M. Sato/T. Shintani/M. Muro
Nagoya Math. J.
Vol. 120 (1990), 1-34

THEORY OF PREHOMOGENEOUS VECTOR SPACES
(ALGEBRAIC PART)—THE ENGLISH TRANSLATION
OF SATO’S LECTURE FROM SHINTANI’'S NOTE

MIKIO SATO, note BY TAKURO SHINTANI,
TRANSLATED BY MASAKAZU MURO

Contents
Introduction
§1. Fundamental idea of prehomogeneous vector spaces
§2. Quasi-regular prehomogeneous vector spaces
§3. The a-function a,(w) and the b-function b,(w).
§4. The structure theorem of a-functions and b-functions
Appendix. Sato’s theorem on a family of rational functions

satisfying the cocycle condition

Introduction

The purpose of this paper is to introduce a-functions and b-functions
of prehomogeneous vector spaces in the original way of M. Sato and
give a proof of the structure theorem of them. All the results were
obtained by M. Sato when he constructed the theory of prehomoge-
neous vector spaces in 60’s. However he did not write a paper on his
outcomes at that time. His theory was distributed through his lectures
and informal seminars. Only small number of people could know it. The
only publication left for us is a mimeographed note of his lecture [Sa-
Shl] written by T. Shintani in Japanese. Sato and Shintani published
the paper [Sa-Sh2] in 1974 on zeta functions associated with prehomoge-
neous vector spaces, but a very narrow class of prehomomgeneous vector
space was dealt with there. In [Sa-Shl], Sato gave the exact definitions
of a-functions and b-functions for a wider class of prehomogeneous vector
spaces and gave a remarkable theorem of their structures. But it seems
to have been forgotten for a long time.
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This paper stems from the chapter one of [Sa-Shl], or we may say
that all of the part of this paper is a modified translation from [Sa-Shi]
not only in the contents but also in the formulation. However, the
responsibility for this paper rests with the translator. The translator
tried to state faithfully the original idea of M. Sato based on the lecture
note which is left to us by T. Shintani. The proof of the structure theo-
rem is given in English for the first time here. The key of the proof is
the theorem in Appendix; it is useful for clarifying the structure not
only of b-functions but also more wider class of functions satisfying the
cocycle condition. The idea due to Sato (and partly to Shintani), that
has never been written in a formal publication or widely circulated jour-
nals, appears for the first time in English. In particular, his original
proof is given here for the fact that the b-functions for relative invari-
ants are divided to a product of inhomogeneous linear forms. This fol-
lows from the theorem (Theorem or its corollary in Appendix) on a family
of rational functions with a cyclic condition, which itself is a wuseful
proposition. In order to clarify the role of this theorem, the translator
extracts it from the original proof. It can be proved independently from
the theory of prehomogeneous vector spaces. Recently it becomes clear
that it has a fruitful application. See Aomoto [Al] and [AZ2].

The translator wishes to express his gratitude to Professor M. Sato
for his permission to publish his results in this form. He is also grateful
to Professor Aomoto for his suggestion to publish this paper.

§1. Fundamental idea of prehomogeneous vector spaces

Let 2 be a universal domain of characteristic 0 and let V be an n-
dimensional vector space over 2. Let G C GI(V) be a connected linear
algebraic group defined over 2, and we denote by g-x the action of G
on V with geG and xe¢ V. For a point x in V, we denote by H, the
isotropy subgroup, i.e., H, := {ge€ G; g-x = x}. In the theory of algebraic
groups, the following lemma is well-known.

LEmMA 1. Let x be a point in V. The G-orbit G-x generated by x
can be written as G-x = E, — F, where E, is a G-invaeriant algebraic
subset in V and F, is a G-invariant proper algebraic subset of E,. Here
dimE, = dim G — dim H,. Here dim means the dimension. The totality
of xeV such that the dimension of E, are maximal is a G-invariant
Zariski-open set in V.
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DerFINITION 1 (prehomogeneous vector space). If there exists a point
x e V such that dim H, = dim G — dim V, then we say that V is prehomo-
geneous with respect to the action of G and call the pair (G, V) a
prehomogeneous vector space. We call the set of points x € V such that
dim H, > dim G — dim V the singular set and denote it by S.

Henceforth, let (G, V) be a prehomogeneous vector space and let S
be its singular set. Let xe V and put G-x = E, — F,. Then, from the
definition, the following four conditions are equivalent;

1) xeV-5§

2 dimH,=dmG—dmV
@) dmkE, =dimV

4 E,=V.

Note that dim E, < dim V. Then, by Lemma 1, V — S is a G-invariant
Zariski-open subset in V, which implies that S is a G-invariant proper
algebraic subset. If xe V— S, then G.x C V— S, Since G.x =V — F,,
we have F, O S. Now, suppose that F, — S+ @ and ye F, — S. Then
G.y =V — F, is a Zariski-open set in V for y¢S. On the other hand,
since ye F, and since F, is G-invariant, G-y is contained in the proper
algebraic subset F, of V. This is a contradiction. Therefore we have
F, — S = @, which yields that F, = S. This means that G.x =V — 8§
if xe V—S. Consequently V— S is a G-orbit. Arranging the above
arguments, we have the following proposition.

ProposiTioN 1. Let (G, V) be a prehomogeneous vector space and let
S be the singular set. Then S is a G-invariant proper algebraic subset in
Vand V— S is a G-orbit in V.

DerINITION 2 (rational characters and character groups). We call a
rational homomorphism from G to £* := Q2 — {0} a rational character.
We denote by X(G) the set of all rational characters which forms a
multiplicative group. Let X be a rational character of G. We call a
non-zero rational function P(x) on V a relative invariant or a relatively
invariant rational function corresponding to the character X if P(g-x) =
X(g)-P(x) for any ge V. In particular, if P(x) is a polynomial, we also
call it a relatively invariant polynomial. Let X, ---, X, be rational char-
acters belonging to X(G). We say that they are multiplicatively inde-
pendent when they' generate a free Abelian group of rank r in X(G).
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ProposITION 2. (1) Any relative invariant corresponding to a char-
acter is determined up to a constant factor by the character.

(2) Any prime divisor of a relative invariant is a relative invariant.

(3) Relative invariants are homogeneous functions.

(4) Relative invariants corresponding to multiplicatively independent
characters are algebraically independent.

Proof. (1) From the definition, the zeros and poles of a relative in-
variant are G-invariant proper algebraic subsets. They are contained in
S. Let R,(x) and R,(x) be two relative invariants corresponding to a
rational character X e X(G). Let x,e V — S and let Q(x) = Ry(x)R\(x) —
R/(xy)Ry(x). Then we have Q(g-x) = X(g)-Qx) for all ge G and all xe V,
and Q(x,) = 0. Therefore, we have Q(x) = 0 for all x in V — S because
V — S coincides with G-x,, Thus we have @ = 0. Since R,(x,) is not 0
or co, we have R,(x) = (R,(x,)/Ry(x,)) - Ry(x).

(2) Let R(x) be a relative invariant corresponding to a character
X e X(G) and let []%,R,(x)** be the decomposition into prime divisors of
R(x). Namely, R,(x), ---, R,(x) are mutually different irreducible polyno-
mials and n,’s are non-zero integers such that R(x) = [[%., R,(x)**. From
the definition, we have [[%,R;(g-x)" = X(g) [[%., Ri(x)™. Since each
R,(g-x) i=1, ---, k) is an irreducible polynomial on V, it must coincide
with one of the polynomials R,(x), ---, R, (x) up to a constant factor.
However, since the group G is a connected algebraic group, we have
R(g-x) = X (g)R,(x) for all ge G. Here, X,(g) is an 2*-valued rational
function on G and evidently is a rational character of G. Thus R(x),
.-+, R(x) are all relative invariants.

(8) Let P(x) be a relative invariant corresponding to a rational
character X e X(G). Let t be an element of 2% and define a rational
function P,/x) := P(¢x). Then we have P,(g-x) = P(g-(tx)) = X(g)P(tx) =
X(g)P,(x) for all xe G and all xe V. Therefore both P(x) and P,(x) are
relative invariants corresponding to X, and hence they coincide with each
other up to a constant factor. Consequently we have P(ix) = c-P(x)
with a constant ¢ depending only on ¢, which means P(x) is a homoge-
neous polynomial.

(4) Let X, ---,X, be rational characters in X(G) which are multi-
plicatively independent. Let R,(x), ---, R.(x) be relative invariants corre-
sponding to the characters X, ---,X,, respectively. Suppose that R,(x),

.-, R(x) are algebraically dependent. Then we may take monomials
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UMR, ---,R,) i=1,---,8) in R(x), ---, R(x) such that U, ---, U, are
linearly dependent and any (s — 1) of them are linearly independent.
Now, we let W:={(c,, - - -,¢,) € 2%; > i, c;U, = 0}. Then, from the assump-
tion, W is a one-dimensional vector subspace in Q2°. On the other hand,
each U, is a relative invariant. We let v, be the corresponding character
of Ufx). If (¢, ---,c,)e W, then we have (e, (g), ---,cw,(g)e W for
any g€ G from the definition. Since dim W =1, we have vy, = .. = y,.
However, U, ---, U, are different from one another as monomials in
R, ---, R,, which means vy, ---,y, are different from one another since
X, -+, X, are multiplicatively independent. This is a contradiction. Thus
R(x), - - -, R(x) are algebraically independent. (q.e.d.)

DerFiniTION 3 (singular set). Let (G, V) be a prehomogeneous vector
space and let S be its singular set. We let S, be the union of irreduci-
ble components in S of codimension one in V and let S,, be the union of
irreducible components in S of codimension more than two. Let S,, ---, S,
be irreducible components of Sy, and let P,(x) be an irreducible polyno-
mial defining the irreducible hypersurface S;. Namely;

S = S(o) U S(]) and S(o) = Sl U st USm,
Sii={xe ViP® =0 (=1 m),
codim S > 2.

