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DISTRIBUTIONS OF STABLE RANDOM FIELDS

OF CHENTSOV TYPE

YUMIKO SATO

§ 1. Introduction

In this paper we discuss the determinism of distributions of some

stable random fields which are constructed through integral-geometric

method. The determinism depends on the dimension of the parameter

space Rd.

We say that a family of random variables {X(t); te Rd} is a symmetric

a-stable (abbreviated to SaS) random field on Rd if every finite linear

combination Σ?=ι fl^-X^) has a symmetric stable distribution of index a.

Let (Ε, <%, μ) be a measure space. We say that a family of random vari-

ables {Υ(Β); Be&, μ(Β)< οο} is the SaS random measure corresponding

to (Ε, @, μ) if (i) E(exp[izY(B)]) = exp(- μ(Β)\ζ\α\ for ζ e R and μ(Β) < οο,

(ii) Υ(£ι), Υ(Β2), are independent whenever Bu B2y are disjoint and

μ(Β3) < οο, ./ = 1, 2, , (iii) Y ( U A ^ ) = Σ"-ι Υ(Βι) a-s- whenever Bu Β2>

• are disjoint and ^((JyU^j) < °°

We define a class of SaS random fields with a particular choice of Ε.

Let Εο be the set of all (d — l)-dimensional spheres in Rd. Any element

of Εο is expressed by a coordinate system (r, χ), where (r, χ) corresponds to

the sphere with radius r e R + = (0, οο) and center xeR^. Thus we make

the identification

(1.1) E0 = {(r,x);r e R + , x e R*}.

For t e Rd, let st be the set of all spheres which separate the point t and

the origin Ο, namely

(1.2) St = {(r, χ); d(x, Ο) ^ Γ}Δ{(Γ, Χ); d(r, χ) ^ r},

where ΑΑΒ denotes the symmetric difference of A and Β and d(a, b)

denotes the Euclidean distance between a and b. Let J*o be the (7-algebra
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of Borel sets in EQ. Given a measure μ on (Εο, &Q) such that

(1.3) μ(βί) < οο for all t e Rd ,

we define an SaS random field by

(1.4) X(t) = Y(St), U R d ,

using the SorS random measure {Υ(Β)} corresponding to (Ε09 &09 μ). We

call this {X(t}} SaS random field of Chentsov type on Rd associated with μ.

Such a random field is viewed as an extension of N.N. Chentsov's

representation Y(S't) of Levy's Brownian motion of Rd-parameter. The

Y(S't) is defined by Chentsov through Gaussian random measure Υ as-

sociated with a measure on the space Ef of all hyperplanes of co-dimension

1 in Rd and the defining set S[ is the set of all hyperplanes which sepa-

rate t and the origin Ο, [1], [3]. S. Takenaka, [7], applied this idea to

stable case. Using Εο in place of Ε', he proves that if άμβ{τ, χ) = rii~d~1drdx,

0 < β < 1, then the Chentsov type SaS random field Χα,β(ί) associated

with (EQ, μβ) is self-similar with exponent Η = β/α. For d = 1, {Χα,β(ί)}

presents a new example of SaS, if-self-simi]ar process with stationary

increments in the area of a and Η where no examples were known before.

The distributions of a Chentsov type SaS random field on Rd have

a characteristic property which depends on the dimension d of the param-

eters. We do not assume any condition other than (1.3) for the associated

measure. The aim of this paper is to prove the following theorem.

THEOREM 1. Let 0 < a < 2. Let μ be a measure on (EQ, J>0) satisfying

(1.3) and let {X(t);teRd} be the SaS random field of Chentsov type on Rd

associated with μ. Then, for any η > d + 1 and for any distinct tu , tn

e Rd, the distribution (X{U), , X(tn)) is determined by its (d + ^-dimen-

sional marginal distributions.

COROLLARY. Let 0 < a < 2. Let μ and β be measures on (EQ9 &Q) satis-

fying (1.3). Let {X(t);teUd} and {X(t);teRd} be the SaS random fields

of Chentsov type associated with μ and μ9 respectively. If the (d + 1)-

dimensional distributions of {X(t)} and {X(t)} coincide, then {X(t)} and {X(t)}

are equivalent, that is, the finite-dimensional distributions of {X(t}} and

{X(t)} coincide.

Remark 1. The number d + 1 in Theorem 1 is best possible in the

following sense. There are two Chentsov type random fields {X(t)} and
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{X(t)} associated with μ and fi, respectively, such that, for some Τ =

(tu •> td+i)> the d-dimensional marginal distributions of {X(Q, , X(td+i))

and (Χ(ίι), ',X(td+J) coincide but their (d + l)-dimensional distributions

are different, (see Example 4.2)

Remark 2. If we take Ε/ and S't instead of Εύ and St and define

X'(t) = Y(S't) for t e R d ,

where Υ is an SaS random measure with 0 < a < 2 associated with a

measure // on Ef satisfying //(SO, < οο, then we have determinism by

d-dimensional marginal distributions instead of determinism by {d + 1)-

dimensional marginal distributions in Theorem 1. Namely, for any η> d

and any distinct tu , tn e Rd, the distribution of (X'{t^), , X'(tn)) is

determined by its c?-dimensional marginal distributions. This fact can be

proved by a similar method as Theorem 1.

