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ON THE BERGMAN KERNEL OF

HYPERCONVEX DOMAINS

TAKEO OHSAWA

Introduction

Let D be a bounded pseudoconvex domain in CΓ, and let KD (z, w) be the

Bergman kernel function of D. The boundary behavior of KD(z, w), or that of

KD (z, z), has attracted a lot of attention because it is closely related to the

pseudoconformal geometry of D and dD. For instance, the Bergman metric

dd\ogKD(z, z) is invariant under any biholomorphic transformation of D, and the

growth-rate of KD (z, z) near a given boundary point x is controlled by the

behavior of the Levi-form of dD near x. Roughly speaking, the rank of the

Levi-form at x is a pseudoconformal invariant that measures the growth of

KD(z, z) near x, or in other words it measures how much room is left for L holo-

morphic functions to live near x (cf. [Ho], [D], [0-1], [D-H-0]). As is well known,

very deep analysis is possible for KD(z, w) in case dD is C°° and strongly pseudo-

convex, or more generally of finite type, and as a result one extend Caratheodory's

theorem to several complex variables by this approach (cf. [F], [C]). On the other

hand, although there exist a lot of bounded domains with non-smooth boundaries

which arise naturally in complex analysis, Teichmϋller spaces for example, study

of the Bergman kernel for such domains does not seem to be so advanced as in

the case of smoothly bounded domains. In this respect, a recent work of S. L.

KrushkaΓ [Kr] has drawn the author's attention, where it is stated that the finite

dimensional Teichmuller spaces T(g, n) fall into the class of hyperconvex

domains in the sense of Stehle [S], i.e. they admit bounded continuous exhaustion

functions which are plurisubharmonic. Afterwards the author learned through a

discussion with H. Tanigawa that, whenever the Caratheodory metric of D is

complete, which is the case if D = T(g, n), it follows that D is hyperconvex and

that KD(z, z) is an exhaustion function of D (cf. [S] and [E]). Therefore he was

naturally led to ask whether these two properties, i.e. the hyperconvexity of D
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and the exhaustiveness of KD(z, z), are equivalent or not. The purpose of the

present paper is to settle this question completely by showing the following.

THEOREM. Let D be a hyperconvex bounded domain in C . Then

lim KD(z, z) = °°.
z-*dD

PROPOSITION. There exists a domain D c C of type (L) in the sense of Zalcman

(cf §3) such that D is not hyperconvex but lim KD(z, z) — °°.

The author is very grateful to his younger colleague Dr. H. Tanigawa for her

helps and valuable suggestions. He owes much to her the proof of Theorem. Furth-

ermore, from her he has learned Wiener's criterion for the Dirichlet-regularity of

the boundary points of domains in C, which was decisive for the proof of Proposi-

tion. He also thanks to Professors J. Noguchi, T. Murai, K. Diederich and Makoto

Suzuki for stimulating conversations.

§1. One dimensional case

Let U be a nonempty bounded open subset of C that admits a continuous sub-

harmonic function u : [/—• [ — °°, 0) such that the sublevel sets {z e U ;u(z)

< c) of u are relatively compact in U for all c < 0. Any function u enjoying these

properties shall be called an exhaustion function of U by an abuse of language.

We note that if u is an exhaustion function of U, then ύ(z) •= maχ{w(z), — 1} is

also an exhaustion function of U. We shall denote the set {z Ξ U u (z) < c) by

U(uf c), or simply by Uc when u is understood from the context. For each ζ €Ξ U

let Sζ be the set of continuous functions v : {/—* [— °° , 0) such that υ(z)

~ log I ζ ~~ z I is subharmonic on U. Note that Sζ ^ φ for any ζ G U, since

log I ζ — z I — C ^ Sζ whenever C is a real number satisfying exp C > diam U.

Here diam U ' = sup {| z — w \ z, w ^ U). Then we put

t; e Sζ}.

Let us recall basic facts on gv.

PROPOSITION 1. For each ζ ^ U, gu(ζ, ') is a continuous function on U with

values in [— °°, 0), and gu(ζt z) ~~ log | ζ — z \ is harmonic in z on U.

