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DIFFEOMORPHISMS WITH
PSEUDO ORBIT TRACING PROPERTY

KAZUHIRO SAKAI

We shall discuss a differentiable invariant that arises when we consider

a class of diffeomorphisms having the pseudo orbit tracing property (abbrev.

POTP ) .

Let M be a closed C°° manifold and DiiPiM) be the space of diffeomorphisms

of M endowed with the C1 topology. We denote ?Pl(M) the C1 interior of the set

of all diffeomorphisms having POTP belonging to Diff^Af). Recently Aoki [1]

proved that the C1 interior of the set of all diffeomorphisms whose periodic points

are hyperboric, 2Fl(M), is characterized as Axiom A diffeomorphisms with no-

cycle. After this Moriyasu [8] showed that 9>1{M) c 2Fl(M) and if dim M = 2

then e v e r y / ^ 2Pl(M) satisfies strong transversality.

In this paper the following two theorems will be proved.

THEOREM A. There exists a closed C°° 3-manifold M such that set of all dif-

feomorphisms having POTP is not dense in Diff 1(M).

The Theorem answers to a problem stated in Morimoto [7].

THEOREM B. If M is a closed C°° 3-manifold, then ?Pl(M)is characterized as

Axiom A diffeomorphisms satisfying strong transversality.

A diffeomorphism /of M is quasi-Anosov if the fact that ||Z)/w(t;)|| is bounded

for all n e Z implies that v = 0. Theorem A is easily obtained in combining with

Franks and Robinson [2] and Sakai [12]. The set of all quasi-Anosov diffeomorph-

isms belonging to Diff l(M), QAX(M), is open and QAX(M) c &l(M). It is easy

to see that when dim M — 2, every / € QAX(A^) is Anosov (see [5]) . However an

example of a diffeomorphism / ' on the connected sum M' of two 3-tori that is

quasi-Anosov but not Anosov was given in Franks and Robinson [2]. Since / '

is ,G-stable, there is C1 neighborhood °U of / ' in Diffl(M') such that every g e °U

is quasi-Anosov but not Anosov. Thus, by [12] every g ^ °li cannot have POTP,
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and so Theorem A is proved.
Before beginning the proof of Theorem B we give some notations and defini-

tions.
Let (X, d) be a compact metric space, and let / : X~* X be a homeomorph-

ism. A sequence of points krj , t i (~ °° < a < b < °°) in X is called a d-pseudo
orbit of / if d(f(xt), XM) < 5 for a < i < b — 1. Given s > 0 a sequence of
points {xi)Ua is said to be f-e-traced by a point x G A" if d(fl(x), x<) < £ for
# < z < &. We say that / has the pseudo orbit tracing property (abbrev. POTP) if
for £ > 0 there is 5 > 0 such that every 5-pseudo orbit for / can
be /-^-traced by some point of X. For compact spaces the notions stated above
are independent of compatible metrics used. It is easy to see that if / has POTP
then the non-wandering set Q(f) coincides with the chain recurrent set R(f) for
/ where R(f) is the set o f ^ G l such that for every d > 0, there is a d-pseudo
orbit of / from x to x (see [11]). For x ^ X and e > 0 the local stable and unstable
sets are defined by

Wl(y,f) = {* e X:d(fn(x),fn(y)) < s for all n > 0},

Wt(x,f) = {*/ e X :d(f-n(x),f-n(y)) < £ for all w>0}.

Suppose that / has POTP. Then it is checked that for every e > 0, there is
0 < 5 < e/2 such that if rf(x, */) < 5 (x, y e X) then

Let M be as before and denote by d a Riemannian metric on M Then for a

hyperbolic set A of / ^ DiffL(Af) and for x e 4̂ the sta&te and unstable manifolds

are defined by

^ M t o , / ) = iy e M :d(f-n(y), f~n(x)) -> 0 as n-> oo}.