Theorem 1 will be reduced to a geometric theorem concerning an

intersection property of a family of cones in R+ X Rd. The proof of this

geometric theorem is an essential part of our argument. For tefld, set

/ι g\ C = {(τ χ)° d(x ί) < r\

Then, Ct is a right cone in R+ χ Rd with vertex (0, t). Note that the

point (0, t) is not included in the space R+ X W. Hereafter we simply

call Ct the cone with vertex t. The relation

St = C0ACt

shows that, instead of S/s, we may study C/s. Given m cones Ctl, , Ctm,

we consider the partition of the set Uf=i Ct{ generated by [Ct0 i = 1, , m}.

Now set

(1.6) im = {e = fe, . . ., Ο ; β4 = 0 or 1 for i = 1, , m}\{(0, . . , 0)}.

We call e e $m a label of size m and <̂ m the label set With the notation

we define

m

(1.7) C(T, e) = Q Qi

for Γ - («,, , U e ( R T and e - (elf , em) e Sm. Then C(T, e), e e Sm,

are disjoint sets and
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(1.8) 0 Cti = U C(T, e).
i=l e6im

For e = (eu , em) e $m, the complementary label e* of β is defined by

e* = (ef, , e*), e* + ef = 1 for any i.

THEOREM 2. If m^d + 3, then, for any Τ = (ί1? , Ο e (Rd)m, there

exists a label ee£m such that C(T, e) = 0 ami C(T, β*) = 0 .

In § 2 we reduce Theorem 1 to Theorem 2, which is proved in § 3 after

a series of lemmas. Concluding remarks are given in § 4. The particular

cases d = 1 and 2 of Theorem 1 have been treated in the author's paper

[4], [5]. Determinism under different defining sets in one-dimensional case

will be discussed in a joint paper with S. Takenaka [6].

§ 2. Reduction of Theorem 1 to Theorem 2

Let 0 < a < 2. Let μ be a measure on (Εο, J*o) satisfying (1.3) and

let {X(t); t eRd} be the SaS random field of Chentsov type on Rd associated

with μ. For t e W let St be the set defined by (1.2). For Τ = (tu , Ο

e (Rd)n and e = (eu , en) e (fw, we write

(2.1)

(2.2)

(2.3)

(2.4)
fc = l

S(T, e) is an element (labelled with e) of the partition of the set U2=i Stk

generated by {Stk; k = 1, , η}.

DEFINITION 2.1. We say that Τ = (^, , tn) e (Rd)n satisfies Condition

(I) if there exists a label eeSn such that S(T, e) = 0 .

Remark. Suppose that Γ = (^, , tn) satisfies Condition (I). Then

Τ = tt, , tn, tn+u --,tm) satisfies Condition (I) for any tn+1, , tm e Rd.

In fact, suppose that S(T, e) = 0 for e = (ej, , en) e £η. If we take a

label e = (el9 , em) such that gj = βι, , gn = en, then S(T', e) = 0 .

LEMMA 2.2. Lei £1? , tn be different points in Rd. If Τ = (tu , tn)

3 =

Sti =

S(T,

S(T,

(A,
= <

is?;
= {Β
e) =

β) =

c

fc

fc

. X

η

η

if eh

if β,

R^

sg.

: = 1

: = 0

if ek

if ek

= 1

= 0
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satisfies Condition (I), then the distribution of Χτ = (Xfa), , X(tn)) is

determined by the system of (η — l)-dimensional marginal distributions of

Proof. The characteristic function of Χτ is written, for ζ = (zu , ζη)

eRn, as

= Eexv{i±zkY(Stk))

±ztZ Y(S(T,e))\
= l eetn )

( 2 > 5 ) = Ε exp \i Σ (t e*z*) Y(S(T, e))\

= expf- Σ | έ β

= exP{- Σ IfieJ-i

where e = (el9 , en\ %e = 2]?β1 e4, and

(2.6) f(e) = (l/(#e)1/2)e.

On the other hand it is known that the characteristic function of an

72-dimensional SaS distribution, 0 < a < 2, has the following unique ca-

nonical representation:

(2.7) φ{ζ) = exp f- c f |f ζ\ λ(άξ)\ ,

where c > 0 and A is a symmetric probability measure on the unit sphere

S71'1 [2]. Comparing the last expression of (2.5) to (2.7) and noticing

that f(e) of (2.6) belongs to S71'1 for any e, we see that the last expression

of (2.5) gives the canonical form of ψτ(ζ). So, we see that φτ{ζ) is de-

termined by the values of μ{β{Τ, e)), e e <?η, and that, conversely, μ(5(Τ, e)),

e e <fn, are determined by φτ(ζ).

Since ^ is a measure, the following consistency condition holds:

(2.8) μ(§(Τ, e)) = Σ / £ ( S ( T , e>)) f o r e a c h ee£n,

where, for β = (el9 , en) e (fw, ^i(e) is the subset of <?w defined by

(2.9) g'n(e) = {̂  = (βί, ., <); e ^ efe for λ = 1, •, η}.

