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DIFFEOMORPHISMS WITH
PSEUDO ORBIT TRACING PROPERTY

KAZUHIRO SAKAI

We shall discuss a differentiable invariant that arises when we consider
a class of diffeomorphisms having the pseudo orbit tracing property (abbrev.
POTP ) .

Let M be a closed C* manifold and Diff!(M) be the space of diffeomorphisms
of M endowed with the C! topology. We denote $*(M) the C' interior of the set
of all diffeomorphisms having POTP belonging to Diff'(M). Recently Aoki [1]
proved that the C! interior of the set of all diffeomorphisms whose periodic points
are hyperboric, (M), is characterized as Axiom A diffeomorphisms with no-
cycle. After this Moriyasu [8] showed that P*(M) C F'(M) and if dim M =2
then every f € P (M) satisfies strong transversality.

In this paper the following two theorems will be proved.

THEOREM A.  There exists a closed C* 3-manifold M such that set of all dif-
feomorphisms having POTP is not dense in Diff *(M).

The Theorem answers to a problem stated in Morimoto [7].

TueoreM B. If M is a closed C* 3-manifold, then P'(M)is characterized as
Axiom A diffeomorphisms satisfying strong transversality.

A diffeomorphism f of M is quasi- Anosov if the fact that [ Df"(v) | is bounded
for all # € Z implies that v = 0. Theorem A is easily obtained in combining with
Franks and Robinson [2] and Sakai [12]. The set of all quasi-Anosov diffeomorph-
isms belonging to Diff }(M), QAY(M), is open and QAYM) C FY(M). It is easy
to see that when dim M = 2, every f € QA'(M) is Anosov (see [5]) . However an
example of a diffeomorphism f’ on the connected sum M’ of two 3-tori that is
quasi-Anosov but not Anosov was given in Franks and Robinson [2]. Since f’
is £2-stable, there is C! neighborhood U of f” in Diff'(M’) such that every g € U
is quasi-Anosov but not Anosov. Thus, by [12] every g € U cannot have POTP,
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and so Theorem A is proved.

Before beginning the proof of Theorem B we give some notations and defini-
tions.

Let (X, d) be a compact metric space, and let f: X — X be a homeomorph-
ism. A sequence of points {z;} /= (—0 < a < b < o) in X is called a -pseudo
orbit of fif d(f(x), Tiv1) <Ofor a <i< b—1. Given € > 0 a sequence of
points {x;} {=s is said to be f—e&-traced by a point £ € X if d(f(x), x;) < ¢ for
a < 1< b We say that f has the pseudo orbit tracing property (abbrev. POTP) if
for € >0 there is 0> 0 such that every J-pseudo orbit for f can
be f—e-traced by some point of X. For compact spaces the notions stated above
are independent of compatible metrics used. It is easy to see that if f has POTP
then the non-wandering set £2(f) coincides with the chain recurrent set R(f ) for
f, where R(f) is the set of x € X such that for every 0 > 0, there is a 0-pseudo
orbit of f from x to x (see [11]). For x € X and ¢ > 0 the local stable and unstable
sets are defined by

Wiy, f) ={x € X :d(f*(x), f"(y)) < ¢ for all w = 0},
Wi, f)={y € X :d(f ™), f"(y)) <¢eforaln=0}.

Suppose that f has POTP. Then it is checked that for every € > 0, there is
0<0<¢€/2suchthatifd(x, y) < 0 (x, y € X) then

(1) Wi, f) N Wiy, f) # 6.

Let M be as before and denote by d a Riemannian metric on M. Then for a
hyperbolic set A of f € Diff'(M) and for & € A the stable and unstable manifolds
are defined by

Wz, f)=1{y € M :d(f"(y), f"(x)) — 0 as n— oo},
Wex,f)={ye M:d(f(y), f"(x))—0as n— oo},

When A can be written as the finite disjoint union A = A, U - -+ U Ay of closed
invariant sets A; such that each of fs, is topologically transitive. Such a set A, is
called a basic set with respect to A. The stable set W*(A;. f) and unstable set
W*(A;, f) are defined by

