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A DECOMPOSITION THEOREM OF 2-TYPE IMMERSIONS

MOTOKO KOTANI

§ 1. Introduction

One branch of the research of submanifolds was introduced by Chen

in terms of type in [2]. Type of a submanifold makes clear how the

eigenspace decomposition of the Laplacian (of the ambient space) preserve

after restricted to the submanifold.

We will review the definition of type of a submanifold M in the unit

sphere Sm(ΐ) in the Euclidean space Em+ί. Let x be the canonical

coordinate in Em+ί. We call M £-type if x is decomposed into k maps

xh - - , Xjc such that

X = Xi + + Xk,

ΔXi = λiXi for i = 1, , k

as a vector valued function, where Δ is the Laplacian of M. As coordi-

nate functions generate the 1st eigenspace of Sm(l), £-type means that the

1st eigenspace of Sm(l) restricted to M is decomposed into k eigenspaces

of M. We can generalize the definition to the £-type via Z-th eigenspace

of other ambient spaces in the same way. But here as we are concerned

only with surfaces of 2-type in Sm(l), we will not refer to it anymore.

For the precise definitions, see § 5. See [1], [5] etc. for other relevant

results for the general case.

The immersion r. M -> Sm is called mass-symmetric if the center of

mass of c(M) coincides with the center of Sm.

In terms of the type of immersions, a well known theorem of Taka-

hashi [4] states that an ^-dimensional compact submanifold M of Em+1 is

1-type if and only if M is a minimal submanifold of a hypersphere Sm of

Em+\ and any compact minimal submanifold of Sm is known to be mass-

symmetric. Our results can be stated as follows.

THEOREM 1. Any mass-symmetric and proper 2-type immersion of a
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topological 2-sphere into a unit hypersphere Sm(l) c Em+1 is the direct

sum of two minimal into spheres. That is we can write

x == χp@χqeEr+ιφEm-r = = Em+1

such that

xv\ M >Sr(cosθ) c J5r+1 and

xq: M >Sm-r-1(sinθ)c:Em-r

are minimal immersions with respect to the induced metrics.

COROLLARY. // the immersion in Theorem 1 is full, then m is odd

and greater than 5.

Remark. There is a mass-symmetric and 2-type immersion of a flat

torus which does not admit a decomposition in the sense of Theorem 1.

And to the remark for Corollary no examples of 2-type surfaces are known

in even-dimensional spheres.

By Theorem 1 a mass-symmetric and proper 2-type immersion of a

2-sphere is decomposed into two minimal immersions. Hence we reduce

the problem to determine the space of all 2-type immersions of S2 into

the sphere to that to know when (S2, g) admits more than two distinct

minimal immersions into spheres.

(S2, g) of constant curvature has been the only known example having

countably infinite minimal immersions. Moreover we get the following

when the dimension m is small.

THEOREM 2. If a 2-sphere admits a mass-symmetric and proper 2-type

immersion into S9(l), then the 2-sphere is of constant curvature.

Though the hyperbolic space Hm is not compact, we can define the

notion of mass-symmetric and 2-type immersions into the hyperbolic space

as follows.

Let Lm+1 be the (m + 1)-Euclidean space with the inner-product < , )

of signature ( —, + , , + ) . • It is well known that Hm can be realized

as

Hm = {xeLm+ι: <x, x) = - 1 } .

Let x: M->Hm be an isometric immersion. We can easily see that the

mean curvature vector H of M in Hm is given by
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Δx = n(H + x),

where n = dim M.

We call the immersion x mass-symmetric and 2-type when x can be

given by

x = xp + xqeLm+1,

where Δxp = λpxp and Δxq = /^x9, Λp < λq. We note that x is the eigen-

function of the Laplacian of the hyperbolic space Hm.

By the same argument as in Theorem 1, we can see that

xp: S2 >Lm+ί

is an immersion, whose induced metric is homothetic to the original one,

into the space

Hm((λq - λp)l(λq + 2)) = {xeLm+ι; <*, x) = -Uq + 2)/(λq - λp)},

that is, xp is a minimal immersion of a 2-sphere into the hyperbolic space,

which is impossible. Hence we get the following.

THEOREM 3. There is no mass-symmetric and 2-type immersion of a

topological 2-sphere into the hyperbolic space.