Since the number of the elements of £η is 2η — 1, (2.8) consists of 2η — 1

equations. But one of them, that is, the case e = (1, , 1), is a trivial
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equation. So we consider

(2.10) Σ μ@(Τ, *0) = μΦ(Τ, e)) for e e <^\{(1, , D}
' e ' ( )

as a system of 2W — 2 simultaneous linear equations in which the un-

knowns are the values of μ(8(Τ, e)), e e $ni (the number of them is 2η — 1)

and the given right-hand sides are the values of μ(§(Τ, e)), e e ^η\{(1, , 1)}.

These right-hand sides are determined by the (η — l)-dimensional marginal

distributions of Χτ. We write the matrix representation of the system

(2.10) as

(2.11) Μηχ = h ,

where Μη is a (2η — 2) χ (2η — l)-matrix, whose components are 0 or 1.

Let Mn(k) be the (2η - 2) X (2η - 2)-matrix obtained from Μη by deleting

the &-th column. Then we can prove that

(2.12) Mn(k) is invertible for any k = 1, , 2η - 1.

Proof of (2.12) will be given at the end of this section. By the assumption

that Τ satisfies Condition (I), there exists a label e such that S(T, e) = 0 .

This implies μ(8(Τ, e)) — 0 for the label β. So, the number of the un-

knowns is reduced to 2η — 2. Suppose that the μ(8(Τ, e)) corresponding

to the label e is the &-th component of the column vector of the unknowns.

Then our system of simultaneous linear equations is equivalent to the

system having MJJk) as its coefficient matrix. By virtue of (2.12) the

system of equations has a unique solution. Thus, all the unknowns are

determined. •

Now we need to study the problem when Τ satisfies Condition (I).

L e t Τ = (tu -",tn)e ( R d ) n a n d e = (eu ->,en)e £η. T h e s e t S(T, e) i s

partitioned into two disjoint subsets:

(2.13) S(T9 e) = {S(T, e) Π Q U {S(T, e) Π C§},

where Co is the cone with vertex 0.

LEMMA 2.3. We have

(2.14) S(Z e) ΓΊ Co = C(T, β*) η Co,

(2.15) 5(Γ,β)Π C g = C ( T , e ) n Cg,

where e* is the complementary element of e.

Proof. We have
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s(T,e) η c0 = ( η SJJ) η c0 = η (sj* η c0).

If et = 1, then

s« η c0 = st< η c0 = (ctiACQ) η c0 = c?, n c o = c?f η c 0 .

If et = 0, then

Si* η c0 = s?, η c0 = ( C , A Q C η c0 = ctl n c o = cjf η c0.

Hence

η (sg η c0) = η (c?f η c0) = ( η eg*) η c0 = ατ, **) η c0.

This proves (2.14). The relation (2.15) is obtained more easily. •

Using Lemma 2.3 we can reduce Condition (I) to the following Con-

dition (II).

DEFINITION 2.4. We say that Τ = (tu t2, , tm)e(Rd)m satisfies Con-

dition (II) if there exists a label eeSm such that both C(T, e) — 0 and

C(T, e*) = 0 hold.

LEMMA 2.5. Τ = (tu , tn) e (Rd)n satisfies Condition (I) if and only

if f = (0, tu , tn) e (Rd)re+1 satisfies Condition (II).

Proo/. (i) Suppose that Τ = (tu , tn) satisfies Condition (I). Let

e = (e,, , en) e <?„ be the label such that S(T, e) = 0 . It follows from

(2.13) and Lemma 2.3 that C(r, e*) Π Co = 0 and CiT7, e) Π Co

c = 0 . Put

έ = (0, et, , en) e <?η+1. Then

C(T, e*) f i C 0 = C(T, g*),

C(T, e) ΓΊ Cl = C(f, g).

Hence Τ satisfies Condition (II).

(ii) Suppose that f = (0, tu , ίη) satisfies Condition (II). Let e =

fe, el9 - , en) e ^η+ί be the label such that C(f, e) = 0 and C(f, g*) = 0 .

Let e = (€j, , βη). If e0 = 0, then ef = 1 and

0 = C(f, g) = C(T, e) Π Cg,

0 = C(f, g*) = Ο(Γ, e*) Π Co,

which implies S(T, e) = 0 by (2.13) and Lemma 2.3. If e0 = 1, then e* = 0

and, taking account of (β*)* = e, we have S(T, e*) = 0 . In either case,

Τ7 = (Λ, •> Ο satisfies Condition (I). Π
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Proof that Theorem 2 implies Theorem 1. We assume that Theorem 2

is valid. Let η >̂ d + 1. Let tu , tn be distinct points in Rd. Theorem 2

combined with Lemma 2.5 tells us that Τ = (tu , tn) satisfies Condition

(I). Hence, by Lemma 2.2 the distribution of Χτ is determined by its

(η — l)-dimensional marginal distributions. Further, if η — 1 ^ d + 2,

then the (η — l)-dimensional marginal distributions of Χτ are determined

by their (η — 2)-dimensional marginal distributions. Proceeding in this

way we see that the distributions of Χτ is determined by its (d + 1)-

dimensional marginal distributions. Theorem 1 is proved. •

Proof of (2.12). To write down the matrix MnJ we introduce a linear

order among the element of $η. Let n(e) — ΣΊ=12
ί~1βί for e = (eu , en).