ProprosiTiON 3. (1) The defining polynomials P(x), - - -, P,(x) in Defi-
nition 3 are relatively invariant polynomials of (G, V) and they are alge-
braically independent.

(2) The group of relative invarients under multiplications coincides
with the free Abelian group of rank m generated by P(x), -- -, P,(x). Here
we consider polynomials modulo constant factors.

Proof. (1) Since G is a connected algebraic group and since S; is
an irreducible algebraic subset, the algebraic closure (G-S,) of the set
G-S,:={g-x;ge G, xe S} is also irreducible. On the other hand, S, C
G-S, C S implies that S, c (G-S;) © S, and S, is an irreducible com-
ponent. Then we have S, = (G-S;). Thus we have g-S, =S, for any
geG. Since g-S, ={xeV; P(g '-x) =0} and S, ={xe V; P,(x) =0}, and
since P,(x) is an irreducible polynomial, the two polynomials P,(x) and
P,(g~'-x) coincide with each other up to a constant factor. Therefore,
there exists a character X,(g) such that P,(g-x) = X,(g)P,(x) for all ge G
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and all xe V. This means that P(x), - - -; P,(x) are all relative invariants.
Since P(x), ---, P,(x) are mutually different irreducible polynomials,
X - -+, X, are multiplicatively independent. Thus P(x), ---, P, (x) are

algebraically independent by Proposition 2, (4).

(2) Let P(x) be an irreducible relatively invariant polynomial. Since
{xe V; P(x) = 0} is a G-invariant proper algebraic subset, it is contained
in S, and since it is an irreducible hypersurface, it coincides with one
of S, ---,S, Therefore P(x) coincides with one of P,(x), ---, P,(x).
From Proposition 2, (2), any relative invariant is written as a product of
integer powers of irreducible relatively invariant polynomials. Thus any
relative invariant coincides with a product of powers of P(x), - - -, P,(x).

(q.e.d.)

DEerFiNITION 4 (basic relative invariants and their character group
X(G)).

(1) The polynomials of P(x), ---, P,(x) are called basic relative in-
variants of (G, V). We denote by X, -- -, X, the rational characters corre-
sponding to the relative invariants P(x), - - -, P,(x), respectively. The set
{P, -+, P,} of all basic relatively invariants is called the complete system
of basic relative invariants.

(2) We denote by (G, G] the commutator group of G. Let x,e V— S
be a fixed point. Then the subgroup of G generated by [G, G] and the
isotropy subgroup H,, does not depend on the choice of x,e V—S. We
denote it by G,, ie., G,:=[G,G]-H,. The group G, is a normal alge-
braic subgroup of G, and G/G, is a connected abelian algebaric group.
We denote by X(G) the group of rational characters of G/G,. Namely,
X(G) = {xe X(G); 1(g) =1 for all ge G}

ProposiTioN 4. The character group X,(G) defined in Definition 4 is
the free Abelian group of rank m generated by X, - -+, %,.

Proof. Let P(x) be a relative invariant corresponding to a character
X(g). Let xe V—S. Then P(g-x) = X(g)P(x) and P(x) + 0 or oo. Thus
if ge H,, then X(g) = 1. That is to say, X is trivial on H,. On the other
hand, since X(g,8,g:'g7Y) = 1 for all g, g, € G, X is trivial on [G, G]. Thus
X is trivial on G, = [G, G]-H,. We have X ¢ X,(G). Conversely let X be an
arbitrary element of X,(G). Let x,e V — S. Then X can be viewed as a
rational regular function on G/H,, ~ V — S. We denote it by P, a ra-
tional regular function on V — S, which is evaluated by P(g-x,) := X(g)
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with ge G. Here we identify g-x,€ V — S with the representative [g]e
G/H,, of geG. We have P(g-x) = X(g)P(x) for any ge G by definition.
The rational function P(x) on xe V — S is extended to the rational func-
tion P(x) on x ¢ V keeping the relation P(g-x) = X(g)P(x). Namely, there
is a relative invariant P(x) corresponding to the rational character X.
By Theorem 1, the subgroup of X(G) consisting of characters correspond-
ing to relative invariants coincides with the free Abelian group generated
by X%, -++,%,. Thus we complete the proof. (q.e.d.)

Next we consider the contragredient representation of G on the dual
vector space V*. The action of ge G for ye V* is denoted by g*.y.
We have {(g-x, g*-y) = <{x,y) for all ge G, xe V and ye V*. Here {,)
stands for the canonical bilinear form on V X V* to 2. The group G is
viewed as a connected linear algebraic subgroup of GL(V*). For a fixed
point y, e V*, we denote by H,,, the isotropy subgroup at y, i.e., H,, :=
{geG; g%y, =} The dual pcir (G, V¥) may not be a prehomogeneous
vector space even if (G, V) is prehomogeneous (see the example at the
end of this section). In this paper, we are interested in the cases that
at least one of (G, V) and (G, V*) is a prehomogeneous vector space.
We give the notations for (G, V*) here when (G, V*) is a prehomogeneous
vector space.

We suppose that (G, V*) is a prehomogeneous vector space. (How-
ever, we do not have to suppose that (G, V) is prehomogeneous.) let S*
be the singular set of (G, V*). By Proposition 1, S* is a G-invariant
proper algebraic subset in V* and V* — S* is a G-orbit in V*. We
denote by S3¥, the union of irreducible components of S* whose codimen-
sion in V* is one. The set S¥, is the union of irreducible components
of S* of codimension more than two in V*. Let S¥, ..., S* be irreduci-
ble components of S¥, and let @,(y) be an irreducible polynomial defining
the hypersurface S¥. Namely;

S*= 8% US¥% and SE=SF¥U-.-USE,
Si:"_:{er*; Qi(y)=0} (i=1a"',m,)>
codim S, > 2.

Applying Theorem 1 to the prehomogeneous vector space (G, V*), @Q,(»),
.o+, Q.(y) are basic relative invariants of the prehomogeneous vector
space (G, V*), and (@, - -+, @,) is the complete system of basic relative
invariants of (G, V*). We denote by p, - - -, g, the corresponding rational
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characters of the relative invariants @,(y), ---, @,..(y), respectively, i.e.,
Q.(g* y) = 1(g)Q(y) for all ge G and all ye V. Let y,e V¥ — §* be a
fixed point. Then the subgroup G, := [G, G]-H, , does not depend on
the choice of y,e V¥ — S*. Here H, , means the isotropy subgroup of G
at y,e V. G4 is a normal subgroup of G and G/G,, is a connected Abelian
algebraic group. We denote by X,,(G) the subgroup of X(G) consisting
of rational characters which is trivial on Gy, i.e., X4(G) ;= {1 e X(G);
w(g) =1 for all ge G,,}. Applying Proposition 4 to (G, V*), X,4(G) is the
free Abelian group of rank m’ generated by gy, - -, tn

We close this section by giving an examples of prehomogeneous
vector spaces. A systematical classification of prehomogeneous vector
spaces have been done by [Sa-Ki].

ExAMPLE (a prehomogeneous vector space whose contragredient action
is not prehomogeneous). Let G := {g = <(1)’ Z); a, be@, b+ O} and let

V.= {x - (i’); Xy, Xy € .Q} Then G is an algebraic subgroup in GL(V).
2

The Zariski-dense subset V' := {xe V; x, # 0} is a G-orbit, hence (G, V)

is a prehomogeneous vector space whose singular set is {xe V; x, = 0}.

Let V* :={y = (i ‘); yl,ygeQ} be the dual vector space. The contra-
2,

gredient action g* is given by g*.y = ‘g~'.y. Then each orbit in V* is
parametrized by the value y,. This means there are no Zariski-dense
orbits in V*. Thus (G, V*) is not a prehomogeneous vector space.

§2. Quasi regular prehomogeneous vector space

Let V be an n-dimensional vector space defined over the universal
domain £ and let V* be its dual vector space. Let G be a linear alge-
braic subgroup of GL(V), which naturally acts on V* by the contra-
gredient action. We suppose that (G, V) (resp. (G, V*)) is a prehomoge-
neous vector space defined on £2. We use the same notations as in §1.

Let g be the Lie algebra of G and let g, (resp. g,,) be the Lie algebra
of G, (resp. Gyy). Let g be the dual vector space of g. We denote by
A-x (rsep. A*.y) the action of an element Aeg for xe V (ye V¥), ie,,
A-x := (d/dt) (exp (tA)-x)|;-y (resp. A*.y := (d/dt)(exp (tA)* -x)|,_.). We
have the relation (A-x, y)> + {(x, A*.y> =0for all Aegand xe V, ye V*,

Let ¢ (resp. 4) be a rational map from V to V* (resp. V* to V). In
other words, ¢ (resp. ) is a V*-valued (resp. V-valued) rational function
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on V (resp. V*). We say that ¢ (resp. ¥) is a G-admissible map if ¢
(resp. ) is a regular function on V — S (resp. V* — S*) and ¢(g-x) =
g% -p(x) (resp. y(g*-y) = g () for all geG.

Let weg’. When a G-admissible map ¢ (resp. ) satisfies the con-
dition (A-x, p(x)> = (A, o) (resp. {(A*-y,(y)) = — (A4, w)) for all Aeg
and xe V— S (resp. ye V* — §*%), we denote it by ¢, (resp. ). We
denote by X, (resp. X,,) the totality of the elements in g¥ which are null
on g, (resp. g;4). In other words, X, (resp. X,,) is the dual space (g/g,)V
(resp. (g/g:15)V). For an element X € X,(G) (resp. € X,,(G)), we define an ele-
ment 6X € X, (resp. dp € Xi4) by d1(A) := (d/dt) A (exp (tA))],_, (resp. du(A) :=
(d/dt) p(exp (tA))|,,) for Aeg. The map § gives an injective homomor-
phism from X,(G) (resp. X;,(G)) to X, (resp. X,,). We call the infinitesimal
character of X.