The author wishes to express her gratitude to Professors B.Y. Chen

and K. Ogiue for their valuable suggestions.

§ 2. Preliminaries

We assume that x: M—> Sm(ϊ) is a mass-symmetric and 2-type immer-

sion of a Riemannian surface M into the unit hypersphere Sm(l) in En+ί

centered at the origin of Em+1. In terms of an isothermal coordinate

z = x + iy, the induced metric is given by g = ρ2\dz\2. Denote by V and

F the Riemannian connections of M and Em+1 respectively, and by H, σ

and D the mean curvature vector, the second fundamental form and the

normal connection of M in Em+ί and H, σ and D the mean curvature

vector, the second fundamental form and the normal connection of M in

Sm(ί). By an easy calculation we obtain

(2.1) ΔDξ = 4p z h

(2.2) H = 2p-2σzi,

where ξ is a normal vector field, RD is the normal where ξ and σzz =

σ(dz, 3,).
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The Codazzi equation and the Ricci equation are given respectively by

(2.3) 3ZH = 2p~%σzz,

(2.4) Rf^β = 2p-\(σΓ2, ξ)σzz - (σzz, ξ}σa).

From the definition of a mass-symmetric and 2-type immersion, x is

decomposed as follows:

(2.5) x = xp + xq,

(2.6) Ax = Λpxp + λqxq.

Then we see

(2.7) Δ(Δx) = (J, +

On the other hand, the mean curvature vectors H in Em+1 and H in

Sm(l) are given by

(2.8) H=H- s = - — J * .

Hence xp and Λ;9 can be written as

(2.9) xp = (2fl + λqx)l(λv - ^ ) = {2£Γ + (λq - 2)x}/(^ - λp),

(2.10) xρ = (2H + ;px)/(;ρ - ^p) = {2H + (λ, - 2)x)l(λp - λ9).

From

<*, x> = 1, <*, H> = - 1 and <J(JΛ), X> = <d(-2fl), x> = 2|iϊ |2

we easily get

(2.11) \Hf = \Hf + 1 = 1 - 1 ( ^ - 2)(A? - 2),

(2.12) <*„ Xp> =

(2.13) <x ί f x?> = {4|JEf Is + (Λ, - 2)*}/α - λqf = (λ, - 2)l(λp - λq),

(2.14) <xp, xβ> = -{A\Hf + {λp - 2)(λq - 2)}/(λp - λqf = 0 .

These imply that xp and xq are maps into spheres. In the same way,

Chen gives the following formula in [2].

(2.15) ~Δ{Δx) = AH= am + ±{<H, <,„>„ - (H, σ,
Δ p
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where ΔD is the normal Laplacian of M.

§ 3. Some lemmas

In this section we are preparing some lemmas to prove Theorem 1.

LEMMA 1. // M is mass-symmetric and 2-type, then (H, σzz} is a

holomorphic function. Moreover, if M is a topological S2, then M is pseudo-

umbίlic, i.e., <#, σ2Z) = 0.

Proof. In terms of the isothermal coordinate, tr(F<σ23, H}) is given

as

tr (F(σzz, H}) = 2p-2{((σzz, d-zH) + <#, d,σzz})dz + «ff, 3 Λ i > + <33#, σlf»3,}

= 2p-\d-z(σzz, H)d-Z + dz(H, σ-zE}Bz).

As M is mass-symmetric and proper 2-type, it follows that tr(F(σzz, H})

= 0 by comparing the tangent parts of (2.7) and (2.15). Hence we get

dz(σzz,H}=0. ##

LEMMA 2. Let x: S2 -> Sm(ΐ) be mass-symmetric and 2-type. Then

(3.1) ΔDH=(λpλJ2)H.

Proof. From the normal parts of (2.7) and (2.15) we obtain

(λp + λq)H + (kpλj2)x = άH^ ADH + 2(\Hf + 1)(H - x).

Noting that H = H + x is normal to x, we see that

(λp + λq)H = ΔDH - (λvλq - 2^ - 2^)/2.

Thus we obtain ΔDH = (λpλJ2)H. ##

LEMMA 3. Lei x: S2-> Sm(l) 6e mass-symmetric and proper 2-type.

Then the following equations hold.

1) <9*fl,9iff>=0,

2) <3»ff, y Λ l > = 0,

3) <3*σ,,, 9ίσtf> = 0.

