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1. Introduction

A submanifold M (connected but not necessary compact) of a Hucli-
dean m-space E™ is said to be of finite type if each component of its
position vector X can be written as a finite sum of eigenfunctions of the
Laplacian 4 of M, that is,

k
X=X+>X
=1
where X, is a constant vector and 4X, = 21,X,, t=1,2, --., k. If in par-
ticular all eigenvalues {4, 4, - - -, 4} are mutually different, then M is said

to be of k-type (cf. [3] for details).

In terms of finite type submanifolds, a well-known result of T.
Takahashi [10] says that a submanifold M is S™ is of 1-type if and only
if M is a minimal submanifold of S™. The theory of minimal submanifolds
has attracted many mathematicians for many years. Many interesting
results concerning minimal submanifolds have been obtained. For in-
stances, T. Otsuki investigated in [7, 8] minimal (i.e., 1-type) hypersurfaces
M of a hypersphere S**! of a Euclidean (n + 2)-space E*** such that M
has exactly two distinct principal curvatures. Some interesting local
classification theorems were obtained by him (cf. [7, 8]). On the other
hand, the problem of classification of 2-type hypersurfaces of S™*! was
initiated in [3]. Several results in this respect were obtained in [1, 3, 4, 5, 6].

In this paper we consider the classification problem similar to Otsuki’s
for 2-type hypersurfaces in S”*'. As a consequence the following two
local rigidity theorems are obtained.

THEOREM 1. Let M be o hypersurface of the hypersphere S**'(1) in
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E™*? with at most two distinct principal curvatures. Then M is of 2-type
if and only if M is an open portion of the product of two spheres S*(r,) X
S™=2(r,) such that r* + r: =1 and (r, 1)) = (Wp/n, ¥(n — p)/n).

THEOREM 2. Let M be a hypersurface of the hypersphere S**Y(1) in
E***. Then M is conformally flat and of 2-type if and only if M is an open

portion of SX(r,) X S* X(r,) where r? + 1} = 1 and (r,, r,) #= (V1/n, ¥(n — 1)/n).

Remark 1. Theorems 1 and 2 generalize the main results of [1, 6],
Theorem 3 of [6] and also Theorem 4.5 of [3, p. 279].

2. Some basic formulas

Let M be a connected hypersurface of the unit hypersphere S™*'(1)
centered at the origin of E™*%. Then the position vector X of M in E™**
is normal to M as well as to S™*}(1). Denote by & a unit local vector
field normal to M and tangent to S"*'(1). Let A, h and H denote the
Weingarten map, the second fundamental form, and the mean curvature
vector of M in E™*%, respectively, and A’, ' and H’ the corresponding
invariants of M is S**!(1). We put

o =<(H,HY, F=<KH, 6 H)
where {,) denotes the inner product of E***. We have
2.1) H=H —-X, H=8, d=+1.
For simplicity we put B = A, (= Al). From [3, 4] we have
(2.2) 4H = (4p)§ + |hIPH" — na*X + (4H)" ,

where ||| is the length of & and (4H)", the tangential component of 4H,
satisfies [4]

(2.3) (4H)* = 121- grad §° + 2B(grad §) .

If M is of 2-type, then there exist constants b, ¢ and a constant vector
X, such that (cf. [3])

2.4) 4H = bH + ¢(X — X)) .

From (2.1)-(2.4) we may obtain

(2.5) UH, XY= —no* = — b+ c — (X, X,
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(2.6) _;kgrad B+ 2B(grad p) = — c(X,)",

where (X;)” is the tangential component of X, and

2.7 (4H, H) = B4B + B||h|} + na® = ba® — ¢ — (X, H) .
On the other hand, the last equality of (2.5) yields

(2.8) — ndo* = — cd((X, Xp)) = ne{H, X,) .

Thus, by combining (2.7) and (2.8), we have

(2.9) da? = BAB + B*||h|F + (n — b)a* + c.

