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DISTRIBUTIONS OF STABLE RANDOM FIELDS
OF CHENTSOV TYPE

YUMIKO SATO

§1. Introduction

In this paper we discuss the determinism of distributions of some
stable random fields which are constructed through integral-geometric
method. The determinism depends on the dimension of the parameter
space R°.

We say that a family of random variables {X(?); t € R’} is a symmetric
a-stable (abbreviated to S«S) random field on R* if every finite linear
combination > 7., a,X(t,) has a symmetric stable distribution of index «.
Let (E, 4, 1) be a measure space. We say that a family of random vari-
ables {Y(B); Be #, n(B) < oo} is the SaS random measure corresponding
to (E, Z, w) if (1) E(exp[izY(B)]) = exp(— p(B)|z|"), for ze R and px(B) < oo,
(i1) Y(B)), Y(B,), - - - are independent whenever B,, B,, - - - are disjoint and
pB) < oo, j=1,2,..-, (i) Y(,2, B)) = > 7., Y(B;) a.s. whenever B,, B,,

- are disjoint and x(J5., B;) < oo.

We define a class of SaS random fields with a particular choice of E.
Let E, be the set of all (d — 1)-dimensional spheres in R?. Any element
of E, is expressed by a coordinate system (r, x), where (r, x) corresponds to
the sphere with radius re R, = (0, ) and center x € R*. Thus we make
the identification

(1.1) E,={(r,x);r e R,,x € R}.

For te R?, let s, be the set of all spheres which separate the point ¢ and
the origin O, namely

(1.2) S, = {(r, x); d(x, O) < r}A{(r, x);d(r, x) < 1},

where A A B denotes the symmetric difference of A and B and d(a, b)
denotes the Euclidean distance between a and b. Let %, be the g-algebra
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of Borel sets in E,. Given a measure g on (E, %,) such that
1.3 2(8S) < o0 for all ¢t € R%,

we define an SaS random field by

(1.4) Xt = Y(S), t e R,

using the SaS random measure {Y(B)} corresponding to (E,, %, p). We
call this {X(¢)} SaS random field of Chentsov type on R* associated with p.
Such a random field is viewed as an extension of N.N. Chentsov’s
representation Y(S)) of Lévy’s Brownian motion of R¢-parameter. The
Y(S;) is defined by Chentsov through Gaussian random measure Y as-
sociated with a measure on the space E’ of all hyperplanes of co-dimension
1 in R? and the defining set S; is the set of all hyperplanes which sepa-
rate ¢ and the origin O, [1], [8]. S. Takenaka, [7], applied this idea to
stable case. Using E, in place of E’, he proves that if dy,(r, x) = r’-*-'drdx,
0< g <1, then the Chentsov type SaS random field X, ,(t) associated
with (Ey, p;) is self-similar with exponent H = p/a. For d =1, {X, 49}
presents a new example of SaS, H-self-similar process with stationary
increments in the area of « and H where no examples were known before.
The distributions of a Chentsov type SaS random field on R?¢ have
a characteristic property which depends on the dimension d of the param-
eters. We do not assume any condition other than (1.3) for the associated
measure. The aim of this paper is to prove the following theorem.

THEOREM 1. Let 0< a < 2. Let u be a measure on (E,, %#,) satisfying
(1.3) and let {X(t); t e R*} be the SaS random field of Chentsov type on R*
associated with yu. Then, for any n > d + 1 and for any distinct t,, - - -, t,
e R, the distribution (X(t,), - - -, X(t,)) is determined by its (d + 1)-dimen-
sional marginal distributions.

CoroLLARY. Let 0 < a < 2. Let u and ji be measures on (Ey, %,) satis-
fyving (1.3). Let {X(?);teR*} and {X(®); te R*} be the SaS random fields
of Chentsov type associated with p and f, respectively. If the (d + 1)-
dimensional distributions of {X(8)} and {X(#)} coincide, then {X(t)} and (X))
are equivalent, that is, the finite-dimensional distributions of {X(¢)} and
{X(®)} coincide.

Remark 1. The number d 4+ 1 in Theorem 1 is best possible in the
following sense. There are two Chentsov type random fields {X(¢)} and
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{X’ (t)} associated with x and j, respectively, such that, for some T =
(t, - -, ts,1), the d-dimensional marginal distributions of (X(¢), - - -, X(¢;..)
and (X(z), - - -, X(¢4.,)) coincide but their (d + 1)-dimensional distributions
are different. (see Example 4.2)

Remark 2. If we take E’ and S/ instead of E, and S, and define
X'() = Y(S) for t ¢ R%,

where Y is an SaS random measure with 0 <« < 2 associated with a
measure y' on E’ satisfying p/(S)), < oo, then we have determinism by
d-dimensional marginal distributions instead of determinism by (d 4+ 1)-
dimensional marginal distributions in Theorem 1. Namely, for any n > d
and any distinct &, ---, %, e R?, the distribution of (X'(t), ---, X’(¢,)) is
determined by its d-dimensional marginal distributions. This fact can be
proved by a similar method as Theorem 1.

