denotes the unit exterior normal to the domain
{#||a;I > ε}. By virtue of (1.7) and (1.9), the second term tends to zero
as ε-»0, and taking account of (1.8) and (1.10), we obtain

Γ 23(1 + rYχ-bv\dxdt + — Γ ίd(l + δ)(l + r)~3'δv2dxdt
Jo 2 Jo J

< J \X(y T)\ dx + J \X(v 0)| dx - 2 Γ ί b(t s)ζ(r)vtvrdxdt

bit s)(ζr(r) + *-ζ(rήvtvdxdt ,

since χtVt = ζ(r)vr and χu = ζr(r) + — ζ(r). Furthermore, since |χ€i|

< CXI + ^)-1 for some Cx by (1.7), we make use of Lemma 1.1 and
Poincare's inequality to obtain

ί \Xiv T)\ dx < C2E{v oo, 0, s)

with C2 independent of T, s and v. And the last two terms are dealt
with by the Schwarz inequality, so that

Γ f (1 + rYι-δv\dxdt + Γ ί (1 + r)~3-δv2dxdt

a n ) JoJ JoJ

 r f
< CJE(y>, oo, 0, a) + C4 j J (1 + r)1 + d6(ί s)v\dxdt .

By (1.2),

(1 + r)ι+δ < C5(T + 5)α(1+δ) , T > 1 ,

on the support of 6(ί, s), 0 < t < Γ. Hence, combining (1.11) with Lemma
1.1, we conclude the proof.

The next lemma gives the uniform decay of the local energy.

LEMMA 1.5. Let v(t; s) be a solution of problem (1.1). Then, there
exists a constant C independent of T and s such that for T > 1,
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E(y | T , T, s) < C(T-2d(v(0 s))2 + T~\T + s)a^)E{v oo, 0, s) ,

where d(u) denotes the radius of the ball with center at the origin con-

taining the support of u.

Proof. We make use of Lemma 1.3 with u — v(t s) and b = b(t s).

Integrating the identity (1.6) over R3 x (0, Γ), we have

ίF(v;T)dx+ ΓίH(v)dxdt = \ F(v; 0)dx .

Since &(£ s)(r2 + tz)v] > 0, and since

ί F(v 0)dx < Cxd{v(0 s))2E(v oo, 0, s)

by Poincare's inequality, it follows that

ί F(v ;T)dx < CrfiviO s))2E(v oo, 0, s)

—2 £&(£ s)(rvtvr + vtv)dxdt .

By use of the fact that (1 + r) < C2(T + s)% T > 1, on the support of

b{t s),0 <t < T, the last term is majorized by

C3T(T + s)a Γ ί ((1 + r)1+3δ(ί *)vϊ + (1 + r)-x-Vr + (1 + r)~z-δv2)dxdt .

Hence, in view of Lemma 1.4, we have

ί F(v T)dx < C4(d(v(0 s))2 + T(T + s)a(2+δ))E(v oo, 0, s) .

Oil the other hand, we obtain that F(v T) is non-negative and that

Fiv T) > %T\v\ + \Vv\2 + (r"V^),)

for \x\ < -^ (see pp. 264, [4]), so that
Δ

ί Fiv T)dx > f F(i; Γ)(te > ^ Γ2£/(t; i-Γ, Γ, s) .
J Juι<;z72 8 V 2 /

Thus, we conclude the proof.

§2. Proof of Main Theorem

Let 0 < a < i and δ, 0 < δ < 1, be so small that a(2 + δ) < 1. Let
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(2.1) p > a(2 + δ)(l - a(2 + δ))~' ,

so that p > a(2 + δ)(p + 1).

Let {Tk}k=0 be the sequence defined by

Tk = k*T ,

T being large enough (determined below, Lemma 2.2), and let

113

k

' ' ' J

m = 0

Fig. 1

Obviously,

(2.2) k > 0 ,

for C^ independent of k. We put g(t) = (t + ^)% r > *> a n d define

αΛ > 1, by

(2.3) ak = flr(St) , α0 = f .

