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SURFACES IN MOBIUS GEOMETRY

CHANGPING WANG*

To Chiu and Ya-Ya

§ 0. Introduction

Our purpose in this paper is to give a basic theory of Mobius differ-
ential geometry. In such geometry we study the properties of hypersurfaces
in unit sphere S™ which are invariant under the Mobius transformation
group on S”.

Since any Mobius transformation takes oriented spheres in S™ to
oriented spheres, we can regard the Moébius transformation group G, as
a subgroup MG, of the Lie transformation group on the unit tangent
bundle US™ of S*. Furthermore, we can represent the immersed hyper-
surfaces in S™ by a class of Lie geometry hypersurfaces (cf. [9]) called M&bius
hypersurfaces. Thus we can use the concepts and the techniques in Lie
sphere geometry developed by U. Pinkall ([8], [9]), T. Cecil and S.S.
Chern [2] to study the Mobius differential geometry.

We will study in detail the surface theory in Mébius geometry. The
same method can be easily generalized to high dimensional cases. We
give a complete Mdobius invariant system for any immersed surface with-
out umbilic point in S* which determines this surface up to Mobius
transformations. Moreover, given any such Mébius invariant system we
can obtain the corresponding Mobius surface by solving a linear PDE
determined by this invariant system.

An immediate application of our theory is the classification of Dupin
surfaces in E°® under the conformal transformation group. We show that
up to the conformal transformations a Dupin surface in E® is a part of
a revolution torus, a right circular cylinder or a right circular cone.

Mobius geometry has a close relation with the famous Willmore con-
jecture. An elegant application of Mébius geometry was given by R. L.
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Bryant [1] in order to study the Willmore surfaces in S®. In this paper
we give an expression of the Euler-Lagrange equation for Willmore sur-
faces in terms of Mébius invariants.
This paper is organized as follows:
§ 0. Introduction
§ 1. Lie sphere geometry
§ 2. Mobius surfaces and Mobius transformations
§ 3. Mobbius invariants for Mobius surfaces
§ 4. Fundamental theorems for Md&bius surfaces
§ 5. Classification of Dupin surfaces in E® under the conformal trans-
formation group

I would like to thank Professor S.S. Chern for his direction and
Professor U. Pinkall for helpful discussion.

§1. Lie sphere geometry

In this section we review some basic concepts and facts concerning
the surfaces in Lie sphere geometry. For detail we refer to Cecil and
Chern [2] and Pinkall [9].

1.1. Oriented spheres and Lie transformations

Let S® be the unit sphere in E* and US® the unit tangent bundle of
S®  An oriented sphere in US® is a mapping (x, n): S? — US® such that
x:8?— 8® is an umbilic sphere and n is one of the unit normal vector
fields along S%. When x: 8 — S* shrinks to a point x, we define n to be
the inclusion i, : U,S*— US® and get a special class of oriented spheres
(x,1,):S*— US® xeS° called the point spheres in US®. The so called
Lie transformations are the diffeomorphisms from US?® to itself that take
oriented spheres to oriented spheres.

Any oriented sphere k can be represented by the equation m = cosfx
— sinfn, (x, n) € US?, for some m e S® and § € [0, n), and &' = (m, cos @, sing)
is uniquely determined by % up to signs.

Let R® be R® equipped with the product {, ) defined by

(1.1) (e, xy = o3+ x5+ a3+ xf — 2 — x5, (x4, %, -+, %) € RS,

and Q be the quadric in P° defined by Q = {[x] e P*|(x, x) = 0}. Then
we have a mapping from the set of oriented spheres in US® to Q given
by k—[F] It is easy to see that this mapping is bijective. Moreover,
two oriented spheres k;, k, in US® are (oriented) contact if and only if
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(1.2) K, Ry =0.

Thus we can identify the oriented spheres in US?® with the points in Q.
Since the point sphere U,S® corresponds to the point [x, 1,0] in Q, we
call such points in Q also point spheres.

1.2. Lie diffeomorphism

Any point (x, n) e US® determines uniquely one pencil of oriented
spheres contacting each other at x € S* with the same orientation n, which
by (1.2) is the projective line on ) spanned by the points [x,1,0] and
[n,0,1] in Q. Thus we have a bijective mapping

1.3 L:US*—> 4,

where 4 is the set conmsisting of all projective lines on Q. Thus 4 has
the unique differential structure such that L is a diffeomorphism. We call
L Lie diffeomorphism.

Let O(4, 2) be the orthogonal group preserving the inner product {, )
in (1.1). Then O(4,2) is a transformation group of QQ defined by

1.4) A(x]) = [xA], V[x]eQ, Ac0(4,2),

where xA is the product of two matrices x and A. Since any element
of O(4, 2) carries projective lines on (Q to projective lines on Q, Q(4,2) =
0(4, 2) mod(=+ 1) is naturally a transformation group of 4. By a theorem
of Pinkall in [9] we know that the mapping Ad(L):¢— LoL™' is an iso-
morphism from Lie transformation group of US® to O(4, 2) of 4. We call
0O(4, 2) the Lie transformation group of A.