Ws(Ai. f) =1y € M:d(f"(y), A) — 0 as n— oo},
W A, f)={y € M:d(f"(y), A)— 0 as n— o).
Then Wi, f)=UWx, f):x€ A} for 0=35s, u. If ¢ >0 is small
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enough, then for x € A the local stable and unstable sets, Wo(x, f) (6 =s, u),
are C! disks tangent to certain subspaces ES(xr) and E*(x), respectively, such
that £ T,M = Es(x) © E*(x). Moreover there exists 0 < A < 1 such that

d(f"(y), f"(2)) < A"d(y, 2) fory, z€ Wi(x, f) and n 2 0.
d(f(y), f(2)) < A"d(y, 2) fory, z€ Wé(z, f) andn = 0

(see Hirsch and Pugh [3]). Thus Wo(z, f) C W9z, f) for x €A (6=, u)
and

We, f) = U fWe(f"@), ),

n=0

Wi, f)= U fFWe(f" @), ).

n=0
We denote W(x, f) by W?(x) (6 = s, u) if there is no confusion.

If fis Axiom A diffeomorphism then we have M = U (W(x) :x € 2(f)}
for 0 = s, u and 2(f) is expressed as the union 2(f) = A, U -+ U Ay of dis-
joint basic sets for f. Such union is called the spectral decomposition for f. We say
that f has a cycle if there is a subsequence {A;} = (2 < s < #) of {A}¢ such
that W*(A;) N WS(Ain) # ¢ (1 <7 < 5) and Aier = Ai,. We say that f satisfies
the strong transversality condition if for all x, y € 2(f ), Ws(x) and W*(y) meet
transversely. Remark that Ws(A;) M W*(A) = A for 1 <1< 4

Now to obtain the conclusion of Theorem B it is enough to see that every f €
PY(M) satisfies strong transversality because f satisfies Axiom A as stated above.

Let f € P (M) and x € M. Then it was proved in [8] that if 0 < dim
Wox) <dmM for 0=3s, u then T Ws(x) € T.W*(x) and T W*(x) &
T.W*s(x). This tells us that if

(3) dim Ws(x) + dim W*(x) = dim M,

then W*(x) and W*(x) meet transversely.
Therefore, to complete the proof of Theorem B it only remains to show (3) .
Since f € PY(M) satisfies Axiom A, 2(f) is decomposed as Q(f) = A,
U - -+ U Ap where each A; is a basic set. Then by [4] for each i there exists a
compact neighborhood B (A;) satisfying the following (4), (5) and (6).
(4) There exists a continuous extension TguyM = Ef @ E* of TyM = E{ @ E*
such that for x € B(A;) N f~Y(B(A)),

D.f (Ei(x)) = Ei(f(x)) and | D; fiwl < 24,
and for x € B(A,) N F(BAY)).
Dof W(E¥(x)) = EX(f(x)) and | D, fiee| < 2.
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(5) There exists & > 0 such that for every 0 < & < ¢, there exist submanifolds
Wg’(x) (x € B(A), 0 =s,u) satisfying

W) fWe(x) © We(f(x)) and d(f(x), f(®) < Ad(x, y)
for evey y € Wi(z) if x € B(A) N 1 BA)),

Gi) W) © WE(fHx)) and d(fN(x), f(y)) < d(z, y)
for evey y € W¥(z) if z € B(A) N F(BA)).

(6) There exists 0 > 0 such that if d(x, y) <d (x, y € B(A,)) then
We(x) and Wi(y) meet transversely.
For E and F subspaces of Ty,M define

tan < (F, E) = sup {“—Z})—i“:wle E, w,€ E* and wy + w, € F — {O}}.

Then we find 6;,; > 0 satisfying tan < (E7, E¥*) < 6,,; (See [10]) . The continuity
of E¢ (6 =s, u) ensures the existence of 6, > 0 satisfying tan < (Ef, E®)
< O,

CramM 1. Define 6, =max {6,;:1 < i< ¥4}, Fr 0<0<6;'- (2+ 6,)7",
there exists K(6) > 0 such that K(6) — 0as 80— 0 and for every v € T,:M (x €
B(AY)) iftan < (v, E¥(x)) < 6 and {x, f(x), -, M)} < B(A) for some
N> 0 thentan < (Do f¥(v), E¥(fY(x))) < K(6) - 22V,

Proof. Let x € B(A;) be fixed. For v € T,M — {0}, let v =05+ "=
(v);, + @), where v° € E§, v* € E* (v), € E¥ and (v), € E**. Clearly (v%), =
)2, @ + v* = (v)1, W*): = v* and (v*); = 0. Since f(x) € B(A;) for 0 <
< Nand tan ¥ (E3, E¥) < 6,

