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ON THE STRONG UNIMODALITY

OF LEVY PROCESSES

TOSHIRO WATANABE

§ 1. Introduction and results

A measure μ(dx) on R is said to be unimodal with mode a if μ(dx)

= cδa(dx) + f(x)dx, where c >̂ 0, δa(dx) is the delta measure at a and f(x)

is non-decreasing for x < a and non-increasing for x > a. A measure

μ(dx) = Σζ=-«>Prfin(dx) on Z — {0, ± 1 , ±2, •} is said to be unimodal

with mode a if pn is non-decreasing for n <I α and non-increasing for

n ^ a. A probability measure μ(ώc) on i? (resp. on Z) is said to be

strongly unimodal on R (resp. on Z) if, for every unimodal probability

measure η(dx) on R (resp. on Z), the convolution μ # ̂ (dx) is unimodal

on R (resp. on Z). Let Xί? £e [0, <χ>), be a Levy process (that is, a pro-

cess with stationary independent increments starting at the origin) on R

(resp. on Z) with the Levy measure v(dx). The process Xt is said to be

unimodal on R (resp. on Z) if, for every t > 0, the distribution of Xt is

unimcdal on R (resp. on Z). It is said to be strongly unimodal on R

(resp. on Z) if, for every t > 0, the distribution of Xf is strongly uni-

modal on R (resp. on Z). In this paper we shall characterize strongly

unimodal Levy processes on R and Z.

THEOREM 1. Let Xt be a Levy process on R. Then Xt is strongly

unimodal on R if and only if

Xt = σB{t) + rt,

where B(t) is a Brownίan motion and σ and ΐ are constants, a ^ 0.

THEOREM 2. Let Xt be a Levy process on Z. Then Xt is strongly

unimodal on Z if and only if
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where Ze

(1) and Xl2) are independent Poisson processes and a and b are

non-negative constants.

Ibragimov [1] proves that a probability measure on R is strongly

unimodal if and only if it is a delta measure or absolutely continuous

with support being an interval and the density being log-concave. As a

counterpart on Z, Keilson-Gerber [2] proves that a probability measure

μ(dx) = 2]w=-oo AA(cfo) o n Z is strongly unimodal if and only if p2

n ̂ >

Pn+iPn-\ f° r every neZ. These results play an essential role in our

proof.

The following are main related results. Yamazato [9] shows that if

the density of \x\v(dx) is log-concave on 2?-{0}, then the distribution of

Xt is strongly unimodal on R for sufficiently large t > 0. It is an open

problem to characterize unimodal Levy processes on R or Z in terms of

their Levy measures. Wolfe [7] proves that, if Xt is unimodal on R

(resp. on Z), then v(dx) (resp. v(dx) + cδo(dx) for some c > 0) is unimodal

on R (resp. on Z) with mode 0, and that the converse does not hold.

Medgyessy [3] shows that if v{dx) is symmetric and unimodal on R, then

Xt is unimodal on R. The analogous result on Z is observed by Wolfe

[7]. As a big advancement, Yamazato [8] shows that Levy processes of

class L are unimodal on R. Steutel-van Harn [4] proves the unimodality

of Levy processes on the non-negative integers analogous to class L.

Watanabe [5] constructs non-symmetric unimodal Levy processes on R

that are not of class L. Watanabe [6] gives a similar result for Levy

processes on the non-negative integers.

§ 2. Proof of Theorem 1

Let μt{dx) be the distribution of Xt. Then we have

(2.1) Γ eίzxμt(dx) = e^z),
J - c o

ψ(z) = iΐz - 2-W + Γ (eUx - 1 - izx(l + r ^
J — oo

where ΐ e R, a1 ^ 0, and

v({0}) = 0 and Γ x\l + xψ'vidx) < oo .
J - o o

The measure v(dx) is called the Levy measure of Xt.
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Proof of "if" part. Since normal distributions are strongly unimodal

on R by Ibragimov's result [1], Xt = σB(t) + ϊt is strongly unimodal on i?.