Proof. We shall prove the result by induction. To this end we define

the condition [N] as follows.

[N]-l <d*#, dlH) = 0 for all k + I ̂  iV.

[N]-2 <9*<jβI, 3J/Ϊ> = 0 for all ife + 1 ̂  N - 1,

[N]-3 <3z

fcσ22, 3 J O = 0 for all A; + / ̂  iV - 2,
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[N]-4 3z3z(3kH) is a linear combination of 3kH, dk

z~Ή, ., H, σZZJ dzσzz,

•• ,3*-2σ22 for all k ^ N - 2,

[ N ] - 5 3-z3z(3kσzz) i s a l i n e a r c o m b i n a t i o n o f 3k

z

+2H, σzz, 3 z σ z z , ' - ' , d k σ z z

for all Λ ^ iV - 3.

In what follows we write 32, 3Z and σzz simply as 3, 3 and σ, respec-

tively.

Now we know that M is pseudo-umbilic and has constant mean

curvature. Moreover it follows from Lemma 2 that its mean curvature

vector satisfies the equation ΔDH = λp~2H. Hence using (2.3) we get

(H, 3H} = P

2(H, 3σ) = 0,

(H, 3H} = p\H, 3σ) ^ 0,

5dH = p2ΔDH - p'2{(σ, H}σ - <σ, H}σ} = p2άDH = ^ F ,

δ<3#, dH} = 2<^iJ, 3£Γ> = 0.

As a global holomorphic on differential S2 is identically zero, the last

equation implies

<βH, dH} = 0.

Similarly, noting that

8(dH, σ) = <^ίί, (7> + p-2<3ff, 3F>/2 = 0.

we get

(dH, σ> = d(H, σ) - (H, 3σ> = -<i ί , 3σ> = 0.

We also get

3(σ, σ) = p2<3/f, σ> = 0, i.e. <σ, α> = 0.

<βΉ, 3H) = 23(3H, 3H) = 0.

These imply that the condition [2] holds.

Next we will show that [N] holds if [N-l] holds. From the Ricci

equation, we get

S3(3kH) = 3(33)(3k-Ή) + p~2{(σ9 3
kH)σ - <σ, 3kH)σ}.

As k <: N - 2, we obtain (σ, 3kH) = 0 by [N-l]-2. Then combining this

with [N-l] we get [N]-4. Similarly, from the Ricci equation we get

33(3kσ) = d$dW-ισ) + p~2{<3kσ, σ}σ - (3kσ, σ)σ}.
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By using [N-l]-3 and [N-l]-5, we get [N]-5. Finally we prove [N]-l~3.
We remark that

<3*σ, d
ισ) = 3<3*-1σ, dισ) - <afc"V, dι + ίσ}

Γ, 3fc#>/2 + <

= p*(dH, dkH)l2 l inear combination of

dkσ) = p2<3fl; afcσ>/2 - (σ, δ3(3fc-V)> = ^<3ff, afc(7>/2

+ linear combination of <<;, afc + 1/f>, <σ, afc"1o ), , (σ, σ)

In these equations we use the assumption [N-l] and the Codazzi equation
(2.3). Noting that holomorphic form on S2 is identically zero, we may
prove d(βH, 3kH} = 0 for all k ^ N - 1 to get [N]-l ̂  3.

But in fact we can prove that

d(dH, dkH) = (λH, 3kH} + {dH, dd(dk-Ή)}

= linear combination of (dH, dH), - -,{dH, dk~ιH}

= o. n
Now we can prove Corollary of Theorem 1 independently. Let

£?=span{3ϊίΓ,3ίσ,,}.

By Lemma 3, E(&E(B {H} then gives an orthogonal decomposition. In
the 2-dimensional case, the normal space is spanned by all the deriv-
atives of σ and H with respect to z and z. But (2.3) combined with
[N]-4 and [N]-5 in Lemma 3 show that all these derivatives belong to
E®E. Therefore E®E@{H} gives a decomposition of the normal space,
so that

dim Sm = dim S2 + 2 dim E + 1.

Thus m is odd.
Moreover noting that

(σzz,dzH} = 0,
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we can easily see that m is greater than 5 unless H is parallel.

