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ON THE GRADE AND COGRADE OF

A NOETHERIAN FILTRATION

J.S. OKON AND L.J. RATLIFF, Jr.

§ 1. Introduction

All rings in this paper are assumed to be commutative with identity
and the terminology is standard.

Filtrations are a useful generalization of the sets of powers of an
ideal / in a ring R, and there are many important filtrations that are
generally not such powers of an ideal. (For example: {Q(7l)}TO>o, where Q
is a primary ideal; {(In)a}n>0, where (In)a is the integral closure in R of
In; and, [un& (Ί R}n^> where 8& is a graded subring of R[u, t] that contains
R[u, tl] and 7 is a given ideal of i?.) They have played an important
role in many research papers, and there are many results concerning
them in the literature.

In several recent papers a number of important theorems concerning
ideals in a Noetherian ring have been extended to Noetherian filtrations
(e.g., see [1, 13, 14, 15, 25, 28, 29]). And in [6, 26] a number of results
concerning the asymptotic prime divisors of an ideal are extended to finite
collections of ideals. The results in this paper combine both types of
extensions; specifically, we extend the "asymptotic" definitions (for an
ideal) to a collection of g > 1 Noetheian filtrations. (As in the ideal
case, it turns our that when working with filtrations φu -'-,φg (with
g > 1), for the asymptotic prime divisor case it must be assumed that each
φt(ΐ) has height at least one, and for the essential prime divisor case the
corresponding assumption is that each <̂ (1) is regular.) Our results then
imply, as a special case, that the corresponding results hold for finite
collections of ideals.

To be more specific, in this paper we extend the definitions of four
types of prime divisors (viz, asymptotic, essential, quintasymptotic, and
quintessential) from a single ideal to a collection Φ = (φu , φg) of g > 1
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Noetherian ίiltrations φt. We show that each of these four types of

prime divisors is, in fact, the corresponding type of prime divisor of

certain of the ideals φι(nϊ) φg(ng), so it follows that the known results

for ideals concerning these types of prime divisors have a valid analog

for Φ. As an application of this, we introduce the four corresponding

types of sequences in (and, over) Φ and the four corresponding grades

and cogrades of Φ. It is then shown that these are equal to the corre-

sponding sequences, grades, and cogrades of φχ(n^) φg(ng), so the known

results for ideals concerning these sequences, grades, and cogrades also

have valid analogs for Φ. As a final application of these results, it is

shown that if i? is a quasi-unmixed local ring, then a(Φ) + acogd(Φ) =

altitude (i?), where a denotes analytic spread and acogd denotes asymptotic

cograde.

In Section 2 we define the four types of prime divisors for Φ and

prove a few of their basic properties. In Section 3 we define the four

types of sequences associated with Φ for these four types of prime divi-

sors and use them to define the corresponding four types of grade and

cograde of Φ. Finally, in Section 4 we extend Rees' theorem concerning

analytic spread and asymptotic cograde in quasi-unmixed local rings from

ideals to finite collections of Noetherian filtrations.

§ 2 The asymptotic prime divisors of a Noetherian filtration

In this section we define four types of prime divisors associated with

a finite collection of Noetherian filtrations and prove a few of their basic

properties. For this, we begin with some definitions and notational

conventions concerning filtrations.

(2.1) DEFINITION. If R is ring, then:

(2.1.1) A filtration φ = {0(ft)}«>o on i? is a descending sequence of

ideals φ(ή) of R such that φ(0) = R and φ(ί)φ(j) <= φ(i + j) for all non-

negative integers i and j .

(2.1.2) If k is a nonnegative integer, then φilc) denotes the subfiltra-

tion φw = {φ(nk)}n>Q of φ. (φi0) is the filtration each of whose components

is R.)

(2.1.3) If φ and ϊ are filtrations on R, then φ = ϊ in case φ(n) = Y(ή)

for all n > 0, and φ < r in case φ(n) c= γ(ή) for all n > 0.

(2.1.4) If φ and T are filtrations on ϋ , then their sum φ + 7 and prod-

uct φϊ are defined to be the sequences of ideals φ + ϊ = [Y^^φi^ϊin — ί)}n>0
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and φϊ — {φ(n)ϊ(n)}n>Q. (It is readily checked that φ + T and φϊ are

filtrations on R and that φ + T is the smallest filtration θ on R such

that θ > φ and θ >ΐ, so it follows that if ^ , , φg are filtrations on R,

then so are φγ + + φg and φγ - - - φg and ^ + + φg is the smallest

filtration θ on R such that θ > φt for i = 1, , g.)

(2.1.5) The integral closure φa of a filtration ^ on i? is the sequence

of ideals φa = {(φ(n))a}n^0, where (φ(n))a is the integral closure of φ(n);

therefore (φ(ή))a = {xeR; x satisfies an equation of the form xk + 61x
fc"1

+ .. . + bk = 0, where b, e (φ(ή)Y for £ = 1, • , fe} (see (2.2.2)).

(2.1.6) The weak integral closure φw of a filtration φ on R is the

sequence of ideals φw = {(φ(ή))w}n>Q, where (φ(ή))w is the weak integral

closure of φ(ή); therefore (φ(ή))w = {xeR; x satisfies an equation of the

form xk + όjX*'1 + + bk = 0, where bt e φ(nί) for ί = 1, , k] (see

(2.2.2)).

(2.1.7) If Φ = (Φj, , ^ ) is a collection of g > 1 filtrations on #,

then the iϊees ring @ί(R, Φ) of i? with respect to Φ is the graded subring

9t{R, Φ) = i?[^, ., ug, {tiφMΐ-i* - - . {*#*(0}r-J of i ? κ , , ^ ^ , . ., y ,

where ί1? '-',tg are algebraically independent over i? and ut = 1/^ for

i = 1, , g. If Φ = (0), then we will use 0t(R, φ) in place of M(R, Φ),

and if φ = {/w}n>o is the sequence of powers of an ideal I, then we will

use 0t(R, I) in place of 0ί(R, φ).

(2.1.8) φ is said to be Noetherian in case ^(jf?, φ) is a Noetherian ring

(see (2.1.7)). (It should be noted that this implies that R is Noetherian,

since it implies that 01{R, φ)[lju\ = R[u, t] is Noetherian.) If φ is Noethe-

rian, then we let Int(^) = {e; e is a positive integer such that φ(n + e)

= φ(e)φ(ή) for all τι > β}. (By (2.2.3), Int(^) Φ 0 (when φ is Noetherian).)

And if Φ = (φl9 ,0g) is a collection of # Noetherian filtrations on R,

then we let Int(Φ) = {(eu , eg); ete Int(^)}.

(2.1.9) @>g (resp., Jίg) is the set of all g-tuples of positive (resp.,

nonnegative) integers. If n = (nu , ng)eJfg, then n(ί) denotes niy the

i-th component of n, and it will be said that n is Zαrge in case each n(i)

is large. And if m and n are in J ^ and ft is a positive integer, then

m + n, in — n, mn, and hn are defined in the usual componentwise manner,

but we will only use m — n when nt > n (that is, m(i) > n(i) for i = 1,

•••,£).