1.3. Legendre surfaces, curvature spheres and curvature vectors

Let 2 : M — A be an immersion of surface. We write Lol = (n,x) : M
— US®. Then 1 is called a Legendre surface if dx-n = 0.

Let k,, ke C=(M) with (k,, k) 20 and k= k,(x,1,0) + ky(n, 0, 1). [kl : M
— Q is called a curvature sphere of Legendre surface 2 if there is non-zero
vector field X e TM such that

(1.5) [dR(X)(m)] € 2(m) < Q

at any point me M. Such X in (1.5) is called a curvature vector (field)
corresponding to the curvature sphere [k]. By a theorem of Pinkall ([9],
p. 433) we know that there are at most two curvature spheres [a], [b] : M
— (. Moreover, if 1 is umbilic point free, i.e., [a] = [b] on M, then the
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curvature vectors E, and E, (corresponding to [a] and [b] respectively) form
a global basis for TM.

Let 2: M — A be a Legendre surface without umbilic point. We give
an order for the curvature spheres ([a], [b]) of 2. We call (a, b) : M — R*
a curvature sphere representation of ([a], [b]). Note that for any curvature
sphere representation (a, b) we have

(1.6) {a,a) ={a,b) ={(b,b> =0, {da,b) = —{a,db) =0,
1.7 A =span(a, b) : M —— 4,

where span(a, b)(m) is the projective line on () spanned by [a(m)] and
[b(m)).

Let E,, E, be the curvature vectors corresponding to [a], [b] respectively.
By definition we have E(a), E.(b) € span(a, b). Because of the signature
of {,> we must have (E(b), E(b)> > 0 and {Ey(a), EXa)> > 0 (cf. Pinkall
[8], p. 92). We call (E,, E,) unit curvature vector for the curvature sphere
representation (a, b) if

(1.8) CEND), Exb)) = {Efa), Exa)) = 1.

It is clear that the unit curvature vector (K., E;) is determined by (a, b)
up to signs.

1.4. Lie sphere geometry

In Lie sphere geometry we study the invariants of immersed surface
f=(x,h): M— US® with dx-n = 0 under the Lie sphere transformation
group of US®’. By the above discussion we know that this geometry is
equivalent to the geometry of Legendre surface 2 = Lof: M — A under
the transformation group Q(4, 2) of 4.

For any Legendre surface 1 we can construct a moving frame in R°
along M by using the curvature sphere representation and its unit cur-
vature vectors. Since O(4, 2) or O(4, 2) is linear, we can use the same
method as we do in euclidean geometry or affine geometry to give the
Fundamental theorems for Lie geometry surface. In this paper we will
use this idea to give the surface theory for Mébius differential geometry.

§ 2. Mobius surfaces and Mdbius transformations

In this section we introduce some basic concepts in MoObius geometry
in terms of the concepts in Lie sphere geometry.
Let G, be the Mébius transformation group of S®. We identify ¢ € G,
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with the diffeomorphism ¢’ : US®* — US® defined by

, _ da(n)
2.1) d'(x,n) = (o'(x), ﬂldo‘l ) .

Since ¢’ carries oriented spheres to oriented spheres, it is a Lie trans-
formation. Thus G; can be regarded as a subgroup of the Lie transfor-
mation group of US? and then MG, = LG,L™' is a subgroup of Lie
transformation group O(4, 2) of A, where L is the Lie diffeomorphism.

ProposiTioN 2.1. If a Lie transformation B € O(4, 2) takes point spheres

‘(‘)‘ 2) and Ac O, 1), where O(4,1) is

the orthogonal group of R® preserving the inner product {w, w) = wi + w;
+ w§+ wf - wg’ (wb tt w5)eR5.

in Q to point spheres, then B =(

Proof. Let Be O(4, 2) take point spheres to point spheres. We write
B = ‘2 f: such that A is a 5 X 5 matrix. Then for any x € S* B([x, 1, 0])
= [(x, 1A, (x, 1)b] is a point sphere in Q. Thus (x,1)b = 0 for all xe S?,
so b=10. Since Be O(4,2) means exactly that BI,'B = I,, where I, =

0 0 —1
and cliic — &= —1. From b =0 we obtain ¢ =0, e= +1 and AI‘A

— 1. Therefore B = ¢(*2 9) = (¥4 %) in O(4,2) and eA ¢ 0(4,1). Q.E.D.
01 01

I 0 0 .
0 -1 0 =(01 _1), we know that AL'A — b'b = 0, AL‘c — eb = 0

Since any Mobius transformation ¢ = ¢’ € G; carries point spheres
into point spheres, we know that L¢'L™' = (‘3 (1)) for some AcO0(4,1).
Conversely, given A€ 0(4,1) we can define a Mobius transformation

0:8'— 8 by 0(x) = (xB + w)/(xv + w), x e S, where (f l;j) — A and B is

a 4 X 4 matrix. One can easily verify that L¢'L~' = (‘3 (1)> This gives

a easy proof of the following well-known theorem:

TuroREM 2.2. MG, = {(‘g ?)}A e 04, 1)} c 04, 9).