ProposiTioN 5. In order that there exists a G-admissible map o,
(resp. ) satisfying the condition (A -x, ¢, (%)) = (A, 0y (resp. {A*-y, ¥(¥)>
= — (A, o)) for all Aeg and xe V — S (resp, ye V* — S*), it is neces-
sary and sufficient that we X, (resp. we X). The map ¢, (resp. ) is
determined uniquely if it exists.

Proof. We shall give the proof only for the map ¢, since almost the
same proof for +, can be obtained easily.

(Necessity). Let ¢, be a G-admissible map satisfying the condition
(A-x, 0, (x)) = (A, 0) for all Aeg and we V—S. Let xe V— S and we
denote by Y, the Lie algebra of H,, ie., ), ={Aeg; A-x =0}. Then
{w, AY =0 for all Ae)h,. On the other hand, since ¢,(g-x) = g* ¢ (x)
for all xe V-~ S and ge G, we have <o, Ad(g)-A> = (w, A) for any
ge@G and Aeg. Here Ad means the adjoint representation of G on g.
Indeed, {0, Ad(8)-A) ={w,848™") = (gAE " x, p(%)) = (A" x,8% -9, '(x))
= (Ag™'-x, 0,87 %)) = {w, A). Thus we have (o, [g, g]> = 0. This means
that @ is null both on §, and on [g,g]. The Lie algebra g, is the Lie
algebra generated by 0, and [g, g], and hence o is null on g,.

(Sufficiency) Suppose that w €g¥ is null on g,. Take an element x
in V- 8S. Since dimg — dim}, = dim V, the map A — A-x from g/f, to
V gives a one-to-one linear map. Since o is null on §,, there exists an
element ¢(x) e V* satisfying (A.x, o(x)> = (A, o) for all Aeg and it is
determined uniquely. On the other hand, since o is null on g,, we have
{w, Ad(g)-A> = {w, A> for all Aeg and geG. Therefore we have
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(p(g-x), Ag-x) = {w, A) = {w, Ad(g7)A) = {(g*¢p(x), Ag-x). Thus o(g-x)
= g*.¢(x) for all xe V— S and ge G. Since it is clear that ¢ is a re-
gular rational function on V — S, ¢ is a G-admissible map from V to V*
which satisfies the condition in (A-x, ¢, (%)) = (A, 0) for all Aeg and
xeV—S. At the same time we have proved that ¢ is determined
uniquely by o. (q.e.d.)

For xe V — S (resp. ye V¥ — S*), we define do,(x) (resp. dy,(¥)) to
be the linear map from V= T,V (vesp. V¥ =~ T, V*) to V¥ = T, ,,V*
(resp. V= T,,,,V) given by

u -—> do,(x)(u) := {%gow(x + tu)}‘ (we V).
t=0
(resp. v dv.)0) i= { Lvy+ W} @eV).)

t=
Let (x, ---,x,) and (y,, ---,y,) be the coordinates on V and V*
respectively, such that they are dual coordinates to each other. The
map Do (resp. 1!/'m) iS Written as ((Som)lﬁ Sty (sow)n) (resp. ((1!/‘43)1’ ° ’(wa})n))
with respect to the coordinate (y,,---,y,) (resp. (x;, ---, x,)). Let ¢ (x)-
dx i= 330 (pu(0)):dx;  (resp. V(y)-dy := 371 (bu(¥):dyy)), a G-invariant

differential form on V — S (resp. V* — S*). This definition does not
depend on the choice of the coordinate. Each component (¢.(x)); (resp.
(Wo(9));) is a homogeneous polynomial of degree one with respect to w.

ProrosiTioN 6. Let (G, V) resp. (G, V*)) be a prehomogeneous vector
space.

(1) Let we X, (resp. we X,y) and let dop,(x) (resp. diyr(y)) be the linear
map defined above. Then do,(g-x)(g* u) = g* -{do,(x)(w)} (resp. dyr,(g*-y)
(g-v) = g-{doNW)) for all ge G, xe¢V—S and uecV (resp. ye V*
— S* and ve V*),

(2) The differential form ¢,(x)-dx (resp. ¥,(y)-dy) defined above is a
closed form on V (resp. V*). Hence, the map (u,v) e V X V i (u, do,(x)(v))
€ (resp. (u,v)e V¥ X V* s (u, dyr(y)(V)> € Q) is a symmetric bilinear
form on VX V (resp. V¥ X V*),

Proof. We shall prove this theorem for ¢,. The proof for v, is ob-
tained in a similar way.

(1) It is clear from the definition.

(2) We take coordinates (x, ---,x,) and (y, ---,¥, on V and V*
respectively, such that they are dual to each other. We may identify
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them with the same vector space Q. The linear actions of G and g on
V = Q" are represented as n X n matrices by g = (g;;) and A = (4,)).
Then the i-th coordinates of (g-x) and (A-x) are given by

(g-x), = Z?:lgij'xj’ (ge @,

(A-x), = D1 Ay, (Aeg),
When we let ¢,(x) :=(p (%), - - -, pu(x),) for x = (x;, -+, x,) € V, we have
from the definition 37 ;.; 0. (x);A.,;%; = (v, A) for all Aeg and x =
(%, -+, x,)e€V — 8. Therefore we have

71 _@%»j(}& . Aijxj + Z?-l Sﬂw(x)iAu =0.
!

On the other hand, since ¢, (g-x) = g*0,(x), we have:

0
=1 M'Aijxj = — 20 AuSDm(x)i .
0x;
Thus we have:
n a ® X, i n a w X
ij=1 SDTJ(CL)— Ay = Dl Lafcz)—l Ay,

for all Aeg and xe V— S. The vector (317., A%, -, D1ty Anyx,) may
take every value in V = 0" when A runs through g. We get:

ij=1 ij=1 »
ox;

0x;
for all i,/=1,---,n. Thus ¢ (x)dx = > 7, ¢,(x),dx;, is a closed differ-
ential form. Lastly, note that

(y, do)zy = STty y,- 08D
0x,

Then we have that do,(x) gives a symmetric bilinear form. (q.e.d.)

The commutative connected algebraic group (G/G,) (resp. (G/G.)) is
the direct sum of its torus subgroup (G/G,), (resp. (G/G,y),) and its unipo-
tent subgroup (G/G,). (resp. (G/G,,).). Then we have the corresponding
decomposition of the Lie algebra (g/g) = (g/g): D (g/g). (resp. (g/g) =
(a/g). ® (g/g)n). Then the dual vector space X, = (g/g,)V (resp. X, =
(a/g:5)Y) decomposes into two parts; X, = (X)), ® (X)), (resp. X, = (X1,). ®
(Xis)) . where (X)), := {0 € Xi; 0|uq, = 0} (resp. (X, 1= {0 € Xix; 0],
= 0)) and (X)), := {o € Xi; 0|, = 0} (resp. (Xiy)u := {0 € Xiy; 00, = 0D
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ProposITION 7. Let {P(x), - - -, P,(x)} (resp. {Q\(¥), - - -, @u(y)}) be the
complete system of basic relative invariants and let X, (i =1, ---, m) (resp.
u; (j=1,---,m)) be the corresponding character of P,(x) (resp. Q;(¥)).

(1) The vector space (X,), (resp. (Xix),) is the subspace of X, (resp. X,,)
spanned by &%, « -, 0X, (resp. o, + -+, 0p,) and hence it is an m-dimen-
sional (resp. m’-dimensional) vector space.

() For w = > 801, €(X), (resp. w = D7, 8% -0y, € (X,y),) we have
gpw(x)‘dx = )i (Si/Pi(x>)dPi(x)) (resp. Tlfw(y)'dy = - Z;'il (Sjk/Qj(y))de(y))
In other words, (9, (%) = 21 (8:i/Pu(x)@P;[0x,) (resp. (vu(¥) = —
227 (S;F/Qj(y))(an/ayz))-

Proof. (1) Any rational character of (G/G,) is trivial on (G/G)),.
Thus any element of (X)), is given by a linear combination of d,, - - -, 6%,.

(2) We identify V and V* by their dual bases. From that P,(g-x)
=% (g)Py(x) (i =1, ---, m), we have the following equation: > ,_, (9P,/dx,)
“Ax,; = X, (A)P,(x) for all Aeg. Thus if xe V — 8§, then w(4) = > 7,8,
X (A) = 37 oy 2 {8:(1/Pi(x)(@P,[0x,)}Ax; for all Aeg. Thus from the
definition we have (¢,(x)), = > 7, 8,(1/P,(x))(@P,[dx,). Therefore we have:
(p(x))dx = 3 7 (8, P(x))dP,.

The similar proof is possible for the dual space V*. (q.e.d.)

Let xe V— S (resp. ye V¥ — S*) and let we X, (resp. we X,,). If
the linear map do,(x) (resp. diyr () from V to V* (resp. from V* to V)
is invertible, we say that dg,(x) (resp. dy(¥) is non-degenerate. By
Proposition 6, the set {xe V — S; dp,(x) is non-degenerate} (resp. {ye
V* — S*; dy(y) is non-degenerate) is a G-invariant subset in V — S
(resp. V* — S*). Then it coincides with V — S (resp. V* — S*) itself or
the empty set @. When it coincides with V — S (resp. V* — S*), we
say that ¢, (resp. v,) is non-degenerate.

The set {we X,; ¢, is non-degenerate} (resp. {weX,4; ¥, is non-
degenerate)) is a Zariski-open set in X, if it is not an empty set. Indeed.
let w € X, be an element such that ¢, 1s non-degenerate. Let xe V — S.
When we write the linear map do,(x); V— V* by an n X n matrix with
respect to suitable bases of V and V*, each component is a polynomial
of degree one with respect to w. Then the determinant of do,(x) is a
polynomial in o. Thus {w€ X,; ¢, is non-degenerate} = {w e X;; det (dyp,(x))
# 0}, and hence it is a Zariski-open set in X, if it is not empty. We
can prove the parallel fact for the map +, in the same way. In addition,
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we can prove that the set {we(X),; ¢, is non-degenerate} (resp. {we
(X14):; Vo it non-degenerate}) is Zariski-dense in (X)), (resp. (X,),) if it is
non-empty similarly.