(2.1.10) If b = (bu --9bg) (resp. 3̂ = (Iu , 4)) is a collection of.g

(not necessarily distinct) elements (resp., ideals) of a ring related to R
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and m e Jίg, then bm denotes the element &J"(1) bpg\ and $m denotes

the ideal /»« . !;<*>.

(2.1.11) If Φ(φu - -,φg) is a collection of g (not necessarily distinct)

filtrations on a ring R and if me Jf g, then by Φ(m) we mean the filtra-

tion φ[m™ φ?<*» = {^(nm(l)) φg(nm(g))}n>0 (see (2.1.2) and (2.1.4)).

Also, if n e Jίg, then Φ{m\ή) denotes the ideal #m<1))(n(l)) φg

m{g))(n(g)) =

^1(m(l)n(l)) φg(va(g)n(g)), and if n is a positive integer, then Φ{m)(ή) =

(#m ( 1 ) ) β ^ X π ) = #m ( 1 ) )(n) φg

n<*»(n). (It should be noted that: (a) for

all iίi,ne Jf g, Φim)(n) = Φ(mn)(l) = Φ(mn)(l), where 1 = (1, , 1) e &g\ (b) for

all m e Jίg, Φ(m)(l) = 0(m)(l) = $(1)(m) = &(m(l)) . φg(m(g)); and, (c) if m,

n e Jίg and either m(ί) = 0 or n(ΐ) = 0 for some ί = 1, , g, then φ(mn)(l)

= Φ(m)(n) = ^(n(l)m(l)) φt_Mi - l)m(£ - ϊ))Rφi+1(n(ί + l)m(i + 1))

Most of the definitions in (2.1) have previously appeared in the liter-

ature. However, the weak integral closure φw of φ is called the integral

closure of φ in [28]. This seems like appropriate terminology to us, but

there is already quite a lot of literature where φw is called the weak

integral closure of φ and the filtration φa is called the integral closure

of φ, so we decided to stay with the older terminology.

(2.2) lists four facts concerning these definitions that will be needed

in what follows.

(2.2) Remark. (2.2.1) Note that if φ is a filtration on a ring R,

then the weak integral closure (φ(n))w of φ(ή) = φ(n)(ΐ) is completely deter-

mined by the subfiltration φ(n) of φ, since φin)(ί) — φ(nί) for all i > 0.

Extending this, if Φ = (φu , φg) is a collection of finitely many filtra-

tions on R and m, n e Jίg, then we use (Φ{m)(n))w to denote the weak

integral closure of the ideal Φ(m)(n) = Φ(1)(τnn) = Φ(mn)(l) with respect to

the filtration Φ(mn) = {^(mt(l)n(l)) φg(ίm(g)n(g))}ί>0.

(2.2.2) If φ is a filtration on R, then it is shown in [13, (4.2.1) and

(2.2)] that φa and φw are filtrations on R such that φ < φa < φw. Also,

if φ is Noetherian and eelnt(^) (see (2.1.8)), then φ(ίne) — (φ(ne)Y for all

positive integers ί and n, so it follows from (2.1.5) and (2.1.6) that (φ(ne))a

= (φ(ne))w for all n > 1. Further, if Φ = (φu , φg) is a collection of g

Noetherian filtrations on R and ei e l n t ( ^ ) for ί = 1, -,g, and if e =

fe, -,eg), then a short computation shows that Φ(1)(tne) = (0!(n(l)e(l))<(1)

) for all t, n e Jf g> so in particular it follows from (2.1.5),
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(2.1.6), and (2.2.1) that (Φ(1)(ne))α = (Φ(1)(ne))w for all n e / Γ

(2.2.3) If R is Noetherian, then it is shown in [1, (2.2) and (3.6)]

together with [16, (2.7)] that the following are equivalent: φ is Noetherian;

there exists a positive integer e such that φ(n + e) = φ(e)φ(n) for all

n > e; and, &(R, φ) is finitely generated over R.

(2.2.4) If R is Noetherian and Φ = (φu ,φg) is a finite collection

of Noetherian filtrations on i?, then it is shown in [16, (3.1)] that φx +

+ φg and φ\ - - - φg are Noetherian. And it is shown in [16, (4.2)] that if

φ is Noetherian, then so is φ{7ϊl) (see (2.1.2)) for all m > 0 (the assumption

that i? is an analytically unramified semi-local ring in [16] is not used

to prove this part of the result), so it follows that Φ(m) is Noetherian for

all me Jίg.

In (2.3) we define the various prime divisors of a Noetherian filtra-

tion and of a finite collection of Noetherian filtrations. Three of these

definitions are new (for filtrations) to this paper, but (2.3.2) was given

and studied in [13, 14, 28]. However, the definitions are stated in a man-

ner to emphasize the analogs between quintasymptotic-asymptotic prime

divisors and quintessential-essential prime divisors, so (2.3.2) differs from

the definition given in [13,14,28]. (But it is shown in (2.6) that the

definitions are equivalent.) Also, when these four definitions are com-

pared, it will be noted that (2.3.2) is somewhat different from the other

three, since the designator Ά* for the asymptotic prime divisors of an

ideal is replaced with s/w for filtrations, while the designators J*, J2, and

$ for the quintasymptotic, the quintessential, and the essential prime

divisors of an ideal are continued for filtrations. The reason for this is

because (un@(R, I))a Π R = (In)a and (un@(R, φ))a Π R = (φ(ή))w (which may

properly contain (φ(n))n), and it is noted in (2.5.3) (resp., (2.6.1)) that

A*(I) = U{Ass(Λ/(/«)β; n > 1} (resp. ^w(φ) = U {Ass (Rl(φ(ή)) J n > 1}),

so s/w(φ) is the appropriate filtration analog of A*(/).)

(2.3) DEFINITION. Assume that R is Noetherian, let / be an ideal

in R, let φ be a Noetherian filtration on iϊ, and let Φ = (φu -,φg) be

a collection of g Noetherian filtrations on R. Then:

(2.3.1) J*(I) = {Pe SpecCR); J c : P and there exists a minimal prime

divisor z of zero in the completion (i?P)* of RP such that I(RP)* + z is

P(i?P)*-primary}, β*(φ) = J*(^(l)), and J*(Φ) = J*(Φ(1)(1)) (see (2.1.11) (b)).

The members of J*(7) (resp., £*(φ), J*(Φ)) are called the quintasymptotic
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prime divisors of I (resp., φ, Φ).

(2.3.2) iC*(I) = {pf)R;pe 3*(udl(R, I))} (see (2.3.1) and (2.1.7)), tfw(φ)

= {pί~)R; p e 3*(u@(R, φ))}, and s/w(Φ) = {pf)R; p e @*{v}9t(R, Φ))}, where

u = (uu '-,ug) (see (2.1.10)). The members of A*(J) (resp., s/w(φ)9 s/w(Φ))

are called the asymptotic prime divisors of I (resp., φ, Φ).