Now we want to represent the immersed surfaces in S* by a special
class of Legendre surfaces in A.

Let x: M— S® be an oriented surface without umbilic point and n
the unit normal of x which gives the orientation. Let %k, A be the principal
curvatures for x. Then 1= Lo(x,n): M — /A is a Legendre surface, and
(a, b) define by

(2.2) a=k(x1,0 + (n,0,1), b=~h(x,1,0) 4+ (n0,1)
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is a curvature sphere representation for i. The unit curvature vectors
E,, E, corresponding to the curvature spheres ([a], [b]) are the principal
directions of x with euclidean length (k—h)™'. Let p:R*— R be the
projection defined by

(2-3) p(xhx2’ "'7x6) = Xg (xl, Xgy ¢ '9x6)eRe-
By (2.2) we have p(a) = p(b) = 1. This motivates

DeriniTION 2.3. A Legendre surface 2:M— /A is called a Mobius
surface if (i) 1 is umbilic point free; and (i1) there exists a curvature
sphere representation (a, b) such that p(a) = p(b) = 1.

Note that such (a, b) is uniquely determined by the order of curvature
spheres of 2, and the corresponding unit curvature vector (E,, E,) is
uniquely determined by (1.8) up to signs. We call (@, b) the curvature
sphere representation and (X, E,) the unit curvature vector for Mobius
surface 2.

DeriniTION 2.4. Let A: M — /A and p: N— /A be Mobius surfaces. 2
and p are said to be Mobius equivalent if there are a diffeomorphism
e:M— N and A € MG, such that poe = Ao1. Suche, A or (e, A) is called
a Mobius equivalence of 2 and p. Briefly, 2 and g are Mobius equivalent
if their images in 4 differ only by a Mébius transformation.

By Theorem 2.2 we can easy see that

ProrosiTiON 2.5. The curvature sphere representation (a, b) and the
unit curvature vector (E,, E,) mod(=+1) are invariant under the Mobius
iransformation group MG,.

We know from (2.2) that any oriented surface x: M — S* without
umbilic point defines a Mobius surface 1 = Lo(x, n): M — A. Conversely
we have

THEOREM 2.6. Any Mébius surface 2:M — /A is defined in this way
by an oriented surface x : M — S°.

To prove this theorem we need the following proposition:

ProprosiTION 2.7. Let (a, b) be the curvature sphere representation for
a Mébius surface 2 and (E,, E;) its unit curvature vector. Then we have
the following product table:
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G0 a b Efa) E\(b)
a 0 0 0 0

(2.4) b 0 0 0 0
Ey(a) 0 0 1 0
E(b) 0 0 0 1

Proof. By (1.5) and (1.7) we have

(2.5) [Ei(a)], [Ex(b)] € span(a, b) .

Thus (1.6) and (2.5) imply

(2.6) (E(a), by = — {a, E(b)y =0, i=12.

To prove Proposition 2.7 it suffices to show that (E(b), E,(a)) = 0. Let
f, g be the smooth functions on M such that E E, — E,E, = [E,, E,] = fE,
+ gE,, then we get from (2.5) that

2.7 E Efa) = Ca+ Cb+ C'Eya), C,C,6C"eC(M).
Thus we have (E(b), EXa)) = — (b, E, EXa)) = 0. Q.E.D.

The proof of Theorem 2.6. Let (a, b) and (E,, E,) be as in Proposition
2.7. Let (0,0, be the dual basis for (E, E,). We write L 'o2 = (x, n),
a=(a,k,1) and b = (b, h,1). Then we have

—b ka — hb
2.8 1,00=9%—9 ,1,0) = @ — "o
(28) (1,0 =2=",  (n10="=]

From (2.4) and (2.8) we know that x, n: M — S?% dx-n =0 and

1

2.9) (dx,0,0) = ‘b
(2.9 (dx,0,0) =wa+ o +k—h

(— E(b)0, + Eya)b), o,0 €T*M.

Now if Ve T,M such that dx(V) =0, we get from (2.9) and (2.4) that
0(V)=0,(V)=0. Thus V=0. So x: M- S*is an immersion. Q.E.D.

COROLLARY 2.8. The Mobbius geometry of immersed surfaces without
umbilic point in S* is equivalent by the Lie diffeomorphism to the geometry
of Mobius surfaces in A under the Mobius transformation group MG, for A.

§3. Mobius invariants for Mébius surfaces

In this section we give the Mobius invariant system for Mdobius sur-
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faces and the relations among these invariants.