Furthermore we define the sequence {bk}^09 bk > 0, as follows:

(2.4) bk is a (unique) root of the equation t — ak = #(ί + S^).

LEMMA 2.1. Γ&ere

for k>0

α constant M independent of k such that

ak<bk< Mak .

Proof. The conclusion readily follows from Fig. 1.

LEMMA 2.2. Let Tk,Sk,ak and bk be as above. Then, there exists

a constant T (large enough) independent of k > 1 such that
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(2.5) ak + 2bk

(2.6) ak_x + bk_λ <Tk + ak- b,.,

(2.7) \k*T <Tk- &fc_i

Proof. For the proof of (2.5), in virtue of Lemma 2.1 and the

monotone increasingness of ak, it suffices to show that Tk > (5M + 2)αΛ.

By (2.2) and (2.3), ak < Cλk
a^l)Ta for CΊ independent of k > 1. Since

a(p + 1) < p by (2.1), we can choose T independently of k > 1 so that

k*T > d(5Λf + 2)ka(p+1)Ta. This implies (2.5). (2.6) and (2.7) are proved

similarly.

Now, we shall prove Main Theorem. To this end we prepare

several lemmas.

LEMMA 2.3. Let u be the solution of problem (0.1) with the initial

data f and g (e Cs°(#3)) such that the support of f and g is contained

in \x\ < γa. Then, the solution u may be written as

u = Ro + Fo ,

where Fo is the free space solution with the same initial data as u and

FQ = 0 for \x\<t -a0,

while Ro has compact support of at most \x\ < aQ + b0 at t = b0, and is

a solution of problem (0.1) for t > b0.

Furthermore, we have

E(R0 co, ί, 0) < 4E(u oo, 0,0) , t > 0 .

Here a0 and b0 are the number defined by (2.3) and (2.4), respectively,

and E(;,,,) is the notation introduced in §1.

Proof. It is clear that Fo = 0 for \x\ < t — aQ (a0 = γa) by Huyghen's

principle. Hence, by the definition of b0, it follows that for t > b0, Fo

= 0 in {x\\x\ < g(t)}, g(t) = (t + γ)a, so that JP0 is a solution of problem

(0.1) for t > bQ. Since u is a solution of problem (0.1), Ro is also a

solution for t > bQ. Furthermore, by the argument of the dependence

of domain2), it is easily seen that Ro has compact support of at most

\x\ < a0 + b0 at t = b0. Finally we have

2) The equation g(t) = t + γα has no root in t > 0 since γ > 1. This means that
the forward cone with bottom {0} X {x \ \ x \ < γα) does not intersect the support of 6(ί, x).
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E(R0 oo, ί, 0) < 2(E(u oo, ί, 0) + ί7(Fo oo, ί, 0)) < 4ί?(w oo, 0,0) ,

since Fo is the free space solution with the same initial data as u and
since E(u oo, t, 0) < S O oo, 0,0).

LEMMA 2.4. Let {Tk}k=0, {Sk}k=0, {<&*}?,<> and {bk}k=0 be the sequences

defined above and let Ro and Fo be as in Lemma 2.3. Then, we can

construct {Rk}k=1 and {Fk}k=sl with the following properties:

(a) R k ^ = R k + Fk9 for t>Sk;

(b) Fk is the free space solution with the same initial data as Rk_ι at

t = Sk, and

Fk = 0 for \x\ < t - Sk -ak;

(c) Rk is a solution of problem (0.1) for t> Sk + bk, and has compact

support of at most \x\ < ak + bk at t = Sk + bk.

(d) E(Rk oo, 0, Sk + bk) < 4E(Rk^ ak + 2bk, Tk - bk_19 Sk_, + 6 4 β l).