Proof of "only if part Suppose that Xt is strongly unimodal on R

and not deterministic. Then, for each t > 0,

(2.2) μt(dx) = ft(x)dx ,

the set {x: ft(x) > 0} is an interval, and logft(x) is concave on this set.

This is by Ibragimov's result [1]. By Wolfe's theorem [7],

(2.3) v(dx) = φ(x)dx ,

with φ(x) non-decreasing for x < 0 and non-increasing for x > 0. It is

well-known that, for any bounded continuous function g(x) with support

in R - {0}, it holds that

(2.4) l i m r 1 Γ g(x)μt(dx) = Γ g(x)v(dx).
ί-0 J-oo J-oo

Hence, by Lemma 3 of Ibragimov [1], we can choose a sequence t(n)

such that, as n -> oo, t(ή) -> 0 and

(2.5) Kn)'ιftw(x) >φ(x)

for a.e. x e R. It follows that log φ(x) is concave on the support of φ(x)

by (2.5). Therefore, φ(x) is bounded on R and

(2.6) c = v(R) = P φ(x)dx < oo .
J — oo

Suppose that c > 0. We shall show that this leads to a contradic-

tion. Let

- ' - £ .
We can assume 70 = 0, because we can consider Xt — TQt instead of Xt.

There are two possible cases.

Case 1. <7 = 0. The process Xt is a compound Poisson process and

hence μt({0}) > 0. This is a contradiction because non-trivial strongly

unimodal probability measure on R has no point mass.

Case 2. σ2 > 0. We get, for any t > 0,

(2.7) μλdx) = μ? * μ*>{dx) ,
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where μf){dx) — gt(x)dx is the normal distribution with mean 0 and

variance σH, and μf\dx) is a compound Poisson distribution. Since

/42)({0}) ̂ l a s ί->0, we obtain from (2.7) that

(2.8) lim {gMV'fM = lim (2πt)^σft(0) = 1.
ί-*0 ί->0

We have, by Ibragimov's theorem [1],

(2.9) {fXx)Y^fMfc(2x)

for any t > 0 and xeR. Hence we obtain from (2.5), (2.8), and (2.9) that

(2.10) 0 = Jim (2π)^σ{t(n)γ^(Kn)yiftin)(x)γ

for a.e. x e i ϊ . It follows that φ(x) = 0 for a.e. xeR. This contradicts

the assumption c > 0.

Therefore, if Xt is strongly unimodal on R, then v{dx) = 0. Thus we

have proved Theorem 1.

§ 3. Proof of Theorem 2

Let Xt be a Levy process on Z. Then we can write (2.1) as

(3.1) ψ(z) = f ( e 4 " - l)v(dx)
Jz

with K{0}) = 0 and v(Z) < oo.

Proof of "if" part. Since Poisson distributions are strongly unimodal

on Z by Keilson-Gerber [2], Xt = X^} — X^} is strongly unimodal on Z.

Proof of "only if" part. Suppose that Xt is strongly unimodal on Z.

Let μt{dx) = ΣΓ=-coPn(0^n(^) be the distribution of Xt. By Keilson-

Gerber 's theorem [2], we have

(3.2)

for any ί > 0. Since μt(dx) converges weakly to δo(dx) as t -» 0, we get

(3.3) Hmpo(ί) = 1 .
ί—0

Since (2.4) holds, we have

(3.4) lim ί-*pn(ί) ==»({*})
0
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for n Φ 0. Hence we obtain from (3.2), (3.3), and (3.4) that

(3.5) 0 = lim t{t-l

Pl{t)f ^ \implt)t-χp2{t) = v{{2}).
ί—0 £—0

Therefore we get v{{2}) = 0. Since v({ή\) is non-increasing for n >̂ 1 by

Wolfe's theorem [7], this implies that v({n}) — 0 for n ^> 2. Similarly we

have y({ft}) = 0 for n <̂  — 2. The proof of Theorem 2 is complete.
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