Let 2: M — /A be a Mébius surface, (a, b) the curvature sphere rep-
resentation of 1 and (&, E;) its unit curvature vector. Let (6,,6;) be the
dual basis for (E,, E,). We know by Proposition 2.5 that (a, b), (E, E,)
mod(41) and (#,,6;) mod(+1) are Mo6bius invariants. In particular we
have the Mobius invariant metric

(3.1) ds = (da, da) + (db, db) = 6 + 6

on M. It is the so-called Mobius metric, whose volume functional is 4
times the Willmore functional in S®.
The other two important Mobius invariants are the functions

(3.2) b = (E,Efa), E:E(a)y , ¥ = (E E\(b), EE(0)) .

We will show that @ + ¥ =1 and (E, E,, ®) forms a complete Mo6bius
invariant system for Mobius surfaces.

First we come to list the relations among the Mobius invariants
E, E, O, V. Let f, g be smooth functions on M such that

(3.3) d0| = f01 /\ 02 N d02 = g01 /\ 02 .

We denote u, = E(u), i = 1,2. Then du = 2,u,0,. By exterior differential
we get

(3.4) Up = Uy + fUuy + gUy .

From (2.5) and the fact p(a) = p(b) = 1 we know that

(3.5) a, = Sa — Sb, bp=—Ta+ TD

for some smooth functions S and T on M. Thus (3.4) and (3.5) imply

(86) ay=(S+ ST —fS)a— (S, + ST —fS)b + (S — g)a,

It follows from (2.4) that f = — T and g = S. Therefore, (3.3)~(3.7) can
be simplified as

3.3y dé, = — T6; \6,, db,= S6;, \6,.

(3.4 Uy = Uy — Tu, + Su,, ie., [E, E,) = TE, — SE,.
3.6y @y = (S; + 28T)a — (S, + 2ST)b.

3.7 by = — (T, + 2ST)a + (T, + 2ST)b.

From (3.4 we know that S, T' are determined by (&, E,) .
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Now we define
1 1
(3.8) Cc = (122 + E@a s d = b” + —Ewb 5
where @ and ¥ are defined by (3.2). Using (3.4), (3.6) and (3.5) we obtain
B9 ¢ = am+ ~ba+ ~da,
2 2
=ty + Tay — Say + -;—@,a + %(D(Sa — Sb)
- (sm + 4S,T + 28T, + 4ST* + BS + é—@l)a
- (sn + 4S,T + 28T, + 4ST* + -;—(DS)b + (S, + 28T)a, — Sc.

Similarly from (3.4), (3.7Y and (3.5) we get
(310) dy= — (T“ + 28T + 4ST, + 48°T + %WT)a

+ (Tn + 28,7 + 4ST, + 4S°T + T + —;—Uf)b

+ (T, + 28T)b, — Td.
Since by (3.8) we have

(3.11) (e, 0) = d,d)=0, (e, a) = <d7 by = —1,
{e,ay =4d, by =0, {c,b)={(d,a) =0,

so (2.4), (3.9) and (3.10) imply that

(3.12) Sy, + 4S,T + 2ST, + 4ST* + @S + %a}l =0,

(3.13) T+ 4ST, + 28T + 4S'T + UT + — ¥, = 0.

They are two relations among the Mébius invariants (E,, E,, @, ¥), Thus

(3.9) and (3.10) become

(3.9Y 0, = _;—(@S + )b + (S, + 28T)a, — Sc,

(3.10) d, = %(WT + U)a + (T, + 28T)b, — Td .
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It follows that {c, d) = {c, b,,) = ({c, b)), — {c;, b)) = — (a,, b)), = 0.
Thus from (2.4) and (3.11) we obtain the following product table:

D a b a, b, c d

a 0 0 0 0 -1 0

b 0 0 0 0 0 -1

(3.14) a, 0 0 1 0 0 0
b, 0 0 0 1 0 0

¢ | -1 0 0 0 0 0

0 -1 0 0 0 0

A basis (a, b, a,, by, ¢, d) for R® satisfying this product table is called
skew Lie basis. A Lie basis for R°® is a basis (e, e, ---,¢,) such that
the matrix

I 0 0
(3.15) (e epheiyjes = L = (O —1 O) .
0 0 —1
ProprosiTioN 3.1. Let (a, b, a,, b, c,d) and (a/, b, a;, b], ¢/, d’) be two
skew Lie basis for R°. Then there exists unique A e O(4,2) such that
(@, b, a, b, c,d) = (ad, bA, a,A, bjA, cA, dA).

ProposiTION 3.2. A basis (a, b, a,, b, ¢, d) for R® is a skew Lie basis

if and only if (71.2_—@ — ), (b — d), e, b, %(a + o), %(b +a)
is a Lie basis.
e,]
ProposiTION 3.3. (e, e, ---,e,) is a Lie basis if and only if eng €
€

04, 2).
ProprosiTioN 34. Ae0(4,?2) if and only if ‘A e O4, 2).

The proof of these propositions is left to the reader. For any
Mobius surface 1: M — A4 (or equivalently immersed surface x: M — S?)
we have defined a moving skew Lie frame (a, b, a,, b, ¢, d) in R® along M.
Thus

1

(L _ 1 1
<e1,e2,-~-,e6>-(ﬁ<a 9, g (b @,az,b,,ﬁmw),ﬁ(wd))
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is a Lie frame along M. By Propositions 3.3 and 3.4 we know that

ey e
e, e .