L@ Y@l ¢
[Der * @)l

and since f/(z) € B(A;) for 0 <j< N,

101 7@ 5 -av 0"

ID.f Y@ — los|
It is checked that
lvs |l A+Iw.l _ 1+6,
ol = ToxT = :l = Fonf =
V)2

146, _ 60+ 6)
S16+6, " 1—66, and
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LD f ¥@)ell o | LD f Y @Ni | _ 1D f ¥ @D, ]|
LD ¥ @)~ THDef Y@l 1 Def ¥ @)l

From these inequalities we have

” (szN(Uu))l ” _ ” (Dfo(vs))l IH > -2 ” v " — g, >
I Dof Y@l | Def ¥ @) los

—2N 1_002_ — 9-2N 1_002_ N .
2 5@+ 6, 92*“(0(1“92) A ‘92)’

and so

(Dz f N(U))ZH <A K(P
[0 @) =4 KO

_ 1—86 02 >—l
here K (6) = (220 —g,)""
where K(O) =g + g2 ~
For A a closed set of M, denote by B,(A) the closed neighborhood of A with
radius 7 > 0.

CLamm 2. Let A; and A; be the basic sets. Suppose that 2 = Ind A; 2 Ind A;
= 1 where Ind A denotes the dimension of the stable subbundle E° of a basic set A.
Then there are 11 > 0 (B, (A;)) © B(A,) and 6 > 0 such that if x € A, and y €
Ws(z) N Bn(A), thentan < (T,W*(x), E¥(y)) > 6.

Proof. If this is false, for every n > 0 there are x, € A; (Ind A; = Ind A;)
and y» € W*(zs) N Byn(A;) such that tan X (T, W*(x,), E¥(y»)) < 1/n. Then,
by (5) and (6) there are z, € A; and wn = W5 (yn) N W% (2,). Since yn— A; as
n— oo there is a strictly increasing sequence J, > 0 such that f*(y.) € B(A,)
for 0 < k<], and f"*"(y,) € B(A). Put t=infld(x, A) :x € B(A;) and
fHx) & B(A)} > 0. Since

(7 d(f (yn), f(wn) < Xd(yn, w) for 0 <5< ],

there is N >0 such that for every # =N, f/"(y,) € B(A) \ B:(A;) and
f/"(w,) & B.»(A;). Thus it is checked that there exists ¢; > 0 such that for
every # > 0,

(8) F B (f*(yn))) N Beu(f*(yn)) = ¢ for all j > 0.

Indeed, if for every m > 0 there are #y, > 0, jm > 0 and xy € Bi(f]”'"(ynm))
such that f(27,) € BL(f/"(y,,)), then y = lim f/"(y,,) € R(f), which is
m—oo
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a contradiction since y €2(f) = R(f).
Similarly we can find ¢; > 0 such that for every # > 0

9) I (Be (f7*(wy))) N By (f!7(wy)) = ¢ for all j > 0.

Take and fix 0 < 6" < 651(2 + 6,)~'. Then there is N’ > N such that for
every n = N’, tan ¥ (T,,W*(zn), E¥(yn)) < 6.
By Claim 1, tan & (Dy, f (T, W*(x2)), E“(f1*(ya))) — 0 as n— <0, and so

tan & Dy f /" (T W @), 8, i, (B (f 7 (wi)))) =0

as #— o (by (7). Here 8., denotes the parallel transform from T, M to T,M.
Then, from (7), (8) and (9) there are # = N’ and g € Diff'(M) arbitrarily near to
fsuch that Ws(xu, 2 N W*(24, £) # ¢ and W(x,, £) does not meet transverse-
ly to W*(zy, g), thus contradiction since g € P*(M).

CiamM 3 (Lemma IV. 8 of Mafié [6]). Let E' and E? be Banach spaces with
norm || - ||, and denote by Bi(p) the ball of radius v in E' centered at p. Let C > 0
and € > 0 be constants such that € is so small that € C < 1. For po > 0 take 0 < 7
< po and 0 < & < ¢ satisfying

e(l +¢) Yy — ¢ el +¢)
(10) 1—¢C < C and 1—¢C

<r.
Suppose that ¢ : B5,(0) = E? and ¢ : B2(p) — E* arve maps satisfying
@ ¢ =0, pw) — g@w) | < & w — w, |
for wy, w, € B} (0),
®) lol <e, o) — @) | < Cllwy — w: |
for w,, w, € BX(p), and
© lpl<e.

