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1. Introduction

A submanifold M (connected but not necessary compact) of a Eucli-
dean m-space Em is said to be of finite type if each component of its
position vector X can be written as a finite sum of eigenfunctions of the
Laplacian Δ of M, that is,

Ίc

X = Xo + 2 Xe

where XQ is a constant vector and ΔXt = λtXt, t = 1, 2, , k. If in par-
ticular all eigenvalues {λu λ2, , λk} are mutually different, then Mis said
to be of k-type (cf. [3] for details).

In terms of finite type submanifolds, a well-known result of T.
Takahashi [10] says that a submanifold M is Sm is of 1-type if and only
if M is a minimal submanifold of Sm. The theory of minimal submanifolds
has attracted many mathematicians for many years. Many interesting
results concerning minimal submanifolds have been obtained. For in-
stances, T. Otsuki investigated in [7, 8] minimal (i.e., 1-type) hypersurfaces
M of a hypersphere Sn+1 of a Euclidean (n + 2)-space En+2 such that M
has exactly two distinct principal curvatures. Some interesting local
classification theorems were obtained by him (cf. [7, 8]). On the other
hand, the problem of classification of 2-type hypersurfaces of Sn+ί was
initiated in [3]. Several results in this respect were obtained in [1, 3, 4, 5, 6].

In this paper we consider the classification problem similar to Otsuki's
for 2-type hypersurfaces in Sn+1. As a consequence the following two
local rigidity theorems are obtained.

THEOREM 1. Let M be a hypersurface of the hypersphere Sn+1(ΐ) in
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En+2 with at most two distinct principal curvatures. Then M is of 2-type

if and only if M is an open portion of the product of two spheres S^fo) X

Sn-p(r2) such that r\ + r\ = 1 and (rl9 r2) Φ (Vp/rc, \/(n — p)ln).

THEOREM 2. Let M be a hypersurface of the hypersphere Sn+1(ΐ) in

En+2. Then M is conformally flat and of 2-type if and only if M is an open

portion of S1^) X S""1^) where r\ + r\ = 1 and (ru r2) Φ (Vϊ/n, Vin

Remark 1. Theorems 1 and 2 generalize the main results of [1, 6],

Theorem 3 of [51 and also Theorem 4.5 of [3, p. 279].

2. Some basic formulas

Let M be a connected hypersurface of the unit hypersphere Sn+1(l)

centered at the origin of En+2. Then the position vector X of M in EnλΛ

is normal to M as well as to Sn+1(ί). Denote by ξ a unit local vector

field normal to M and tangent to Sn+1(ϊ). Let A, h and H denote the

Weingarten map, the second fundamental form, and the mean curvature

vector of M in En+2, respectively, and A\ h! and H' the corresponding

invariants of M is Sn + 1(l). We put

where < , > denotes the inner product of En+2. We have

(2.1) H=H' - X, Hf = βξ , a2 = β2 + 1.

For simplicity we put B = Aζ(— A'ξ). From [3, 4] we have

(2.2) ΔH = (Aβ)ξ + \\h\\ιH' - ncfiX + {ΔH)T ,

where ||Λ|| is the length of h and (ΔH)T, the tangential component of ΔH,

satisfies [4]

(2.3) (ΔH)T = —grad β2 + 2£(grad β).

If M is of 2-type, then there exist constants 6, c and a constant vector

X, such that (cf. [3])

(2.4) J # = bH+ c(X- XQ).

From (2.1)-(2.4) we may obtain

(2.5) (ΔH, χy=-na2=-b+c- c(X,
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(2.6) i lgrad p + 2B(grad β) = - c(X0)
τ ,

where (XQ)T is the tangential component of XQ and

(2.7) (ΔH, H) = /3J/3 + β2\\h\\2 + rc*2 - ba2 - c - c<X0, H) .

On the other hand, the last equality of (2.5) yields

(2.8) - nΔa2 = - cΔ((X, Xo)) = nc(H, Zo> .

Thus, by combining (2.7) and (2.8), we have

(2.9) Δa2 = βΔβ + β21|h\\2 + (n - b)a2 + c .

From (2.9) and the equation of Gauss we have the following [4]

LEMMA 1. Let M be a 2-type hypersurface of SΏ+1(1). // M has con-

stant mean curvature β, then M has constant length of the second funda-

mental form and constant scalar curvature.