A=| .| :M—->04,2) and ‘A= : :M— 04, 2). Since p(a)=p(b)=1,
e; e

p(o) = é@ and p(d) = %w (see (3.8)), then ef = (p(e), p(ey), - -, pley) =

(75052 5 (- 5r)o0 50+ 3o) (1 57))

Thus from {e¥, ef> = — 1 we obtain
(3.16) O+ U =1.

Now we compare the Mobius invariants for the immersed surface
x:M— S* with the euclidean invariants. Let %k, A be the two principal
curvatures for x corresponding to the unit curvature vector fields e, e,
respectively. We denote by u, the directional derivative e;(u) and dx?® the
induced euclidean metric for x. Then we have

{ .1 1 == __;e_lﬁf , E = ._‘Ezi,,, ;
(817) k—h T k—h
(3.18) ds* = (k — h)*dx* ;
3 h
319) S=_"~ - M .
(3.19) (k — h): (B — h)
h? k2 R+ 1 2 k. )
3.20) @ = 2 2 (kY
(3:20) (k—h)‘+(k—h)‘+(k—h)2 (k—h)2<k—hz’

(321) U=

R K K41 2 [ h
(k—hy+(k—h)”L(k—h)2+(k—h)2\k_h>1'

Let V be the area functional with respect to the Mobius metric.
The critical points of V are called the Mobius minimal surfaces or the
Willmore surfaces, which can be defined by the Euler-Lagrange equation

(8.22) 28, — T)) +4(8*—-TH+1-20=0,

where S, = E,(S) and T, = Ey(T). We will see in the last section that
the Clifford torus is the Mobius minimal surface corresponding to the
Moébius invariants S = T = 0 and @ = 1/2.

§4. Fundamental theorems for the Mdbius surfaces

For any Mobius surface we have defined in §3 a moving skew Lie
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frame (a, b, a,, b, ¢, d) along the surface. In this section we use the theory
of Partial Differential Equations (PDE) to establish the fundamental

theorems for Mébius surfaces. For this purpose we need to calculate the
differentials of (a, b, a,, b, ¢, d).
By (3.14) we know that for any u : M — R°® we have the formula

4.1) u=— {u,cya— {u,d b + {u, a,ya, + {u, b,>b, — {u, ayc — {u, b)d.
Using (3.14), (3.10), (3.7) and (3.5) we obtain

(ney =0, {epdy = — (c,dyy = %(wm 7)),

{Cy ) = — L&, Q) = — é—q), ey, bx> = — (¢, b12> = — (T, + 28T),

(Cay = — (¢ a) =0, {&,b)y=—{c,bpy=~-T,
which imply that

(4.2) = — _;.(ar:r +Tb — %Q)az — (T, + 28ST)b, + Td.
Similarly from (3.14), (3.9), (3.6) and (3.5) we get
(4.3) d, = — %(@S + @)a — (S, + 28T)a, — %Wbl + Se.

So we have the following structure equations for the Mobius surface
A:M—A:

E(a) = Sa — Sb, Eya) = a,,
E®) =b,, E(b)= — Ta+ Tb,

E(a) = (S, + 28T)a — (S, + 2ST)b, Eya) = ¢ — %m,
E®)=d— %(1 — @b, E(b)= — (T, + 28T)a + (T, + 28T)b,
44) (E() = %(@s + @)b + (S, + 28T)a, — Sc,

E) = ——%(T— OT — G)b — _;_q)az — (T, + 28T)b, + Td,

E(d) = — %(@S + @)a — (S, + 2ST)a, — —;—a — ®)b, + Sc,

E(d) = %-(T — 0T — &)a + (T, + 2ST)b, — Td,



SURFACES IN MOBIUS GEOMETRY 65

where S, T' are defined by
(4.5) [E, E,) = TE, — SE,.
Therefore, the structure equations (4.4) is completely determined by the

Msébius invariants (E,, E,, @). By (3.12), (3.13) and (3.16) we have the
following relations among (E,, E,, 9):

(4.6) S, + 48,T + 28T, + 4ST* + &S + —;_da =0,
4.7 T, + 4ST, + 28,T + 48T + (1 — O)T — _; 0, —0.

ProPOSITION 4.1. (4.6) and (4.7) are exactly the integrability conditions
for PDE (4.4).

Proof. As well-known the integrability conditions for (4.4) are given
by the equations

(4.8 E E(x') = E,E(x') + TE\(x") — SE(x"), 1<i<6,

(cf. (4.5)), where (x!, &%, - -+, x°) = (a, b, @y, b, ¢, d). It is straightforward to
check from (4.4) that (4.8) is equivalent to (4.6) and (4.7). Q.E.D.

Now let M be a simply connected surface, (E,, E,) a basis for TM,
(S, T) the smooth functions defined by (4.5) and @ € C~(M).