From (2.9) and the equation of Gauss we have the following [4]

LEMMA 1. Let M be a 2-type hypersurface of S™*'(1). If M has con-
stant mean curvature f, then M has constant length of the second funda-
mental form and constant scalar curvature.

Also from (2.5) we may obtain
(2.10) c(Xy)" = ngrada® = ngrad §°.
Therefore (2.6) and (2.10) imply [5]

LEmMMA 2. Let M be a 2-type hypersurface of S**(1). Then grad f is
an eigenvector of B with eigenvalue — (3n/2)B on the open subset U =
{ue M|grad p* + 0 at u}.

Let e, ---,e, be an orthonormal local frame field tangent to M.
Denote by o}, ---, 0" the field of dual frames. Let (wi), A, B=1, .-,
n + 2, be the connection forms associated with the orthonormal frame
{e, -+ -, e, €041, €,.0), Where e,,, =& and e,,, = X. Then the structure

equations of M in E"*? are given by

o bt =~ S0 At =
=
(2.19) dot = 3 08 A 0f + 0bey A 0l + 0 A of
k=1
(2.13) da)?'*l:im?*‘/\m;, i’j’k=1,...,n.
=1

Moreover, if we put AZ' = (h(e,e,), e,,,», then we have

(2.14) ot = z;l Wi’ hit = (Be,e).
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In particular, if e, - - -, e, diagonalize B = A, such that
(2.15) Pt = padiy .

Then from (2.11)-(2.15) we have

(2.16) ey = (. — pyolle),

(2.17) (1 — ) ofe) = (p — p)wiley)

for distinct i, j, k.

3. Proof of Theorem 1

Let M be a 2-type hypersurface of S**(1) with at most 2 distinct
principal curvatures. Assume M has non-constant mean curvature. We
put

(3.1) W = {ue M|p(w) + 0 and (grad p*) (u) # 0}.

Then W is nonempty. From Lemma 2 we may choose e, in the direction
of grad g* and hence we have

(3.2 e = - =e,u =0, Be =pe , p=—(3n/2)p.

Let T\ ={Ye TU|B(Y) = i, Y}. If T is of dimension > 2 on some subset
Z of W, then we may choose e;e T, on Z. From (2.16) we obtain e, p, =
e,y = 0. This implies that p* is constant on Z, since grad g* is parallel
to e,, However, this is impossible from the definition of W. Therefore,
we see that 7, is 1-dimensional on W. Since M has at most two distinct
principal curvatures, (3.2) implies that the remaining principal curvatures
are given by

5n
. = =y = -8, w.
(3.3 He 2 2(n — 1) g, on
From (2.17) and (3.3) we obtain
(3.9) Wie) =0, ik, Lh=2,.n.

Moreover, from (2.16), (3.2) and (3.3) we find
(3.5) wi(e) =0.
From (3.2), (3.3) and (3.4) we have

3 - 5 L



RIGIDITY THEOREMS OF HYPERSURFACES 143

(3.7) dg = (e,p)o’ .

Thus, by taking the exterior differentiation of the first equation of (3.6)
and applying (2.13), (3.6) and (3.7), we obtain dw' = 0. Therefore, there
exists locally a function v such that

3.8 o' =du.

Equations (3.7) and (3.8) imply that 3 is a function of u. Denote by g’
and B the first and the second derivatives of 8 with respect to u, respec-
tively. From (2.16), (3.2) and (3.3), we obtain

(3.9) Botle,) = — <5?5572”>5 k=2 - n.

Combining (3.4) and (3.9) we get

(3.10) o = — (%ni2><%)“’k k=2 -.n.

By taking exterior differentiation of w! and applying (2.11), (2.12), (3.6)
and (3.10) we may obtain

e (5.%5) (5) - G5B -ty -

from which we have

_ "o ne . S @Bn+ 28 0 Bn+ 2
(312) 0=@0Bn+ 288" — Bn + NE') + T 8 5 B .