DerFINITION 5 (quasi-regular prehomogeneous vector space). We say
that the prehomogeneous vector space (G, V) (resp. (G, V*)) is quasi-
regular if there exists w € X, (resp. w € X,,,) such that ¢, (resp. ) is non-
degenerate.

ProrositioN 8. If (G, V) (resp. (G, V*)) is a quasi-regular prehomo-
geneous vector space, then (G, V*) (resp. (G, V)) is also a quasi-regular
prehomogeneous vector space. Moreover we have X, = X, and G, = Gi,.
Let we X, be an element such that ¢, (resp. v,) is a non-degenerate map
from V (resp, V¥*) to V* (resp. V). Then ¢, (resp. v,) gives a biholomor-
phic rational map from V — 8 to V¥ — S8*. Moreover +, = ¢;".

Proof. Since (V— S) is a G-orbit in V and since ¢, is G-admis-
sible, ¢, (V — S) is a G-orbit in V*. Then there exists an algebraic
subset E* and a proper algebraic subset F* in E* satisfying ¢, (V — S)
= E* — F*. On the other hand the linear map dg,(x) from V to V*
is invertible at any point xe V — S, which means the dimension of the
image of ¢, is the same as the dimension of V — S. Hence we have
dim (E*) = dim (V — S) = n, which yields that E* = V*. This means
that (G, V*) is a prehomogeneous vector space with respect to the con-
tragredient action of G and F* coincides with the singular set S*.
Thus we have ¢ (V — 8)= V* — S* For a point xe V— S, we let
y:i=o, x)e V¥ — S* and H,, :={geG; g*-y =y} Then since H,, D H,
and dim H,, = dim G — dim V* = dim H,, the Lie algebra of H, coincides
with the Lie algebra of H,,. Thus when we let G,, := [G, G]-H,,, the
Lie algebra g,, of G, coincides with g,. Then we have X, = (g/g,)V =
(a/g:5)Y = Xy Since we X,,, there exists a G-admissible map +, from
V* to V satisfying {y.(¥), A*-y) = — (w, A) for all ye V¥ — S* and
Aeg by Proposition 5. Then the map +, is determined uniquely. On
the other hand, from {¢,(x), A-x) = (0w, A), we have (x, A* ¢ (x)) = —
{w, A) for all xe V— S nad Aeg and hence y = ¢, (x) implies x = 1,(¥)
and the converse is true. That is to say, ¢, and +, are the inverse
maps of each other. Thus ¢, gives a biholomorphic rational map from
V — S onto V* — S*. At the same time, we have proved that H,, = H,
if y = ¢,(x) and hence G,, = G.. (q.e.d.)
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CororLLARY. Let (G, V) be a quasi-regular prehomogeneous vector
space and let (G, V*) be its dual prehomogeneous vector space. Then the
number m’ of irreducible components in S* of codimension one in V*
coincides with the number m of irreducible components in S of codimension
one in V.

Proof. By Theorem 1, m (resp. m’) coincides with the rank of the
character group of the abelian algebraic group (G/G,) (resp. (G/G.4). We
have proved that G,, = G, in the proof of Proposition 7. Thus we have
m=m. (q.e.d.)

DErFINITION 6 (regular prehomogeneous vector spaces). Let (G, V)
(resp. (G, V*)) be a quasi-regular prehomogeneous vector space. If there
exists o€ (X,), such that ¢, (resp. ¥,) is non-degenerate, we say that
(G, V) (resp. (G, V*)) is a regular prehomogeneous vector space.

The following proposition is easily proved.

ProrosiTiON 9. (1) In order that (G, V) is a regular prehomogeneous
vector space, it is necessary and sufficient that there exists a relative in-
variant P(x) whose Hessian det (0P[ox,0x,) does not vanish on V — S.

) If (G, V) is a regular prehomogeneous vector space, then (G, V*)
is a regular prehomogeneous vector space.

§3. The a-functions a,(w) and the b-functions b,(w)

In this section we suppose that (G, V) is a quasi-regular prehomoge-
neous vector space and we denote by (G, V*) the dual prehomogeneous
vector space. Let {P,(x), - - -, P.(x)} (resp. {@.(%), - -+, @.(»)}) be the com-
plete system of basic relative invariants of (G; V) (resp. (G, V*)) and let
X; (resp. y,) be the corresponding character of P,(x) (resp. Q,(y)) for i =
1, ..., m.

Let xe X/(G). Since X,(G) = X(G), we can write ¥ = [[, X} =
MM, % where n, and n; are integers. We let P,(x):= [[%,P/(x)"* and
Q(y):= [[71Qy»)". Then P,(x) (resp. @,(y)) is a relative invariant of
(G, V) (resp. (G, V*)) corresponding to the character X. When P,(x) (resp.
Q.(y)) is a polynomial, we say that (X) (resp. (X)*) is non-negative and
write polynomial, we say that (X) (resp. (X)*) is non-negative and write
) >0 (resp. (X)* > 0). Namely, (X) >0 (resp. (X)* > 0) if and only if
N, -+, N, >0 (resp. n¥, -, nk >0).



THEORY OF PREHOMOGENEOUS VECTOR SPACES 15

ProposITiON 10. Let X e X(G) and let weX,. Then Py (%)Q-:(0.(x))
(resp. Q(Y)Py-(yr(¥)) is a homogeneous rational function with respect to
o, which does not depend on xeV (resp. ye V¥). If (X)* >0 (resp.
(x=* > 0), then PAx)Q,-(p.(x)) (resp. Q.))P.-(v.(¥) is a homogeneous
polynomial whose degree coincides with the degree of Q,-.(y) (resp.
P,-i(x)).

Proof. Let xe V— S and let ge G. Then we have:

Pg - 0)Q1-(p.g:x)) = X(g)Px)Q;-(g*- Pu(X))
= X(g)- X N(8)Py(%)Q1-(p.(x)) = Prx)Q;-1(0.(%)) .

Since V — S is a G-orbit, P(x)Q,-(p.(x)) (xe€ V — S) coincides with a
constant which depends only on X and . Since @,-.(y) is a homo-
geneous rational function with respect to ye V* and since each compo-
nent of ¢,(y) is a homogeneous function of degree one with respect to o,
Py(x)@y-:(p(x)) is a homogeneous rational function on w. The degree
coincides with the degree of @,-.(y). The similar proof is possible for
a¥(w). (q.e.d.)

DeFiNITION 7 (a-function a,(w)). For a rational character X € Xi(G), we
define a homogeneous rational function in o€ X;: a,(w) := Py(x)@Q;-:(0.(%))
and af(0) := Q¥)Pr-(,(y)) and call them a-function. It is determined
up to a constant factor, but if we fix the complete systems of basic
relative invariants {P(x), - - -, P,(x)} and {@\(), - - -, @.(»)}, then ae-function
is determined uniquely.

In particular, a,(w) = a}_,(w). Indeed, if ¢, is non-degenerate and
xe V — S, then by substituting y = ¢,(x) to the definition of a,(»), we get
the definition of af.(w). Thus a,(0w) = ¢f.(0) if ¢, is non-degenerate.
Since the set we X, such that ¢, is non-degenerate is Zariski-dense in X,
a,(0) = a¥- (o) for all we X,.

ProposiTION 11. Let X(g):= deg(g). Then Xjec X\(G) and there exist
homogeneous polynomials Clw) and C*(w) of degree n satisfying
J,(x):= det do,(x)) = Clw)(Py(x)",
J¥(y):= det (dyr.(x)) = C*(w)(@u(y))™

for any we X, such that ¢, is non-degenerate (v, = (¢,)""). C(0) and C*(w)
are determined uniquely up to a constant factor.
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Proof. Suppose that ¢, (we X)) is non-degenerate. We identify V
and V* with 2" by their dual bases and regard do,(x) (xe V— S) as a
linear transformation from 2" to 2". When we let J,(x):= det{dp,(x)},
J(x) is a rational function on x e V, which is regular and non-zero on
V — S. Moreover, J,(x) is of homogeneous degree n with respect to o
as we have proved in §2. From Proposition 6, (1), we have do,(g-x) =
“(g) ' dox)-(g)! for all ge G and xe V — S, hence we have J,(g-x) =
deg(g)%J,(x). Namely when we let X(g):= det(g)e X(G), J(x) is a
relatively invariant rational function corresponding to the character ;°.
Thus we have X2e X,(G). The rational functions J,(x) and (P, (x))*
coincide with each other up to a constant factor. Therefore, there exists
a homogeneous polynomial C(w) of degree n such that Pu(x)J,(x) = C(w).

(q.e.d.)

For we X,, we define a linear differential operator D,(x):= grad, +
0.(x) (resp. D¥(y):= grad, + ¥(y)) from the linear space of rational func-
tions on V (resp. V*) to that of V*-valued (resp. V-valued) rational
functions on V (resp. V*) in the following way. Let (x, ---,x,) be a
coordinate of V and let (y, ---,y,) be its dual coordinate of V*. We
denote by (¢,(x)); (resp. (V.(¥));) the i-th coordinate of the value ¢, (x)e V*
(resp. ¥.(y) e V). Let f be a rational function on V (resp. V*). We let
(Do(x)):f(x) = (D(0)f(x)); : = (0[0x,)f(x) + @ (x):f(x) (resp. (D¥(¥).f(y) =
(DENF)i:= @oy)f(y) + VoD f(y) for i =1, ---,n. Then this defini-
tion does not depend on the choice of the coordinates.

LEmMMA 2. Let f be a function on V (resp. V*).
(1) Du(g-x)f(x) = g*-Dy(x)f(x)
(resp. D¥(g*-y)f(y) = g-D¥(y)-f(y)), for all geG.
(2) Let xe X\(G). Then we have
D (x)(Py(x)f(x)) = Py(x)(D,,s(x)f(x))
(resp. DX ) (@ () = Py)(D¥ s Nf(Y))).