DrriNiTION 4.2. (E,, E,, @) is called a Mobius invariant system on M
if it satisfies (4.6) and (4.7). We denote by Y(M) the space of all Md&bius
invariant systems on M.

For any y = (E, E,, ®) € Y(M) we can define by (4.4) a linear PDE
system. By the basic theory of PDE we know that given any point
meM and I= (x,x}, ---,x5), x5e R®, there exists the unique solution
(a, b) (or equivalently (a, b, a,, by, ¢, d)) for the PDE (4.4) with respect to
y such that

(4.9) (a, b, a,, b, c,d)y(m) = 1.
This solution is global because M is simply connected.

ProposririoN 4.3. If I = (x}) = (x5, 2%, - - -, x8) is a skew Lie basis for
RS, then the solution (a, b, a,, b,, ¢, d) is a moving skew Lie frame along M.

Proof. We denote (x*) = (x', &% - -+, 5% = (a, b, a3, b, ¢, d). Using (4.4)
we can obtain a linear PDE for <(«%, «’), 1< i, j <6, by calculating
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E({x%, x7y) and E,({x*, x7)). It is straightforward to check that this PDE
is also satisfied by («i, x{> if I = (x}) is a skew Lie basis (cf. (3.14)). Since
{xt, 275 (m) = (i, x§>, by the uniqueness theorem of linear PDE we know
that (&f, x'> = (i, x{>, i.e., (e, b, a, by, c,d) is a moving skew Lie frame

along M. Q.E.D.

In particular, we have {a, a) = {(a, by = <b,b) = 0 and {da, b) = C.
We define 2,(m, I) = span(a, b) : M — 4. One can easily see that 2,(m, I)
is a Legendre surface. But in general it is not a Mobius surface. In
order to obtain by this way a Mobius surface we have to put more
restriction on the initial value (m, I).

DErFINITION 4.4. Let y = (E,, E,, ®) ¢ Y(M). A pair (m,I) is called a
Mébius initial value of y if me M and I = (x}) is a skew Lie basis for R®
such that

4.10) p(I) = (p(d), p(x)), - - -, p(ad)) = (1, 1,0,0, —é—@(m), %(1 - @(m») .

ProprosiTION 4.5. For any y<c Y(M) there exists Mébius initial values.

Proof. Let me M, we define

£ = (= 3o (3 + Jompoo

i Jom) (3 - Joum)

then (ef,ef> = — 1. We can extend e} to a Lie basis (ef, ef, - - -, ef) for

ef e,
. ef e,
R’. Since A= | . |eO42), then ‘A= | . |e04 2 and e = (ple),
. |
Led Le
p(eZ)7 Tty P(es))- We define

I= (—J%(e, + ), %(92 + e, e, ey %(65 —e), 7%(66 - ez)) ,

then I is a skew Lie basis such that (4.10) holds. Thus (m,I) is a
Moébius initial value of y. Q.E.D.

ProposiTioN 4.6. If (m,I) and (m,I') are two Mobius initial values
of ye Y(M), then there exists a Mébius transformation Be MG, such that
IB =TI, where I = (x', 2% ---,x% and IB = (x'B, x'B, - - -, x*B).
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Proof. Since I and I’ are skew Lie basis, we can find Be O(4, 2)
such that IB = I'. We write ' = (x}, p(x%)),1<i<6, and B = (‘2 ;’))
weR. By (4.10) we have p(I) = P(I’) = P(IB), which implies that x{.-v
+(w—-Dplx') =0, 1<i<6. But I=(x',%%---,%% is a basis for RS
we know that v =0 and w = 1. Then u = 0 follows from the fact that
Be 0(4,2), so we have Be MG,. Q.E.D.

Now we can state the fundamental theorems for Moébius surfaces in 4.

THEOREM 4.7. Let y=(E,, E,, ®) ¢ Y(M) be any Mébius invariant system
on M. Let (a, b) be the solution of (4.4) defined by y and a Mobius initial
value (m,I) of y. Then 2,(m,I) = span(a, b): M — /A is a Mébius surface
with (a, b) as its curvature sphere representation, (E,, E,) as its unit curvature
vector and @ the Mébius invariant for A,(m, I) defined by (3.2).

TuEOREM 4.8. The Mébius equivalent class 1, of 1,(m, I) is independent
of the choices of the Mébius initial value (m, I) of y.

CoroLLARY 4.9. (E, E,, @) is a complete Mébius invariant system for
the Mobius surfaces in A (umbilic-point-free immersed surfaces in S°). These
invariants are related by (4.6) and (4.7).