When /I can be written as the finite disjoint union yl = Ai U * * * U Ae of closed
invariant sets Ai such that each of f\M is topologically transitive. Such a set yli is
called a 6a5ic 5̂ ^ with respect to A. The stable set Ws(At. f) and unstable set
Wu(Auf) are defined by

Ws(Ai.f) = {y e M :d(fn(y), A)->0 as n-> <»}.

Wu(At.f) = {y e M :d(f~n(y), A)-> 0 as n->oo}.

Then WC4,-, / ) = U {H^ff(x, / ) : ^ e y i j for a = s, u. If £ > 0 is small
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enough, then for x e A the local stable and unstable sets, W£(x, f) (a = s, u),
are C1 disks tangent to certain subspaces Es(x) and Eu{x), respectively, such
that x TXM = Es(x) © Eu(x). Moreover there exists 0 < X < 1 such that

f d(fn(y),fn(z)) <And(y,z) for y, z e W*(*,/) and n > 0.
(2)

I d(f-n(y),f-n(z)) < And(y, z) for y, z e WUx,f) and * > 0

(see Hirsch and Pugh [3]). Thus H^Cz, / ) c W ( # , / ) for x e /I (a = 5,
and

^5te/) - U
n > 0

W"(x,/) = U
n > 0

We denote Wa(x, f) by W^Cr) (cr = s, w) if there is no confusion.
If / i s Axiom A diffeomorphism then we have M = U (W'Cr) : x e Q(f)}

for a — Sy u and i3 ( / ) is expressed as the union Q{f) — Ai U * * * U /I/ of dis-
joint basic sets for / Such union is called the spectral decomposition for / We say
that / ha s a cycte if there is a subsequence (A^AY (2 < s < /) of (A}f=i such
that WM(A,) Pi Ws(Aii+1) =£ 0 (1 < ; < 5) and A-5+1 = ylh. We say that/satisfies
the strong transversality condition if for all x, y ^ Q{f ), Ws(.r) and H^M( //) meet

transversely. Remark that WS(A{) H Wu(Ad = A{ for 1 < i < I
Now to obtain the conclusion of Theorem B it is enough to see that every / G

£Pl{M) satisfies strong transversality because/satisfies Axiom A as stated above.
Let / e &l(M) and x e M Then it was proved in [8] that if 0 < dim

W°{x) < dim M for a=s, u then 7W sCr) cz: 7 W ( x ) and TxW
u(x) &

TxW
s(x). This tells us that if

(3) dim Ws(x) + dim WM(.r) > dimM,

then Ws(x) and Wu(x) meet transversely.
Therefore, to complete the proof of Theorem B it only remains to show (3) .
Since /^^(M) satisfies Axiom A, Q(f) is decomposed as Q(f) — A\

U * * * U Ai, where each Ai is a basic set. Then by [4] for each i there exists a
compact neighborhood B(At) satisfying the following (4), (5) and (6).
(4) There exists a continuous extension TB{Ai)M = Ef © E? of TAiM = £? © E?
such that for x <= B (A{)

Dxf(E?(x)) = EKf(x)) and ||Z>*/,*>>|| < A,

and for x^ B(A,) C\f(B(Ad).

'EH E(H) and || ^ l l
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(5) There exists £1 > 0 such that for every 0 < a < £i there exist submanifolds
W°{x) (x e B(Ai), o =s,u) satisfying

(i) f(Wi(x)) c m(f(x)) and d(f(x)J(y)) < Ad(x, y)
for evey y e Wi(x) if x e B(A{) D f'l(B(Ai))9

(ii) f-\m(x)) c ^ ( T 1 ^ ) ) and d(f-\x)J-l{y)) < Ad(x, y)
for evey */ e W$(x) if * e 5(A) 0 / (5 (A)) .

(6) There exists d > 0 such that if rf(x, y) < d (x, y e 5(A)) then
W?(x) awrf W?(y) meet transversely.
For £ and F subspaces of TA,M define

tan < (F, £) = sup | 2 : W\ ̂  E, w2^- E1, and Wi + w2 ̂  F — {0}}.