We define e < e' if n(e) < n(e'). This gives a linear order in £η. Thus

the first element is (1, 0, 0, , 0) and the last element is (1, , 1). We

have

1 0 1\

0 1 1/

10 10 10

0 110 0 11

0 0 10 0 0 1

0 0 0 1 1 1 1

0 0 0 0 10 1

0 0 0 0 0 1 lJ

Let Νη = 2η - 1 = 2Νη_, + 1. Then Μη is a (Νη - 1) X iVn-matrix. It is

easy to see that

. - i - 1

(2.16)
0 •• 0 1

0 0 0

0

0

0
0
1

0

0

0 • 0 1
1 1 1
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for η >̂ 3. Let â  be the j-th column vector and ati be the (i, j)-compo-

nent of Μη. If we delete the last column in Μη, then we get an upper

triangular matrix Μη(Νη) with diagonal elements 1. Hence

(2.17) alf •••,a,Vn_1

are linearly independent. Now we claim the following.

(2.18) If c^! + c2a2 + + cNneiNn = 0 with ck = 0

for some k Φ Νη, then Cyn = 0 .

Suppose that (2.18) is true. Then we see that Mn(k) is invertible for

every k. Indeed, if k = JVn, then Afn(A) is invertible by (2.17). If k Φ Νη9

then (2.17) and (2.18) show that the column vectors of Mn(k) are linearly

independent.

It remains to prove the assertion (2.18). It suffices to show that the

relation

(2.19) da, + c2a2 + + cNnaNn = 0 with cNn = 1

implies that

(2.20) c f c ^ 0 for k= 1, --,Νη- 1.

Note that, by (2.17), all of cu •,cJVn_1 are determined uniquely by (2.19).

Denote the row vector

Using the column vectors of Μη_λ in place of those of Afn, we get the

row vector cn^ in place of cn. Let

We write (2.19) componentwise:

(2.21) d«« + c2ai2 + . + cNnaiNn = 0, i = 1, , Nw - 1, and c^n = 1.

For i = Nn_t + 2, , Νη — 1, the relation between Mw and Μκ_! in (2.16)

shows that (2.21) implies

(2.22) (cNn_1+2, , Ο = (Γι, • , r ^ . , ) .

For i = ΛΓη_!, (2.21) reduces to cNn_x + cNn = 0 by virtue of (2.16). Hence

(2.23) cNn_x = - 1 .



128 YUMIKO SATO

For i = 1, , Νη_, - 1, taking account of (2.16) and using (2.22) and (2.23),

we have

(2.24) (cuc2, . , c N n j = (— η, — r8, •••, — rNnJ.

It follows from (2.22) and (2.24) that

(2.25) cn = ( - cn_!, cNn_1+1, cn_!>.

We have

(2.26) c2 = ( - 1 , - 1 , 1 )

explicitly from ikf2. For i = Νη_, + 1, (2.21) reduces to

Cvw_1+i + CNn_1 + 2 + + CNn = 0

by (2.16). Hence, noticing (2.22) and using (2.26) or (2.25) for η - 1 in

place of π, we get

Ρ . Α

TNn_t+l for η ^ 4 .
Now, from (2.25) and (2.27) we see that each component of cn is 1 or — 1.

This proves (2.20). •

§ 3. Proof of Theorem 2

W e p r e p a r e l e m m a s .

L E M M A 3.1. Let tt e R d , i = 1, , η + m. Let A = {tu ••-,£„} and

(3.ΐ) n c f i c u ctJ
tteA tjGB

if and only if

(3.2) max d(tu χ) ĵ > min d(tjy χ) for any χ e Rrf .

We denote the relation (3.1) by A < Β. This means

( η ctt) η ( η c?,) - 0 .
tiQ A tjQB

Proof. Suppose (3.1). Let χ e Rd. Let r = maxiiG^<i(x, ί€). Then
d(x, if) ̂  r for any *4 e A, that is, (r, χ) efltjei Cti. Hence (r, χ) e Utyen Ctr

This means rf(x, t3) ̂  r for some t5 e J5. Hence (3.2) holds. Conversely,

assume (3.2). Let (r, χ) e C\tieA Cti. That means d(x, i j ^ r for every ^ e A.
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It follows from (3.2) that there exists tjo such that d(tjo, χ) <̂  r. So,

(r, χ) e CtJo. D

LEMMA 3.2. Let 1 <L k <̂  d + 1. Lei tu , ifc, and ίΛ+1, , td+2 in Rd

be such that there is no hyperplane of co-dimension 1 containing tl9 , tk,

tk+u •••j^d+ι Suppose that there exist positive constants pu ''-,pk and

Qk+u ' -9Qa+2 such that

(3.3)

(3.4) ΣΑ*«= ΣΣ
f

Then at least one of the following holds:

(3.5) Π Ctt c U C,. (ίΛαί is A -< 5 ) ,

(3.6) U Cti =) Π C,. (ίΛαί is A >- J5),

i ^ A e r e A = {tl9 •••9tk} a n d Β = { t k + u - 9 t d + 2 } .