Then graph ¢ (\ graph ¢ # @, where graph ¢ = {(w, ¢w)) : w € B} (0)} and
graph ¢ = {(p(w), w) : w € Bi(p)}.
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E2

Firstly we show for every 0 < p; < min {7, 1 E E}, @(B2,(p)) < BL0).

Take and fix y € B4 (p). Since |y —pll < o1 < r_z‘_l we have Clly —p| +
e <7 Thus

letnl<lol+Cly—pl<e+Cly—pl<r.

From this a map ¢ © ¢ : B%,(p) — E? is well defined. Since || ¢ (o () — ¢(0) |
Sl —0f=¢le | <ee we have [¢(p(p) | <ee (by (2)). There-
fore, for wy, w, € B3 (p)

I o ) — po(ws) | < &l o(wr) — pwy) | < &Cllwr — w2 ;

ie. ¢°@:B3(p)— E? is contracting. If we choose 5&% < pz < min {7,

rE E}, then for every y € B2,(p),

lpo(p) —pl <l do(y) — po®) | + [ do(p) —pl <

<eCly—pl+ oo I +1lpl<
< &Cp, + e + e <p,.

Thus ¢ ° ¢ : B%,(p) — B%,(p) is a contraction. Thus there exists z € BZ,(p)
such that ¢ - @(2) = z

Theorem B will be proved under the above claims. The technique of the proof
is to derive a contradiction in proving the existence of a cycle among basic sets
Ay, -+, Ap under the assumption that f does not satisfy strong transversality. Re-
mark that the dimension of M is 3. To prove Theorem B it is enough to see that
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forx € M\ 2(f), dim Ws(x) + dim W*(x) = dim M as explained before.

Suppose that there is x € M \ £(f) such that dim Ws(x) + dim
W#(x) <dmM=3 (ie. dim W(x) = dim W¥*(x) = 1). Since f&€ P'(M),
there are g € (M) and a > 0 such that f= g on a neighborhood of 2(f), dim
Wox, g) =dim W?(x) for 6 =s, u and for the components C’(x) of x in
Wo(x, g) N Balx) (6 =35, u), C(x) N C*x) = {x}.

Let 2(g) = Ai(g) U -+ U As(g) be a spectral decomposition for g. Then
there are 1 S 1#7</¥, y&€ A, (g) and z € A;(g) such that Wz, g) =
Ws(z, g). and W*(x, g) = W*(y, g). For simplicity suppose y € A;(g) and
z2€ A(g). Let 0 < g <n/2 be a number as in (2) and fix N > 0 such that
g¥@x) € Wi, (g™(y), g) and gV (x) € W(g¥(2), g). Given the connected
component Cgzv of g7¥(x) in Beou(g™¥(@)) M WE(g " (y),8), we have Cyopy
= Beou( &) N W4 (g™ ¥(y),g). Thus there is 0< e <¢g/8 such that
B:(g¥ (%) M g™ (Cyzp) is the connected component of g¥(x) in Be(g"(x)) N
g (Coniy).

Denote by Cgng the connected component of g¥(x) in B.(gV(x)) N
N (Cye-mz), and take and fix 0 < &, € /2 such that d(v, w) <&, (v, w E M)

implies d(g~%#(v), gV (w)) <e,/8.

Wi(g"(2), 8)

W:(g"(2), 8)

CLaM 4. Fix any w € Cenig () Be,(g¥(x)) \{ gN(@)}. If there exists 0 < 7’
< & such that By (w) M Cavimy © Cony \{ gV ()}, and if for every w' € B, (w) N
Cevg, dim WS(w', g) =1, then dim W*(v, g) = 1 for every v € By (w)\ Ceni).
Here 0 < 0" = 0'(r', g) < ¥ is a number satisfying the property (1) .