Then we find du > 0 satisfying tan < (Ef, Ef1) < du (See [10]) . The continuity
of Ef (a = s, u) ensures the existence of 62,i > 0 satisfying tan < (Ef, Ef1)

CLAIM 1. Define 62 = max {62fi: 1 < i < £}. For 0 < 0 < 62
l • (2 + <92)~\

m*5^ K(6) > 0 5t*c/i ^af iT(l9) -+ 0 as ̂ -* 0 and for every v e T^MCr e
)) i/tan < (v, Ef(x)) < 6 and {x, f(x), • • • , fN(x)} c £(A) /or
0 ^ n t a n < (Dxf

N(v), E?(fN(x))) < K(d) • ^2iV.

/ Let x^ B (At) be fixed. For t; e TXM - {0} , let v = Vs + vu =
(v)i + (t;)2, where Vs <= £f, z;M e £f, (t;)i e £f, and (v)2 e £ ^ . Clearly (t;s)2 =
(t>)2, (^

s)i + ^w = (v)i, (vu)l = vu and (vu)2 = 0. Since fj(x) e jB(ylO for 0 < j
< Â  and tan < (Ef, Ef1) < 62,

UD,fN(vs))i\\ <f)

and since f'{x) e B{At) for 0 < j < N,

\\DJN{vu)\\>:i-,N\\vu\\

110*/WII »»sir
It is checked that

4-02
)2 II

e2)i/e+d, ~ 1 - ee2
 and
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\(P,f(vs))A

From these inequalities we have

(Dxf
N(vu))A \\(Dxf

N(vs))i

\(Dxf
N(vu))i

(Dxf
N(vs))2

(Dxf
N(vs))2

^ ,_av 1 ~" 6 6;

(Dxf
N(vs))2

6(2 + 62)
1 Q — ^-2N

6(l
_ -.2N.

A

and so

\(Dxf
N(v))2

\(Dxf»(v))A

For A a closed set of M, denote by Br(A) the closed neighborhood of A with
radius r > 0.

CLAIM 2. Let A{ and Aj be the basic sets. Suppose that 2 > Ind/ly >
> 1 where Ind A denotes the dimension of the stable subbundle Es of a basic set A.
Then there are n > 0 (Bn(Ai) c B(At) and 6 > 0 such that if x e A, and y e
Ws(x) 0 BrMd, then tan < (T,^5(x) , £f(z/)) > 5.

Proof If this is false, for every n > 0 there are xn e /1;- (Ind/I; > lndA{)
and z/w e ff s(xn) fl 51/M(A) such that tan < (r,M^5(xn), £?(z/n)) < 1/n. Then,
by (5) and (6) there are 2M ̂  Ai and te;w = PF̂ Cz/w) Pi Wu

ei(zn). Since 2/«—»• At as
»—*• °°, there is a strictly increasing sequence /« > 0 such that fk(yn)

 e # (A)
for 0 < k<Jn and fJn+l(yn) & B(Ad. Put r = inf {rf(x, A) : x e B(A) and
Z"1^) ^ 5 ( A ) } > 0 . Since

(7) yH, wH) for 0

there is Â  > 0 such that for every n>N, fJn(yn)
 e B(Ad \BT(Ai) and

fJn(wn) <£BT/2(Ai). Thus it is checked that there exists Cy > 0 such that for
every w > 0,

(8) f'(BMJn(yn))) n Bcl(f
Jn(yn)) = <£ for all; > 0.

Indeed, if for every m > 0 there are «», > 0, jm > 0 and x'm e B±(f/"M(ynm))
such that/'-Cc;,) e Bx(fJn'«(ynm)), then y = lim fJn<»(y«m) « * ( / ) , which is
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a contradiction since y &Q(f) = R{f).

Similarly we can find c2 > 0 such that for every n > 0

(9) fj(BC2(f
Jn{wn))) 0 BC2(f

Jn(wn)) = 0 for all; > 0.