Theorem 1 will be reduced to a geometric theorem concerning an
intersection property of a family of cones in R, X R%. The proof of this
geometric theorem is an essential part of our argument. For ic R?, set

(1.5) C. ={rx);dx)=r}.

Then, C, is a right cone in R, X R* with vertex (0,7). Note that the
point (0, #) is not included in the space R, X R? Hereafter we simply
call C, the cone with vertex f#. The relation

St = CoACt

shows that, instead of S,’s, we may study C,’s. Given m cones C,, ---,C, ,
we consider the partition of the set | J7,; C,, generated by {C,,, i = 1, ..., m}.
Now set

16 &,=1{e=1(e, - ,e,);e,=00r1fori=1,...,mph{O,---,0)}.
We call ee &, a label of size m and &,, the label set. With the notation
Ci=C, and C)= C;= (R, X R)\C,,

we define
k) C(T,e) = () Cyt
i=1

for T=(@, - -, t)eR)Y" and e= (e, --+,e,)e&,. Then C(T, e), ecé,,
are disjoint sets and
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(18) iQQ:k#aﬂ@.
For e = (e, - -+, e,) € &,, the complementary label e* of e is defined by
e* = (ef,-..,e¥), e +ef=1 for any i.
TuEOREM 2. If m =d + 3, then, for any T = (4, - - -, t,) € (RY)™, there

exists a label ec &, such that C(T,e) = @ and C(T,e*) = @.

In §2 we reduce Theorem 1 to Theorem 2, which is proved in § 3 after
a series of lemmas. Concluding remarks are given in §4. The particular
cases d = 1 and 2 of Theorem 1 have been treated in the author’s paper
[4], [5]. Determinism under different defining sets in one-dimensional case
will be discussed in a joint paper with S. Takenaka [6].

§2. Reduction of Theorem 1 to Theorem 2

Let 0<a<2 Let p be a measure on (E, %4,) satisfying (1.3) and
let {X(?); t € R%} be the SaS random field of Chentsov type on R* associated
with p. For teR*® let S, be the set defined by (1.2). For T'= (¢, - - -, ¢,)

e (Rd)u and ¢ = (e, - - -, e,) € &,, we write
2.1 ’ Ser — Slk if e =1
(.) tk—{Sf’c ifekzo
2.2) Goo . [Sue if e =1
@. “7 IR, xR* ife =0
2.3) S(T,¢) = () S
k=1
(2.4) 810 =\ Sz.
k=1

S(T, e) is an element (labelled with e) of the partition of the set (J7_, S,
generated by {S,; k=1, -.,nkL

DEerFiNITION 2.1. We say that T'= (¢, - - -, t,) € (R%)" satisfies Condition
(D) if there exists a label ec &, such that S(T,e) = @.

Remark. Suppose that T = (¢, ---,t,) satisfies Condition (I). Then
T = (b, -y ty tysrs -+ 5 L) satisfies Condition (I) for any ¢,,,, - -+, £, e R%
In fact, suppose that S(T,e) = @ for e= (e, ---,e,)e&,. If we take a
label ¢ = (&, - - -, é,) such that é, = e, ---,&, = e,, then S(T",&) = ©&.

LEmmaA 2.2. Lett, ---,t, be different points in R, If T=(t, ---,¢,)
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satisfies Condition (I), then the distribution of X, = (X(t), ---, X(¢,)) is
determined by the system of (n — 1)-dimensional marginal distributions of
XT'

Proof. The characteristic function of X, is written, for z = (z,, - - -, 2,)

e R?, as
02(2) = E exp {z kz: 2 Y(Slk)}
— Eexp {z Sz X Y(S(T, e))}
(2.5) = E exp {z (Z_] zk) Y(S(T, e))}
—exp{— 3 |3 ez | W(S(T o).
= exp{— 3] |&(e)- 2| ($e)*n(S(T, e))} ,
where e = (e, - -+, e,), e = > 7, e, and
(2.6) &(e) = (1/(4e)e.

On the other hand it is known that the characteristic function of an
n-dimensional SaS distribution, 0 < « < 2, has the following unique ca-
nonical representation:

@7 0@ =exp{—c[ |e2rade},

where ¢ > 0 and 1 is a symmetric probability measure on the unit sphere
S7-t [2]. Comparing the last expression of (2.5) to (2.7 and noticing
that &(e) of (2.6) belongs to S™! for any e, we see that the last expression
of (2.5) gives the canonical form of ¢,(2). So, we see that ¢,(2) is de-
termined by the values of x(S(T, e)), ec &,, and that, conversely, p(S(T, e)),
ee&,, are determined by ¢,(2).