Proof. (1) We denote by {f(x)}, the function f(g-x). Let ¥ = g-x.
Then

D(g-x)f(x) = D(x)-f(g™*- %)
= (grad,, + ¢, (x)f(g7'-x)
= g*-{(grad, + o (x)f(x)},
= g*- D (x)f(x)
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We can prove D*(g* - y)f(y) = g-(D¥()f(»)) in the same way.
(2) Dy(x)(Pyx)f(x)) = grad,(Py(x))f(x) + Py(x)(grad, + ¢.(x))f(x)
= Py(x)-(pn(x)f(x)) + Py(x)(grad. + o (x))f(x)
= Py(x)(grad, + s .. X)f(x)
= Py(x) (D4, s1(x)f () -
We can prove DX(»)(Q(»)f () = Q) (D¥,:(y)f(y)) in the same way.
(q.e.d.)

Recall that the i-th component of D, (x) (resp. D¥*(y)) with respect to
the coordinate (y,, - .-, ,) (resp. (x,, - - -, x,)) is denoted by (D,(x)), (resp.
(D¥(y),) i =1, -- -, n). Then the differential operators (D, (x)),, - - -, (D(x))..
(resp. (D¥(Y)), - -+, (D¥(y),) commutes with one another. Then, for a
polynomial R(y) (resp. R(x)) on V* (resp. V), R(D,x)) (resp. R(D¥(y)))
is well defined as a differential operator on V (resp. V*).

ProprosITION 12.

(1) LetxeX(G). If X)* =0 (resp. (X7') =0), then Py(x)Q-«(D.(x))
(resp. Qy)Py-(D*¥(»))) is a differential operator on V (resp. V*). The
application of this operator to the constant function 1: Py(x)Q,_.(D.,(x)) -1
(resp. QUY)P,-(D*(¥))-1), is a polynomial of the same degree as @,-.(x)
(resp. P,-(y)). We denote it by b,(w) (resp. b¥(w)).

(2) The highest degree part of b,w) (resp. b¥(w)) coincides with a,()
(resp. af(w)).

(3) Let X and Y’ be two elements in X,(G). If (¢")* >0 and (X'-)*
>0 (resp. (x™ >0 and (X'~Y) > 0), then we have

(#) by (®) = by(w)by (0 — %)
(resp. b}, (w) = b¥(w)bl(w — oX)).
Here 86X is a corresponding infinitesimal element in X, of X.
Proof. TFirst we shall prove (1) and (2). Let F(x):= Py(x)@,-(D(x))-1.
Then, by Lemma 2, (1), we have
F(g-x) = P(g - %)Q:-(D,(g-X))-1

= P,(g - 0)@,-(g* - D,(x))-1

= XN ()PUx)@y-1(D.(x))-1 = F(x).
Then F(x) is a G-invariant rational function on V. Hence it is a con-

stant function which depends only on % e X,(G) and we X,. We denote
it by b w).
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If (x-%)* >0, then b,(w) is a polynomial in w since @,-.(¥) is a poly-
nomial and each component of grad, + ¢, is a polynomial of degree one
in . By a direct computation of P,(x)@,-.(D.,(x))-1, the highest degree
term of it coincides with a,(w) = P,(%)Q:-(¢p.(x)). Since a,(») is the homo-
geneous function of the same degree as @,-.(y), b,(w)’s degree is that of
Q:-(y). Thus we get (1) and (2) for b,(w). We can prove those for b¥(w)
in the same way.

Next we shall prove (3). By Lemma 2, (2), we have P,(x)-D,-P,(x)™*
= D, ;. Then, for X, ¥’ € X,(G) satisfying (Xx~)* >0, (X’")* > 0, we have

b1 (®) = Py (2)Quury-(Du()) - 1
= Py(x)Pp(%)Q;-+(D (%)@ -:(D.(x))- 1
= Pp(x)Py(%)Qy -(Du(x)) Py(x) ' Py(x)Q;-(Dy(x)) - 1
= Pp(x)Qy -(Py(x)Dy(x) P(x) ) Py()@;-(Do(x)) - 1
= Pr(%)@Qy -(Dy- (%)) Py(x)@;-(D,(x)) - 1
= Pp(x)@y -«(D,-s(x)) - bx(w)
= by.(0 — X)by(w) = by(w)by(w — 6X). (q.e.d.)

DEeFINITION 8 (b-function b,(w)).
(1) For xe X(G) with (X*) > 0 (resp. ({~1)* > 0), we define

by(w):= P,(2)Qy-(D,(x))-1
(resp. bf(w):= Qu)P:-(D¥(y))-1)

(2) For Xe X,(G), we can write X = lv~! by using 1, ve X,(G) satisfy-
ing (17Y) >0 and (v!) > 0 (resp. (")* > 0 and (v)* > 0). Then we define

by(0):= by(w)/b(w — o2 + dv)
(resp. b} (w):= bf(w)/bf(w — 62 + &v))

ProrosiTiON 13.
(1) For any X, ¥ e X,(G), we have

(-ﬂ:)l bzz'(w) = bz(w)bz'(w - 5X)
(resp. b¥.(0) = bf(0)b}w — X))

(2) Let {by(0)}rexue (resp. {b¥(@)}hexia) be a family of rational func-
tions such that b, w) is the one defined by Definition 8, (1) if X{°') >0
(resp. (X"9)* > 0). If we suppose the relation (%), then b, w) (resp. b}(w))
is determined uniquely for all X € X,(G).
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Proof. We shall prove these propositions for {b.(@)}ex,- The same
propositions for {bF(w)}icx. e can be proved in the parallel way.

Let X = 2! and X' = 2V'~! where 2, v, X, v e Xi(G) with (179, (7Y,
@Y, V) > 0. Then

by (w) = bw)/b,,(w — 62 — 62 + dv + &)
= b (0)b (v — d)[b,.(w — 62 — 62" + dv + )bw — 62 — 6X + &)
= {bw)/b(0 — 62 + Wb, (0 — 62 + w)[b, (0w — 62 + dv — 62 + &)}
X {bw — 62 + )b (0 — )Y by(w — 52 + )b (0 — 32 — 62 + dv)}
= by~ @)y, (@ — V)b, (0 — 64 + )by (@ — 64 + ow)~!
= bw)by.(w — &%)

(2) is clear since we obtain b,(0) = b,,-.(0) = b(w)/b,(w — 62 + dv) if
X = Av~! by substituting X = 1 and X’ = v~! in (#)'. (gq.e.d.)

The b-function on a quasi-regular prehomogeneous vector space given
in Definition 8 is a rational function in we X,. This is a more general
definition than the one we usually use, for example, in [Sa-Sh2]. When
we suppose that £ is the complex number field C and restrict b,(w) to
w e (X)),, we obtain the usual definition. Namely we have the following
theorem.

ProposiTiON 14, We suppose that Q is the complex number field C.
Let o be an element of (X,),. Then o is written as >, 8,0, (resp. 3™, s%du,)
where each s; € C (resp. sfeC). We let P(x):= [|, P(x)* (resp. Q.(y):=
171 Qw)’?), which is well-defined as a function on the universal covering
space of V — S (resp. V¥ — S§*). If XL e X(G) such that (X~*) > 0 (resp. (X~1)*
> 0), then we have Q,-, (grad,)P,(x) = b, (0)P,_,(x) (resp. P,_(grad,)Q.(y) =
b;k(a))Qm—ax(y))-

Proof. Let (x,, ---,x,) and (¥, ---,¥,) be the coordinates of V and
V*, respectively, which are supposed to be dual to each other. Then, by
Proposition 8,

(0/0x )P (%) = 371 (P[0 ) Py(2)* ™" []eps Pulx)* + Po(2)(3/0x;)
= P, (2)(2i sl(1/P(x))(9P,/ox,) + (9/0x,))
= m(x)((a/ axj) + (§Dm(x))j)
= P,(x)(D.); .

Suppose that (X~') > 0. Then,
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@;-(grad,)P,(x) = P,(x)Q;-«(D.(%)) -1
= P,_n(x){P(x)@;-(D(x))-1}
= by(w)P,_s(x) .

In the same way, we have

Py-(grad,)Qu.(y) = b}(0)Qu-5(¥) - (q.e.d.)

Remark. The a-function a,(w) and the b-function b,(w) are well defined
without the assumption ‘“‘quasi-regular”. Suppose that both (G, V) and
(G, V*) are prehomogeneous vector spaces. For X € X,(G)N X,«{(G) and for
we X, we can define a,(w):= P(x)Q,-.(¢.(x)) and by(w):= Py(x)Q,-«(D,1)-1.
Then they do not depend on xe V and satisfy the following properties.

1) If ay(w) = 0, then a,(w) is a homogeneous function whose degree
coincides with that of @,-.(y). The highest degree term of b,(w) is
a(w).

(2) For x, 2¢ X(G)NX(G) with (X%, (7') >0, we have by,(w) =
b ()b, (w — X).

§4. The structure theorem of a-functions and s-functions

In this section we suppose that (G, V) is a regular prehomogeneous
vector space. In the preceding section, we have defined the a-function
ay(w) and the b-function b,(w), which are rational functions on the vector
space X,. The purpose of this section is to give the structure theorem
of a,(w) and b,(w); we shall prove that the restrictions of a,(»w) and b,(w)
to (X,), decomposes into a product of polynomials of degree one. We do
not say nothing about a,(w) and b,(w) on the whole X,, but if (X)), = X,,
then we get a complete structure theorem. In fact, a lot of important
examples satisfy this condition.

Recall that X,(G) is the group consisting of rational characters of G
which is null on G,. Let XY(G) the set of homomorphisms from X(G)
to the additive group Z. Then XY(G) is a Z-module. Let (X,)Y be the
dual vector space of (X,),, which is isomorphic to Q™. For an element
ee XY(G) we define an element & in (X,)y by &> 7,s;-0%):= D", -e(X)
where >7.s;-6X, is an expression of an element of (X,), (see Proposition
7 (1)). Then we may identify XY(G) with a lattice in (X)Y by the corre-
spondence e > e Hereafter we regard XY(G) as a discrete subset in

X
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THEOREM 1. Let (G, V) be a regular prehomogeneous vector space and
let % e X,(Q).