(2.3.3) β(I) = {Pe SpecCR); J c P and there exists a (not necessarily

minimal) prime divisor z of zero in the completion (RP)* of i?P such that

I(RP)* + 3 is PCRp)*-primary}, -2(0) = .2(0(1)), and Ά(Φ) = J(Φ(1)(1)). The

members of <H(I) (resp., J2(φ), J(Φ)) are called the quintessential prime

divisors of I (resp., φ, Φ).

(2.3.4) i(I) = {pf]R;pe j2(um(R, /))}, i(φ) = {pf)R;pe Ά{u9t(R, φ)%

and δ{Φ) = {pf]R; pe Ά{\xι0t(R, Φ))}9 where u = (ul9 , ug). The members

of £(I) (resp., δ(Φ)9 δ(Φ)) are called the essential prime divisors of I

(resp., φ, Φ).

(It should be noted that the notation and terminology conerning these

prime divisors for ideals was changed in [5]; in papers before [5], what

we termed "quintessential" in (2.3.3) was called "essential" (and E was

used in place of J), and what we termed "essential" in (2.3.4) was called

"u-essential" (and U was used in place of £). (Some reasons for these

changes are given in the appendix in [5].) The reader should keep these

changes in mind when checking references.)

The sets sίjφ) and s/w(Φ) were defined differently in [13, 14, 28], so

we show in (2.6) that these different definitions are equivalent. Before

this, however, we first show that the definitions of «J*(Φ) and £L(Φ) imply

that these sets are the sets of the corresponding type of prime divisor

for each of the ideals Φ(v) for all n e 0*g.

(2.4) THEOREM. Let R be a Noetherian ring and let Φ = (φu *9φg)

be a collection of g > 1 Noetherian filtrations on R. Then:

(2.4.1) J*(Φ) = J*(Φ ( 1 )(n)) for all n e &8.

(2.4.2) J2(Φ) = J2(Φ(1)(n)) for all n e 0g.

Proof. It follows from the definition of a filtration φ that

= Rad(0(n)) for all n > 1, so it follows from (2.1.11) (and since

= B,s.ά(φi(m)) for ί = 1, -9g and for all positive integers n and m) that

Rad(Φ(1)(n)) = Rad(ΦfI)(l)) for all n e ^ . Also, if I and J are ideals with

the same radical, then it follows from (2.3.1) (resp., (2.3.3)) that J*(7) =

J*(J) (resp., 1(1) = J(J)). (2.4.1) (resp., (2.4.2)) readily follows from this
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together with (2.3.1) (resp., (2.3.3)). q.e.d.

To prove some additional results concerning these types of prime

divisors of Φ we need to use some known results concerning such prime

divisors in the ideal case, so we next list these.

(2.5) Remark, If I is an ideal in a Noetherian ring R, then:

(2.5.1) It should be noted that if φ = {In}n^0 is the filtration of powers

of I, then 0(1) = I and St(R, φ) = &(R, I), so (2.3) shows that J*(0) =

J*(7), tfjφ) = Ami 2(1) = 2(D, and g(φ) = g(I).
(2.5.2) It is shown in [10, (2.2)] that if I == bR is a regular principal

ideal, then J*(J) = A*(I).

(2.5.3) It is shown in [19, (2.4)] that if P e Ass(i?/(In)α) for some

n>l, then P e Ass(R/(In + k)a) for all A > 0, and it is shown in [19, (2.7)]

that A*(I) = Ass(RI(In)a) for all large n.

(2.5.4) It is readily checked that if bl9 , bg are regular nonunits in R,

then iί*(6i bgR) = U {iί *(&,£); i = 1, ., g} = U {Ass (R/(bnR)a); n e Λ^},

where 6 = (6t, , 6^).

In (2.6) we show that the definitions of s/w(φ) and stjφ) in (2.3.2)

are equivalent to their definitions in [13, 14, 28].

(2.6) THEOREM. If R is a Noetherian ring, then:

(2.6.1) If φ is a Noetherian filtration on R, then <stfw(φ) = {Pe Spec(i?);

Pe Ass(RI(φ(ή))w) for some n > 1} = Ass(RI(φ(n))w) for all large n.

(2.6.2) If Φ = (φu , φg) is a collection of g Noetherian filtrations on

R such that height(^(1)) > 1 for ί = 1, , g, then <srfw{Φ) = srfw(φ\ ' * φg) =

{P e Spec(Λ); P e Ass(J?/(Φ(1)(n)) J for some nonzero n 6 Jίg) = Ass(i?/(Φ(1)(n)) J

/or αZZ Zαr̂ β n e ^ .

Proo/. For (2.6.1) let S = {Pe Spec(Λ); P e Ass(RI(φ(ή))w) for some

7i > 1} and let ^ = ^(JB, φ). Then in [13, (3.1.2)] s/w(φ) is defined to be

the set S, and it is shown in [13, (3.3.2)] that S = {pΠR; p e A*(u@)}.

Also, A*(u@) = J * ( ι ^ ) , by (2.5.2), so it follows from (2.3.2) that s/w(φ)

= S. Further, it is shown in [13, (3.4.3)] that S = Ass(RI(φ(n))J for all

large n, so (2.6.1) holds.

For (2.6.2) let T= {PeSpec(iϊ); P e Ass(i?/(Φ(1)(n))J for some nonzero

n e Jf g\ Then since height(0€(l)) > 1 for i = 1, , g, it is shown in [14,
(2.7.3)] that T^sίjφ, - - φg) = Ass(i?/(Φ(1)(n))J for all large n e ^ , so

it remains to show that stfw(Φ) — T.
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For this, if g = 1, then the conclusion holds by (2.6.1), so it may-

be assumed that g > 1 and that the conclusion holds for g — 1 filtrations.

Let at = 0t(R, Φ), let u = (uu , ug\ and let P e T, say P e Ass(#/(Φ(1)(n)) J .

Then in [14, (4.1.2)] it is shown that (vinm)aC\R = (Φα)(n))«, for all n e / ^

so there exists p e Ass(^/(un^)α) such that pf)R = P. Also, ^ , --',ug

are regular elements in ^ , so it follows from (2.5.4) that Ass(^/(un^)α)

c A*(uιaί), and (2.5.2) shows that A*(uxat) = J*(u x ^). Therefore p e

J * ( u ^ ) and P = pΓϊR, so it follows from (2.3.2) that T<^s/w(Φ).

For the opposite inclusion let P e s/w(Φ) and let p e J ^ u 1 ^ ) such that

p Π ί? = P. To show that P e T we now consider the two cases: (a) ut 6 p

for some ί = 1, ••-,#; and, (b) (i^, , ι^)^ c p , If (a) holds, then let

ggTi]* s o •* ̂  & ̂  ^[^i> ^] = ^[1/wJ. Also, since ^ is an

indeterminate and w{ = ljtu it follows from [10, (3.4) and (3.6)] that q =

pΘt\Y\u^\n^e J*((w! ut^ui+1 ug)&). Therefore by induction on g > 1

it follows that pf]R = g ί l i ί e Ass(jR/(Γ(1)(n))J for some nonzero n e / ^ . i ,

where Γ = (^, , φt_u φi+ϊ9 , φg). Thus it follows that P = pΠRe

Ass(iϊ/(Φ(1)(m))w), where m is the element in JΓg such that m(y) = n(y)

for j = 1, , i — 1, m(i) = 0, and m(i) = n(j — 1) for j = i + 1, , g, so

P e Γ, hence j^ω(Φ) g T when (a) holds.