Since p is a measure, the following consistency condition holds:

(2.8) #(S(T,e)) = S u(S(T,¢)) for each ecé&,,
e'cen’(e)

where, for e = (e, - - -, e,) € &,, &i(e) is the subset of &, defined by

(2'9) éa;(e): {el=(e{, "'?e;);e;gek for k = 1, "'rn}-

Since the number of the elements of &, is 2" — 1, (2.8) consists of 2 — 1
equations. But one of them, that is, the case e = (1, -+, 1), is a trivial
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equation. So we consider
(2.10) ST u(S(T, ) = n(S(T,e))  for ee &\, - - -, 1)}

e’cen’(e)
as a system of 2" — 2 simultaneous linear equations in which the un-
knowns are the values of p(S(T, e)), e€ &,, (the number of them is 2 — 1)
and the given right-hand sides are the values of p(g(T, e), ec &, \{(, ---, D}
These right-hand sides are determined by the (n — 1)-dimensional marginal
distributions of X,. We write the matrix representation of the system
(2.10) as

(2.11) Mx =",

where M, is a (2" — 2) X (2" — 1)-matrix, whose components are 0 or 1.
Let M, (k) be the (2" — 2) X (2" — 2)-matrix obtained from M, by deleting
the k-th column. Then we can prove that

(2.12) M,(k) is invertible for any k=1, ...,2" — 1,

Proof of (2.12) will be given at the end of this section. By the assumption
that T satisfies Condition (I), there exists a label e such that S(T,e) = @&.
This implies p(S(7,e)) = 0 for the label e. So, the number of the un-
knowns is reduced to 2" — 2. Suppose that the p(S(T,e)) corresponding
to the label e is the k-th component of the column vector of the unknowns.
Then our system of simultaneous linear equations is equivalent to the
system having M, (k) as its coefficient matrix. By virtue of (2.12) the
system of equations has a unique solution. Thus, all the unknowns are
determined. O

Now we need to study the problem when T satisfies Condition (I).
Let T=(, ---,t)eR)" and e = (e, ---,e,)e&,. The set S(T,e) is
partitioned into two disjoint subsets:

(2.13) S(T,e) = {S(T,e) N C} U {S(T,e) N Cg},
where C, is the cone with vertex O.

Lemma 2.3. We have
2.14) S(T,e) N C, = C(T,e*) N Gy,
(2.15) S(T,e) N Cs= C(T,e) N Cg,

where e* is the complementary element of e.
Proof. We have
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S(Teyn €= (1)S%) N €= (85N .
If e, = 1, then
SeNC=8,NC,=(C,AC)NC,=C;,NC=CiNG.
If e, = 0, then
SiNC=8,NC=(C,AC)rNC=C,NC=CNC,.

Hence
AsEn e = ©Cnc)=(Acx)nc=cTenn .

This proves (2.14). The relation (2.15) is obtained more easily. |

Using Lemma 2.3 we can reduce Condition (I) to the following Con-
dition (II).

DeriNiTION 2.4. We say that T = (¢, ¢, - -, t,) € (RY)™ satisfies Con-
dition (II) if there exists a label ee &,, such that both C(T,e) = @ and
C(T, e*) = @ hold.

Lemma 25. T=(, ---,t,) ¢ (R)" satisfies Condition (I) if and only
if T=0,¢t,---, t,) € (RY)"*! satisfies Condition (II).

Proof. (i) Suppose that T = (¢, - -, t,) satisfies Condition (I). Let
e= (e, ---,e,) € &, be the label such that S(7T,e) = @. It follows from
(2.13) and Lemma 2.3 that C(T,e*) N C, = @ and C(T,e) N C;= @&. Put
é=1(0,¢e, --,e,) € &,,,. Then

C(T, e) N G = C(T, &%),
C(T,e) N C; = C(T,&).
Hence T satisfies Condition (II).

(ii) Suppose that T = (0, ¢, - - -, t,) satisfies Condition (II). Let é =
(e, €1, -+ -, €,) € &,., be the label such that C(T,8) = @ and C(T, &) = &.
Let e = (e, ---,e,). If ¢, =0, then ¢} = 1 and

@ = C(T,&) = C(T,e) N Cj,

@ = C(T’ é*) = C(T’ e*) ﬂ CO )
which implies S(T, e¢) = ¢ by (2.13) and Lemma 2.3. If ¢, = 1, then ef =
and, taking account of (e*)* = e, we have S(T,e*) = . In either case,
T=(, ---,t,) satisfies Condition (I). |
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Proof that Theorem 2 implies Theorem 1. We assume that Theorem 2
isvalid. Letn>d 4+ 1. Letg, ---,¢, be distinct points in R?. Theorem 2
combined with Lemma 2.5 tells us that T = (¢,, - - -, t,) satisfies Condition
(D). Hence, by Lemma 2.2 the distribution of X, is determined by its
(n — 1)-dimensional marginal distributions. Further, if n —1>d + 2,
then the (n — 1)-dimensional marginal distributions of X, are determined
by their (n — 2)-dimensional marginal distributions. Proceeding in this
way we see that the distributions of X, is determined by its (d + 1)-
dimensional marginal distributions. Theorem 1 is proved. |

Proof of (2.12). To write down the matrix M,, we introduce a linear
order among the element of &,. Let n(e) = > 7,2, for e = (e, - - -, e,).
We define e < ¢’ if n(e) < n(e’). This gives a linear order in &,. Thus
the first element is (1,0,0, -- -, 0) and the last element is (1, .-.,1). We

have
101
M, =
(07 1)

(101010 1)
0110011
0010001
0001111
0000101
000001 1)
Let N,=2"—1=2N,_, + 1. Then M, is a (N, — 1) X N,-matrix. It is
easy to see that

M3=

0 A
Mn_1 : Mn—l Nn—l -1
0
0 . -01/010 01
(2.16) M, = 0 0011 . 11
0
0 : Mn—l Nn—l -1
. 0
Ny — ~~—————
N, N,
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for n = 3. Let a; be the j-th column vector and a,; be the (i, j)-compo-
nent of M,. If we delete the last column in M,, then we get an upper
triangular matrix M,(N,) with diagonal elements 1. Hence

(2-17) Ay, c vy Ay, -1
are linearly independent. Now we claim the following.