(1) The restriction of the a-function to (X)), @ (®)|vewxy, 1S written
by:

@ ®)|oe @, = CHX) 12 @)™ x),

Here e,, - - -, e,e XY(QG) such that &, - - -, &, are different linear forms; C(X) is
a homomorphism from X,(G) to 2%; p and m, i=1, ---,p) are natural
numbers.

(2) FEach e, ¢ XY(G) i =1, --,p) satisfies the following two condi-
tions: if () >0 or (A" >0, then we have ¢X) >0 (=1, ---,p) and
2amg-e(X) = 3 n,-deg(P;) = 2 nf-deg(@,) for 1 = [[{, 17 = [T ‘U??-

(8) The restrictions of af(®)|,eixy, 1S given by

af(“’)‘we(xl)t = C*(X) n%;l(fi(w))mifi(x)
where fi(x) = ——ez(x) and C*(X) = C(X“‘)(_l)"zlemiei(x).

Proof.
(1) Let 1 e X,(G). From the definition of a-function,

(4.1) Pz(x)Qx—l(Som(x)) = Q- NP, (¥ () = ax(w),

for all we(X),, since the set {w e (X)),; ¢, is non-degenerate} is a Zariski-
open subset of (X)), (see §2). Since a,.,.(0) = a,(w) a,.(0) for every X, X' e
X(@), X = [, X% (n, € Z) implies that a,(0) = [[~; ey (w)*. Let fi(w), - - -,
f{®) be mutually different prime divisors appearing in one of the rational
functions a,,(®), « - -, @, (®). Then there exists a suitable element ¢, ¢ XY(G)
satisfying a(w) = [[2-.f(@)**”. Thus we have

Px(x)Qz—l(go,,,(x)) = [12, filw)s®

if (x, w) belongs to the Zariski-open set of U:= (V — 8) X {we (X)),; ¢.
is non-degenerate} in V X (X),.

By taking the “logarithmic differential” of the above equation, the
left hand side is

d log (P(x)@:-())
= dlog (Py(x)) + dlog (Q:-(¥))
= (1/Py(x)) Z?=! (aPZ(x)/axj)dxj
+ (1/Q.-(y)) Z?=l (an—l(y)/ayj)dyj
= @u(%)-dxt — Y_3(9)- Ay = 0s(x)-dxX + Vax(y)-dy



22 MIKIO SATO/TAKURO SHINTANI/MASAKAZU MURO

by Proposition 7, (2), and the right hand side is

dlog ([T¥1 filw)e'®) = 3 2., el() - (dfi()/fi(w))
= 2.1, &(0%) - (df(w)/f () -

Let ¥ = []7, X% where each n;e€Z. Then 6X = > 7., n,;-6X; and

Tt n;(Z%‘Lx é/i(ng) : dfi(w)/fi(w)) = Z?Lx n; ‘(SDsslj(x)dx + \l’axj(y)dy) .

Thus

Zgﬂ é;(lsxj)‘dfi(w)/fi(w) = €Daxj(x)‘dx + \V'sxj(y)‘dy ,
for each j =1, ---,m. Since &(-), ¢.,(x) and ¥ ,(y) are all linear forms,
we have, for all o = >)%,s,-6%;€(X,), with (s, - - -, s,) € 2",

11 €(0) (df (0)[fi(®) = ¢u(x)-dx + ., (y)-dy.

In particular, we may take o’ = w. Then we have

= ¢, (x)-dx + ¥, y)-dy
= 22 &) (dfi(w)/f ().

On the other hand, substituting o = > ™ ,s;-0X; to {x, ¢.(x)), we have

Cx, ¥y = {x, 9u(%))
= 200 2001 85 (L Py(x)) (9P (x)[0x,) - X,
= ym, s;-deg(P,).
Then

d{x,yy = 27, deg(P;)-ds;
= 201 (@0)/fi(@) - df (v)
= 2171 (001 @) [f (@) - 3f (0)[3s,)ds, .
This means that fi(0) is a divisor of &/(w)-(df,(»)/ds;) since fi(w), - - -, f,(®)
are prime divisors which have no common divisors. Hence fi(w) is a
divisor of &/(w). Then f;(») coincides with &(w) up to a constant factor.

Therefore &(w) (i =1, ---, k) are mutually different linear forms on (X)),
and we have

afw) = C(X) X []1-, €lw))* .

Here, C(X) is a constant which depends only on X. We can take a natural
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number m,; such that e/(X,) = m,Z. Let e;:= 1/m,-¢, for each i =1, ---,p.
Then e; gives a homomorphism from X,(G) to Z and we have the equation

a,(w) = C(X)- I12-, g, (w)ymieio

Here the map X — C(X) gives a homomorphism from X,(G) to 92*.

(2) By (4.1), if P,(x) or @,-.(y) is a polynomial, then a,(0) is a
polynomial in . That is to say, if (X) >0 or X{~")* >0, then ¢,(X) >0
(i=1,---,m). By comparing the degrees with respect to w of the both
sides of (4.1), when X = [[7, %% = [[™(x)", we have >.™ n-deg(P,) =
> onf-deg(Q,). It is the degree of the polynomial P,(x) (resp. @,-.(y))
if (X) > 0 (resp. (X)* > 0) and coincides with the degree of a,(w). Thus
we have

ang-deg(P;) = 2, — n;-deg(Q) = 237 m;-e,(X).
(3) Since a}(w) = a,-(w), we have

a;k(w”we(xm = C(x ") Hle(éi(w))miei(r!)
= CO™) 181 (= Ful@) ™o
= C(X")(_l)—2f=lmiei(z) P (fi(a)))mifi(z)

=1

= C*(X) I‘[%’:l (fi(w))mi“m . (qed)

CorOLLARY. Let C(w) and C*(w) be polynomials in we X, introduced
in Proposition 11. If (G, V) is a regular prehomogeneous vector space, then
for we(X,), we have:

C(w)lwe(xﬂt =C. nf=1 e;(0)* and C*(w)|w€(xl)¢ = C*-[]r., e,(w)"

where C,C*e Q% and ¢, ¢f (=1, --,k) are positive integers satisfying
g, + ¥ = mye,(X2) with X(g):= det(g).

Proof. From the definition, if w e (X)),, then we have C(0)C*(0) =
an(w) = C(XY) 1., 8 (w)™%». Note that C(w) and C*(w) are polynomials.
Then, we have:

Clo) = C-[]ia ew) and C*(0) = C*:[]ie(w),

where C, C* are constants in 2% and ¢;, ¢f are non-negative integers
satisfying ¢; + ¢f = m,e;(X)). We suppose that ¢ = 0 for some i. Note
that C(w) = 0 is a necessary and sufficient condition in order that ¢, is
non-degenerate. Take an element w e (X)), such that &(w) =0 and &(w)
+ 0 for all j which are different from i. Such element o exists because
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e(w), - -+, e (w) are linear forms which have no common divisors. Since
e, =0, we have ¢, is non-degenerate. On the other hand, taking an
element X e X, satisfying e;(X) > 0, (such character X always exists.) we
have a w) = CX) [ é(w)™ @ = 0. Thus we have Py(x)Q;-(p.(x) =
a(w) =0 for xe V—~ S. When ¢, is non-degenerate, ¢, (x) e V* — S* for
xeV—S8. Thus P(x) 0 and Q,-.(¢.(x)) = 0, which yields a contra-
diction. Then each ¢ is a positive integer. We can prove that & is
positive. (q.e.d.)

THEOREM 2. Let (G, V) be a regular prehomogeneous vector space and
let X € X\(G). The restriction of bw) (resp. b¥*(w)) to (X)), is written in the
following form:

(4-2) bx(‘“)':ue(fl), = C(X) l’l%’:l(l—lfi:(fl)—lsoi(éi(w) — ).
(resp. bF(@)|oecrn, = C*O)- [12.: (JT1467 0¥ (filw) — v).)

Here, C(X) (resp. C*(X)) and e,(X) (resp. f;(X)) is a map from X,(G) to 2%
given in Theorem 1; each ¢, (resp. ¢f) is a rational function of one variable
on 2 of degree m;, where m, is the natural number defined in Theorem 1;
for non-positive I — 1, the product [[!Zif(x — v) means 1 if I =1 and it
stands for [[;2f(x+v) if I <1

Proof. In the Corollary to Theorem in Appendix, we can take
X,(G) = &, (X)), = 2™ and define the map 5: X,(G) — (X,), to be the map
given in § 2. Proposition 7, (1) says that the map § satisfies the condition
required by the Theorem in Appendix. Since b,(®)|,cxy, (resp. b (®)|ezy.)
satisfies the relation b,.,.(w) = by(®)b, (0 — 0X) (resp. b}, () = bf(0)b, (0 —
o%)), we can apply the Theorem in Appendix to our case. In addition,
b,(w) (resp. b¥(w)) is a polynomial if (X-)* >0 (resp. (X') > 0), which
means that b,-i(w) (resp. b%-.(w)) is a polynomial for each i =1, .., m
where {p, -+, ptn} (vesp. {X;, ---,%,}) are the set of generators of X,(G)
defined in §1. Then by the Corollary to the Theorem in Appendix, we
have the expression like (A.15). Namely we have,

bi(w) = C(0)- T2, TI35P pu@w) — v)
(resp. bi(w) = C*(0)- [121 [T7567 " 0¥ (fi(w) — v)
by replacing C(¢) with C(X) (resp. C*(X)), v, with ¢, (resp. ¢f) and &Y
with &; (resp. f,) in the formula (A.15). By comparing the leading term
of by(w) with a,(w) (resp. b¥(w) with a¥(w)), we see that ¢,(2) (resp. ¢} (2))
is a rational functional function of degree m,. (q.e.d.)
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CoroLrarY. (1) Let {fi;};1,....rcy be the set of all the locations of
poles and zeros of ¢, which are not congruent to one another modulo 1.
Then we can write ¢,(x) = [159 [1,ezlx — fi; + @™ where p— n,(p) is
a map from 7 to 7 such that each n (1) is zero except for a finite number
of p; r(i) is a positive integer. Let 7 e X\(G). If (x)* >0 and if e,X) =
1> 0, then >}in, (e + v) >0 for all peZ. In particular, if there exists
X e X(G) such that (X")* >0 and ei(X) =1, then ¢/2) is a polynomial.
Moreover 379 > conp) =m, for i=1,..- k.