Proof. Let D be the (d — l)-dimensional sphere on which the points

tu - , ί*, ^+ι, , td+1 lie. Without loss of generality, we assume that the

center of D is Ο = (0, , 0) e Rd. Let r be the radius of D. Suppose

that \td+2\<r. We will show that (3.5) holds. By Lemma 3.1 it is enough

to show that, for any xeR d ,

(3.7) max d(tu χ) - min d(t5, χ) ;> 0.
i = l,'",Jc j = k + li'"id + 2

Taking account of (3.3) and (3.4) we have

(3.8) min {tu χ) ^ £]/>,(*„ x) = Σ g ^ , Λ) ̂  max (ί,, χ)
i l k i l j k l j k l d 2

where (χ, y) denotes inner product of Rd. Let iQ and j0 be the elements

which attain the minimum and the maximum in (3.8), respectively. Then

(3.9) (tjo - tiQ, χ)^0.

On the other hand,

max {d(ti9 χ)}2 — min {d(tjy χ)}2

i = l ,••«,«; j = k + l,'",d + 2

( 3 1 0 ) ^ {d(iie, χ)}2 - {d(tit, χ)Υ

= {\tj + \x\2 - 2«4ο, »)} - fly2 + |ic|2 - 2(ίΛ, χ)}
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(3.9) and the assumption |ί ΐ 0 | = r 2> \tjo\ impliy that the last term of (3.10)

is non-negative. So, (3.7) is proved.

Suppose that \td+2\ ̂  r. Then we prove that

(3.11) max d(tj9 χ) — min d(ti9 χ)^0 for any χ e Rd,
j = k + l,'",d + 2 ΐ = * ι , . . . , χ ;

which implies (3.6) by Lemma 3.1. In fact, let

(ti0, χ) = max (tu χ), (tJo9 χ) = min (t9j χ).

Then

max {d(^, x)Y — min
j k l d 2 ΐ 1 *

which is (3.11). Π

LEMMA 3.3. Let tu , £d+1 e Rd. Suppose that no hyperplane of co-

dimension 1 contains them and that any d vectors out of tl9 --',td+l are

linearly independent. Let td+2 = 0. Then the set {tl9 , td+u td+2} is uniquely

partitioned into two disjoint sets A, Β such that Αψ 0 , Bs td+2 and there

exist positive constants pt's and q/s satisfying

(3.12)

(3.13)

Proof Since ^, , td+1 are linearly dependent, there exist constants

Cu - —> cd+i such that (cu , cd+1) ^ (0, , 0) and Σ1?-ίc* ** = 0 Notice

that Ci ̂  0 for any i by the assumption that any d out of ί1? , td+i are

linearly independent. Moreover, cu •••,cd+1 are unique up to constant

multiple. We have Y^tlCi Φ 0, because, if it is zero, then 2ui=ic*(^ — id+i)

= 0 and tu , id+1 are on a hyperplane of co-dimension 1. So, we may

assume that X ^ i c , > 0. Let A = {tt; c, > 0} and Β = {*,; c, < 0} U {id+2}.

Let Pi^Ct for ĉ  > 0, qj——cj for σ, < 0, and gd+2 = Σ ί - ί ^ T h e n

Σίί€^Ρ* — J^tj-eeQj = 0 and (3.12) holds. Multiplication of some constant

yields (3.13). Uniqueness of A and Β is obvious from this argument. •

COROLLARY 3.4. Let tt e Rd, ί = 1, , d + 2. Assume ί/ιαί MO d + 1

points out of them are contained in a hyperplane of co-dimension 1 in Rd.



STABLE RANDOM FIELDS 131

Then the set {tu , td+2} is partitioned into two disjoint non-empty sets A

and Β such that, for some pt > 0 and q$ > 0,

(3.14) ΣΜ=Σ?Λ. ΣΑ=Σ9* = 1
tiQA tjGB ti6A tjBB

The partition is unique up to the naming of A and Β.

Proof. Let ut = tt — td+2 and apply Lemma 3.3 to ul9 , ud+2. Π

We call A, Β in Corollary 3.4 the natural partition of {tu , td+2}.

The corollary above is rephrased geometrically as follows. For a

finite set C = {tu , tn} c Rd, denote by C the solid simplex having C as

the set of vertices, that is,

C= {Σ
U=i

COROLLARY 3.5. Lei ̂ , i = 1, , d + 2, be as in Corollary 3.4.

ί/iere are ίκ ο disjoint non-empty sets A, JB swc/i ί/ιαί A U J B = {̂ , , td+2},

Af]B = 0 , a^d Af]B Φ 0 . TTie seis A, Β are unique up to naming of

A and Β. The set ΑΓ\Β consists of only one point.

Combining Lemma 3.1 and Corollary 3.4, we get the following propo-

sition.

PROPOSITION 3.6. For any Τ= (tu , td+2) e (Rd)d+2 such that no

d + 1 points out of tu - , td+2 are contained in a hyperplane of co-dimension

1 in Rd, there exists a label ee^d+2 which satisfies C(T,e) = 0 .

Now we deal with a set of d + 3 points in Rd in order to discuss

Condition (II). Consider a set Γ = {tu , td+3} in Rd. Assume that Γ is

non-degenerate in the sense that

no d + 1 points out of tl9 , td+z are contained in

a hyperplane of co-dimension 1 in Rd.

For each i, apply Corollary 3.4 to F\{ti} and let

(3.16) F\{tt} = A, U Β<

be the natural partition of F\{tt}. By Lemma 3.2, at least one of At < Bt

and Ai > Bt holds.