For the proof the reader is referred to [F-K, pp. 181-183].
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PROPOSITION 2. gΌ(ζ, z) = gv(z, ζ) for all (ζ, z) e U x C/.

For the proof, see [F-K, p. 186].

The following is also well known, but we shall give its proof because we need

the same argument later in the case of several complex variables.

PROPOSITION 3. Under the above situation, gu(ζ, *) is an exhaustion function for

every ζ ^ U.

Proof. Let u be any exhaustion function of U. Given any point ζ ^ U, choose

ε > 0 so that £/_3ε 3 ζ. Then we choose a C°° function p : ί/—• [0,1] with supp p

c t/_3ε such that p(z) — 1 on a neighbourhood of ζ. Let wε be any C°° strictly

subharmonic function on U_ε satisfying sup£Gί/_e | u(z) — uε{z) \ < ε, which one

may construct by modifying u{z) + δ \\ z \\ for sufficiently small δ > 0, and put

u(ε) (z) =
ίmax {2u(z), uε(z) — 2ε} on u_ε

[2u(z) on U\U_£.

Clearly, u(ε) is an exhaustion function of U and u(ε) is C°° on {7_3ε since uiε) —

uε — 2ε there. Hence there exists a constant C > 0 such that

Clearly this forces ^ ( ζ , 2) to be an exhaustion function of U.

Let K c: U be any compact subset and let ε > 0 be chosen so that [/_3ε ^ if,

and let w(6) be as in the proof of Proposition 3. Since uiε) is strictly subharmonic

on ί/_3e there exists a constant C = C(K, ε) > 0 such that, given any point

ζ ^ K, one can find a neighbourhood K B ζ contained in ί7_3ε and a C°° function

p : U-* [0,1] satisfying suppp c C/_3ε and | θ = l o n F s o that

Therefore, by the same reasoning as in the proof of Proposition 3 one deduces the

following.

LEMMA 4. For any ε > 0 there exists a δ > 0 such that gv (ζ, z) > — 1 if

Combining Lemma 4 with Proposition 2 we obtain
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PROPOSITION 5. For any ε > 0 there exists a δ > 0 such that gjjiζ, z) > — 1

i/ζe ί/\[/_δ andztΞ U_ε.

Note that Proposition 5 implies in particular that the area of the sublevel set

U(gu(ζ, *), — 1) approaches zero as ζ—* dU. We shall deduce from it by a stan-

dard L -method that the Bergman kernel Kυ(z, z) approaches infinity as £—• dU.

Since

#„(*, z) = sup{|/(z) \2;l^LLf\f\2dzΛdz= 1 and df= 0 on [/}

it suffices to show that, given any sequence ζ ; approaching dU, one can find a

family of L holomorphic functions fj on U whose L norms are uniformly bounded

by a constant, such that lirriy^/J Cζy) = °°. For that purpose we first consider a

family of C°° functions gj defined by

(ζy) if Z = ζ ;

where tf(ζ; ) denote the area of U(gϋ(ζj9 z), — 1) and χ is a C°° function on R

such that χ (t) = 1 on (— °° , - 2) and χ (ί) = 0 on [— 1, °o) which is fixed

independent of j . It is clear that the L norms of gj are bounded by 1 and that

gj(ζj) —• oo as j - ^ oo by Proposition 5. Now we put

Wj = dzgj Λ dz>

where dz ' = dz~^=. Then we observe that, with respect to the pseudometric

- dzdz log ( - gu(ζj, z) + 1) (dz: = ύ k ^ ) on C/\ {Q , the L2 norm of wj on

ί/\ {ζ;} with respect to the weight exp{— 2gu(ζj, z) + log(— gσ(ζjf z) + 1)}

stays bounded as ;^> oo. In fact, this can be easily seen from

(1) dzX(gu(^ z)) = χ'igviζj, z))dzgu(ζjf z)

(2) - d~dz log ( - gϋ(ζj9 z) + l) = (ft,(ζy, z) - I ) " 2 dggϋ(ζj9 z) dzgu(Q, z)

(3) supp Wj c {z - 2 < ^ ( ζ y , 2) < - 1 ) .