@) In partlcular we assume that 2 = C. For the rational function
0:i(2) = ([[5L1(2 — )/ [15e. (2 — diy) with a, — B, = m,, we define the cor-
responding gamma-factor

1) = T2 (T15a I'Edw) — ¢y + D/ @) — diy + 1),
where I'(2) is the gamma function. Then bw)|oexy, = CX)- (7 (w)/7(w — 6X)).

Proof. (1) We suppose that (X-)* >0 and e,(X) = [> 0. Then b,(w) is
a polynomial in w and it is written as b,(w) = C(X)- [T%-; [12% os(€,(w) — v).
If i # j, then [[%% ' ¢(E,(0) — v) and [[%% ! ¢,(e(w) — v) have no common
divisors. Then each [[&% !¢ € (w) —v) for i=1, ..., m is a polynomial
in w. That is to say,

59 pu@@) — ») = T1 1Y Tper @d@) — fug — v + o
= nj=1 nzez(ei(w) fij + Z)E oy
is a polynomial in w. Since f;; (j = 1, .-, r(i)) are not congruent to one

another modulo 1, we have > !Zin;(p + v) > 0 for all peZ. In particular,
if there exists X e X,(G) such that (X~)* > 0 such that e,(X) =1, then
0i@:= 1179 [1,sez(z — fi; + @) is a polynomial since n(x) > 0 for all
reZ. Lastly, since the highest degree part of b,(w) coincides with
ay(w) = C(X)- ][5 e(w)"®, we have > 749 ) Duez Nuf(p) = my.

(2) It is clear. (q.e.d.)

Remark. For the function bf(w), we have the same result as the
corollary to Theorem 2.

Appendix. Sato’s theorem on a family of rational functions
satisfying the cocycle conditions

In this appendix, we shall prove a theorem concerning a family of
rational functions satisfying some condition. This theorem can be under-
stood without any knowledge on prehomogeneous vector spaces.
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Let 5 be an abelian group generated by &, ---,£,; an element £e¢ &

is written by &M-&™ ... & with (ng, ny, -+ -, n,)€Z™ Let 6¢, 66, - - -, 06,
be linearly independent elements in an m-dimensional vector space 2™";

the map
(A1) 0: O:= gl .- Eiri—>80:= DL n, 06,
gives an injective homomorphism from 5 to £™. The elements §¢,, - - -, 6¢,,

form a basis of the vector space 2™. We denote by R*(2™) the abelian
group consisting of rational functions on 2™ under the multiplication law.
For f(w) e R*(2™), we define the action of £e & by f(v):= f(o — 08) for
f(0) e R*(2™). Let {f{w)}:cz be a family of elements in R*(Q™) with a
parameter £ € 5. If {f.(w)}.cs satisfies the condition

(A.2) fee(0) = f(@)-fi(o)

for all &, &’ € &, we say that it satisfies the cocycle condition. The purpose
of this section is to prove the following theorem; the proof given here
is essentially due to M. Sato.

THEOREM (M. Sato). Let {f.(w)}.cz be @ family of non-trivial rational
functions on Q™ with the parameter &. We assume that {fJ(w)}:cs satisfies
the cocycle condition (A.2). Then f.w) is written in the following form;

(A3 flw) = CO)- 121 [T Wru@(w) — B)
X T8 [T (Ao — 32,(D)/Ai(@ — 82,(j) — 8&)}™.

Here, C(¢) is an 2-valued function depending only on & ¢ & which satisfies
CE-&) = C&)-CE); el(w), - -+, &/(w) are linear forms on e Q™ which are
integer-valued on the Z-lattice 6(5) in Q™; (%), - - -, ¥,(x) are rational
functions of one variable x € 2; h(w), - - -, h(w) are irreducible polynomials
in we Q2™ which are not converted to one another by the action of 5; p, q and
t, -+, t, are positive integers; 2,(j) 1 <i<q, 1 <j<1t) are elements in
g, n(j)) A<i<q, 1<j<t) are integers. The product [[iZh(x — k)
means 1 if I =0 and it means [[,ci<-V:(x + k)™ if | is a negative integer.

Proof. First, we prepare some notations before starting the proof.
Let ©® be a group and let A be an abelian group. We assume that 6
operates on A as an automorphism group of A, that is to say, for an
element # €O, a map a +— o’ from A to A is defined and satisfies (a-b)’
=a’ b’ and ¢’ = (a’) with e, be A and 6, t€B. Let a.,: 0 — ay, be
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a map from ® to A. When the map a, satisfies a,., = a(,-af, for any
6, r €O, we say that a, is a cocycle. Cocycles form a module under the
multiplication law in A. We denote by Z(0, A) the module of cocycles.
In particular, a map a, is a cocycle if it is written as @, = b°-b~' by
using an element be A. We call such an @, a coboundary. Coboundaries
form a subgroup of Z(0©, A). We denote it by B(O®, A). The first coho-
mology group H'®, A) is defined by Z(0, A)/B(®, A). The action of ® on
A 1is extended to the action of the group algebra Z[@], in the following
way: for o:= > m,-0,eZ[0], we let a’= [][i_,(a’)™; here m;eZ and
0,€0 for each i in 1 <i<m. That is all what we have to prepare
before the proof.
In the above situation, we take 5 as the group ©® and R*(Q™) as the
abelian group A. Then, for an element & € 5, we associate an automor-
phism of R*(Q™): f(w) — f*(w):= f(w — 0&). The group & acts on R*(Q™)
as an automorphism group of R*(2™) and it is extended to the action of
Z[E] on R*(2™) in the above way. The assumption (A.2) indicates that
this action satisfies the cocycle condition: f;..(0) = f.(®) f(0 — 5¢)
for each &, & e&. This means f, belongs to the module of cocycles
Z(E, R¥(Q™)).
Any element ¢ in & is written as an integer power of &, ---,&,.
Let h(») and h,(w) be two polynomials. We say that A,(w) is converted
to hy(w) by & if there exists & € & such that A{ = h,. Together with the
cocycle condition (A.2), f, is written by an integer power of f., - - -, f..
and their conversions by the actions of 5. However there may be dupli-
cation among the divisors appearing in f,, --+,f.,. In order to reduce
the duplication, we choose non-constant irreducible polynomials A,(w), - - -,
h(w) on Q™ such that
1) each h; (j=1,---,1) is a prime divisor of one of the rational
functions f,,, - - -, f., and they are not converted into one another
by the action of £ up to a constant factor.
2) any prime divisor appearing in f,,, - -, f., is obatined by con-
verting one of the A,’s by the action of an element of 5 up to a
constant factor.

Then we have,

(A.4) fe(w) = (const.) X []i, Af(w),

by taking suitable maps «,(-), ---, a)(-) from 5 to Z[Z].
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We shall calculate each terms A¢*9(w) in (A.4). Before the calcula-
tion, we need to show some properties of «,(¢) and related lemmas. We
devote the following until Lemma A-4 to them. First, we shall show
that each «,(-) satisfies a cocycle condition in a different form. We let
T .= {eeZ[E]; h! is a constant function}. Then J7; is an ideal in Z[5].
Indeed, once AZ becomes a constant function by an element ¢ € Z[Z], it
remains to be a constant function after the action of any element ¢ € Z[£].
We denote by (), the image of ¢ € Z[Z] under the natural projection map
ZIEl — Z[F]/9,. Then we may write

(A.5) fe(®) = (const.) X [[i, AF®Yw),

and, conversely, we can determine the map (a,(-)), from & to Z[5]/7,
uniquely so that the equation (A.5) is established.

We say that a map a(-) from 5 to Z[EF]/F, is a cocycle if a(&-&') =
a(g) + (&);-a(&’) is satisfied. We denote by Z(5, Z[5]/7,) the subalgebra
of cocycles in the algebra of the maps from 5 to Z[£]/7,. In this case,
a coboundary in Z(&, Z[5]/J,) means a map a(-) given by a(§):= (§);-(—p)
—(=p) = (1 — (6),)-8 with an element 8¢ Z[F]/7,. The cocycle condition

(A.2) is transformed to the cocycle condition for (a,(-)),:
(A.6) (-8 = (@,9); + (). (@,(&),

for &, ¢’ ¢ B, which means that («,(-)), e Z(&, Z[E]1]7,).
Next we let B;:={ée &; hf = h;}. Then 5, is a subgroup of 5. We
have the following lemmas.

LEmma A-1. Z, is a proper subgroup of =.

~

Proof. Suppose that £ = 5,. Then A, is a Z-invariant polynomial.
From the assumption 6(&) is a Z-lattice of rank m in Q™ Therefore
hiw) is a rational function on the m-dimensional torus £2™/8(5), which
means h, is a constant function. This is a contradiction.

(q.e.d. of Lemma A-1)

LEmma A-2. The following sequence is exact,
(A7) 0—> T, —> Z[F] —> Z[5'5,] —> 0.
Hence we have Z[E|E,] is isomorphic to Z[51]T,.

Proof. Let & be an element of Z[5] which is given by &:= > 5_,n, 2,
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with n,-Z and A, eg. Let {4, ---, 1} be the set of all the non zero ele-
ments appearing in #,(2,), - - -, 7,(4,). Then we have n(%) = Y ._, N1, with
N,:= . n, where j runs through the set {j; z(2,) = 4,} and A = [[i_.(h¥¥)"=
If 7(%) =0, then N, =0 for all 2k in 1 < k<t Then A? is a constant
function and hence & € ;. Conversely, if & €7, then hf = []i_, (h¥)"
must be a constant function. Note that #,(§) = =,(») if and only if A = h¢
for &, pe B. Since h; is an irreducible polynomial, A{ and h¢ coincide with
each other if they have a non-trivial common divisors. Thus any two
of A%, ..., h* have no non-trivial common divisors. This implies that
N, =0 for each & in 0 < k <t and hence =(%) = 0.