If (b) holds, then since p e J * ( u ^ ) = A*(u^) (by hypothesis and

(2.5.2)), it follows from (2.5.3) that if m is large and m = (m, , m) e a*g,

then p e Ass(«^/(um^)α). Also, (um^)α is homogeneous, so it follows from

[2, Proposition 1, p. 283] that there exists a homogeneous element 6tn e &

such that p = (um^)α : 6tn^2. Now possibly n(i) is negative for some ί —

1, , g. If this is the case, then let & be as in the preceding paragraph,

so at = J ^ , {%^0')};=1] = ^ ( ^ , ̂ ^ ) . Also, p e Ass(«^l(u?&)α) for all large

m (since ^ ep), so it is shown in the proof of [12, (3.6.2)] that tiφ^j) ξέp

for some j > 1. Thus there exists an element c e ̂ 0') such that ct{ & p,

so p = ((um)^)α: btn(ct{)hm for all A > 1. By repeating this for each i =

1, ",g such that n(i) < 0 it may de assumed that p = ((um)^)α: d t q ^ for

some nonzero q e J ^ and for some d e Φ{1)(q). Now it is shown in [14,

(4.1.2)] that ((um)^)α: dtqaiΓ\R = (Φ(1)(ttt + q))w: dJ?, so it follows that pf]R

= (Φ(1)(m + q))w: di?, hence P = p(Ίi?e Ass(Λ/(Φα)(n)J for some n e ^ .

Therefore P e Γ, so J / W ( Φ ) C T when (b) holds, so it follows that (2.6.2)

holds. q.e.d.



NOETHERIAN FILTRATION 51

The first part of the following theorem will help shorten several

proofs below, and the second part shows that the asymptotic and essen-

tial prime divisors of a single filtration φ are, respectively, the asymptotic

and essential prime divisors of the ideal φ(e) for each eelnt(^).

(2.7) THEOREM. If R is a Noetherian ring, then:

(2.7.1) Let Φ = (φl9 ---,φg) and Γ = (γl9 - Jg) be collections of g > 1

Noetherian filiations on R, let n e &g9 and assume that 9t = &(R, Φ) is

an integral extension ring of 39 = R\u\° \ , un

g

{g\ {^^(mil))},^, ,

]. Then s/w(Φ) = s/w(Jn) and g(Φ) = S(Δn\ where Jn =

(2.7.2) // φ is a filtration on R, then s/a(φ) = A*(φ(e)) and

e)) for all e e Int(φ).

Proof. For (2.7.1) it follows from the structure of 0t and @ that

ss(<#) for all zeAss(^), so A*(un^) = {pΠ^; p e Ά*(unM)} by

[22, (3.3.4)]. Also, iί*(un#) - A*(uι9t\ by [8, (2.4.3)]. Further, A*^1^)

^ 1 ^ ) and A*(un^) = J*(u n ^) by (2.5.2), and it is clear that @ ^

), where Jπ = (rίn(1)), , 7g

nig))). Therefore it follows from (2.3.2)

and the isomorphism that s/w(Φ) = s/w(dn). Moreover, £(\ιn&) = {pf)&;

pe£(\xn@)}, by [4, (2.5.4)], and <?(u"#) = £(wλ0l\ by [4, (2.5.6)], so it follows

from (2.3.4) and the isomorphism that S(Φ) = <^(Jn).

For (2.7.2) let e e Int(^), let Sf - ^(B, φ\ and let ^ = R[u\ {ϊ'φiίe)}^].

Then ^ is integral over #, since (ί^(0)β S ίίe^(ίe) c ^ for all i > 1.

Therefore s/^φ) - ^ w (^ ( e ) ) and ^(0) = S(φ(e)) by (2.7.1). Also, φ(e) = {^(ie)}^0

*}i:>o by (2.2.2), so (2.5.1) shows that s/w(φ(e)) = iί*(^(e)) and <r(0(e))

), so j*Jφ) = A*(φ(e)) and ^ ) = £(φ{e)). q.e.d.

(2.8) is an interesting and useful application of (2.7.2).

(2.8) COROLLARY. Let Q be a primary ideal in a Noetherian ring R

and assume that φ = {Q(n)}n>o is a Noetherian on R. Then (Q{n))w is

Rad(Q)-primary for all n>l.

Proof (2.7.2) shows that s/Jφ) = A*(φ(e)) for all e e Tnt(φ)9 and (2.5.3)

shows that if n is large, then A*(φ(e)) = Ass(RI((φ(e))n)a). Therefore let e e

lnt(φ), let n be large, and let P e Ass(RI((φ{e))n)a). Then P e Ass(RI((φ(e))m)

for all large m, by [7, Proposition 3.4], and (φ(e))m = φ(me) = Q(me\ hence

P = Rad(Q), q.e.d.
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Among other things, (2.9) extends (2.7.2) to Φ when each φt(ϊ) has

height at least one. (It should be noted that (2.9) (together with (2.3.2))

shows the somewhat surprising result that {pftR pe £>*(\xl$)} = {qf]R', q e

J*( ι^ e )} for all e e Int(Φ), where 01 = 0t{R, Φ) and ^ e = 3t(R, φίe{1)) φ^8))).

And a similar statement holds for (2.10).)

(2.9) THEOREM. Let R be a Noetherίan ring, let Φ — (φl9 — 9φg) be a

collection of g > 1 Noetherίan filtratίons on R such that height (φi(ΐ)) > 1

for i = 1, -,g, and let e = Int(Φ) (see (2.1.8)). Then s/Jφ) = A*(Φ(1)(e)).

Proof Let 9t = 3t(R9 Φ) and let 3S = R[u[{ϊ\ , ug<*\ {*ίe(1tyi

• -9{tg

tig)φg(k(g))}i^ι]. Then 9t is integral over J*, since the definition of

a filtration implies that (*^(i))e ( J ) £= tf^φβttfS) ^ ^ for all i > 1 and

for = 1, . -,g, so it follows from (2.7.1) that s/w(Φ) = Λ / J Λ ) , where

For j = 1, , g let /, = ^(e(j)) ( = ^ e W ) )(l)) and let <g = i?[^, . , ^ ,

ίJi, , tglgl Then (2.2.2) shows that φ (m(})) = (^(e(j))w = I ; for j = 1,

• , g and for all ra > 1, so # = ^?(Λ, Je), hence {pΠ Jϊ; p e 3*()Xιgt(R, Δt)}

= {pΠΛ; p € i i * ( u ^ } by (2.5.2). Now in [26, (2.1.4)], {pf]R; p e i*(uY)}
is defined to be iί*(7i, ,I g ) and it is shown in [26, (2.4)] that Ά*(IU - ,Ig)

= A*^ - Ig) (since height (^(1)) > 1 implies that height (J,) > 1 for

i = 1, -,g). Therefore (2.3.2) implies that s/w(dt) = A*(I, Ig\ hence

stjφ) = tfJtΔά = A*(^(e(l)) φMg))) = A*(Φ(1)(e)) by the preceding par-

agraph. q.e.d.