Take and fix 0 < 0' < 0^(2 + ft*)"1. Then there is N'> N such that for

every * > #', tan « ( T ^ f e ) , ^ ( ^ < 0'.
By Claim 1, tan < (Dynf

Jn(TynW
s(xn)), EUf]n(yn))) - O a s w - oo, and so

tan < (Dynf
Jn(TynW

s(Xn)), &jn^nm^Et(fHwH)))) - 0

as w-^°° (by (7)). Here 8xoy denotes the parallel transform from TXM to TyM.
Then, from (7), (8) and (9) there are n > Nf and g e Diff(M) arbitrarily near to
/such that Ws(xn, g) 0 Wu(zn, g) =£ <f> and Ws(xn, g) does not meet transverse-
ly to Wu(zn, g), thus contradiction since g e ?Pl(M).

CLAIM 3 (Lemma IV. 8 of Mane [6]). Let E1 and E2 be Banach spaces with

norm || • ||, and denote by Bl
r{p) the ball of radius r in El centered at p. Let C > 0

and e! > 0 be constants such that e' is so small that efC < 1. For p0 > 0 take 0 < r

< po and 0 < £ < e' satisfying

Suppose that <p : Bl
Po(O) -+ E2 and <p : Blip) ~* El are maps satisfying

(a) 0(0) = 0, || (p(u>0 - (p(w2) || < e' || »! - w21|

for wi, w2 e fiJQ(0),

(b) II p(/0ll < e, II ̂ (wi) - <p(w2) || < C || wi - w21|

for u>i, w2 e Bj(p), and

(O | | | |

cp Pi ^ra^/i (p ̂  (j>, where graph (p = {(a/, <p(w)) : w £ 5p0(0)}

graph cp = {(q>(w), w) : w e JBr(/>)}.
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E2

BKP) ' ' I graph

J3io(0)

9

graph 0

E1

1 — sFirstly we show for every 0 < pi < min {r,

SJU/O. Since || ̂  _ ^ || < pi <

} , (p(B2
pl(p)) c 5,(0).

Take and fix y

a < r. Thus

~ t w e have C || y - £ || +

II <p( V) I U II p ( p) II + C || y - p || < £ + C || z/ - p || < r .

From this a map (p ° (p : B2
pi(p) —> i?2 is well defined. Since || (p((p(p)) — 0(0) ||

< £r || <p(0) - 0 || = e' || (^(0) || < £'£, we have || (p((p(p)) || < £7£ (by (a)). There-

fore, for Wi, w2 ^ B2
Pl(p)

— (p(p(w2) II < £' II (p(wi) — cp{w2) - w2 II;
i.e. 0 ° (p : B2

pi(p) —̂  £ 2 is contracting. If we choose | • / ^ < p2 < min
•V C

, then for every z/ e B2
P2(p),

\\(pcp(y) - p \ \ < \\(pcp(y) - (p(p(p)\\+ \\<p<p(p) - p \ \ ^

< e'Cp2 + £7£ + £ <p 2 .

Thus 0 ° (p \B2
P2{p)-+ B2

P2(p) is a contraction. Thus there exists z ^ B2
P2(p)

such that (p • (p(z) = z.

Theorem B will be proved under the above claims. The technique of the proof

is to derive a contradiction in proving the existence of a cycle among basic sets

Ai, - - -, Ae under the assumption tha t /does not satisfy strong transversality. Re-

mark that the dimension of M is 3. To prove Theorem B it is enough to see that
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for x<E M\Q(f), dim Ws{x) + dim Wu(x) > dim M as explained before.
Suppose that there is x ^ M \ Q(f) such that dim Ws(x) + dim

Wu(x) < d i m M = 3 (i.e. dim Ws(x) = dim ffw(x) = 1). Since /€= ^ ( M ) ,
there are £ e ?Pl(M) and a > 0 such tha t /= £ on a neighborhood of Q(f), dim
Wa(x, g) = dim W^a(.r) for a = s, u and for the components Ca(x) of x in
Wfcr, #) 0 Ba(x) (a = 5, M), C*(X) D CU(X) = {x}.