Proof. First, we consider the case of k = 1. Let F1 be the free

space solution with the same initial data as Ro at t = S^Sx = TΊ). We

continue Fx as F1 = Ro for t < S lβ Then, ΠFί = 0 in the domain exterior

to {(t,x)\0 < t < S19\x\ < g(t)}. We apply Huyghen's principle to Fλ in

this domain. Let (t, x) be a point with \x\ < t — Sx — ax. Then, the

backward cone with vertex at (t, x) does not intersect {(ί, x) \ 0 < t < S19

\%\ < g(t)}> and intersect the plane t = b0 outside the sphere \x\ = S1

+ a, - bQ ( = T, + a1 - b0) (see Fig. 1). By (2.6) in Lemma 2.2, Tγ + aλ

— b0 > a0 + bQ, and the support of Ro at t = b0 is contained in \x\ < a0

+ b0 by Lemma 2.3. Thus, we conclude that F1 = 0 for \x\ < t — Sλ — at.

Therefore, by the definition of b19 Fx = 0 in \x\< g(t) for t > S1 + bx.

This implies that Rγ is a solution of problem (0.1) for t > S1 + bx.

Similarly to the proof of Lemma 2.3, it is easily seen by the argument

of the dependence of domain that Rλ has compact support of at most

\x\ < aλ + bx at t = Sx + bx.

It remains to prove the property (d). By property (c) and the
standard method of energy estimate^, we obtain

oo,0,S1 + b1) = E(RX ax + b190,S, + bj

< 2(E(F1 ch + b19 0, S1 + b,) + E(RQ a, + b19 0, S, + bj)

< 4E(R0; a, + 2b19T, ^ b09bQ) 9

3> It is readily proved that EiF^Ro); αt + bl90,Si + 5i) < E{F1{R0); ax + 261,0,50.
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where the last inequality follows from the fact that Ro is a solution of
problem (0.1) for t > b0. Following the above procedure and noting
(2.6) in Lemma 2.2, we can construct Fk and Rk by induction on k.

THEOREM 2.1. Suppose that Assumption (A) is satisfied and that
0 < a < J. Let u be the smooth solution of problem (0.1) with the initial
data f and g (e Co°(.B3)) such that the support of f and g is contained
in \x\ < γa, γ> 1, and let h, h > 0, be fixed. Then, there exist constants
θ and β such that

E(u h, ί, 0) < 4 exp (-θtβ)EQ(u) ,

where β = (p + I)"1, p being the constant defined by (2.1), and

Proof. According to Lemma 2.4, we can write

u = ΣFj + RΛ for t > Sn ,

where

(2.8) F y = 0 for \x\ < t - Sj - α,

and

(2.9) i?n is a solution of problem (0.1) for t > Sn + bn.

Let t > Sn + bn + h. Then, in view of (2.8) and the fact that bn > an

(see, Lemma 2.1), u = Rn in \x\ < h, so that by (2.9) and Lemma 2.4,

< E(Rn; oo,ί - Sn - bTO,Sn + 6J < ί7(i2π; oo,0,Sn + bn)

x\an + 2bn, Tn - bn^l9Sn^ + bn^) .

By (2.5) in Lemma 2.2, an + 26n < | (Γ n — 6n-i) Hence, we can apply
Lemma 2.5 to E(Rn_λ\ an + 2bn, Tn — bn^Sn^ + 6n_j) to obtain

an + 2bn9 Tn - bn_uSn_x + bn^)

^; oo,0,S.^ + bn_λ) ,

where cZ(J?n̂ !) denotes the radius of the ball with center at the origin
containing the support of Rn_x at t = Sn_x + bn_γ and satisfies
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by (c) in Lemma 2.4 and Lemma 2.1. Furthermore, making use of (2.7)
in Lemma 2.4 and recalling the definition of p given by (2.1), we have

»-i; an + 2bn9 Tn - bn^Sn^ + bn_,)

n_i; oo,0, S^x + &,.!>

for C independent of w. We repeat this procedure and using Lemma
2.3, we finally have

(2.10) E(u; h,t,O) < (CT^+δ)-ι)nE(R0; oo,0,ί>0) < 4exp (~nθ)E0(u) ,

where we take T, noting that a(2 + d) < 1, so large that —θ =
\og(CTai2+δ)~ι) < 0. Thus, for given t > 0, we choose the maximal inte-
ger n such that t > Sn + bn + h. Then, there exists a constant C(T)
such that n > C(T)tβ, β = (p + I)"1. This, together with (2.10), completes
the proof.