Concerning (2.9) and its proof, it should be noted that the related

conclusion AW(Φ) = A*(Φ(1)(e)) for all β e l n t ( ^ φg) can be proved by

using (2.6.2) and (2.7.2) (since these two results show that ^JΦ) =

stjfc - φg) = A*((φi φg)(e))).

(2.10) is an essential prime divisor analog of (2.6) and (2.9). The part

corresponding to (2.6) (that is, the subset part of (2.10)) is clearly weaker

than (2.6), since we are not able to prove (even when g = 1) an essential

prime divisor analog of the equality s/w(Φ) = Ass(E/((Φ(1)(n))J for all

large n e ^g. (One reason for this is that Φ(1)(n) —> (Φω(n))w is a closure

operation that satisfies a cancellation law, and we do not know a good

"essential closure" analog of this.)

(2.10) THEOREM. Let R be a Noetherian ring, let Φ — (φu >,φg) be

a collection of g > 1 Noetherian filtratίons on R such that each <^(1) is
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regular, and let eeΙnt(Φ). Then δ(Φ) = (f(Φ(1)(e)) c; {Pe SpecCR); P e

ίf(Φ(1)(n)) for some n e Pg), and this containment may be proper.

Proof. Let 3t, 39, Δz, Ij = φMJ)) = #e( i ) )0-), a n d # b e a s i n t h e P r o o f

of (2.9). Then 01 is integral over 3S, so (2.7.1) shows that δ(Φ) = δ(Δt).

Also, <g = 9t(R, Δe), hence {pΠ R; P e <f (u^CR, Je)} = {pΠ R; P e S(\x1^)}.

Now in [26, (2.1.4.)], {pΠΛ; p e ^ u 1 ? ) } is defined to be δ(Il9 >-Jg) and

it is shown in [26, (2.5)] that δ(Il9 , Ig) = δ(Ix 4 ) (since each I, is

regular if each φ^ΐ)) is). Therefore (2.3.4) implies that δ(Δt) = ^(Λ Jff),

hence δ(Φ) = ^ ( c ( l ) ) ^(e(g))) = ^(Φ(1)(e)).

To complete the proof of (2.10) note that it follows from what was

just shown that δ(Φ) c {Pe Spec(i?); Pe£(Φ(1)(n)) for some n e ^ } , so it

remains to show that this containment may be proper. For this, let

R = F[X, Y], where F is a field and X, Y are indeterminates, let g = 1,

and let <£ be the filtration on R such that φ(n) = (XF)ni2, if n is even,

and 0(rc) = (XY)n(X, Y)R, if n is odd. Then (2.2.3) shows that φ is No-

etherian, since it is readily checked that 3t(R, φ) = R[u, tXY(X, Y), i2(XY)2],

and it is clear that 2 e Int(^), so δ(φ) = <?(^α)(2)) by the preceding para-

graph. Also, i? is locally unmixed and φ{2) is a regular principal ideal,

so [4, (2.4)] shows that A*(φ(2)) = δ(φ(2)) = S, where S = {P; P is a mini-

mal prime divisor of 0(2)}, and it is clear that S = {XR, YR} and that

i(φ(2)) = ^(0(1)(2)), hence it follows that δ(φ) = ^(^(1)(2)) = {X#, Y-R}.

Further, φ(ί) is a normal ideal (that is, all its powers are integrally closed),

so A*(φ(l)) = {Pe Spec(iϊ); P e Ass(fl/((0(l))w)β) for some Λ > 1}, by (2.5.3),

= {ZR, YR, (X, Y)R}9 and A*(0(1)) = i(φ{l)) by [4, (2.4)] (since R is locally

unmixed). Therefore δ(φ) = {XΛ, Yi?} c {Xi?, YΛ, (Z, Y)Λ} = ^(0(1)) =

£ {Pe Spec(Λ); Pe£(φ(ί)(n)) for some Λ > 1}. q.e.d.

(2.11) is a corollary of (2.7.2), (2.9), and (2.10); it shows that ^ JΦ)

= δ(Φ) when JR is locally unmixed. (2.12) gives the quintasymptotic-

quintessential analog.

(2.11) COROLLARY. Assume that R is a locally unmixed Noetherian

ring. Then:

(2.11.1) If φ is a Noetherian filtration on R, then A*(φ(e)) = <sz?w(φ) =

δ(φ) = δ(φ(e)) for all eelnt(φ).

(2.11.2) If Φ = (φl9 - -,φg) is a collection of g > 1 Noetherian filtra-

tions on R such that φ^ΐ) is regular, then A*(Φ(1)(e)) = sfw(Φ) = δ(Φ) =

£{Φ«\t)) for all eeΙnt(Φ).
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Proof. For (2.11.2), if R is locally unmixed, then it follows from

[11, Corollary, p. 61] that 9t = @(R, Φ) is locally unmixed. Therefore

A*(\ιι0t) = J ( u ^ ) , by [4, (2.4)], and A*(\iι9t) = J * ( u ^ ) , by (2.5.2), so Ά(vLι9t)

= J * ( u ^ ) . Thus it follows from (2.3.2) and (2.3.4) that δ(Φ) = s/w(Φ),

and the other two equalities hold by (2.9), and (2.10).

The proof of (2.11.1) is similar, but use (2.7.2) in place of (2.9) and

(2.10). q.e.d.

(2.12) Remark. If R is a locally unmixed Noetherian ring and if

φ = (φu . . ., φg) is a collection of g > 1 Noetherian filtrations on i?, then

J = J*(Φ) = A(Φ) = J(Φ(1)(n)) for all n e ^ .

Proof. The hypothesis implies that i?P is unmixed for all P e Spec(iϊ),

so it follows from (2.3.1) and (2.3.3) that J*(J) = 1(1) for all ideals / in

R. The conclusion follows from this and (2.4). q.e.d.

(2.13) is another corollary of (2.9) and (2.10) (and its analogs for the

case g = / = 1 and for the quintasymptotic-quintessential case are given

in (2.14)). For (2.13), it should be noted that the hypothesis 0«>(ϊ) =

Γim\n) together with (2.1.11) imply that Rad(^ φg) = Rad(JΊ ϊf).

Therefore the hypothesis that height(^(1)) > 1 in (2.13.1) (resp., φi(ΐ)) is

regular in (2.13.2)) for / == 1, ,g implies that each 7̂ (1) has height at

least one in (2.13.1) (resp., that each 7̂ (1) is regular in (2.13.2)).