Let ί Φ j. We say that tt and ts link together if the restrictions to

F\{ti9 tj} of the natural partitions of Γ\{^} and r\{tj} coincide.
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LEMMA 3.7. Let i Φ] and suppose that tt and tj link together. Let

Αί9 Bi and Aj9 Bj be the natural partitions of r\{tt} and Γ\{̂ }, respectively.

If

(3.17) A, < Β,, Aj > BJ9 A, Π Αό Φ 0 ,

then Τ — (tu - - , td+3) satisfies Condition (II).

Proof Without loss of generality we assume ί = 1, 7 = 2. Keeping

At Π Α2 Φ 0 in mind, we can find A and Β satisfying A U Β = F\{tu t2}

and A f] Β = 0 such that one of the following four conditions holds:

(a) Α1 = Α lift}, £ι = 5, A2 = AUft}, Β2 = Β;

(b) Λ = Αυ{*2}, ^ = 5, Α2 = Α, B2 = B\J{t1};

(c) Α1 = Α, B ^ B U f t } , Α 2 - Α , B ^ B U f t } ;

(d) Λ = A, ft - J5 U {ί2}, Α2 = A U ft}, ft = Β.

We may assume that A = {3, , k} and £ = {k + 1, , d + 3} where

S£k£d+S(B=0 if ft = d + 3).

Case (a). We have

C(T, β) = 0 with e = (eu 1,1, - " , 1 , ^ ^ 0 ) ,
fe-l

C(T, e') = 0 with e = (0, ej, ^

whatever ex and ê  are. Letting el = 1 and ^ = 0, we get a complementary

pair e, er. Hence Τ satisfies Condition (II).

Case (b). We have

Γ,έ)= 0 with e == (eu 1, 1, •••,1,0, , 0)
Α - 1 d+3-k

C(T, e') = 0 with e' = (1, e'2, ^^0,11_^jj),
k-2 d+3-k

whatever ex and ef

2 are. Letting ex = 0 and β2 = 0, we obtain a comple-

mentary pair.

Cases (c) and (d) are treated similarly to (a) and (b), respectively. •

Remark. Another sufficient condition for Τ to satisfy Condition (II)

is that there exists ί such that At < Bi and Α4 >• Bt. But we will not

use this condition.

We see easily that, to prove Theorem 2, it is enough to prove it for

m = d + 3. In order to prove it for m = d + 3 under the condition that
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{t\, - -,td+3} a r e non-degenerate in the sense of (3.15), we will show the

existence of ί and j which satisfy the condition of Lemma 3.7. Applying

Corollary 3.4 to Γ\{^} and Γ\{ί2], we have

(3.18) Σ clktk = 0 with cu = 0, Σ clk = 0, clk Φ 0 (k φ 1),

and

(3.19) lfc2 f ci f c = 0 with c22 = 0, Σ c2fc = 0, c2fc =£ 0 (fe =£ 2) .

The representations are unique up to constant multiplication. We assume

c12 > 0 and c21 > 0. We set, for i ^ 3,

(3.20)
= = C 2fc

Then we get the relations for Γ\{ί}, i = 3, , d + 3, that

(3.21) Σ cnctk = 0 with cu = 0, Σ ct* = °

Obviously we have, for i >̂ 3,

c« = c21 > 0

(3.22) ci2 = - X,cl2

Moreover we see that Xu ί = 3, , d + 3, are distinct and cifc =̂ 0 for

k Φ ί, because, if otherwise, some d + 1 points in Γ are contained in a

hyperplane of co-dimension 1. Without loss of generality we assume

λΐ < λί+ί for i = 3, , d + 3. Let

(3.23) L_ = {/ ^ 3; Xt < 0}, L+ = {j ^ 3; ^ > 0}.

We see that cn > 0 for i e L_ and c j2 < 0 for j eL+. Using the relations

in (3.22) and noticing that the natural partition of Γ\{ί\ is made according

to the signs of cilt, we get

LEMMA 3.8. If both ί and ί + 1 belong to L_, then tt and ti+1 link

together. If both j and j + 1 belong to L+, then t5 and tj+l link together.

Now we assume that

(3.24) L_ Φ 0 and L+ Φ 0 .
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The case without this assumption will be treated later. Let

Then we get the following lemma.

LEMMA 3.9. The following pairs link together:

( 1 ) ti and tz

( 2 ) U and td+3;

( 3 ) t2 and tr;

( 4 ) t2 and tr+i .

Proof. Again use (3.22) and the fact that the natural partition of

Γ\{ί<} is decided by the signs of ci1c, k Φ i. [

It follows from Lemma 3.7 that, if L_ or L+ contains adjacent elements

i,j satisfying (3.17), then Τ = {tu - , td+3) satisfies Condition (II). So, let

us consider the situation that neither L_ nor L+ contains adjacent ele-

ments satisfying (3.17). In the naming of Ai9 Bt in the natural partition

(3.16) of Γ\{ί4}, we make At 9 tx for i = 2, 3, , d + 3, and Λ 9 t2. Re-

calling that the natural partitions are made by the signs of cik, we see

that t2 e At for i e L_ and that t2 e Bt for i e L+. We note that At_x (~]ΑίΦ0

for ί e L_ UL+. Hence Lemma 3.7 yields that we have one of the following

situations:

( 1 ) A, < Bt for i e L_ U L+;

( 2 ) At < Bt for i e L_ and Αύ > Βά for j e L+;

( 3 ) At> Bt for ί e L_ U L+;

( 4 ) At > Bt for i e L_ and Α7 -< Bj for j e L+ .