One may take 18 sup | χ ' | as a bound, for instance. Hence, by an L cohomology

vanishing theorem (cf. [0-2, Theorem 2.8]. See also [De]), there exists a (l,0)-form

vζ. on U\ {ζ; } satisfying d vζ. = Wj and
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(4) v ^ T J exp{- 2gu(ζj, z) + log(- gΌ{-J p guζj, g gΌ ft,ζ,, ^ Λ ΰζj

2
< 18 sup I χ ' |2,

since C/\ {ζ; } is a complete Kahler manifold and the relation between the fiber

metric of the trivial bundle and the pseudometric on the underlying space is given

by

dzdz {- 2gu(ζj, z) + log(- guiζj, z))} = 9,9, log ( - gϋ(ζ,, z)).

Now we set

(5) fj{z) dz '= gj(z)dz - vζj.

Then fj(z) is an L holomorphic function on U\ {ζ; } so that it extends to an L

holomorphic function on U, say fj(z). By the integrability condition (4) it is clear

that fj(ζj) — gj(ζj) and that the L norms of / ; are uniformly bounded. This is

exactly what we wanted to show.

§2. Proof of Theorem

Let D be a bounded domain in Cf and assume that D is hyperconvex, i.e. that

D admits a continuous plurisubharmonic function with values in [~ °°, 0) say u,

such that Dc'-= {z u(z) < c) is relatively compact in D for all c ^ (— °°, 0).

Such u shall be called an exhaustion function of D for brevity. By a similar argu-

ment as in Proposition 3 we shall prove the following.

LEMMA 6. Let D and u be as above, and let u{z) •= max {u(z), ~ 1}. Then,

for any ε > 0 compact subset K c D there exists an exhaustion function uε of D such

that

( i ) There exists a neigbourhood of K on which uε is C°° and strictly plurisubharmo-

nic.

(ii) sup I u{z) — uε(z) I < ε.

Proof Given ε and K as above, let us fix c ^ [~ 1, 0) so that K c Dc - =

{x ;u(x) < c}. Then we choose a C°° convex increasing function λ : R—*R such

that

λ(t) = t if t e (c/2, °°)

δ : = i n f U(ί) - t ί < c) > 0
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and

sup iλ(t) ~ t; t>inίΰ} < ε/2.

Then we put

viz) = λ(u(z)) - δ/2 for z^D.

Since v(z) is a continuous plurisubharmonic function, there exists a sequence of

C°° plurisubharmonic functions ivk}k=ί defined on a neighbourhood of Dc/2 such

that vk^>υ uniformly on Dc/2 as k—> oo. We choose Λo so that ffco (2) > M(Z) for

all 2 e f l c and | vko(z) — t (̂ ) | < 5/4 for all z e Dc/2. Then we put

= ί max ί^oU), M(Z)} for z e Z)c/2

" β U ; " UU) for Z*ΞD\DC/2.

It is clear that ( i ) and (ii) are both satisfied by u£.

Let L c C be any complex line intersecting with Zλ Then L Π fl is an open

subset of L = C so that gLnDiζ, z) is well defined on I Π D just as in Section

one. As we have deduced Lemma 4 from the proof of Proposition 3, we obtain

from Lemma 6 a similar conclusion:

PROPOSITION 7. Let c < 0. Then there exists a δ > 0 swc/i ίfoαfc /or any point

ζ e D\D_δ and any complex line L passing through ζ one has gL^Diζ, z) > — 1 for

allzG L Π D c .

Proof is left to the reader.

Let us denote by £ (C ) the set of complex lines in C . Given any bounded

open subset D' c Cn and L e ^ ( C w ) , let A ( L ί l DO denote the euclidean area of

L Π Z)/ measured as an open subset of L. For any point ζ ^ D and c < 0 we put

4 ( 0 : = inf {A(L Π Dc) L e £(CW) and ζ E L } .