The proof of Theorem 4.7. From (4.4) we have [E,(a)] € span(a, b) and
[E,(b)] € span(ae, b), and by Proposition 4.3 we have {(a,, a,) = (b, b)) = 1.
So to prove the theorem it suffices to show that p(a) = p(b) = 1. Since
(a, b, a,, by, c, d) is the solution for PDE (4.4) with respect to y and (m, I),
then (p(a), p(b), p(a,), p(b)), p(c), p(d)) is the solution for PDE (4.4) with
the initial value (m, p(I)). But we can directly verify from (4.4) that
<1, 1,0,0, %(D, —;—(1 — (D)) is also the solution of (4.4) with the same initial
value (m, p(I)) (cf. (4.10)). By the uniqueness theorem of linear PDE
system we have

(411 (p(@), p(B), p(a), ), p(@), p@) = (1,1,0,0, S0+ - 0),

in particular, p(a) = p(b) = 1. Q.E.D.

The proof of Theorem 4.8. We have to show that if (m’, I') is another
Mobius initial value of y, then 2,(m’, I’) is Md&bius equivalent to 2,(m, I).
Let (a/, b’) be the solution of (4.4) with respect to y and (m’, I’), then by
the same reason as (4.11) we have (p(a’), p(¥'), p(ay), p(b), p(c), p(d’)) =
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(1, 1,0, O,%Q, —é(l — @)). Thus the Mobius initial value (m, I*) of y,

where I* = (p(@), p(¥), p(a3), p(B), p(c), p(d))(m), satisfies 2,(m’, I’) =
span(e’, b’) = a,(m, I*). By Proposition 4.6 we can find B e MG, such that
IB = I*. Thus (¢/, ¥) and (aB, bB) are two solutions for (4.4) with the
same initial value (m,I*) = (m,IB). Therefore (a’, b’) = (aB, bB) and
A,(m, I*) = span(a’, b’) = span(aB, bB) = Bo1,(m, I). Q.E.D.

Let M6(M) denote the set of Mobius equivalent classes of all Moébius
surfaces from M to 4 (or S°). By Theorems 4.7 and 4.8 we have a sur-
jective mapping A: Y(M) — M6(M) defined by A(y) = 4,.

ProrositioN 4.10. Let y = (E, E,, ®) € Y(M). Then (i) y* = (&E,, ,E,,
D) e YM), ¢, = £ 1; (1) ety = (ex'Ey, ex'Fy, Doe) e Y(M) for any diffeomor-
phism e: M — M; (iii) ¢(y) = (E,, E,, 1 — ®) e Y(M).

. This proposition follows immediately from (4.6) and (4.7). Now we
introduce a relation = on Y(M) by letting (E,, E,, @) = (E;, E;, @) if there
exists a diffeomorphism e : M — M such that (E{, E;, @) = (e,e3'E,, eye3'E,,
Doe), e, = = 1. It is clear that = is an equivalent relation in Y(M).

THEOREM 4.11. A(¥)=2A(¥) in M6(M) if and only if ¥ =y or y = «(y)
in Y(M).

Proof. Let (a, b) be the solution for (4.4) with respect to y and its
Mbébius initial value (m, I) = (m, xf). Then (a, b) (resp. (ace, boe); (b, a)) is
the solution for (4.4) with respect to y* (resp. e*y; e(y)) and its M&bius ini-
tial value (m, I*) (resp. (e~'(m), I); (m, e(I))), where I* = (x3, x2, &, %5, &, X3, X5, x3)
and e(I) = (x2, x5, x¢, x5, % a2) (cf. Proposition 4.10). Thus we have A(m, I*)
= span(a, b) = 2,(m, I), A.,(e'(m),I) = span(ace,boe) = 2,(m,I[)ce and
Aeiy(m, e(I)) = span(b, a) = span(a, b) = 2,(m, I). Therefore, 1(y) = 2(y’) if
¥y =y or y =e(y). Conversely, if y = (E, E,, ®) and y = (E, E;,?) in
Y(M) such that A(y) = A(y’), then we have a Mobius equivalence (e, A)
with Ao2,(m,I) = 2,(m’,I')ce, where (m,I) and (m/,I’) is the Mobius
initial value of y and y respectively. Let (a, b) (resp. (a’, b)) be the
solution for (4.4) with respect to ¥ and (m, I) (resp. y’ and (m/, I’)). Since
both (¢/, b') and (aoe™'A, boe'A) are the curvature sphere representation
for 2,(m’, I'), we have either (i) (¢, b') = (ace'A, boe 'A) or (i) (¥, o)
= (aoe'A,boe’A). As (Ei,E)) and (e, E, e,E;,) are the unit curvature
vector for 2,{(m’,I’), Case (i) implies (Ej, E}) = (se4E), se.E,), ¢ = + 1
and @’ oe = @; Case (ii) implies (E;, E)) = (e,eE,, e Ey) and @’oe =1 — @
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(cf. (8.2)). Thus ¥’ =y or y'= &(y). Q.E.D.

We know from Theorem 4.11 that 1: Y(M)— IM6(M), induces a
mapping 1: Y(M)/= — Mo6(M), which is a 2-sheet covering with the
nontrivial covering transformation ¢ induced by (iii) of Proposition 4.10.

§ 5. Classification of Dupin surfaces in E® under the conformal
transformation group

A surface M in S® or E*® is called a Dupin surface if each principal
curvature of M is constant along its curvature leaves. As well known,
the only Dupin surface in E® are spheres, planes and the so-called cyclides
of Dupin.