We will prove that in each case at least one of pairs (1), (2), (3), (4) of

Lemma 3.9 satisfies the condition of Lemma 3.7.

Case (1). If Αγ < Bu then tx and £d+3 satisfy the condition of Lemma

3.7, because Ad+3 < Bd+3 and At p[Bd+33 t2. If Α1 > Bu then tx and t3 satisfy

(3.17), since Α3 < Β3 and Αχ Π Α3 9 t2.

Case (2). If Α2 < Β2, then ί2 and t7+i satisfy (3.17), since Ar+1 > Br+l

and A2f]Ar+i 9 ^. If Α2 > Β2, then ί2 and ir satisfy (3.17), because Ay < Βγ

and Α2Γ\Αγ3 U.

Case (3). Similarly to case (1), the pair tu t3 or the pair tu td+3

satisfies the condition of Lemma 3.7.



STABLE RANDOM FIELDS 135

Case (4). Similar to case (2). The pair t2, tr or the pair t2, tr+1

satisfies (3.17).

Thus, under the assumption (3.24), Τ = (tu , td+3) satisfies Condition

(II).

Let us consider the case where L_ or L+ is empty.

LEMMA 3.10. // L_ = 0 , then each of the following pairs links together:

hf h ', ti, td+3 I £2, h

If L+ = 0, then each of the following pairs links together.

h> Η \ Ij, ί3 ', ί2, td + 3

Proof Suppose that L_ = 0 . Let

A = {i ^ 3; cu > 0, c2i > 0}, Β = {i ^ 3; cH < 0, cu < 0}.

Then A U JB = {3, , d + 3}, and hence ^ and t2 link together. If L+ = 0 ,

then letting

A = {ί ^ 3; cH > 0, c2, < 0}, Β = {i ^ 3; cH < 0, c2i > 0},

we see that A U Β = {3, , d + 3} and that ^ and t2 link together. The

other assertions are proved in the same way by use of (3.22). Π

As before we make the naming of Au Bt in the natural partition

(3.16) in such a way that At Β tx for ί = 2, 3, , d + 3, and Αχ 9 ^. We

have t2eAi for ieL_ and t2eBt for ieL+.

Suppose that L_ = 0 . If L+ contains adjacent elements i,,/ satisfying

(3.17), then, by Lemmas 3.7 and 3.8, Τ = (tu , *d+8) satisfies Condition (II).

So, suppose that L+ does not contain adjacent elements satisfying (3.17).

Then we have one of the following:

( 1 ) At < Bt for i ^ 3 , ( 2) At > Β, for i ^ 3 .

Case (1). If Ax -< 5 1 ? then tu id+3 satisfy condition of Lemma 3.7 since

Ad+3 < Bd+3 and ΛΠΒ ώ + 3 9ί 2 . If ^42 >- Β2, then ί2, ί3 satisfy (3.15), since

Αζ < Β3 and A2f]AzBt1. In the remaining case, suppose that Αί > Βχ and

Α2 < Β2. If clfc > 0 for some k >̂ 3, then c2fc > 0 and ΑίΓ\Α2Β tk. If clfc < 0

for some k ^ 3, then c2fc < 0 and ΒιΓ[Β%Β tte. So, ί1? t2 satisfy the condition

of Lemma 3.7. We made use of Lemma 1.10.

Case (2). If Αχ > Bu then tu td+3 satisfy the condition of Lemma 3.7,
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since Ad+3 > Bd+3 and At f]Bd+3B t2. If Α2 < Β2, then t2, t3 satisfy the con-

dition, because Α3 >- Β3 and A2f]A3 9 tx. If Αχ < Βχ and Α2 > Β2, then tu t2

satisfy the condition by same reason as case (1).

Suppose that L+ = 0. Then we can make similar discussion. Namely,

suppose that L_ does not contain adjacent elements satisfying (3.15). Then

(1) or (2) holds. In either case we can find the following pair satisfying

the condition of Lemma 3.7.

Case (1). If A, > Bu then tly to. If Α2 > Β2, then t2y td+3. If A, < Βχ

and Α2 < Β2, then tu t2.

Case (2). If A, < Bu then tu t3. If Α2 < Β2, then t2y td+3. If A, > Β,

and Α2 > Β2, then tl9 t2.

Therefore, in the case that L_ or L+ is empty, Τ = (tu , td+z) satisfies

Condition (II). This finishes proof of Theorem 2 for m = d + 3 under the

assumption that tu , td+z are non-degenerate in the sense of (3.15).

If d + 1 points are on a hyperplane of co-dimension 1 and no d + 2

points are on a hyperplane of co-dimension 1, then we can apply Lemma

3.2 again and similar argument can be made. If d + 2 points are on a

hyperplane of co-dimension 1, then, taking account of the remark to

Definition 2.1, we see that the situation is reduced to (d — l)-dimensional

case.

§ 4. Concluding remarks

In order to construct an example mentioned in Remark 1 of § 1, we

prepare a lemma.

LEMMA 4.1. Let Τ= (tu , td+2) e (Rd)d+2, where tu , td+2 are distinct

and no d + 1 points of them are on a hyperplane of codimension 1. Let D

be the (d — l)-dimensional sphere on which the points tu---,td+1 lie.