Clearly one has

(6) lim sup Ac(ζ) = 0.
cyo ζeD\Z)c

Let KLf)D(z, w) denote the Bergman kernel function of L Π D as a bounded do-

main in L. Then (6) together with Proposition 7 implies that

(7) lim inf sup {KLΓ)D(z, z) L e ^(C w ) and 2 €= L) = 00
c/^0 zeD\Dc
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in view of the estimate for KLnD(z, z) from below which we obtained in Section

one. Hence the proof of Theorem ends if we admit the following.

THEOREM 8. (cf. [0-3, Corollary 2]. See also [0-T].) Let Y be a pure dimension-

al closed complex submanifold of C , let G c: C be a bounded domain of holomorphy,

and let u be any plurisubharmonic function on G. Then there exists a constant A that

depends only on Y and the diameter of G such that, for any holomorphic function f on

G Π Y satisfying

e I / | dVγ < °°

f^r^ Λ̂ tsίs a holomorphic extension F of f to G such that

je-u\F\2dV<AJe-u\fUVγ.
JQ Jγ

Here dV and dVY denote respectively the volume elements with respect to the euclidean

metric and its restriction to Y.

§3. A counterexample

In view of Theorem, it is natural to ask whether any bounded domain D satis-

fying lim KD(z, z) = °° is hyperconvex, or not. The answer is no. We shall show
z^dD

it by giving a counterexample.

DEFINITION. Let Δ be the unit disc in C and let {#*}£= i c (0> 1) be a strictly

decreasing sequence of points converging to 0. We say D c: Δ a domain of type

(L) (in the sense of Zalcman [Z]) if

D = Δ\U Δ(xky rk)y
k = l

where {Δ (xk, rk)}^=0 is a disjoint family of discs in Δ which are centered at xk

and with radius rk > 0.

For the sake of explicitness, we let xk — 2 and rk — 2 , where

N(k) > 2 for all k, and denote the corresponding domain of type (L) by DN.

Then, from Wiener's criterion for the Dirichlet-regularity of the boundary points

of domains in C, we obtain
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PROPOSITION 9. (See [H, p. 401] and also [P] and [W].) There exists a subharmo-

nic function u on DN such that

( i ) limwte) = 0

(ii) sup{u(z) z G DN and \ z\ > ε) < 0 for all ε > 0

if and only if ΣΓ=i N(k)'1 = oo.

It is easy to see from Proposition 9 that DN is hyperconvex if and only if

Σ Λ = 1 N (k) = 0 0 . We are now interested in the situation where the sum of

Nik) is finite, and going to prove the following.

LEMMA 10. Let DN be a domain of type (L) defined as above. Suppose N satis-

fies

(8)

and

(9)

Then lim KD (z, z) = oo.
z-+dDN

 N

Proof Let z0 €= dDN be any point and express it as

Σ (kN(k))~1/2 <
k = l

lim Σ ikN(k)(r + 2~k)I"1 = oo.
r\fi k = l

~k
z0 = 2~k + (pk ipk > 0 and θk e [0, 2τr)),

for k = 1,2, .

Let us define a holomorphic function /A on DN by

Then

and, for the L norms || fk || of fk we have

sup || fk |f < 4τr.

Let us put
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Γ1/2f= Σ(kN(k)Γ1/2fk(z).

) ~ i nThen || gZo{z) || < 4τr Σ {kN{k))~in = const < oo by (8) and

Thus, for any sequence {̂ } JL0

 c Av w *th l i m ; -»oo 2/ — 0 we obtain

lim ^ . (*y) = °°
j—>oo

by (9). This shows in particular that l inv^iζ^Oε, z) = °°. Since 9Z)#\ {0} is a

disjoint union of circles it is clear that limz^yKD (z, z) = °° for all y ^ dZ^XίO}.

Therefore we can conclude that \\mz^dDNKDN(z, z) = °°.

To see the validity of Proposition stated in the introduction, one may

take k as N(k). Then DN is not hyperconvex from Proposition 9 and

lim^dDit KDN(Z9 Z) = oo by Lemma 10.
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