(2.18) If C,all + czalz + e + anaNn - 0 With Ck = 0
for some k + N,, then ¢,, = 0.

Suppose that (2.18) is true. Then we see that M,(k) is invertible for
every k. Indeed, if & = N,, then M, (k) is invertible by (2.17). If &+ N,
then (2.17) and (2.18) show that the column vectors of M,(k) are linearly
independent.

It remains to prove the assertion (2.18). It suffices to show that the
relation

(2.19) ca, + Ga, + - +cyay, =0 with ¢y, =1
implies that
(2.20) ¢, #0 for k=1,...,N, — 1.

Note that, by (2.17), all of ¢, - - -, ¢y,_, are determined uniquely by (2.19).
Denote the row vector

Cp = (cla Coy ** vy CN,,) .

Using the column vectors of M,_, in place of those of M,, we get the
row vector c,_; in place of c¢,. Let

Cpq = (Tl; TZy Tty an_l) ) an_l =1.
We write (2.19) componentwise:
221) ¢y + o+ -+ ey, =0,i=1..-,N, —1 and ¢y, = 1.

Fori=N,_,+ 2, ...,N, — 1, the relation between M, and M,_, in (2.16)
shows that (2.21) implies

(222) (an__‘+2? tt cN,.) = (le Y TN,L_1) .
For i = N,_,, (2.21) reduces to cy,_, + ¢y, = 0 by virtue of (2.16). Hence

(2.23) ey, = —1.
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Fori=1,...,N,_, — 1, taking account of (2.16) and using (2.22) and (2.23),
we have

(2.24) (Cncyew ) =(=Ty, —=To s —Tw,))
It follows from (2.22) and (2.24) that

(2.25) Ca = (= Cacts Covyyins o) -

We have

(2.26) cG=(-1-11)

explicitly from M,. For i = N,_, + 1, (2.21) reduces to

Chpyt1 T Cypyyse+ =+ + Cy, = 0

by (2.16). Hence, noticing (2.22) and using (2.26) or (2.25) for n — 1 in
place of n, we get

1 for n =3
(2.27) Coporit = {

- TNn—2+l fOI' n g 4 .

Now, from (2.25) and (2.27) we see that each component of ¢, is 1 or — 1.
This proves (2.20). Od

§3. Proof of Theorem 2

We prepare lemmas.

Lemma 3.1. Let t,eRé i=1--,n+m. Let A=1{t, ---,t,} and
B = {tn+19 tt Yy tn+m}'

3.1 NC,cyUc,
tj€B

t; €4

if and only if

(3.2) max d(t;, x) = min d(t;, x) for any x ¢ R*.
ti€d tjEB

We denote the relation (3.1) by A < B. This means
(NCHIN(NC)=0.
ticd tj€B

Proof. Suppose (3.1). Let x e R°. Let r=max,,.,d(x,t). Then
d(x,t) < r for any t, € A, that is, (r, x) € (),;e4 C,,. Hence (r, x) € U,,e5 C,,
This means d(x,t,) < r for some ¢, B. Hence (3.2) holds. Conversely,
assume (3.2). Let (r,x) e (M. C,,- That means d(x, t,) < r for every ¢, € A.
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It follows from (3.2) that there exists ¢, such that d(¢,,x)<r. So,
(r,x) e C,,, a

LEmMmA 3.2, Let 1< k<d+ 1. Lett, -, t, and ty,y, -+, 1., in R®
be such that there is no hyperplane of co-dimension 1 containing t,, - - -, ty,

bty + vy Ly Suppose that there exist positive constants p,, ---,p, and
Q1>+ *s Gase SUCh that
k d+2
(3.3 2pi= 2, ¢=1,
i=1 j=k+1
k d+2
(3~4) Zpiti = Z (Ijtj'
t=1 Jj=k+1
Then at least one of the following holds:
k d+2
(3.5) NC.,c U C, (thatis A<B),
i=1 i=k+1
13 d+2
(3.6) UcC,> M C, (thatis A> B),
i=1 j=k+1
where A = {tl’ Tt tk} and B = {tk+1’ ) td+2}'

Proof. Let D be the (d — 1)-dimensional sphere on which the points
by oy by besrs - vy Bgyy lie. Without loss of generality, we assume that the
center of D is O= (0, ---,0)e R?. Let r be the radius of D. Suppose
that |¢;,,] < r. We will show that (3.5) holds. By Lemma 3.1 it is enough
to show that, for any xe RY,