Also from (2.5) we may obtain

(2.10) c(X0)
τ = n grada2 = n grad β2.

Therefore (2.6) and (2.10) imply [5]

LEMMA 2. Let M be a 2-type hypersurface of Sn+ί(ϊ). Then grad/32 is

an eigenvector of B with eigenvalue — (3rc/2)β on the open subset U =

{u € M\ grad β2 Φ 0 at u}.

Let el9 ',en be an orthonormal local frame field tangent to M.

Denote by ω\ , ωn the field of dual frames. Let (ωi), A, B = 1, ,

n + 2, be the connection forms associated with the orthonormal frame

{eί9 - - >,en9 en+1,en+2}, where en+1 = f and en+2 = X Then the structure

equations of M in En+2 are given by

(2.11)

(2.12)

(2.13)

Moreover,

(2.14)

dω' =

n

dω) = Σ ω

n

if we put tilj1 =

iΛa>l+a>l

> y + 1 Λα>J ,

= <Λ(e4, e^), e

Σ A?; v ,
J = l

, < = - o)|

Λ y _ι ΐ

i,j,k= 1, ••

;m + 1), then we

>

, n .

have
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In particular, if eu , en diagonalize B = Aξ such that

(2.15) Λ?/1 = i«*3*i.

Then from (2.11)-(2.15) we have

(2.16) eiμj = (μί- μs)ω{(es) ,

(2.17) (μ, - μk)ω%ei) = (ft " ft)*)

for distinct i, 7, β.

3. Proof of Theorem 1

Let M be a 2-type hypersurface of Sw+1(l) with at most 2 distinct

principal curvatures. Assume M has non-constant mean curvature. We

put

(3.1) W={ueM\ β\u) Φ 0 and (grad β2) (ύ) Φ 0}.

Then W is nonempty. From Lemma 2 we may choose ex in the direction

of gradβ2 and hence we have

(3.2) e2μ, = . . . = enμx = 0 , Bβt = ^ ^ , ^ = - (3n/2)/3 .

Let Ti = {Ye ΓC7|S(Y) = ^Y}. If ϊ\ is of dimension > 2 on some subset

Z of W, then we may choose e2 e T̂  on Z. From (2.16) we obtain eλμ2 =

eιμί — 0. This implies that β2 is constant on Z, since gradβ2 is parallel

to βj. However, this is impossible from the definition of W. Therefore,

we see that Tλ is 1-dimensional on W. Since M has at most two distinct

principal curvatures, (3.2) implies that the remaining principal curvatures

are given by

(3.3) „ = . . . = „. = JZL

From (2.17) and (3.3) we obtain

(3.4) ω ϊ f o ) = 0 , i φ k , i , k = 2 , - - - , n .

Moreover, from (2.16), (3.2) and (3.3) we find

(3.5) ω}(e.) = 0 .

From (3.2), (3.3) and (3.4) we have

(3.6) coΓ1 = - ( - ^ V , ω?+2 = o /

 5 " 1N fa>«, i = 2,
\ Δ\n — ly
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(3.7) dβ = (e1β)ωi.

Thus, by taking the exterior differentiation of the first equation of (3.6)

and applying (2.13), (3.6) and (3.7), we obtain dω1 = 0. Therefore, there

exists locally a function u such that

(3.8) ωι = du.

Equations (3.7) and (3.8) imply that β is a function of u. Denote by β'

and β" the first and the second derivatives of β with respect to u, respec-

tively. From (2.16), (3.2) and (3.3), we obtain

(3.9) K(efc) = - dr-T-5-V' * = 2, , * .
\ on + Z /

Combining (3.4) and (3.9) we get

(3.10) ωf = - ( 5 )(£)ω*, k = 2, , n .

By taking exterior differentiation of ω\ and applying (2.11), (2.12), (3.6)

and (3.10) we may obtain

3n+2/\β/ \3n + 2/\βJ 4(n -

from which we have

(3.12) 0 = (3Λ + 2)ββ" - (3n + 7)(βΎ S ^ β
4(n — 1)

Solving differential equation (3.12) for β' we get

(3.13) (β'f = - (-^LtAYp - / n(3n + 2) \y + Ci^,,.+7)/(,,

for some constant c,. Also from (2.1), (3.2) and (3.9) we have

(3.14) z/«2 = - 2ββ" +

(3.15) Δβ = 5 ( n ~ 1 ) ( ^ ) - - β" .