Proof. Note that if there is ¥ € By (w) \ Cgpy, such that dim W*(v, g) = 2,
then W*(v, g) M (By(w) N Cgy, = ¢. Since w € Cep, M Be,(g"V(x)), we have
g7 (w) €Beos(g™(x)) N W4%(g7"(y), g) and hence
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(11) dg ™ "w),g " ™x)) < g/8forall un=0.
Since d (v, w) < &', by (1) there is v" € M such that d(g*(v), g"(v)) <7 < ¢
forallw =2 0 and d(g7" ("), g7"(w)) < <e/2 <& /8 for all w = 0. Thus

(12) v e Wi, g).
By using (11) it is checked that d(g="(v"), gV "(x)) <& /4 for all n
=0 (@e g W) €E Cy-np) Thus v € g¥(Conm) N Be(gV(x)) = Cgn

@

(since d(v/, gV(x)) £dW, w) + dw, g¥(x)) <e/2+ &, < e¢). Since d(v’, w)
<7’, we have v" € By (w) (N Cgp,. By (12)

W, g) N (Byw) N\ Cgy ) # ¢

which is a contradiction.
For n 2 1 denote as Cynveny the connected component of g¥™(x) in B.(
gV (2)) M g(Cynven-11my). Note that Cenvenggy g(Cynin-1yy) for all m 2 1.

CLam 5. For every m > 0 and 0 < 9 < ¢, theve is N' > n such that for every
w € Bun (g (1)),

CuM WH,(g" ™ (2), g #* ¢,
where Cy, is the conmected component of w in W=(w, g) () Bey(w).

Proof. 1f this is false, then there are ny > 0, do > 0 and w, € Bua(g"*"(x))
for all # = n, such that C,, N W (g¥*"(2), &) = ¢. Letn > 0 and 6 > 0 be
numbers given in Claim 2 for g €2 (M). Clearly

d(wy, gV (2)) < d(ws, gV"(2)) + d(g"(x), gV (2))
<1/n+ 2"d(g¥x), gVk) —0

as #— ° by (2) .
C,,

w,

N—

,'L g”*"(z) W;ﬁ(g‘w n(z), g)
]

gN + n(x) o

n

Wi(g¥'"(2), 8)
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For a moment we treat a neighborhood of g¥*"(2) as it were R® Let EL =
Toneny W4, (g¥1(2), &), E2 = Tonenny W (gY¥*"(2), g) and fix #, > 0 such that
d(g¥*(x),g"*"(2)) < 7 for n = n;. Remark that g"*"(z) € A,(g) and put p,
= E¥(g"*(x)) M EZ for n = ny. Then

(%) d(pn, g¥*"(2)) — 0 as n—o0,

Thus, by Claim 2 there are constants C =C(8) > 0, 7, = 7,(8) > 0 and n, = n,
such that for every # = #, there is a map ¢, : B4 (p,) — E} satisfying

(% *) I @u(pn) | = 0 as n— oo and

Foa(wd) — @u(wy) | < Clwi — w3 |l for wi, wy € BL(®),
graph @ © Cyy.
Fix 0 < ¢ <1 such that 0 < C¢’ <1. Then there are 0 < po < Jp and maps
¢n : B3,(0) — Ej for n > 0 such that
¢ (0) =0,
I @n(w)) — @) | < el wi — w} | for wi, w* € B},(0) and
graph ¢, C Wi, (g"*"(2), g) for n > 0.

Put # = min { py, 72} and fix 0 < & < ¢ such that satisfies (10). Then, from
(*) and (* %) we can take an integer #; = #, such that for every n = ng, ¢, and
@ satisfy the assumptions of Claim 3. Thus

Cu, N W3 (g¥*"(2), &) # ¢.

This is a contradiction.

Take and fix # > 0 such that d(g¥*"(x)), g¥*"(2)) < 6/2 where 0 < g
= 0(e, g) < e is anumber givenin (1) . Let N’ = N’(n, ) = # be as in Claim 5
and put

320" (2)) = Bsn(gV*™ (2)) N Wi(gV*V (2), ).

CaM 6. There exists w € B%,(g¥ ™V (2)) \ {g¥*¥' (2)} such that dim
WS (w, g) =1 and Cy [\ Convinizy = ¢ where Cy is the connected component of w in
W3 (w, g) M Be,(g¥™V (2)).

Before beginning with the proof of the Claim 6 we remark the following prop-
erties.
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Remarks. (i) For every tubular neighborhood U of W, (gV*"V (2), g), there
is no sink periodic point p of g such that U\ W, (g"¥*"'(2), g) € W*s(p, g).