Remark. If, in addition to (i) — (iii) in Assumption (A), we assume
that

b(t,x)<C(l + \ x \ y 1 - 8 , ε > 0 ,

then Theorem 2.1 holds for a < 1 with β = (p + I)"1, p > a(l - a)"1. In
fact, in this case we have

Γ f (1 + r)-1"3 \vr(t s)|2 dxdt + Γ f (1 + r)~3"3 \v(t s)|2

< CE(v; oo,0, s)

instead of Lemma 1.4, so that Lemma 1.5 holds with a(2 + δ) replaced

by a.

§3. Decays for wave equations with potentials

We consider the following equation in three dimension space R3:

(3.1) utt — Δu + q(t, x)u = 0

with initial data %(0, x) = f(x) and ^(0, x) = g(x) of compact support.
Here we make the following assumptions on q(t, x).

ASSUMPTION (B). (i) q(t, x) is a smooth function with bounded
derivatives, (ii) q(t, x) is non-negative, (iii) For each ί > 0,
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(3.2) the support of q(t,x) is contained in {x\\x\ < (t + γ)a}, 0 < a < 1,

γ>l.

(iv) qr(t, x)<0 for each t > 0. (v) There exists a constant β0, 0 < β0 < h

such that for t > tQ and \x\ > Ro, t0 and Ro being large enough,

(3.3) Qt(t,x) + β0qr(t,x)<0.

(vi) There exists a constant K such that for t > t0

(3.4) \qt{t,x)\<^.

The constants βo,to,Ro and Z are used with the meaning ascribed here

throughout this section.

As in § 1, let s, s > 0, be fixed and we consider the following equa-

tion :

(3.5) vtt(t s) - Jv(t s) + q(t s)v(t s) = 0

with initial data v(0 s) and 1̂ (0 s) of compact support, where q(t s)

= q(t + s, x), and by (3.2)

(3.6) the support of q(t;s) is contained in {x\\x\ < (t + s + γ)"}. Fur-

thermore, by (3.4)

(3.7) \qt(t 8)| < - ^ - for t > t0 - s .

t + s

We begin with the following identity.

LEMMA 3.1 (cf. [3], Lemma 1). Let u(t, x) and ζ(r), r = \x\, be smooth
functions and let χt(x) = ζ(r)-^-. Let β, β > 0, 6β α constant. Then,

(utt - %, + qu)(2ut + 2βχiuί + βχuu) = Xt(u t) + F-Y(u) + Z(u) ,

Xiu\ t) = (wj + |Γ^|2 + g^2) + u&βχtUt + βχuu)

- u\ + qu2) + ^

Z(u) = 2βχijuίuj - -^-XajjU2 - qtu
2 -

Li
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Furthermore, using the notation

Wj = ζ(r)uj + ~(ζr(r) + *-ζ(r))J?Lu and wr = Wj
2 \ r ) r

τve can write X(u t) as follows:

X(u t) = φx(u) + φ2{u) + <p2(u) + φ^u) + <p5(u) ,

where

Ψι(u) = (1 - β)(u\ + |Γ^|2) + qu2

ψz{u) =

2ζ(r)(ζ r r(r) + ^ C

Proof. The proof is elementary, so we omit it.

LEMMA 3.2. Let v(t) = ^ ί s) 6e a smooth solution of problem

(3.5). Then, there exists constants C and tl9 tx > tQ, such that for s>tλ

and T > 0,

E(v oo, T, s) < CE(v oo, 0, s)

and

Γ f (1 + r)-3~°v2dxdt < CE(v oo, 0, s)

where 0 < δ < 1 αticί

^(v h, T, s) = f (vt(Γ s)2 + |Γi;(Γ s)|2 + g(Γ β)v(Γ s)2)dx
J \x\<h

for 0 < h < oo.