From (2.9), (3.2)-(3.4), (3.14), and (3.15) we obtain

on 4~

(3.16) 0 = ββ" + ( . £ ± J L W + nβ* + J^±^Lβ- + (n- 6)(1 + ̂  + c.
\ on ~\~ Z / *Ti 1}
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Combining (3.12) and (3.16) we find

4(72 + 4)(/3')2 + 10n2(Sn + 2 )

4(n 1)
4(72 + 4)(/3) + β + β

(3.17) 4(n- 1) 5
+ (3n + 2){(n - 6)(1 + f?) + c} = 0 .

From (3.13) and (3.17) we conclude that β is constant on W which is a

contradiction. Therefore, W must be empty. Hence, by continuity, we

conclude that M has constant non-zero mean curvature in Sn+ί(ϊ). Hence,

by Lemma 1, ||Λ|| is also constant. Since M has at most two distinct

principal curvatures, the constancy of β and of \\h\\ implies that M has

exactly two constant principal curvatures because M is assumed to be

of 2-type. Thus, by Theorem 2.5 of [9], M is locally the product of two

spheres S'fa) X Sn~p(r2) such that r\ + r\ == 1. Moreover, since M is not

minimal in Sn+1(l), we have (ru r2) ψ (Vpjn, V(n — p)/n).

The converse of this is easy to verify. (Q.E.D.)

4. Proof of Theorem 2

If M is an open portion of the product Sι(r^) X Sn-\r2) with r\ + r\ = 1

and (Γj, Γ2) 9̂  (Vl/w, V(rc — 1)/^), then it is easy to verify that M i s a 2-type

conformally flat hypersurface of Sn+1(l) c En+\

Conversely, assume M is a 2-type conformally flat hypersurface of

Sn+1(l). If either n = 2 or n > 4, then M is quasi-umbilical, that is, M

has at most two distinct principal curvatures such that one of them is

of multiplicity > n — 1, according to a result of E. Cartan and J. A.

Schouten (cf. [2, p. 154]). In these two cases, Theorem 1 implies that M

is an open portion of the product of a circle and an (n — l)-sphere with

the appropriate radii mentioned above.

In the remaining part of this section we will prove that the same

result also holds when n = 3. Now, assume n = 3. Denote the Ricci

tensor and the scalar curvature of M respectively by R and r. Put

(4.1) L= -R+Z-g,
4

where g denotes the metric tensor of M. Sicne M is conformally flat, a

result of H. Weyl (cf. [2, p. 26]) yields

(4.2) (VyLHZ, W) = (FZL)(Y, W)

for vectors Y, Z, W tangent to M.
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On the other hand, from the equation of Gauss, we have

(4.3) R(Y, Z) = 2< Y, Z> + 3/3<SY, Z> - <B2Y, Z> .

From (4.1) and (4.3) we find

(4.4) L(Y, Z) = [L. - 2)<Y, Z> - 3^<BY, Z> + <J32Y, Z> .

Therefore, by applying (4.2), (4.3), (4.4) and the equation of Codazzi, we

obtain

(4.5) (Yr)Z - (Zr)Y = 12{(Yβ)BZ - (Zβ)BY) - 4{(FYB
2)Z - (V ZB

2)Y),

(4.6) r = 6+9β2 - \\B\\2.

Let eu e2, β3 be orthonormal eigenvectors of B such that

(4.7) Be, = Λ e < , i = 1, 2, 3 .

From (4.5) and (4.7) we may get

(4.8) {μ) - μDω'ie,) = 3 ^
4

(4.9) (μ) - (βωfa) = (μ\ - μDω\(e3)

for distinct i,j, k (i,j, k = 1, 2, 3).

Let V be open subset of M on which V has three distinct principal

curvatures in S4(l). If V is empty, then Theorem 2 follows from Theorem

1. So, from now on we may assume that V is non-empty and we work

on V only.

Since the three principal curvatures μu μ2, μ3 are distinct on V,

formulas (2.17) and (4.9) give

(4.10) ωΐ(ek) = 0

for distinct i,j and k. If the mean curvature β is constant on V, then

from Lemma 1 and formula (4.6), ||Λ||, ||J3|| and r are all constant on V.