(2.13) COROLLARY. Let Φ = (φu ->,φg) and Γ = (ϊu , r,) be finite

collections of Noetherian filtrations on a Noetherian ring R and assume

that Φw(ϊ) = Γ(m)(n) for some ϊ), le&*g such that ζϊ = qe for some qe^g

and for some eeΙnt(Φ), and for some m, n e ^ ; such that mπ = q'e; for

some q' € SPs and for some e' e Int(Γ). Then:

(2.13.1) If height(^(1)) > 1 for ί = 1, , g, then Λ?W(Φ) = A*(Φ™(e))

= A*(Γ(1)(e0) = J*JLΓ) for all e e Int(Φ) and for all e' e Int(Γ).

(2.13.2) Ifφi(ϊ) is a regular ideal for i == 1, . , g, then £(Φ) = ^(Φ(1)(e))

= <?(Γ(1)(e')) = *(Γ) for all e € Int(Φ) and for all e' e Int(Γ).

Proof. For (2.13.1), (2.1.11) (a)-(b) show that Φ™(ϊ) = Φ(1)(P). Also,

it is readily checked that if e e Int(Φ), then so is ne for all n e &g. There-

fore ήϊ = qe 6 Int(Φ), by hypothesis, and s/w(Φ) = 4*(Φ(1)(e)) for all e e Int(Φ)

by (2.9), so A*(Φ(1)(ϊjϊ)) = s/w(Φ). And it follows similarly that A*(Γα)(mn))

= <stfw(Γ) = A*(r(1)(e;)). (2.13.1) follows from this since Φ(1)(ί)ΐ) = Φw(ϊ) =
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The proof of (2.13.2) is similar, but use (2.10) in place of (2.9). q.e.d.

(2.14) gives the analogs of (2.13) for the case g = / = 1 and for the

quintasymptotic-quintessential case.

(2.14) COROLLARY. Let Φ = (φu -,φg) and Γ = (ϊu , ϊf) be finite

collections of Noetherίan filtrations on a Noetherίan ring R and assume

that Φ(W(ϊ) = Γim\n) for some Γ), ϊ e &g and for some m, n e &s. Then:

(2.14.1) J*(Φ) = J*(Φ(1)(n)) = J*(Γ(1)(n)) = J*(Γ) for all n e &g.

(2.14.2) Ά(Φ) = J(Φ(ι)(n)) = J2(Γ(1)(n)) = <2(Γ) /or αZZ n e 98.

(2.14.3) If Φ = (φ) and Γ = (r), i/ ήϊ = qe /or some q > 1 απ̂ rf /or some

eelnt(^), ατid i/ mn = q'e' for some q' > 1 α^d /or some e'eΙnt(Γ), then

stfw(Φ) = iί*We)) = A*(r(e')) = a/«(r)) and ^(0) - *(tfe)) = ^(r(eθ) = *{T)

for all e e Int(^) and for all ef e Int(Γ).

Proof. (2.1.11) (a)-(b) show that Φ(ή)(ϊ) = Φ(1)(P) and that Γ™(n) =

Γ(1)(mn). (2.14.1) and (2.14.2) follow immediately from this, the hypothesis

that Φ«>(ϊ) = Γ™(n), and (2.4).

The proof of (2.14.3) is similar to the proof of (2.13.1), but use (2.7.2)

in place of (2.9). q.e.d.

It turns out in the ideal case that the asymptotic and essential prime

divisors are quite a bit more useful than the quintasymptotic and quintes-

sential prime divisors. We think this will also be true for Noetherian

filtrations, so since the essential prime divisors of Φ are new to this

paper we will prove one more result concerning them.

(2.15) THEOREM. Let Φ = (φu , φg) be a finite collection of Noethe-

rian filtrations on a Noetherίan ring R such that each ^(1) is regular and

let eeΙnt(Φ). Then:

(2.15.1) If P€(T(Φ(1)(qe)) for some qe&g, then Pe ^(Φ(1)(qe + n)) for

all n > e.

(2.15.2) If Pe £(Φ^{n)) for some n > e, then Pe #(Φ(1)(qe + n)) for all

qe^v

Proof. It is shown in [21, (4.3)] that if I and J are regular ideals in

a Noetherian ring R and if Pe£(I), then Pe£(IJ), so both parts follow

readily from this and the definition of Int(Φ) (see (2.1.8)). q.e.d.

Let # denote any one of: quintasymptotic; quintessential; asymptotic;

or, essential. Then because of (2.7.2), (2.9), and (2.10), a number of theo-
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rems for the #-prime divisors of ideals could now be extended to finite

collections of Noetherian filtrations (and, as a special case, to finite

collections of ideals). For example, the #-prime divisors of Φ behave

nicely when passing to localizations, factor rings modulo prime divisors

of zero, finite integral extension rings, and faithfully flat Noetherian

extension rings. However, we will not list these results here but will,

instead, now consider ^-sequences over Φ.

§ 3. Asymptotic sequenes, grade, and cograde for a Noetherian
filtration

As an application of the results of Section 2 (especially (2.7.2)), in

this section we introduce the four types of sequences (corresponding to

the four types of prime divisors considered in Section 2) in (and, over)

a collection Φ — (φu -,φg) of g > 1 Noetherian filtrations and prove a

few of their basic properties. Among these is that they are the same

type of sequence in (and, over) Φω(e) for each ee Π{Int(^t); i = 1, -,g}

and, as in the ideal case, that they lead naturally to the four correspond-

ing grades and cogrades of Φ.

NOTATIONAL CONVENTION. Throughout this section we let # denote

any one of: quintasymptotic asymptotic; quintessential; or, essential.

(Here, the same word is to be substituted throughout each result.)

(3.1) DEFINITION. Let I be an ideal in a Noetherian ring R, let Φ =

(φu - ,φg) be a collection of g > 1 Noetherian filtrations on R, let xl9

• , xh be elements in R, let Xo be the zero filtration (each ideal in the se-

quence is the zero ideal of R), and for j = 1, , h let 1$ = {(xl9 , Xj)nR}n^Q.

Also, let ^#(/) (resp., ^#(Φ)) denote the set of #-prime divisors of I (resp.,

Φ). Then:

(3.1.1.) xl9 - - , xh are a ^-sequence over I (resp., Φ) in case (/, xu ,

x h ) R Φ R ( r e s p . , ( Φ ( 1 ) ( l ) , x u - . , x h ) R ψ R) and x j + ί e U { P ; Pe W x u ->

Xj)} (resp., xj+1 β U{P; Pe ^#(Φ ( 1 ) + Xs)}) for j = 0, 1, , h - 1. A #-

sequence over the zero ideal (resp., filtration) is called a ^-sequence in R.

(3.1.2) The %'grade of I (resp., Φ) is the length of a ^-sequence in

R that is maximal with respect to being contained in / (resp., Φ(1)(l)).