On the other hand, if S2 —• Sm has parallel mean curvature, then the

immersion is minimal in a small hypersphere, which contradicts the

mass-symmetry. ##

§ 4. Proof of Theorem 1

Let x: S2 -> Sm(ΐ) c Em+ί be a mass-symmetric and 2-type immersion,

i.e.,

(4.1) x = xp + xq: S2 > E m+ί

where Δxv — λpxp and Δxq = λqxq.

We already know that x has constant mean curvature

\H\>= - 1 ( ^ - 2 ) 0 , - 2 )

and x is pseudo-umbilic i.e. (H, σ} = 0. Moreover xp and xq can be writ-

ten in terms of x and H as in (2.9) and (2.10).

First we will show that the maps xP9 xq: (S2, p2\dz\2) -+Em+1 are homo-

thetic immersions into some spheres, so that, on account of Takahashi's

theorem, they are minimal in the spheres. We already see in § 2 that

xp and xq are immersions into spheres whose induced metric is homothetic

to the original metric p2\dz\z. Since the differential (xp)* of xp satisfies

(4.2) (xp)Jt = {2VZH + {λq - 2)dz}l(K ~ λp)

= {2dH + (λq - 2 - 2\Hf)dz}l(λq - K) >

the induced metric is given by

<(Xp)*dz, (xP)*dz) = <(Λ;p)*3f, (xPhdE> = 0 ,

\2 + α - 2 - 2\Hf)Yl2}l(λp - ^) 2

This implies that xp is a 1-type immersion homothetic to the original

metric so that xp is minimal. The same argument can be applied to xr

It remains to prove that xp + xq is the direct sum, i.e. (xp9 xq) e

Sk X Sm-k-1 C Ek+1 X Em~k. To show this we prove that all derivertives

of xp with respect to z and z are orthogonal to those of xq, which implies

that all coefficients of the Taylor expansion of xp around a fixed point

are orthogonal to those of xq. But, by the same argument as in Lemma
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3 and Proof of Corollary, we can easily see by induction that it is enough

to show

(d[x x ) = 0 .

As d\xp is a linear combination of xp, dz, d\σzz and d{H9 we can show the

above equation by Lemma 3 and <xp, xq} = 0. This completes the proof

of Theorem 1.

§ 5. Proof of Theorem 2

From Theorem 1 this immersion is decomposed into two minimal

immersions

(S\ cig) >S\1) and (S\ c2g) > S\ΐ),

or

(S\cxg) >S\Ϊ) and {S\ c2g) >S\l).

Theorem 2 is clear in the first case. In the second case we will show

that cx = c2 by using the result in [2]. If (S2, g) admits two minimal

immersions with k2 = 0 in (71) in [2], from these equations we find that

curvature is constant cjS = c2/3. But if cx — c2, then the immersion is

1-type.

§ 6. General case

In this section we define fe-type via lth-eigenspace in a general

compact manifold. Let M be a compact Riemannian manifold and Δ the

Laplacian of M acting on the space C°°(M) of all C°° functions on M.

Then Δ is a self-adjoint elliptic operator and has an infinite, discrete

sequence of eigenvalues,

0 = Λo < λt < - - - t°°

Let Vk = {fe C°°(M); Δf — λkf) be the eigenspace of Δ with eigenvalue λk,

which is finite dimensional. Each function feC™(M) has the following

spectral decomposition:

f—Σifk (in ZΛsense),

where fk e Vk. In particular, there are positive integers 1 ^ p ^ q <I oo

such that fpφ0 and fqφ0 and
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q

f — /θ — Σ fk 9
k = p

where /0 e Vo is a constant.

Let I: M - > M be an isometric immersion of a compact Riemannian

manifold into a compact Riemannian manifold. We set

C~(M) = ΣVί(M) and C~(M) = Σ V4(M),

as the eigenspace decompositions. We may consider the following general

problem.

PROBLEM 1. What can we know about c if c satisfies

**( TOO) c V0(M) + Vfl(M) + • + Vik(M) for some /?

We call such M k-type via 1-th eigenspace.

Let x — (xu xz, , #TO+1) be the standard coordinates of Em+1 and let

Sm be a hypersphere of i? m + 1 . Then V^S™) is spanned by x1? x2i , xm+1.

Our primary concern is the following restricted problem.

PROBLEM 2. Investigate the immersions x: M->SN such that

ι*xA e Vo(M) + Vh(M) + + V,,(M) for all A.

We simply say £-type in these cases.
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