Thus (4.8) yields

(4.11) eifή = (μ\ - fή)

for distinct i and j . Combining (2.16) and (4.11) we find

(4.12) eφ5 = 0

for distinct i and j . Since 3^ = μλ + μ2 + μz, (4.12) implies that V is an
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isoparametric hypersurface in S\ί) with three distinct principal curva-

tures. Furthermore, from (4.11), we have ωi(ej) = 0. Therefore, from (4.10),

we get ω{ = 0. Thus V is flat and also the product of any two of the

three principal curvatures is equal to — 1. But this is a contradiction,

since the later condition implies V is totally umbilical. Consequently,

we know that the mean curvature of V in S4(l) is nonwhere constant.

Hence, by applying Lemma 2, we may choose ex in the direction of grad β2.

In this case we have

(4.13) μ 1 = - lβ, μί = ^β+ δ, μs = ^-β - δ

for some function 5 and from (2.16) and (4.13) that

(4.14) e2β = eφ = 0, e,μ2 = - (δ + - ^ ω ' f e ) , eι[h = (δ - - ^ - ^ ω f e ) .

From (2.16), (4.13), and (4.14) we get

(4.15) ωϊfe) = ωϊfe) = 0 .

Therefore, we obtain from (4.10) and (4.15) that

(4.16) ω\ = φω\ ω\ = ηωz ,

where

(417) ύ = - ^δ + 15β^ = 4βtg - Ibeφ
Ψ 33^ + 43 ' ; 33/3 - 4δ

By taking exterior differentiation of ω\ = //iCϋ1 and applying (2.13), (4.14)

and (4.16) we may obtain dω1 = 0. Thus, there is a local function u such

that

(4.18) ω1 = du.

From (4.14) and (4.18) we see that β is a function of M. From (2.16) and

(4.8) we may obtain

(4.19) (μs - μi)eiμj = 3(etβ)μj ~ j fer) , i ^ j ,

Letting i = 1, y = 2 for (4.9) and using (4.6) we find

(4.20) (μ2 - μz)μ[ + (μ, - μz)μ'2 + (μ2 - μdμί = 0 .

From (4.13) and (4.20) we obtain δβ' + Uβδf = 0. Hence we get
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(4.21) β = aδ'n9

for some non-zero constant α. In particular, (4.21) implies that both δ

and r are functions of u. Combining (4.13), (4.16), (4.17), and (4.21), we

find

(4.22) μί=-ϊ-aδ-u, μ2 = δ + ^-aδ-11, μz = - δ + —aδ'11,
2 4 4

(4.23) * = ( 1 6 6 ^ - a - 4> g ' o2, at = .0*™-a + W-S.

33aδ-n + 4δ SSaδ-11 - 4δ

From (4.8), (4.10) and the fact etδ = e4r, ί = 2, 3, we have

(4.24) ωί = 0 .

Taking exterior differentiation of the first equation of (4.23) and applying

(2.11), (2.12), (4.22), (4.23) and (4.24), we may obtain

(165α<Γ12 - 4)δ" + (33σδ-n + 43)-'(32 - 11352αδ"12 + 21780a2r24)(5')2

( 4 ' 2 5 ) = (33aβ-n + 4 δ ) ( - ^ a 2 δ - 2 2 + — aδ'10 - l) .

Similarly, by taking exterior differentiation of the second equation of

(4.23) we may obtain

(165α<T12 + 4)ί" + (33αδ-" - 45)"1(32 + 11352αβ"1

(4.26) / i QP; q
= (33α3-n - 4<5)(-— α2^-22 - — αβ"10 -

\ 8 2

From (4.25) and (4.26) we get

- 92565α2<T24)

(1089 2^ 2 0 16^)(84152^2 4 176r2 + 16).

On the other hand, by taking the exterior differentiation of (4.24) and

applying (2.12), (4.22) and (4.23), we obtain

16(<502(16 - 27225α2<Γ24)
(4.28)

= (1089α2<5-22 - 16<52)(225α2r22 - 1632 + 16).

Combining (4.27) and (4.28) we know that both δ and β are constant on

V. This is a contradiction. Consequently, V is empty. (Q.E.D.)
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