(q.e.d. of Lemma A-2)

Then we can identify Z(Z, Z[£]/9,) and Z(Z, Z[E/E,]). The natural
projection map (+), from Z[Z] to Z[£]/7, is identified with the above
map 7,(-). In particular, (), is the natural porjection map from 5 to

fond

Z/H, when we restrict it to & from Z[Z].
Lemma A-3. F/E, is a free abelian group for i =1, ..., 1L

Proof. Let € ¢ £ and suppose that & ¢ &, for a non zero integer k.
Then h,(w — k-6¢) = hy(w) for all we Q™ For any integer n, we have
hw — (nk)-6&) = h (w). Since A, is a polynomial, we have A;(w — ci&) =
h(w) for all cefR. Thus hi(w) = h(w — 6§) = h(w), and hence &¢&,.
Therefore E/Z, is torsion free. (q.e.d. of Lemma A-3)

LEMMA A4, If o(-)e Z(E, Z[E|E,]) and £ e &,, then a(g) = 0.

Proof. Take an element such that p is not contained in 5,. This is
possible by Lemma A-1. Then for an element & ¢ Z, since (§), = 1 if and
only if ¢e &, we have a(§-p) = a(8) + (§);-a(y) = a(§) + () and a(&-p)
= a(u-§) = a(yw) + (@),-«(E). Then we have (1 — (@),)a(€) = 0. Note that

Z[E|5,] has no zero divisor for 5/&, is torsion free. Since (g), # 1 for
ué &, we have a(§) = 0. (q.e.d. of Lemma A-4)

Now we begin the calculation on A{®«w) appearing in (A.4). We
shall compute A&®4(w) in the following two cases.

(A8) 1) rank(8/E) =1,
2) rank(5/5) > 2.

First we consider the case that rank(5/5,) = 1. We denote by &V
the group of homomorphisms frem & to Z. Take the element eYe 5V
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such that eY|;, = 0 and which gives an isomorphism from &/Z, to Z;
it is uniquely determined. Let &’ be the linear form on Q™ satisfying
ey a06) = > ™ ae)(E) for (ay, - -,a,)eQ™ It is also determined
uniquely. It is easy to see that &) is invariant when we regard it as an
element in R*(2™). From the definition of 5,, h(w) is an irreducible
polynomial which is invariant under the action of &,.

LeMMA A-5. If rank (8/8,) = 1, then h,w) is written by an irreducible
polynomial of one variable, that is to say, h,(w) = (const.) X (&Y(w) — ¢,)
with a constant c,.

Proof. Let r(w) = &/(w), rw), - - -, rn.(w) be linearly independent linear
forms on Q™. Then they form another linear coordinate system on ™.
The polynomial h,(») is a polynomial of m-variables r(w), - - -, r,(w). Since
rank (5/5,) = 1, the functions r,, ---, r, are not invariant by the action
of 5,. If h(w) depends on r, (k >>2), then A, is a periodic function with
respect to the variable r,. Therefore h, does not depend on r, -, r,.
This means that A, is an irreducible polynomial of the one variable r, =
g/ (v). (g.e.d. of Lemma A-5)

Let 2, be an element in 5 such that &y(1,) = 1.
LEmMA A-6. For any & € &, £-2;%°C% belongs to 5,.

Proof. We may take elements v, ---,v, €5, such that 2,w, -, v,
form generators of the group &. An element £e 5 is written by & =
)" (w)= - - - (v,)'» where [,’s are integers. Since

é)’(ﬁé) = éy(llazi + 1251)2 + -+ lmaum) = llé;/(azi) = ln
we have &-(1,)"%¢ = (y)" - - - (v,)'"™ belongs to &,. (q.e.d. of Lemma A-6)

Thus we have, for any &€ 5, we have

(2:(8)); = (((AFCR)-(§- 275700,
= (@ ((F7); + ATCO) - (ay(§- 277 O)),
from the cocycle condition. By Lemma A-4 and Lemma A-6, this implies
(2,(8)); = (,((X9D)),. Applying the cocycle condition (A.6) repeatedly, we
have
(A10) (&)= A+ @) + -+ + Q)T (02 if 2Y(3¢) > 0,
=1 if ey(6¢) = 0,
= —((@) + -+ + @) O) (.2 if y(s8) <0.




THEORY OF PREHOMOGENEOUS VECTOR SPACES 31

We shall calculate («,(&)),. From the definition, («,(¢)), is an element
in Z[&/8,]. Since £/8, is generated by (3,),, (a,(1,), is regarded as a
polynomial in (1)), and (7,);' of integer coefficients. Therefore we can
write

(A.11) (@A) = Tyezni)- Qi
where n,(j)’s (j € Z) are integers and all of n,(j)’s (j e Z) except for finite
ones are zero. Together with (A.10) and (A.11) and Lemma A-5, we have
REE (@) = (const.) X (8 — ¢)“(w)
= (const.) X [[F79" (@Y — ¢, — k)G )
and
@ — ¢ — BYF(a) = [] e @0 — jok) — 0 — By
= [lez ((@(@) — k) —j — c)"P.
After all, if rank (§/5,) = 1, then by putting ¥,(x):= [[,ez(x — J — )™,
we have,

(A.12) h&®i(g) = (const.) X [TEEe0 (Y (w) — k).

Here, the product [[iiv.(x — k) means 1 if [ =0 and it stands for
[Tick<-1¥(x + B)~' if [ is a negative integer.
Next we consider the case of rank (&/5,) > 2.

LemMmA A-7. If rank(8/8,) > 2, then HY&, Z[E|5,]) =0. In other
words, for all a-)e Z(&8, Z[Z|5.]), there exists an element B e Z[5/|5,] such
that a(-) = (1 — (7)) B

Proof. Let a(-)eZ(E, Z[E/E,]) and put r:= rank(5/5,). We take
&, -+, & €8 such that (&), ---,(,); generate the abelian group 5/5,.
For positive integers s and ¢ satisfying 1 < s <t < r, we have

(&, &) = afg,) + (ga)t‘“(‘fz) = o) + (éz)i‘a(&) ,

from the cocycle condition. Then we have

(A.13) 1= Ed)-al€) = (1 — (E))-al8).

Note that Z[£/5,] is isomorphic to the ring of polynomials generated by
s, -+, Dy and (€))7, - -+, (§,);" with Z-coefficients. Then, as an example,
in the equation (A.13), «(¢,) and «(£,) are such polynomials. Let 8 be the
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greatest common divisor of a(&,) and «(¢,). Then we have a(&,) = (1 —(&,),)-8

and a(¢,) = (1 — (§,),)-8. We may take any s and t as they are different.
Then we have

(&) = (1 — ()-8 forallkinl<k<r.

SuBLEMMA 1. Let o) e Z(H, Z[E|E,]) and let & pel. If a(f) =
1—@)-p and a(p) =1 — (D)-f with SeZIE|E). Then alt-p™) =
1= EwD) b -

Proof. From the cocycle condition we have

al) = alp-p™") = alp) + (Bi-alp™) = a(p™) + (¢)i-a(p). Then we
have (1 — (u ™)) alp) = (1 — (B))-a(e™) and hence (1 — (2))-a(p™) =
1= (u,)-(1 —(2),)-B Since Z[5/5,] has no zero divisor, we have
a(p™) = (1 — (¢™),)-8. Then we have

al¢-p) = a(§) + (E)i-alp™)
=1 = (@) B+ @1 — @B
=1 - M)
=1 —(Eph)B (q.e.d. of Sublemma 1)

We proceed the proof of Lemma A-7. Let &% be the subgroup of &
generated by &, ---,&,. From Sublemma 1, we have () = (1 — (§))-B
for any e &' From Lemma A-4, if {5 and Ae &, then we have
@) =a@+ Di-a) =a@ =010 —@)-p=0— -, Since 5is a
direct product of 5% and 5, we have (&) =1 — (§),)-8 for all £e&.
Thus we have «(-) e B(&, Z[5|E))) if a(-)e Z(E, Z[5|5,]), which implies
that H\(&, Z[5]5,]) = 0. (q.e.d. of Lemma A-7)

Now we go back to the calculation of A&®¢(w). By Lemma A-7, if
rank (5/5,) > 2, then we can write as (¢,(§)), = (1 — (§),)-8, by taking a
suitable element B, € Z[5/5,]. Then

h§m“(a)) — h?' (5)‘)'ﬁt(w)

= hi(w)/h(w — 38).

We can write 8, = 3%, ny(j)-4,(j) by using suitable 2,(j) 2 & and n,(j) € Z.
After all, if rank (5/5,) > 2, we have
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AlY)  AFEOW) = [k {0 — SWD)/ho — 32() — 6,
From (A.12) and (A.14), we have the result. (q.e.d. of Theorem)

CoroLLARY TO THEOREM. We use the same notations as Theorem.
Suppose that {f.}.cs satisfies the condition: there exists a set of generators
{ts - -, pm} Of & such that each f,(w) is a polynomial in we Q. Then f,
is written in the following form:

(A.15) fel@) = C(&)- [0 [IEZCO (@Y (@) — ).

Proof. In the expression (A.3) of f.(w), all the terms appearing in
the left hand side are polynomials if f.(w) is a polynomial in w since they
have no common divisors from the definition. From the assumption, if
& = -y where n,, ---, n, are non-negative integers, then f.(w) is a
polynomial, and hence

(A.16) Far bl — d2,(Dhio — 82.()) — O™

is a polynomial for each i=1, ---,q. However it is necessary that
n(j) =0 for j=1,..-,¢ since there exists £ e & such that A, (0 — 34,()))
# hyw — 6,(j) — &) for all j =1, ---,¢,. This means that the term of the
form (A.16) does not appear in the expression (A.3). Then we obtain
(A.15).
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