Let Q(g) = Ai(g) U • • • U /W#) be a spectral decomposition for g. Then
there are 1 < i ^ j < £, y e yl,(^) and z e /1;(^) such that W*(.r, ^) =
Ws(z, g). and W^M(JC, ^) = Wu(y, g). For simplicity suppose y^Ai(g) and
z e / l 2 (^ ) . LetO < So < Y\/2 be a number as in (2) and fix N> 0 such that
£-"(*) e ^ ^ ( ^ ( y ) , ^) and ^ ( x ) e ^ I o / 2 ( ^ U ) , ^) . Given the connected
component C8[N of g~N(x) in B£0/i(g~N(x)) D Wu

£o(g~N(y)fg), we have C,-JV

= B £ 0 / 4 (^(x) ) 0 ^?0(^-Ar(?/),^). Thus there is 0 < e < sQ/S such that
B£(g

N(x)) C\g2N(Cg-N) is the connected component of gN(x) in B£(g
N(x)) Pi

Denote by C8N{X) the connected component of gN(x) in B£(g
N(x)) C]

g2N(Cg-N(x)), and take and fix 0 < e2 < e/2 such that d(v, w) < e2 (v, w e M)

implies rf(^-2^(t;), ^-^(w)) < e o /8 .

CLAIM 4. F « any w e C?«te) D B£2(g
N(x)) \{gn(x)}. If there exists 0 < r'

< £2 swcfe f/iaf Br-(w) n C?«te) c C ^ x i X i ^ C ^ ) } , and if for every w' e B,'(w) f)

CgNU)t dim H^s(w', g) = 1, fcn dim Ws(v, g) = 1 /or every v e Ba>(w)\Cgmx).

Here 0 < 5' = 5'(r', ^) < r ' ts a number satisfying the property (1) .

Proo/. Note that if there is v e 5^(w) \ C

then Ws(t>, ^) H (£K(M>) fl Cffi) = 0. Since iv
w N PI W?o( r A ' ( ^ ) , ^) and hence

such that dim W^s(y, #) = 2,

Cg & f) B,2(g
N(x)), we have
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(11) d(g-2N-n(w),g~N-n(x)) < £0/8 for all n £ 0.
Since d(v, w) < 5f, by (1) there is v' e M such that d(gn(vf), gn{v)) < rr < e0

for all n > 0 and d{g~n{vf), g~n(w)) < rr < e/2 < £0/8 for all n ^ 0. Thus

(12) Ws(v,g).

By using (11) it is checked that d(g-2N~n(v'), g~N~~n(x)) < £0/4 for all n
>0( i . e . g-w{vf)^C8-N{x)) Thus * ' e £2*(C,-"(,,) D B£(g

N(x)) - C^fi)

(since dCt;7, ^ ( x ) ) < d(v\ w) + rf(«;, g^(x)) < e/2 + s2 < e). Since
<r'f we have v' e B^(M;) 0 C^,. By (12)

which is a contradiction.

For n > 1 denote as CgN+n{x) the connected component of gNJrn(x) in Bs(

(z)) f l ^ ( C ) Note that O + , t e ) C g (C^«- i ( < r ) ) for all n > 1.

0 and 0 < 5 < e0, there is Nf > n such that for every

gN+n(z)) fl

CLAIM 5. For >

where Cw is the connected component of w in Ws(u>, g) Pi Bstl(w).