3.7 max d(t,x) — min d{;,x) =0.
i=1 k d+2

i=1,e0e, J=k+1,000,

Taking account of (3.3) and (3.4) we have
k d+2
(3.8) min (¢, x) < Zpi(ti’ x) = Z qj(tj? %) £ max (tj, x)
G=1,000, k i=1 J=k+1 J=k+1,e00, a+2

where (x, y) denotes inner product of R®. Let i, and j, be the elements
which attain the minimum and the maximum in (3.8), respectively. Then

3.9 (tjy — by %) = 0.
On the other hand,

max {d(t, ¥} — min {d(, O}
k Ji=k d+2

G=1,000, +1,000,

(3.10) = {d(t;, X))} — {d(¢;,, 0}’
= {ltwl" + % — 2(4,, 0} — {185 [ + |2 — 2(2,,, %)}
= |4, — 185, + 2(t;, — b, %) -



130 YUMIKO SATO
(3.9) and the assumption |¢,| = r = |¢,,| impliy that the last term of (3.10)
is non-negative. So, (3.7) is proved.

Suppose that |¢;,,] = r. Then we prove that

(8.11) max d(t, x) — min d(¢;, x) =0 for any xe R%,
k

J=k+lyeen,d+2 i=1,eee,

which implies (3.6) by Lemma 3.1. In fact, let

(tio’ x) = max (tu x) ’ (tjm x) = mln (t9j x) .
i=1,0e0,k J=k+l,eeed+2
Then
max {d(t;, x)}* — min {d(¢, x)}*
J=k+1,e00,d+2 i=1,0e0,k
g {d(tjo’ x)}2 - {d(tz‘u’ x)}Z
= ltjo\2 - ltio\z + 2(tio - tjo’ x) Z 0
which is (3.11). O
LEmmaA 3.3. Let ¢, ---,t,,, € R%. Suppose that no hyperplane of co-
dimension 1 contains them and that any d vectors out of ¢, ---,t,,, are
linearly independent. Lett,., = 0. Then the set {t,, - - -, t;.1, ts.s} IS uniquely

partitioned into two disjoint sets A, B such that A #+ &, B> t,,, and there
exist positive constants p,’s and q,’s satisfying

(3.12) bt = 2. q5t,
ti€A t;EB
(3.13) >pi= >,q;=1.
ti€A tj;€B
Proof. Since ¢, ---,t,,, are linearly dependent, there exist constants

¢y <+, €4,y such that (¢, -+ -, c4,1) =0, ---,0) and Y ¢*ic;t, = 0. Notice
that ¢, = 0 for any i by the assumption that any d out of ¢, -- -, ¢,,, are
linearly independent. Moreover, ¢, ---,C;,; are unique up to constant
multiple. We have Y ¢*lc, + 0, because, if it is zero, then > %, c,(t; — t.,,)
=0and ¢, --,t;,, are on a hyperplane of co-dimension 1. So, we may
assume that > % lc, > 0. Let A= {t;;¢, >0} and B = {t;;¢c, <0} U {;.5}.
Let p,=c¢, for ¢,>0, q,= —¢; for ¢; <0, and q,,, = X %!c,. Then
2ieaPi — 2uesq; = 0 and (3.12) holds. Multiplication of some constant
yields (3.13). Uniqueness of A and B is obvious from this argument. [

COROLLARY 3.4. Let t,cR%, i=1,.-..,d+ 2. Assume that no d + 1
points out of them are contained in a hyperplane of co-dimension 1 in R®.
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Then the set {t,, - - -, t,.5} is partitioned into two disjoint non-empty sets A
and B such that, for some p; >0 and q, > 0,
(3.14) 2piti= 2 q;t;, 2.pi= 2, q;=1.

t;€A t;€B t; €A t;eB

The partition is unique up to the naming of A and B.
Proof. Let u, =t, — t,,, and apply Lemma 3.3 to u,, - - -, Uy, O

We call A, B in Corollary 3.4 the natural partition of {t,, - - -, t;.q}.

The corollary above is rephrased geometrically as follows. For a
finite set C = {¢, - - -, t,} C R?, denote by C the solid simplex having C as
the set of vertices, that is,

C= {}njpiti;fpi:Lpigo,i: 1, n}
=1 =1

CoROLLARY 3.5. Lett,i=1,..-.,d+ 2, be as in Corollary 3.4. Then
there are two disjoint non-empty sets A, B such that AUB = {t,, - - -, ty,q},
ANB= @, and ANB =+ . The sets A, B are unique up to naming of
A and B. The set AN B consists of only one point.

Combining Lemma 3.1 and Corollary 3.4, we get the following propo-
sition.

PropositioN 3.6. For any T =(, ---,t;.,) € R)*** such that no
d + 1 points out of t, - - -, ts,, are contained in a hyperplane of co-dimension
1 in R?, there exists a label ec &,,, which satisfies C(T,e) = .

Now we deal with a set of d + 3 points in R* in order to discuss
Condition (II). Consider a set I' = {t,, - - -, s,s} in R%. Assume that I is
non-degenerate in the sense that

(3.15) no d + 1 points out of ¢, -- -, #,,, are contained in
' a hyperplane of co-dimension 1 in R?,

For each i, apply Corollary 3.4 to I'\{t;} and let
(3.16) I'\{t} = A, U B,

be the natural partition of I"\{¢,}. By Lemma 3.2, at least one of A, < B,
and A, > B, holds.