U

1)

Cg“”’(z)

N+ N’
-+ ] g

Wi(g¥+¥(2), g)

J- ] Wile" "), 8)

\
/

To prove this, we suppose that there is a sink p satisfying U\Wﬁo(
g¥*N'(2), g) € W*(p, g). Then there are N” > N’ and 0 < &” < ¢ such that
for every # 2 N” and 0 < € < ¢, Coneniny (1 Be(gV*(2)) € U. For n = N” we
put

S“(g"*"(2)) = 0B%(gV*"(2)),

and for 0 < € < e let 6 > 0 be a number as in the definition of POTP of g. Then
for every 0 there are #,(6), 72(8) = N” such that

d(gqu(BA)(x) gN+m(§)(Z)) < é

’ 2

and

[NCIISPH

d(gN+n1(z§)(z), w) <
for every w (=] g—nz(zf )(Su(gN-(-m(aAan(éA )(2))) Thus for every w = g-nz(g )(Su
(gN+m<zf)+nz(§) (2)))
{-, gN+n1(5)—2(x)’ g”*”‘(‘;)‘l(z), w, gw), -}

is a 5—pseudo orbit for g. However it is easy to see that if we fix € small enough,
then there exists a 0-pseudo orbit among them which can not be g—é-traced since

Convenidrip (N Be( gN+nz(5)(x)) cU.

(i) There is no stable manifold W*(w, g) with dim W*%(w, g) = 2 and
Ws(w, g) D Ws(g"¥*"' (2), g) such that there is a sequence of points {w,} in
Ws(w, g) (M Consnin \{g"*¥ (x)} satisfying w, — g¥*" (x) and ds(w,, Wps1) —
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0 as n— oo, Here d is a metric on W*(w, g) induced from || - |.

We(w, g)
gN+ N’(z)

In fact, if there exists such a stable manifold then we can find v €
g NN (WS(w, g)) such that

tan < (TL,W*(g " (w), &), Et(v)) < 6,

where 6 > 0 is a number given in Claim 2 for g. This is absurd since W*(w, g)
W (A(g), 8.

(fii) If there is a sequence of points {w.} in Cev+nym such that w,—
gV (x), v (WS(wn, g)) — 0 as n— o and dim W*(w,, g) = 2 for all # =0,
then Claim 6 is true. Here #(W*(w, g)) denotes the maximal radius of a closed
ball in (W*(w, g)) centered at w with respect to d.

W(w,, 8

gN+ N’(Z)

\
-
<
- Y

Indeed, fix # > 0 and let 6 > 0 be a number given in Claim 2 for g. Suppose
that there is v & W*(w,, g) such that dim W*(v, g) =2 and OW* (ws, &)
N Ws(v, g) + ¢. If we pick a point v € OWS(w,, g) (N W5(v, g), then there
are sufficiently large m > 0 and v” € W*(g"™(w,), g) arbitrarily near to g”(v")
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such that
tan & (T, W*(g™(wy), ), E¥(v")) < 6.

This is a contradiction. Thus OW*®(w,, g) consists of two 1-dimensional stable
manifolds (since U {W*(p, g) : p is a sink periodic point of g} is open in M) .

Proof of Clatm 6. We divides the proof into two cases.
Case 1. For every

w e CgN+N’<z) N Bx/ZN'(gN’LN' (Z)} \ {g””"' (Z)}
and 0 < 7" < 1/N’ such that
Br'(w) ﬂ CgN+N'(.r) c Cg”*""(z)\ {gN+N'($)}-

there is w’ € B, (w) () Cgn+ny such that dim Ws(w’, g) = 2.

Note that U {Ws(A,(g), g) : Ax(g) is an attractor} is an open set of M. By
Remarks (i) , (ii) and (iii) we may assume that there is w € W¥%,(g"*V (2), g) \
{g"*¥'(2)} such that dim Ws(w, g) = 2, Co N WS(g"*¥ (2), g) # ¢ and C, N
Cynvinvig = ¢. Here C, denotes the connected component of w in W*(w, g) N
B, (g¥*V'(2)).

/ Cg”"”’(z)

e
C, ‘/I

For every 0 < B <¢, let 0 < 7y(8) < B be a number as in the definition of
POTP of g. Take v € By (g"*" (x)) M Cu. Then