Proof. Let /30 be the constant introduced in Assumption (B) and

let β = βo + ε,ε> 0. We take ε so small that 0 < β < 1. We use Lemma

3.1 with ζ(r) = 1 - (1 + r)~δ, 0 < δ < 1, q = q(t s) and β defined above.

Then, following the same method as in the proof of Lemma 2.4, we have

(3.8) f X(v T)dx + Γ f Z(v)dxdt =\x(v; 0)dx .



120 HIDEO TAMURA

We claim that there exists constants CΊ and tt such that for

* > *i > tt

(3.9) | - χ < w + qt(t β) + i3ζ(r)gr(ί s) < -(Λ(l + »•)-»-' .

Indeed, by our choice of ζ(r) and the definition of β, βζ(r) > β0 for
r >RX> RQ. Hence, this, together with (3.3) and the non-positivity of
Qr(t s) ((iv) of Assumption (B)), implies that for r >Rλ

(3.10) qt(t s) + βζ(r)qr(t s) < qt(t a) + βoqr(t 8) < 0 .

On the other hand, by (1.10) and (3.4) and again by the non-positivity

of qr

4-Xujj + Qtit s) + βζ(r)qr(t;s) < - l ί ( l + ί)(l + r)"3"3 + - ^ - ,
2 2 t + s

so that for s > tx (large enough)

^ s) + βζ(r)qr(t;s) < - C 2

in r < /?!, which, together with (3.10) and (1.10), gives (3.9). Therefore,
hy (3.9) and (1.8), we obtain

(3.11) J X(v T)dx + C Γ f (1 + τYz-δv2dxdt <\x(v\ 0)dx .

We recall the expression of X(v; T) in Lemma 3.1. Then, for our
choice of ζ(r), φjiv) > 0, so that by the condition 0 < β < 1 and 0 < ζ(r)
< 1

(3.12) ί X(v T)dx > C,E(v oo, Γ, s)

for C3 > 0. Furthermore, by the Poincare inequality, it is] easily seen
that

JX(v 0)dx < CδE(v oo, 0, s) .

This completes the proof.
We use the following identity similar to (1.6) for the proof of the

next lemma:
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+ 2trur + 2tu)

where

F(u;t) = F(w; t)

H(u) = - ( K r 2 + *2)g* + 2tq + trqr)u2

and F(w; t) and Gj(w) are as in Lemma 1.3.

LEMMA 3.3. Let v(t) = v(ί s) be a smooth solution of problem (3.5)
and let tx be as in Lemma 3.2. Let a < •£• and Zeί β δβ so smaZi £/ιa£
«(3 + 5) < 1. Γfeen ί/̂ erβ exists a constant C such that for s > tx and
Γ > 1

E(v \Ty T, s) < C(T~*d(v(0 s))2 + T~\T + Sy^)E(v oo, 0, s) ,

where d(v(0 s)) denotes the radius of the ball with center at the origin
containing the support of v(0; s) and E(;, ,) is the notation introduced
in Lemma 3.2.

Proof. Integrating the identity (3.13) with u — v(t\s) and q
= q(t s) and using (3.7) and Lemma 3.2, we obtain in the same way
as in the proof of Lemma 1.5 that

iT2E(v \T, T9 s) < C(d(v(0 s))2 + s2a + T(T + s)a(3+δ))E(v oo, 0, s) .

The conclusion easily follows from the above estimate.

LEMMA 3.4. Let u be the solution of problem (3.1) with the initial
data f and g (e C^(R3)) such that the support of f and g is contained
in \x\ < γa. Then, the solution u may be written as

u = Ro + Fo,

where Ro and Fo have the same properties as in Lemma 2.3. Further-
more,

E(R0 oo, t, 0) < C(t)E(u oo, 0,0) .

Proof. The proof is the same as that of Lemma 2.3 and the last
assertion is easily verified.