Let i =j. We say that ¢, and ¢; link together if the restrictions to
I'\{t,, t;} of the natural partitions of I"\{t,} and I'\{¢;} coincide.
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Lemma 3.7. Let i +j and suppose that t, and t, link together. Let
A,, B, and A, B; be the natural partitions of I'\{t,} and I'\{t;}, respectively.
If

3.17) A, <B,, A;>B;,, A,NA,+g,

J

then T = (t,, - - -, t;.,) satisfies Condition (II).

Proof. Without loss of generality we assume i =1, j = 2. Keeping
A, N A, %+ @ in mind, we can find A and B satisfying A U B = I'\{{,, &}
and A N B = ¢ such that one of the following four conditions holds:

(a) A\=AU{t}, Bb=B, A,=AU{}, B,=B;

(b) AA=AU{t}, Bi=B, A=A, B,=BU{};

(c) Ai=A, B=BU{}), A=A, B,=BUI{};

(d) Ai=A, B =BUI{t}, A =AU}, B,=B8.
We may assume that A= {3, ...k} and B={k+ 1, ---,d + 3} where
3<k<d+3B=g if k=d+ 3).

Case (a). We have
C(T’e):® Wlth e=(eb1)17""1’0’""0);
Nt N e’

k-1 d+3-k
C(ﬂel):@ WIth e=(0,e;,0,---,0,1,-~-,1),
—————— N ———
k-2 d+3—k
whatever ¢; and e; are. Letting e, = 1 and ¢, = 0, we get a complementary
pair e, ¢’. Hence T satisfies Condition (II).

Case (b). We have
C(T,e)= @ with e=(e,1,1,---,1,0,---,0)

k-1 d+3-k
C(Tae/)z @ With e/z(lye;70’"’70y1""11)7
~——— S———
k-2 d+3-k
whatever e, and e; are. Letting ¢, = 0 and e, = 0, we obtain a comple-
mentary pair.
Cases (c) and (d) are treated similarly to (a) and (b), respectively. []

Remark. Another sufficient condition for T to satisfy Condition (II)
is that there exists i such that A, < B, and A, > B,. But we will not
use this condition.

We see easily that, to prove Theorem 2, it is enough to prove it for
m=d + 3. In order to prove it for m = d 4 3 under the condition that
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{t,, - - -, ta.s} are non-degenerate in the sense of (3.15), we will show the
existence of i and j which satisfy the condition of Lemma 3.7. Applying
Corollary 3.4 to I'\{t,} and I'\{t,}, we have

d+3 a+3
(3.18) ety =0 with ¢;, =0, > ¢,=0, ¢,#0(k+1),
k=1 k=1
and
d+3

d+3
(3.19) Sicuty, =0 with ¢y =0, 2 ¢, =0, ¢ 0 (kR#£2).
k=1 k=1

The representations are unique up to constant multiplication. We assume
¢, >0 and ¢, > 0. We set, for i > 3,

A = CyfCy;
(3.20) { 1 24/C
Cit = Cap — AyCye -
Then we get the relations for I'\{i}, i =3, -.-,d + 3, that
d+3

d+3
(3.21) Sicut, =0 with ¢, =0, > c;, =0.
k=1 k=1

Obviously we have, for i > 3,

cy=1¢y >0
(3.22) Cio = — A€y

Ci = CilAe — ) = a1 — 2/A0), for £ = 3.
Moreover we see that 2, i =3, -..,d + 3, are distinct and ¢;, #+ 0 for
k + i, because, if otherwise, some d 4 1 points in /" are contained in a
hyperplane of co-dimension 1. Without loss of generality we assume
A<y fori=3 -.-,d+ 3. Let
(3.23) L ={i=3;2,<0}, L, ={j=3;2,>0}.

We see that ¢, >0 for ie L_ and ¢;, < 0 for jeL,. Using the relations
in (3.22) and noticing that the natural partition of I'\{i} is made according
to the signs of ¢, we get

LEmMA 3.8. If both i and i + 1 belong to L_, then t, and t,,, link
together. If both j and j + 1 belong to L., then t, and t,,, link together.

Now we assume that

(3.24) L.#+@ and L, +@.
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The case without this assumption will be treated later. Let
L—:{3s4""77’}’ L+:{T+1y"'ad+3}°
Then we get the following lemma.

LemMA 3.9. The following pairs link together:
(1) t, and t;

(2) &t and t.s;

(3) t, and t;

(4) t, and 1t .

Proof. Again use (3.22) and the fact that the natural partition of
I'\{t;} is decided by the signs of c, k 1. [

It follows from Lemma 3.7 that, if L_ or L, contains adjacent elements
i,J satisfying (3.17), then T' = (¢, - - -, ¢;,;) satisfies Condition (II). So, let
us consider the situation that neither L_ nor L, contains adjacent ele-
ments satisfying (3.17). In the naming of A,, B, in the natural partition
(38.16) of I'\{t;}, we make A;o¢ for i =2,3,---,d+ 3, and A,54%. Re-
calling that the natural partitions are made by the signs of c¢;,, we see
that t,e A, for ie L_ and that t,e B, forie L,. We note that A,_ NA, # &
for ie L_UL,. Hence Lemma 3.7 yields that we have one of the following
situations:

(1) A, <B,forieL.UL,;

(2) A, <B,forieL_and A,> B, for j ¢ L,;

(3) A, >B,forieL_UL,;

(4) A, > B,forie L_and A; <B,; forjelL,.
We will prove that in each case at least one of pairs (1), (2), (8), (4) of
Lemma 3.9 satisfies the condition of Lemma 3.7.