Assume that td+2 is situated inside of D and, moreover, that ΑΠΒΦ 0

for A = {td+u td+2} and Β = {tu , td], using the notation introduced before

Corollary 3.5. Then there is no label e of size d + 2 such that C(T, e) =

C ( r , e * ) = 0 .

Proof. For e=(eu , ed+2) e <^+2, let Αβ = {ί<; ei = l} and Be = ft; ei==0}.

In order to prove our assertion, it is enough to consider only e such that

AeBtd+2. We separate our discussion into three cases.

( a ) Ae and Be give the natural partition of [tu , td+2}.
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( b ) Either Ae or Be is a one point set.

( c) The remaining case.

Case (a). We have Ae = A and Be = Β by the assumption. From

the proof of Lemma 3.2 we see that A > Β. We do not have A < Β. In

fact, we can find a (d — l)-dimensional sphere Df such that D' 3 Β and

that the points td+l9 td+2 and are inside of D'. Let χ0 be the center of D'.

Then

max d(ti, χ0) < min d(tp χ 0).
ii€4 tjQB

It follows from Lemma 3.1 that A < Β does not hold. Hence C(T,e) Φ 0 .

Case (b). If Ae consists of only one point ti9 then C(T, e) contains a

point (ε, t^) for sufficiently small ε > 0. If Be consists of only one point,

then C(T, e*) φ 0 .

Case (c). The sets Ae9 Be do not give the natural partition of

[U, - - -, td+2}. So we have ΆβΓ\Ββ = 0 by the uniqueness of the natural

partition. We can find a (d — l)-dimensional sphere U such that Df Ζ> Be

and all the points of Ae are inside of D'. Then C(T, e) Φ 0 , since

max d(ti7 xQ) < min d(tj9 χ0)
tiGAe tjeBg

for the center χ0 of D'. •

EXAMPLE 4.2. Let Το = (tu , td+1) e (Rd)d + 1 and td+2 = 0. We choose

and fix To in such a way that ϊ 7 = (tu , id+1, id+2) satisfies the assumption

in Lemma 4.1. It follows from Lemmas 2.5 and 4.1 that S(T, e) Φ 0 for

every e e ^ + 1 . Let μ be a measure on Ε = R+ χ Rd satisfying (1.3) such

that /^(S(T0, β)) > 0 for every e e ^ d + 1 . Let us define ft in the following

way. We make μ = μ on E\{J^lStr First notice that μ satisfies the

consistency condition (2.11) for η = d + 1. Using the notations in the

proof of Lemma 2.2, let A be the matrix Md+i(2d + 1 — 1) and b be the vector

in (2.11). Let c be the (2d + 1 — 2)-vector every component of which is

iS,.). Choose ε Φ 0 such that every component of the solution χ of

Ax = 1b - (1 + e )c

is positive. It suffices to make |ε] small enough. Now let

(d + i \
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and let p(S(TQ,e)) for e e <^+1\{(1, •••,!)} be given by the solution χ.

There exists a measure β with these fi(S(T0,e)), e e ^ + 1 . We have fi(St)

< οο for all teRd. Let {X(t)} and \X(t)} be the Chentsov type SaS ran-

dom fields associated with μ and β, respectively. From the construction

p(S(T0, e)) = μ(§(Τ0, e)) for all e e id+1\{(l, , 1)}.

It follows that (Xfc), --,X(td+l)) and (Xfo), .-,X(td+1)) have different

distributions but they have common d-dimensional marginal distributions.

EXAMPLE 4.3. An interesting problem is whether there are two

measures μ and β satisfying (1.3) such that the Chentsov type SaS random

fields {X(t)} and {X(f)} on Rd associated with μ and fi, respectively, have

identical rf-dimensional distributions but different (d + l)-dimensional dis-

tributions. We do not know the answer to this problem for general d

yet. But, in case d = 1, we can construct such measures.

Let Ε = R+ X R1. Let μ be such that p(St) = μ(β^) < οο and /*(Sf)

is a continuous increasing function of t > 0. Suppose, further, that μ is

mutually absolutely continuous with the Lebesgue measure. Let β be a

measure concentrated on R+ X {0} such that

fi(st) = fi(st η (R+ χ {0})) = ^(s,).

Then {X(t)} and {Χ(ί)} have common 1-dimensional distributions. Let

0 < U < * 2 . Then / i(S i i nSf 2 )>0 but p(StinSeJ = 0, which implies that

and (Χ(^), Χ(ί2)) have different distributions.

Our technique in this paper works in finding determinism of random

fields on Rd of a similar sort.

THEOREM 4.4. Let μ be a measure on R+ X Rd satisfying μ(Ο^ < οο

for every teHd and let Υ( ) be the SaS random measure associated with μ.

Let

X(t) = Y(Ct) for t eRd.

Then, for any η> d, any n-dimensional distribution of {X(t)} is determined

by its d'dimensional marginal distributions.

Proof. The non-degenerate case is dealt with Proposition 3.6 and

Lemma 2.2. The degenerate case is obvious. •

Finally we remark that, if μ is invariant under translation in Rd,



STABLE RANDOM FIELDS 139

then {X(t); teRd} in Theorem 4.4 is a homogeneous random field con-
structed geometrically.
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