Proof, If this is false, then there are n0 > 0, do > 0 and wn e BUn(g
N+n(x))

for all n > n0 such that CWn H W?0(g
N+n(z), g) = <j>. Let n > 0 and 6 > 0 be

numbers given in Claim 2 for g &91{M). Clearly

d(gN+n(x), gN+"(z))

g),gN(z))-^ 0

as «-* °° by (2) .

d(V0n, gN+"(z)) ^ d{Wn,

rv**(z)
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For a moment we treat a neighborhood of gN+n(z) as it were R3. Let En =

TgN+n{x)WUgN+n(z), g), El = TgN+n{x)WI0(g
N+n(z), g) and fix m > 0 such that

d(gN+n(x),gN+n(z)) < n for n > nh Remark that gN+n(z) e A2{g) and put pn

= EHgN+n(x)) 0 El for n > nx. Then

(*) d(pn, gN+n(z))-^0asn->™.

Thus, by Claim 2 there are constants C=C(d) > 0, r2= r2(d) > 0 and n2 > nx

such that for every n > n2 there is a map (pn : Bl2(pn) —• £ i satisfying

(**) l|p»(Af)IHOas»-»°° and

II ̂ n(Wl) ~ <Pn(M>2) || < C || Wi - W2 || for Wi, W2 e B2
r2(pn),

graph <pw c C»n.

Fix 0 < e' < 1 such that 0 < Cef < 1 . Then there are 0 < p0 < <50 and maps

M : fiJ0(0) -^ £n for « > 0 such that

0,(0) = 0,

II (pn(w[) - (pn(w'2) || < e || M;; - ^ || for w[, w2 e J5J0(0) and

graph 0K c F71fo(^+llU), ^) for n > 0.

Put r = min {p0, 2̂} and fix 0 < a < ef such that satisfies (10). Then, from

(*) and (* *) we can take an integer n3 > n2 such that for every n > n3, (pn and

(pn satisfy the assumptions of Claim 3. Thus

This is a contradiction.

Take and fix n > 0 such that d(gN+n(x)), gN+n(z)) < 5/2 where 0 < 6

= d(e, g) < e is a number given in (1) . Let N' — N'(n, d) > n be as in Claim 5

and put

Bu
8/2(g

N+N'(z)) = Bd/2(g
N+N'(z)) 0 W10(g

N+N'(z), g).

CLAIM 6. There exists w e Bu
d/2(g

N+N'(z)) \ {gN+N'(z)} such that dim

W^5(M;» ^) = 1 and Cw 0 CgN+n'ix) = 0 u>/i£r£ C^ is ^ connected component of w in

Ws(w,g)nBso(g
N+N'(z)).

Before beginning with the proof of the Claim 6 we remark the following prop-

erties.
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Remarks, (i) For every tubular neighborhood U of Ws
EQ(gN+N' (z), g), there

is no sink periodic point p of g such that U\ Ws
£0(g

N+N'(z), g) c Ws(p, g).

W!Q(gN+N'(z),g)

To prove this, we suppose that there is a sink p satisfying U\ Wlo(

gN+N'(z), g) c Ws(p, g). Then there are N" > N' and 0 < e" < £ such that

for every n > N" and 0 < e < e", CgN+Hx) D Bi(gN+n(z)) c U. For n > N" we

put

S»(gN+»(z)) =dB»0(g
N+»(z)),

and for 0 < £ < e let 5 > 0 be a number as in the definition of POTP of g. Then

for every 5 there are Wi(<5), ^((5) ^ iV" such that

*«>(Su(gN+ni«)+m«)(z))). Thus for every w^g~n2(S)(Su

and

for every «;
/ o.A^+«i(5)+«2(5)

is a 5-pseudo orbit for g. However it is easy to see that if we fix £ small enough,

then there exists a 5-pseudo orbit among them which can not be £-£-traced since

C ~ f~*) D / rrN+n2(d) / ~ > \ \ (— T T

gN+tii(d )(x) I I -D£\M \X)) — yJ •

(ii) There is no stable manifold Ws{w, g) with dim Ws(w, g) — 2 and

Ws(w, g) 3 Ws(gN+N'(z), g) such that there is a sequence of points {wn} in

Ws(w, g) 0 CgN+N{x)\{gN+N\x)} satisfying wn->gN+N'(x) and ds(wH, wn+1) -+
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0 as n—* oo. Here d5 is a metric on FFS(^, g) induced from