Case (1). If A, < B,, then ¢, and ¢,,, satisfy the condition of Lemma
3.7, because A,,; < B;,; and A,NB,;,;>t. If A, > B, then t, and {, satisfy
(3.17), since A; < B, and A, NA,; 3¢,

Case (2). If A, < B,, then ¢, and ¢,,, satisfy (8.17), since A,,, > B,,,
and A,NA,,;>t. If A,> B, then ¢, and {, satisfy (3.17), because A, < B,
al‘ld Ag ﬂ AT 9 ti'

Case (3). Similarly to case (1), the pair ¢, f, or the pair ¢, £,.,
satisfies the condition of Lemma 3.7.
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Case (4). Similar to case (2). The pair &, ¢ or the pair i, &,
satisfies (3.17).

Thus, under the assumption (3.24), T'= (¢, - - -, t,,,) satisfies Condition
an.
Let us consider the case where L_ or L, is empty.

LEmMa 3.10. If L_ = &, then each of the following pairs links together:
Ly by 5 b, tis 5 by B
If L, = @&, then each of the following pairs links together.
by by 5 &, b 5 by Baus.
Proof. Suppose that L_ = ¢. Let
A={l=3;¢;>0,0cy >0}, B={i=3;¢;<0,¢,; <0}.

Then AUB = {3, - - -, d + 3}, and hence ¢, and ¢, link together. If L, = &,
then letting

A={=38;¢,>00c <0}, B={=3;¢,<0,0¢ >0},

we see that AUB = {3, --.,d + 3} and that ¢, and ¢, link together. The
other assertions are proved in the same way by use of (3.22). O

As before we make the naming of A,, B, in the natural partition
(3.16) in such a way that 4;5¢ for i =2,3,---, d+ 3, and A, 5¢t,. We
have t,e A, for ieL_ and t,e B, for ieL,.

Suppose that L_ = 5. If L, contains adjacent elements i, j satisfying
(3.17), then, by Lemmas 3.7 and 3.8, T'= (¢, - - -, t,.,) satisfies Condition (II).
So, suppose that L, does not contain adjacent elements satisfying (3.17).
Then we have one of the following:

(1) A, <B,foriz=3, (2) A,> B, fori=3.

Case (1). If A, < B,, then ¢, t,,, satisfy condition of Lemma 3.7 since
Ag; < By,; and A\NBy,;2L. If A, > B,, then ¢, ¢, satisfy (3.15), since
A, < B, and A;NA;>¢. In the remaining case, suppose that A, > B, and
A, < B, Ifc, >0 for some £ = 3, then ¢,, >0 and A, NA,5¢,. Ifc,<0
for some k = 3, then ¢,, <0 and BN B,>t,. So, t, ¢, satisfy the condition
of Lemma 3.7. We made use of Lemma 1.10.

Case (2). If A, > B, then t, t,,, satisfy the condition of Lemma 3.7,
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since A,,; > B;,; and A /N B,,,>t. If A, < B,, then t,, t, satisfy the con-
dition, because A, > B, and A,NA;2¢. If A, <B, and A, > B,, then ¢, t,
satisfy the condition by same reason as case (1).

Suppose that L, = @. Then we can make similar discussion. Namely,
suppose that L_ does not contain adjacent elements satisfying (3.15). Then
(1) or (2) holds. In either case we can find the following pair satisfying
the condition of Lemma 3.7.

Case (1). If A, > B,, then t,t. If A,> B, then &, ¢,,,. If A, <B,
and A, < B,, then ¢, t,.

Case (2). If A, < B,, then ¢, t,. If A, < B, then ¢, t,,,. If A,> B,
and A, > B,, then ¢, ¢,

Therefore, in the case that L_ or L, is empty, T = (¢,, - - -, t;,,) satisfies
Condition (II). This finishes proof of Theorem 2 for m = d 4+ 3 under the
assumption that ¢, - .-, ¢;,, are non-degenerate in the sense of (3.15).

If d + 1 points are on a hyperplane of co-dimension 1 and no d + 2
points are on a hyperplane of co-dimension 1, then we can apply Lemma
3.2 again and similar argument can be made. If d + 2 points are on a
hyperplane of co-dimension 1, then, taking account of the remark to
Definition 2.1, we see that the situation is reduced to (d — 1)-dimensional
case,

§4. Concluding remarks

In order to construct an example mentioned in Remark 1 of §1, we
prepare a lemma.