Solving differential equation (3.12) for f’ we get

313 () = — <_Ein__5__+___,,.2_>2l@2 _ ( f;_((?::} _ij_))ﬁ o gronsnronn

for some constant ¢,. Also from (2.1), (3.2) and (3.9) we have

: _ 2 _2(2n =7 oy

(3.14) do? = — 288" + S T 2——(ﬂ) ;
_5(n—=1@) _
(3.15) 48 = Gn T 95 8.

From (2.9), (3.2)-(3.4), (3.14), and (3.15) we obtain

)@y + g+ PO g 14 ) e
4(n — 1)

n+9
3n+ 2

(316) 0=p8" + (
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Combining (3.12) and (3.16) we find
ne o 100°(Bn+2) o 2Bn+ 2)(@n+ 1) 4
4
(8.17) o+ DEF + 4(n — 1) P 5 g
+@Bn+2{(n—-—bQ+p)+ct=0.

From (3.13) and (3.17) we conclude that 3 is constant on W which is a
contradiction. Therefore, W must be empty. Hence, by continuity, we

conclude that M has constant non-zero mean curvature in S**(1). Hence,
by Lemma 1, ||k| is also constant. Since M has at most two distinct
principal curvatures, the constancy of g and of ||| implies that M has
exactly two constant principal curvatures because M is assumed to be
of 2-type. Thus, by Theorem 2.5 of [9], M is locally the product of two
spheres S?(r,) X S*-?(r,) such that r} 4+ r; = 1. Moreover, since M is not
minimal in S**(1), we have (r, 1) = (¥/p/n, +(n — p)/n).

The converse of this is easy to verify. (Q.E.D.)

4. Proof of Theorem 2

If M is an open portion of the product S'(r)) X S*™ry) withr: + r2 =1
and (r,, ry) = (W1/n, ¥/(n — 1)/n), then it is easy to verify that M is a 2-type
conformally flat hypersurface of S**{(1) C E"*2.

Conversely, assume M is a 2-type conformally flat hypersurface of
S7*1(1). If either n = 2 or n >4, then M is quasi-umbilical, that is, M
has at most two distinct principal curvatures such that one of them is
of multiplicity > n — 1, according to a result of E. Cartan and J. A.
Schouten (cf. [2, g. 154]). In these two cases, Theorem 1 implies that M
is an open portion of the product of a circle and an (n — 1)-sphere with
the appropriate radii mentioned above.

In the remaining part of this section we will prove that the same
result also holds when n = 3. Now, assume n = 3. Denote the Ricci
tensor and the scalar curvature of M respectively by R and r. Put

(4.1) L=—R+%&

where g denotes the metric tensor of M. Sicne M is conformally flat, a
result of H. Weyl (cf. [2, p. 26]) yields
(4.2) (VyL)(Z, W) = (7 ,L)(Y, W)

for vectors Y, Z, W tangent to M.
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On the other hand, from the equation of Gauss, we have
4.3) R(Y,Z) = 2{Y, 2> + 3p{BY, Z) — (B*Y, Z> .
From (4.1) and (4.3) we find

(4.4) uxzy=(£_2yxz>_3Msz>+<szy
Therefore, by applying (4.2), (4.3), (4.4) and the equation of Codazzi, we
obtain

@4.5) (Yr\Z — (Zr)Y = 12((YRBZ — (ZP)BY} — 4{(VyBYZ — (V , B)Y},
4.6) r==64 98 — |BJ}.

Let e, ¢,, e, be orthonormal eigenvectors of B such that

4.7) Be, = pe,, 1=1,23.

From (4.5) and (4.7) we may get
4.8) (1, = ioifes) = Befmy — (o) — e

(4.9) (15 — ) ole) = (1 — p)oiley)

for distinet i,j,k (i,j, k =1, 2, 3).

Let V be open subset of M on which V has three distinct principal
curvatures in S*1). If V is empty, then Theorem 2 follows from Theorem
1. So, from now on we may assume that V is non-empty and we work
on V only.