In fact, if there exists such a stable manifold then we can find v

-»'(W'(W, g)) such that

tan < (TvW
s(gs/rr-2N+Nf

(»), * ) , £?(»)) < 6,

where 6 > 0 is a number given in Claim 2 for £. This is absurd since Ws(w, g)

(iii) If there is a sequence of points {wj in C8N+N'{X) such that wn~^

ww, #) = 2 for all n > 0,0 as and dimgN+N\x), r(Ws(wn, g)
then Claim 6 is true. Here r(Ws(w, g)) denotes the maximal radius of a closed

ball in (Ws(w, g)) centered at w with respect to ds.

Ws(wn,g)

Indeed, fix n > 0 and let 6 > 0 be a number given in Claim 2 for g. Suppose

that there is v & Ws(wn, g) such that dim Ws(v, g) = 2 and dff 5(w«, #)

O (f 5(y, ^) ^ 0. If we pick a point v' e dWs(wn, g) 0 Ws(v, g), then there

are sufficiently large m > 0 and *;" e PVS(^W(M;W), ^) arbitrarily near to ^m (^0
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such that

tan < (Tv~Ws(g™(wn), g), EHv")) < 6.

This is a contradiction. Thus dWs(wn, g) consists of two 1-dimensional stable

manifolds (since U {Ws(p, g) :p is a sink periodic point of g) is open in M) .

Proof of Claim 6. We divides the proof into two cases.

Case 1. For every

w e CgN+N'{x) 0 Bl/2N,(gN+N'(z)} \ {gN+N'(z)}

and 0 < r' < 1/N' such that

n c C8N+N'{X)\ {gN+N'(x)}.

there is w' e B^(u;) Pi C8N+N-{X) such that dim FT^M;', g) > 2.

Note that U {Ws(Ak(g), g) : Ak(g) is an attractor} is an open set of M. By

Remarks (i) , (ii) and (iii) we may assume that there is w e Wu
d/2(g

N+N>'(z), g) \

{gN+N'(z)} such that dim Ws(w, g) = 2, ~CW H Ws(gN+N'(z), g) ± <p and Cw D

CgN+N'{x) = 0. Here Cw denotes the connected component of w in Ws(w, g) D

BeAgN+N'(z)).

y'ix)

gN+N'(z)

For every 0 < /} < e, let 0 < 7(^8) < ft be a number as in the definition of

POTP of g. Take v e Br{B)(gN+N'(x)) fl C,. Then

is a 7 OS)-pseudo orbit of £. Thus there exists v e CgN+N'{x) such that d(gn(v)1

gn(v)) < j8 for all « e Z, On the other hand, since 1; ^ ff s(A2(g), g), there ex-

ists nv, B > 0, such that g\v) e Bn / 2(yl2(^)) for 0 < i < «„, „ and ^w^+ 1(^) ^

Bn/2(/l2(g)). Thus we have B£{gl(v)) c jBn(yl2(#)) for 0 < t < nv>0. Let be C,;

be the connected component of v in CSN+N'(X) 0 B£(v). Then, by the hyperbolicity
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of Bn(A2(g)) there is 0 < £3 < £ such that

e3t
v, e

where du denotes a metric on unstable manifolds induced from || • ||. Since

g e <3>\M) and g'(Cv) Pi gl{Cm) = 0 for 0 < i < nv, B, by using the methods

stated in the proofs of Claims 2 and 4 we can find gr G Diff^Af) arbitrarily

near to g such that g' \ 0(g) =g\mgh Ws(gv'*(v), g') f| Wu(gv-'(v), g') * 0,
and W2(gvS(v), gf) does not meet transversely to Wu(gVt*(v), gr). This is a
contradiction.