LEmMA 4.1. Let T={(t, - -, ts,,) € (RO)°*E, where t,, - - -, t,,, are distinct
and no d + 1 points of them are on a hyperplane of codimension 1. Let D
be the (d — 1)-dimensional sphere on which the points t, ---,t,,, lie.
Assume that t,,, is situated inside of D and, moreover, that ANB + @&
for A = {t;.1, t..} and B = {t,, - - -, t;}, using the notation introduced before
Corollary 3.5. Then there is no label e of size d + 2 such that C(T,e) =
C(T,e*) = @. '

Proof. Fore=(e, ---,e4,0) €Eq,s let A,={t;; e,=1} and B,={t;; e,=0}.
In order to prove our assertion, it is enough to consider only e such that
A,3t,,,, We separate our discussion into three cases.

(a) A, and B, give the natural partition of {, - - -, ¢;..}.
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(b) Either A, or B, is a one point set.
(c¢) The remaining case.

Case (a). We have A, = A and B, = B by the assumption. From
the proof of Lemma 3.2 we see that A > B. We do not have A < B. In
fact, we can find a (d — 1)-dimensional sphere I’ such that D’ D B and
that the points ¢,,,, ¢;,, and are inside of I. Let x, be the center of D'.
Then

max d(t;, %) < mind(t;, x,) .
ti€A tj€B

It follows from Lemma 3.1 that A < B does not hold. Hence C(T,e) + @&.

Case (b). If A, consists of only one point t,, then C(T), e} contains a
point (e, ¢,) for sufficiently small ¢ > 0. If B, consists of only one point,
then C(T, e*) + (.

Case (c). The sets A, B, do not give the natural partition of
{t, -+, ts.o). So we have A,NB, = & by the uniqueness of the natural
partition. We can find a (d — 1)-dimensional sphere I’ such that D’ D B,
and all the points of A, are inside of D’. Then C(T, e) # &, since

max d(t;, x,) < min d(¢,, x,)
ti€ A, tj€B,

for the center x, of D', O
ExampLE 4.2. Let T, = (¢, - -+, ty,) e (RY)**  and ¢,,, = 0. We choose
and fix T} in such a way that 7' = (¢, - - -, t,.,, t4..) satisfies the assumption

in Lemma 4.1. It follows from Lemmas 2.5 and 4.1 that S(T,e) % @ for
every ec &,,,;. Let u be a measure on E = R, X R? satisfying (1.3) such
that x(S(Ti,e)) >0 for every ec &,,,. Let us define i in the following
way. We make g = p on E\|U#!S,,. First notice that p satisfies the
consistency condition (2.11) for n = d 4 1. Using the notations in the
proof of Lemma 2.2, let A be the matrix M,,,(2?*! — 1) and b be the vector
in (2.11). Let ¢ be the (2¢*' — 2)-vector every component of which is
2(Mé41S,). Choose e = 0 such that every component of the solution x of

Ax =D — (1 4 ¢c

is positive. It suffices to make |¢] small enough. Now let

A8 =+ 9n(()5.)
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and let a(S(T,,e) for ee &y, \{(@, ---,1)} be given by the solution x.
There exists a measure 7 with these (S(T,e)), eec &,,,. We have j(S)
< oo for all te R%. Let {X(#)} and {X(f)} be the Chentsov type SaS ran-
dom fields associated with p and 7, respectively. From the construction

A(S(T,, &) = p(S(T,, e))  for all e € &,,,\{(1, -, 1} .

It follows that (X(t), --., X(¢,.,)) and ()~((tl), ---,X(t“l)) have different
distributions but they have common d-dimensional marginal distributions.

ExamMpPLE 4.3. An interesting problem is whether there are two
measures p and /i satisfying (1.3) such that the Chentsov type SaS random
fields {X(¢)} and {)Z'(t)} on R’ associated with g and /i, respectively, have
identical d-dimensional distributions but different (d 4 1)-dimensional dis-
tributions. We do not know the answer to this problem for general d
yet. But, in case d = 1, we can construct such measures.

Let E=R, X R". Let pg be such that p(S,) = u(S_,) < oo and u(S,)
is a continuous increasing function of ¢ > 0. Suppose, further, that p is
mutually absolutely continuous with the Lebesgue measure. Let i be a
measure concentrated on R, X {0} such that

ﬁ(St) = ﬁ(St n (R+ X {0})) = H(St) .

Then {X(f)} and (X} have common 1-dimensional distributions. Let
0< ¢ <t. Then p(S,NSE) >0 but #(S,,NS;) =0, which implies that
(X(@), X(%) and (X(2), X(%,)) have different distributions.

Our technique in this paper works in finding determinism of random
fields on R?¢ of a similar sort.

THEOREM 4.4. Let p be a measure on R, X R* satisfying p(C,) < oo
for every te R® and let Y(-) be the SaS random measure associated with p.
Let

X(@) = Y(C) for t € R*.

Then, for any n > d, any n-dimensional distribution of {X(¢)} is determined
by its d-dimensional marginal distributions.

Proof. The non-degenerate case is dealt with Proposition 3.6 and
Lemma 2.2. The degenerate case is obvious. O

Finally we remark that, if p is invariant under translation in R¢,
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then {X(t);¢e R% in Theorem 4.4 is a homogeneous random field con-
structed geometrically.
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