{---, g%V 2(x), g¥V N (x), v, g(), -}

gN+ N’(z)

is a 7(B)-pseudo orbit of g. Thus there exists 0 € Cgnv+vy such that d(g”"(v),
g"(®)) < B for all » € Z, On the other hand, since v & W*(A,(g), &), there ex-
ists 7y, 5 > 0, such that g'(v) € Bj,2(A:(g)) for 0 < i<, 5 and g"**'(v) &
B,.2(Az(g)). Thus we have B.(g'(v)) C B,(A:(g)) for 0 < i< n,, 5 Let be Cy
be the connected component of @ in Cynv+nz) () Be(#). Then, by the hyperbolicity
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of B, (A;(g)) there is 0 < &3 < ¢ such that
inf d,(3(g7*(Cy). g7 #(D)) > &,
v, B

where d, denotes a metric on unstable manifolds induced from || . || Since
g€ P (M) and g'(Cs) N g'(Cy) = ¢ for 0 £ ¢ < n,, 5, by using the methods
stated in the proofs of Claims 2 and 4 we can find g’ € Diff'(M) arbitrarily
near to g such that g'| ow = gl aw, W(g"5(v), g) N W*(g"*(), g) * ¢,
and W2(g"8(v), g) does not meet transversely to W*(g"?(#), g’). This is a
contradiction.

Case 2. There exists
w € Coverin N Buaw (g% )\ g4 (x)}
and 0 < 7" < 1/2N’ such that
By (w) N Conrway © Conrnen\{ gV ()}

and for every w’ € B, (w) [ Cyn+nizy, dim WS(w', g) = 1.

By Claim 4, there is 0 < ¢’ = §’(#’, g) < 1/2N’. such that for every v €
Bs: (w) \ Covinzy, dim W*(v, g) =1. Denote by C, the connected component of v
in Ws(v, g) M Be,(v) for v € By (w) \ Conv+nyy. Take and fix v € By (w) \
Coving such that C, () Cevany = @. Then there is v' = C, () W4,(g¥*" (2),
g) # ¢ by Claim 5 (since v € Bin(g¥*" (x))). This completes the proof of
Claim 6.

It is checked that for every w € B%,(g"¥*" (2)),

Ws(w, g) m CgN+N‘(z) ¢ ¢.

Indeed, since d(w,g"¥*" (x)) <6 for w € B%,:(g"*" (2)), there is w’ € M such
that

d(g"(w’), g"(w)) <eforall n =0

and
(13) d(g™w), g "(x)) <efor allw >0

Thus g2+ (w') € Cyzy and so gV (w) € g*¥(Cyzn). Since gV (w) e
B.(g"(x)) (by (13)), we have g™V (w') € Cgn, and hence w' € Cynv+v. Thus
Ws(w, g) (N Cen+nviyy # ¢ since w’ € W(w,g).

Let W& B4,(g"*"(2)) \ {g"*"(2)} be as in Claim 6. Then w €
W*(A(g), g) and dim W*s(w, g) = 1. Since M = UL W*(A:(g), g), we may
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suppose that w € W*(A;(g),g). Clearly Ind A3(g) = 1 and
w € W (A:(g), g) N W (As(g), g) # §.

It is easy to see that Ax(g) # As(g). For, if A:(g) = As;(g) then w €
W*(A:(8), &) N W5(A(g), &) = A:(g). Thus Consn N Wi(w, g) = ¢. Howe-

ver, since

(-, g7 @), z, g@), -, g ), w, gw), -}

is a 0-pseudo orbit of g, we have Cen+ngy () WE(w, g) = ¢. This is a contradic-
tion. Hence A;(g) # As(g).

Since w € BY%,(g"*"' (2)), we have Ws(w, g) N Cony v # ¢. Thus W (A,
(2),8) NW*(As(g), &) # ¢.

The conclusions obtained above is summarized as follows
IndAs(g) =1

A (g) #+ As(g).
W'(A:(g), &) N W3 (As(g), g) #+ ¢ and
We (A (g), &) N WS (A:(g), g) # ¢.

(14)

By (14) there exists a cycle among basic sets of g. Indeed, since there are z; €
A(g) and 22 € Ay (g) such that W¥(z, g) N WS(z, g) # ¢ and dim W*(zy,
g) =dim Ws(z;,, g) = 1, by (14) we can find 23 € A3(g) # A(g) such that
Wiz, g) N Wz, g) # ¢, dim  Ws(z, ) =1 and W'(A(g), g N
Ws(As(g), g) # ¢. Since W¥(z, g) N W(z, g) # ¢ and dim W*(z, g) =
dim W*(z;, g) = 1, by the same manner we can find z, € A,(g) # As(g) such
that W%z, &) N Ws(z, g) # ¢, dim WS(z, g) =1 and W"'(A:(g), &) N
Ws(A«(g), g # ¢. In this repetition we have a cycle among basic sets A;(g),
-+, Ay g) and reach a contradiction. We finish the proof of Theorem B.
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