(3.1.3) If R is load, then the §-cograde of I (resp., Φ) is the length

of a maximal ^-sequence over / (resp., Φ).
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Concerning (3.1.2) and (3.1.3), it is known that the #-grade and #-

cograde of an ideal I are well defined. Specifically: for # = 'asymptotic',

these are shown in [17, (3.1)] and [3], respectively; for # = 'essential', see

[4, (3.10) and (4.1)]; for # = 'quintessential', see [9, (5.3)] and [23, (3.2)];

and for # = 'quintasymptotic', the results in [10] can be used (however,

quintasymptotic grade and cograde are not specifically mentioned in [10]).

This will be used in this section to show that the #-grade and #-cograde

of Φ are also well defined.

And it should be noted that, among other things, the results in this

section show that if g = 1, if Φ = (φ), and if φ = {In}n^0 is the sequence

of powers of an ideal 7, then the three definitions in (3.1) agree for I and

for Φ. In fact, this follows from (3.2) for (3.1.2), and (3.3) (resp., (3.5))

show that this holds for (3.1.1) (resp., (3.1.3)) since le lnt(0) .

Our first result concerning these definitions is a special case of a

more general result, but it is still of sufficient interest and use to warrant

being specifically stated; it shows that each of the various grades of Φ

defined in (3.1.2) is the corresponding grade of each of the ideals Φ{l)(ή)

for all n e &g.

(3.2) THEOREM. With the notation of (3.1) let n e &g. Then #-grade(Φ)

Proof. Let I be an ideal in R and let bu , bh be a ft-sequence in

R that is maximal with respect to being contained in 7 (so #-grade (7) — h

by the paragraph following (3.1)). Then necessarily I c: Q for some Q e

&*((bu ,bh)R\ so it follows that #-grade(Q) = h. Therefore h = #-grade(7)

< #,grade(Rad(/)) < #-grade(Q) = Λ, so #-grade(J) = #-grade(Rad(7)). The

conclusion follows from this and (3.1.2), since Rad(Φ(1)(l)) = Rad(Φ(1)(n)).

q.e.d.

Before proving the #-cograde analog of (3.2) we first prove a stronger

result concerning ^-sequences over Φ,

(3.3) THEOREM. With the notation of (3.1), xu , xh are a ̂ -sequence

over Φ if and only if they are a %-seqence over Φ(1)(β) for each e e

Proof. (Note first that there exists a positive integer e in fΊ{Int(^);

i = 1, , g}9 since (2.2.3) shows that there exists a positive integer ei in

Int(^) for i = 1, ,g, and then a brief computation shows that ex eg
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e l n t ( ^ ) for i = 1, . ,g.)

Assume first that # denotes 'quintasymptotic'. Then by (3.3.1) it

suffices to show that J*(Φ ( 1 ) + X3) = J*((Φ(1)(e), xu . ,Xj)R) for j = 0, 1,

• , h — 1. For this, as noted in the proof of (2.4), if 7 and J are ideals

such that Rad(J) = Rad(J), then J*(J) = J*(J) . Therefore for 7 = 0,

1, , h - 1 it follows that J*(Φ ( 1 ) + 5Q = J*((Φ(1) + ^)(1)), by (2.3.1), =

J*(Φ(1>(1) + χ,(l)), by (2.1.4), = J*(Φ<»(1), Λ l, .,x,)R) = J*(Φ(1)(e), x1? ,

Xj)R), since Rad(Φ(1)(l)) = Rad(Φ(1)(e)). Therefore J*(0 ( 1 ) + 5Q = J*(Φ(1)(e),

#i> > χj)R)> so the conclusion holds in this case, and a similar compu-

tation (using (2.3.3) in place of (2.3.1)) shows that it also holds when #

denotes 'quintessential'.

If # denotes 'essential', then it is shown in [4, (3.11.1)] that xu , xh

are a ^-sequence over an ideal I if and only if xl\ - -, xT are for some

positive integers ^ if and only if Λ?1, • •, xn

h

h are for all positive integers

rii, and if # denotes 'asymptotic', then the analogous result also holds.

(We do not know a reference for this, but its proof is similar to the proof

of (3.11.1) in [4] (but use [20, (5.6.1)] and [17, (3.16)] in place of [4, (3.9)]

and ([23, (2.11.1)], respectively).) Therefore when # denotes either 'asymp-

totic' or 'essential' it suffices to show that xu -- ,xh are a ^-sequence

over Φ if and only if x%, , x% are a ^-sequence over Φ(1)(e).

For this, for j = 0, 1, , h - 1 let St5 = 9t(JR, Φω + X3) and 39, =

R[u\ te(Φ{1)(e), x*, - , sή)R], Then since (tmΦw(m))e c= tmeΦ{1)(me) = (teΦ(1)(e))m

c 395 for all m > 1 (since ee (Ί{Int(^); i = 1, -,g})9 it follows that 31,

is integral over ^ , so if # denotes either 'asymptotic' or 'essential', then

it follows from (2.7.1) (with g = 1 and Ίfλ the filtration such that ϊι(qe + i)

= (Φ(1)(β), xl ,x«)q+1R for <? > 0 and for i = 1, , e) that ^ t t,(Φ ( 1 ) + l3)

= Λ?w(rίe)) and «f(Φ(1) + χ^ = ^(rίe)), and (2.5.1) shows that ^w(ϊίe)) =

iί*((Φ(1)(e), Λf, ',3ή)R) and ^(r{e)) = ^((Φ(1)(e), *f, , ΛJ)Λ) (since Λ(e)(^) =

(Φ(1)(e), xf, , Λ5)ni2 for all n > 1). Therefore the conclusion holds in

these two cases also. q.e.d.

(3.4) Remark. (3.4.1) It follows as in the second paragraph of the

proof of (3.3) that if % denotes either 'quintasymptotic' or 'quintessential',

then xu - , xh are a ^-sequence over Φ if and only if they are a #-se-

quence over Φω(ή) for all (equivalently, for some) n e &g.

(3.4.2) If # is either 'asymptotic' or 'essential', and if xu , xh are

a ft-sequence over Φ, then xx & U{Pe^ # (^) ; ί — 1, • -9g}, so if each per-

mutation of xu , xh is a ^-sequence over Φ (this holds when R is local,
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by [20, (5.8) and (5.6.1)] (for asymptotic) and [23, (6.2)] (for essential)), then

i = 1, •••,£} for j = 1, . . . ,Λ.

Proof of (3.4.2). Let ^ = R[ui9 {*?&(n)}~βl], & = ^ ( # , Φ), and ^ =

@ι[uι, , M*-!, Mt+i, , ug9 tu , y . Then ^ c & c jf, ^ = ̂ [ 1 / ^ MJ

is a localization of ^ , and 5" is a localization of a pure transcendental

extension ring of 3t^ Therefore assume that # denotes 'asymptotic' and

let Pesrfw(φi)- Then there exists p e J * ( i ^ ) such t h a t p Γ l # = P, and

then q ^p&Ήgte&iiiiβl), by [10, (3.4) and (3.6)], so since each uj is

regular it follows that q e £*(ux ug0t\ Therefore P = qf]Re^w(Φ)

by (2.3.2), so <stfw{φι) ίΞ J&ΛΦ)- The case when # denotes 'essential' is

proved similarly, but use [4, (2.5.1) and (2.5.3)] in place of [10, (3.4) and

(3.6)]. q.e.d.