Case 2. There exists

and 0 < r ' < 1/2JV' such that

BAw) 0 C^^-te, c CgN+N(xMgN+N'(x)}

and for every M;' G B^(W) C\ CgN+N'{x)y dim Pr5(wr, ^) = 1.

By Claim 4, there is 0 < 5' = 5'(r', ^) < l/2A^r. such that for every v e

B§'(w) \CgN+N'ix), dim W^5(t;, ^) = 1 . Denote by Cy the connected component of v

in f7s(^, ^) f| 5£0(t;) for t; e B8>(w) \ C8N+N'{X). Take and fix v e J5,'(«;) \

C^+;v'(*) such that C, Pi C>+*<(x) = 0. Then there is v' = Cv Pi ^ ? / 2 ( ^ + ^ ( 2 ) ,

g) ^ (f) by Claim 5 (since t; e Bi/2N'(gN+N'(x))). This completes the proof of

Claim 6.

It is checked that for every w e 58 /2(

n c^+^(,, ^ 0.
Indeed, since d(w,gN+N'(x)) <8 for w G fi^C^^'U)), there is w' e Af such
that

d{gn(w'), gn(w)) < £ for all « > 0

and

(13) d(g-n(w'), gN+N'~n(x)) < e for all n > 0

Thus g-w+N'W) e C^-N and so g-^'di;') e ^ ( C ^ ) . Since g-"'(iiO e
B£(g

N(x)) (by (13)), we have g-^t t / ) e Q(N and hence wr e C^+^(:r). Thus
Ws(w;, ^) n C^^u) ^ 0 since a;' e JFs(w,^).

Let W<E Bu
d/2(g

N+N'(z)) \ {gN+N'(z)} be as in Claim 6. Then w e

^) and dim P75(M;, ^) = 1. Since Af = Uf=i^5(A(^), ^) , we may
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suppose that w € Ws(A3(g),g). Clearly Ind A3(g) = 1 and
w € Wu(A2(g), g) n Ws(A3(g), g) ± 0.

It is easy to see that A2(g) ^ A3(g). For, if A2{g) — A3{g) then w e
^ M (A(£) , *) 0 FPW2U), £) = yl2(^). Thus C,g)+*' n WKw, *) = 0. Howe-
ver, since

{• • •, g~\x)y xy g(x),-', gN+N'~\z), u>, g(w),- '}

is a (5-pseudo orbit of g, we have CgN+N\x) f) Ws
£(w, g) = 0. This is a contradic-

tion. Hence A2(g) ^ A3(g).
Since «; e fl?/2(^

+JV'(z)), we have W^5(w;, ^) H Q&+^ ^ 0. Thus WS{AX

,g) nwu(A3(g),g) ±4>.
The conclusions obtained above is summarized as follows

(14) i

g) = 1

A2(g) *Mg).

Wu(A2(g), g) 0 Ws(A3(g),

, g) 0 ^ S

and

By (14) there exists a cycle among basic sets of g. Indeed, since there are Z\ £
Adg) and z2 e A ( ^ ) such that Wu(zi, ^) D Ws(z2, g) * <!> and dim Wu(zu

g) = dim fFs(z2, g) = 1, by (14) we can find z3 e vlsC^) ^ ^2(^) such that
Wu(zu g) 0 ^ s f e , ^) *= 0, dim ^ s(23 , ^) = 1 and Wu(A2(g), g) Pi
Ws(A3(g), g) # 0. Since Wu(21( ^) H ^ s(23 , g) * 4> and dim ^"(« l f ^) =
dim Ws(z3, g) = 1, by the same manner we can find z4 e Ai{g) ¥= yl3(^) such
that Wu(*1( ^) n W^S(Z4, ^) * 0, dim JFs(z4, ^) = 1 and H^CAste), ^) H
Ws(yl4(^), g) ^ 0. In this repetition we have a cycle among basic sets Ai(g),
• • •, Adg) and reach a contradiction. We finish the proof of Theorem B.
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