LEMMA 3.5. Let {Tk}^=0, {Sk}^0, {ak}k=0 and {bk}k=0 be the sequences
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defined in § 2. Let RQ and Fo be as in Lemma 3.4. Then, we can con-

struct {Rk}%=i and {Fk}k=1 with properties (a), (b) and (c) in Lemma 2.4

and (dθ stated below.

E(Rk oo, 0, Sk + bk) < 2(£(# f c _ 1 ak + 2bk, Tk - bk_19 Sk^ + bk^)

+ E(Rk_x ak + bk9 Tk + b k - bk_l9 Sk^ + bk_,)) .

Proof. The construction of Rk and Fk with properties (a), (b) and

(c) is the same as in the proof of Lemma 2.4. We shall prove (d') By

property (c), we have

E(Rk oo, 0, Sk + bk) = E(Rk ak + bk, 0, Sk + bk)

<2(E(Rk_1;ak + bk,0,Sk + bk)

+ E(Fk;ak + bk,0,Sk + bk)) .

Since Fk is the free space solution for t> Sk with the same initial data

as Rk_x sΛ t = Sk and since Fk = 0 on the support of g(ί, x) at t = Sk

+ bk (see (2.4)),

E(Fk ak + bk, 0, Sk + bk) < E(Fk ak + 2bk, 0, Sk)

= E{Rk_x ak + 2bk, Tk - bk_19 S^ + bk_λ) .

This completes the proof.

Let 0 < a < £ and let δ be so small that α(3 + δ) < 1. We fix p,

p > 0, as follows:

(3.14) p > a(3 + δ)(l - a(S + δ))~ι

so that p > a(3 + δ)(p + 1). Then, the main result of this section can

be stated as follows:

THEOREM 3.1. Suppose that Assumption (B) is satisfied and that

0 < a < ^. Let u be the solution of problem (3.1) with the initial data

f and g (e CQ(R3)) such that the support of f and g is contained in

\x\<γa. Let h9h>0, be fixed. Then, there exist constants C,θ and β

such that

E{u ;h,t,O) <C exp (-θtβ)EQ(u) ,

where β = , p being the constant defined by (3.14), and E0(u)
p + 1
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Proof. The proof is done exactly in the same way as in the proof
of Theorem 2.1.

EXAMPLE. Let χ(x) be a smooth function such that C{r2 < χ(x) < C2r
2,

T = \x\, and that χr(x) > Czr and let φ(s), 0 < s < oo, be a nonnegative
smooth function such that φ(s) = 0 for s > 1 and that φs(s) < 0. Then,

consider the following function : q(t, x) — φl—^^—), 0 < a < 1, γ > 1.
\(t + γ)2a I

We can easily show that the function q(t, x) satisfies Assumption (B).

Remark. If, in addition to Assumption (B), we assume that

Q(fi, x) < C(l + r)"2

for a constant C independent of t and x, we easily see that the result
of Theorem 3.1 holds for 0 < a < 1 with β = (p + I)"1, p == a(l - a)~ι

REFERENCES

[ 1 ] C O . Bloom and N. D. Kazarinoίf, Energy decays locally even if total energy grows
algebraically with time, J. of Diίf. Equation, 16 (1974), 352-372.

£ 2 ] J. Cooper, Local decay of solutions of the wave equation in the exterior of a moving
body, J. Math. Anal. Appl., 49 (1975), 130-153.

[ 3 ] J. Cooper and W. A. Strauss, Energy boundedness and decay of waves reflecting off
a moving obstacle, India. Univ. Math. J., 25 (1976), 671-690.

[ 4 ] P. Lax and R. Phillips, "Scattering Theory", Academic Press, New York, 1967.
[ 5 ] C. Morawetz, Exponential decay of solutions of the wave equation, Comm. Pure

Appl. Math., 19 (1966), 439-444.
£ 6 ] W. A. Strauss, Dispersal of waves vanishing on the boundary of an exterior domain,

Comm. Pure Appl. Math., 28 (1975), 265-278.

Department of Engineering Mathematics
Faculty of Engineering
Nagoya University