(3.5) COROLLARY. With the notation of (3.3) assume that R is a local

ring. Then #-cograde(Φ) = #-cograde(Φ(1)(e)) for all ee Π{lnt(0t); ί = 1,

Proof This follows immediately from (3.3) and (3.1.3) (together with

the fact, noted in the paragraph following (3.1), that the #-cograde of

ideals in R is well defined). q.e.d.

Because of (3.2), (3.3), and (3.5), a number of theorems concerning

^-sequences in (and, over) an ideal, as well as the #-grade and #-cograde

of an ideal, could now be extended to finite collections of Noetherian

filtrations (and to finite collections of ideals). For example, they behave

nicely when passing to the same types of rings as mentioned at the

end of Section 2. However, we will not list these results here but will,

instead, now consider the application of the results in this section to the

analytic spread of Φ.

§ 4. On the analytic spread of a Noetherian filtration

In this section, by using the results in Section 3, we extend a couple

of important theorems concerning the analytic spread of an ideal in a

local ring R to the analytic spread of a finite collection of Noetherian

filtrations on R. We begin with the definition of analytic spread.

(4.1) DEFINITION. Let (J?, M) be a local ring, let / be an ideal in

R, and let Φ = (φu , φ) be a collection of g > 1 Noetherian filtrations

on R. Then:
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(4.1.1) The analytic spread a(/) of I is the integer a(/) = altitude (β\

(u, M)9t\ where Sί = 0t(R, I).

(4.1.2) The analytic spead a(Φ) of Φ is the integer a(Φ) = altitude (β\

(u, M)St\ where 3t = 9t{JR9 Φ
(1)).

It should be noted that if Φ = (φ) and φ = {In}n^0 is the sequence of

powers of an ideal J, then (4.1.1) and (4.1.2) agree; this follows from

(4.2.2) (Since lelnt(0)). In fact, (4.2.2) shows the stronger result that

if e e f) {Int (φi); ί = 1, , g), then the analytic spread of Φ is the analytic

spread of the ideal Φ(1)(e).

(4.2) THEOREM. Let Φ = (φu , φg) be a finite collection of Noetherίan

fitrations on a local ring R. Then:

(4.2.1) If Γ = (γί9 '-'9ΐf) is another finite collection of Noetherian

filtrations on R such that & = <%(R, Φ(1)) is an integral extension ring of

3S = R[un, r Γ ( 1 ) ] for some n>l, then a(Φ) = a(Γ).

(4.2.2) a(Φ) = α(Φ(1)(β)) for all ee Π{Int(&); i = 1, , g}.

Proof. For (4.2.1), if 9t is an integral extension ring of ^ , then

(un, M)@ g (un, M)&f)& £ ((un, M)&)a9 the integral closure of (un, M)S&y

so it follows that altitude {β\(un

9 M)@) = altitude (&l((un, M)@V\@)). Also,

altitude (&l((un, M)3t[\0ti) = altitude (^/(un, M)0t\ by integral dependence,

and altitude(^/(uw, M)St) = altitude (^/(M, M)0ί) = a(Φ) by (4.1.2). Further,

3S ̂  &(R, Γ(1)), so altitude (@/(un, M)SS) = a(Γ) by (4.1.2) and the isomor-

phism, so it follows that a(Φ) = a{Γ).

For (4.2.2) let ee ή{Int(^); i = 1, , g} (see the start of the proof

of (3.3)) and let # = R[u\ ΓΦU)(e))]. Then it follows as in the last

paragraph of the proof of (3.3) that 0t is integral over <$. Also, ^ ^

&(R, Φ(1)(e)) = 0l(R, ϊ) = m(R, rω), where γ = {(Φw(e))n}n>Q. Therefore a(Φ)

= a(r), by (4.2.1), and a(r) = α(Φ(1)(e)) by (4.1.1). q.e.d.

It is a fairly important result that adding an asymptotic sequence

over an ideal I to I increases the analytic spread by the length of the

sequence. (4.3) shows that this continues to hold for Φ.

(4.3) COROLLARY. With the notation of (4.2) assume that xu •• ,Λ:Λ

are an asymptotic sequence over Φ and let 1 = {(xu , xh)R}n>0. Then

a(Φ + χ) = a(Φ) + h.

Proof. Let St = 0l(R,{Φ + X)(1)), let ee Π{Int(^); i = 1, ,g}, and

let Si = R[u% te(Φ(e), x\, . . , x%)R]. Then a s 9t(R, (Φ(1)(e), x\, , x%)R) =
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) = m(R, r α ) ), where γ = {(Φ(1)(e), x{, , xe

h)
nR}n^. Also, it follows

as in the last paragraph of the proof of (3.3) that £% is integral over J*,

so (4.2.1) shows that a(Φ + X) = a(ϊ), and a(ϊ) = a(Φ{1)(e), x\, , xe

h)R) by

(4.1.1) and (4.1.2) (since ^(JR, r(1)) = &(R, ϊ) = ^(Λ, (0(1)(e), *?, . ., xe

h)R)).

Further, xu —,xh are an asymptotic sequence over Φω(e), by hypothesis

and (3.3), so x\, , x% are (as noted in the proof of (3.3)). Therefore

a(φv(e), x{, , xl)R) = o(Φ(1)(e)) + K by [8, (3.1)], = a(Φ) + h by (4.2.2),

hence α(Φ + %) = a(Φ) + Λ. q.e.d.

(4.4) extends to Φ the following theorem of Rees [27, (3.3)]: a(J) +

acogd(/) = altitude (R) for all ideal / in a quasi-unmixed local ring R.

(Here, acogd denoted asymptotic cograde.)

(4.4) COROLLARY. With the notation of (4.2) assume that R is quasi-

unmixed. Then a(Φ) + acogd (Φ) = altitude (R).

Proof. Let eeΠ{Int(&); i = 1, , g). Then a(Φ) = a(Φ(1)(β)), by

(4.2.2), and acogd(Φ) = acogd(Φα)(β)), by (3.5), so a(Φ) + acogd(Φ) = a(Φ(1)(e))

+ acogd(Φ(1)(β)) = altitude(iZ) by [27, (3.3)]. q.e.d.

Our final result shows that the formula in (4.4) characterizes when

R is quasiunmixed.

(4.5) COROLLARY. If R is a local ring such that a(Φ) + acogd (Φ) =

altitude (R) for all collections of g > 1 Noetherian filtratίons on R, then R

is quasi-unmixed.

Proof. Let / b e an ideal in R and let γ = {In}n^- Then l e l n t ( r )

and r (1)(l) = I, so (4.2.2) shows that a(r) = a(r(1)(l)) = a(I), and (3.5) shows

that acogd (j) = acogd (r(1)(l)) = acogd (/). Therefore the conclusion follows

from [18, (4.4)] which shows that R is quasi-unmixed if a(7) + acogd (7)

= altitude (R) for all ideals I in R. q.e.d.
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