Since the three principal curvatures g, p, g are distinct on V,
formulas (2.17) and (4.9) give

(4.10) wile,) =0

for distinct i,j and k. If the mean curvature B is constant on V, then
from Lemma 1 and formula (4.6), || &, ||B|| and r are all constant on V.
Thus (4.8) vields

(4.11) e it = (i — ) wiley)
for distinct i and j. Combining (2.16) and (4.11) we find
(4.12) ety =0

for distinct i and j. Since 38 = p, + 1, + w4, (4.12) implies that V is an
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isoparametric hypersurface in S*(1) with three distinct principal curva-
tures. Furthermore, from (4.11), we have wi(e,) = 0. Therefore, from (4.10),
we get o/ = 0. Thus V is flat and also the product of any two of the
three principal curvatures is equal to — 1. But this is a contradiction,
since the later condition implies V is totally umbilical. Consequently,
we know that the mean curvature of V in S*%1) is nonwhere constant.
Hence, by applying Lemma 2, we may choose e, in the direction of grad g
In this case we have

9 5
(4.13) M= *2—‘3’ P = ‘14—ﬁ +0, m= lgﬁ —0
for some function ¢ and from (2.16) and (4.13) that
@1 ef=es=0 em=—(0+ 2ot em= (0 - 2 5)otte.

From (2.16), (4.13), and (4.14) we get
(4.15) wie)) = wi(e) = 0.
Therefore, we obtain from (4.10) and (4.15) that

(416) (1)3 — ¢w2, w? — 77(”3 ,

where

(4.17) 6= — ded+ 15ef  _ ded — 15ef
338 + 46 338 — 46

By taking exterior differentiation of w} = o' and applying (2.13), (4.14)
and (4.16) we may obtain dw' = 0. Thus, there is a local function u such
that

(4.18) o' =du.

From (4.14) and (4.18) we see that g is a function of u. From (2.16) and
(4.8) we may obtain

(4.19) (s — padespy = 3(ef)py — —i—(ei"), i+,

Letting i = 1, j = 2 for (4.9) and using (4.6) we find

(4.20) (o — )+ (0 — s + (o — )5 = 0.
From (4.13) and (4.20) we obtain 8’ + 1185’ = 0. Hence we get
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(4.21) B=as ",

for some non-zero constant a. In particular, (4.21) implies that both o
and r are functions of u. Combining (4.13), (4.16), (4.17), and (4.21), we
find

422 p=— 2w, m=i+ Dt =+ e,
2 4 4
(4.23) i — (16500°% — 45" . . (165657 + 4§ s
33as "+ 46 3325~ — 45

From (4.8), (4.10) and the fact e;6 = e;r, i = 2, 3, we have
(4.24) W =0.

Taking exterior differentiation of the first equation of (4.23) and applying
(2.11), (2.12), (4.22), (4.23) and (4.24), we may obtain

(165a6~" — 4)8” + (33a6~"* + 46)7'(32 — 11352a5-" + 21780a’6~**)(5')

— (33051 + 45)(%&5—22 + _g_a5~'° _ 1) .

(4.25)

Similarly, by taking exterior differentiation of the second equation of
(4.23) we may obtain

(165a6-"* + 4)8” + (33as™"* — 46)~4(32 + 11352a5-" + 21780a’s~**)(6')*

135

(4.26) T
= (33(15_“ —_ 45)<¥g a25—22 - Eaa—m _ 1) .

From (4.25) and (4.26) we get

176(5")*(208 — 92565a%5*)

(4.27) A
— (1089a%% — 166*)(8415a%5% — 1765-% + 16).

On the other hand, by taking the exterior differentiation of (4.24) and

applying (2.12), (4.22) and (4.23), we obtain
16(5")*(16 — 2722545~
(4.28) (@)% a’s~*)
— (1089a%-% — 166%)(2250%% — 165* + 16) .

Combining (4.27) and (4.28) we know that both § and 8 are constant on
V. This is a contradiction. Consequently, V is empty. (Q.E.D.)
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