The cyclides of Dupin are described in the book of Cecil and Ryan
([4], p. 151-166). These descriptions depend on the classical theorem: two
focal surfaces for Dupin surfaces without umbilic point in E* are a pair
of focal conics defined by Eisenhart ([5], p. 226).

Since Dupin surfaces are Mobius invariant, we can use the techniques
in Mobius geometry to classify them under the Mobius transformation
group. Let x: M —S°® be a surface without umbilic point. We may
assume the M is simply connected. As in §2 we identify x with the
Mobius surface 1 = Lo(x,n) : M— A. From (3.19), (4.6) and (4.7) we have

ProposiTION 5.1. x is a Dupin surface if and only if its Mébius
invariant system (E,, E,, @) satisfies [E,, E,] = 0 and ® = constant.

Thus for any Dupin surface x we can find a global coordinates (u, v)
for M defined on a domain of R* such that E, = 3/ou, E, = 8/6v. So
A:M— /A is a part of the Mobius surface 1:R*— 4 with the Mobius
invariant system (9/0u, d/ov, @) with @ = constant.

ProrosiTioN 5.2. 1(3/9u, d0/ov, ®) = 2(8/ou, d/ov, @) in MO(RY if and
only if 9 =1— @',

The proof is left to the reader. Thus there is a 1-1 correspondence
between the Mobius equivalent classes of Dupin surfaces and the real
numbers 1/2 < @ < + co. Now we come to determine (@) = 1(3/du, d/ov, D).
Since S = T = 0 and @ = constant, by (4.4) we have

GRY da _ 3b _,,
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2 1 b 1
5.2 98¢ _ ¢ ZQaqa, 99 =d — =1 — D)b;
(52) ov? ¢ 2 @ ou’ 2( )
(5.3) 9 _ _lgda  ad 1,4 g3b
ov 2 ov ou 2 ou

Thus a is a function of v and b is a function of u satisfying

Fa  poa _o  Tb g _ g0 _g,
o’ ou

5.4 adhed
6.4) ov® v

Furthermore, our solution (a, b) should satisfy
(56.5) {a,a) = {a,b) = (b, b) =0, {da, by = 0.

From these equations we can easily obtain an adapted solution (a, b) in
the following three cases:

Case 1. -;%gq)< 1.

a= (0, 0, V%COS(«/EU), Jlasin(Jav), \/ L;_"Z, 1),

b= (—— 7 11—4’1) cos(v1—0u), —

I o
.y _ -2 4).
Wi sin(v'1—®u), 0, 0, \/1__@, 1)

Then by (2.8) we obtain the Dupin surface x: R*— S*

(5.6) x = (v ®cos(v/1 — Qu), ¥ Dsin(v/1 — du),
V1 =@cos(v ®v), V1 — @sin(v Ov)).
The image x(R?) is the isoparametric torus in S°. The Clifford torus is

the torus with @ = 1/2. By the stereographic projection from (0, 0,0, 1)
€ §® we get the revolution torus in E® (see Figure 1):

- 1 D 1=0
5.7 x = T VT 0sn/39) (W @ cos(v'1 — Qu),

v @sin(v'1 — du), v/1 — @ cos(v Dv)).
Case II. & =1. a = (cosv,sinv, 0, —1,1,1),

b= (0,0, —u,tw—9, L 1).
2 2

We get the Dupin surface x : R* — S?,

1 .
5.8 x=——(2cosv, 2sinv, 2u, — u’).
(5.8) ol )
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The image of x(R? under the stereographic projection from (0, 0,0, 1) of
S? is the circular cylinder in E*® (see Figure 2)

(5.9) x = (cosv, sinv, u).

Case III. 1< O < + oo

— o —
a= (N/f, cos(v @ v), 7 sin(v @ v), \/ 0, 0, 1) ,
1 1 L

b= (O 0, \/Q) o ‘/(‘D_—rsmh Wo—1u), — W«fcosh WO—1u), 1) .

We obtain the Dupin surface x: R*— S,
B 1 &—1 .
(5.10) = JT—Tu) (\/ cos(v D),
@ sm(«/ o v), ‘/,, sinh (v ‘@W—ilfu)) .

The image of x(R? under the stereographic projection from (0, 0, 0, 1) of
S® is the circular cone in E® (see Figure 3)

(5.11) x = exp(—«/@ju)< QTQ—)_f cos(v/ D v), \/@;1 sin(v @ v), %) .

1 : ‘ ;
R = == = —_—
VK 0 grctg(«/ o —1)
Fig. 1. Fig. 2. Fig. 3
We note that the surfaces in Figures 1, 2 and 3 are complete with respect
to its MoObius metric.
Thus we have the following classification theorem:

THEOREM 5.3. Let M be a Dupin surfacz in E*. Then up to conformal
transformations in E* it is a part of a revolution tcrus, a circular cylinder
or a circular cone.
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