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§ 1. Introduction

We shall investigate a system of spin configurations S = {S(t, x);t>0,
xeZ} on a one-dimensional lattice Z changing randomly in time. The
evolution law is described by an infinite-dimensional stochastic differential
equation (SDE):

dS(t, x) = {U'(S(t, x+1))- 2U'(S(t, x)) + U'(S(t, x - l))}dt

+ V~2(dβ(t, x + 1) - dβ(t, x))9 xeZ

where {β(t, x); t > 0, x e Z} is a family of independent standard Wiener
processes and U' is the derivative of a self-potential U: R -+R. Throughout
this paper we are assuming that U has two times continuous derivatives
and

(1.2) a - A < U"(x) <a + A

with some constants a > 0 and A > 0. The system (1.1) is called one-
dimensional Ginzburg-Landau lattice model (cf. [1], [2]), which has a unique
strong solution in a certain class of configuration spaces (see Section 2,
Theorem 2.1).

The purpose of the present paper is to investigate the hydrodynamical
behavior, especially the equilibrium fluctuation problem, for (1.1). We
introduce the space-time scaling:

(1.3) X -* [x/e] , t -> tjε2, ε > 0

for the equation (1.1). Here [u] denotes the integral part of u e R. After
this scaling the process Sε(t, x) = S(ί/ε2, [x/e]) solves the following scaled
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equation:

(1.4) dSε(t, x) = ΔεU'(Sε(t, x))dt + </2eFεdwε(t, x), t > 0 , x 6 R

where wε(t, x) = V ε β(£/ε2, [#/ε]) and

ε ' X * + ε) - p(x)]

J ( ) ε"%(x + ε) - 2φ(x) + φ(x - ε)]

for functions φ of x. The operations F e and J e are the lattice approxi-

mations of step size ε to the differential operators djdx and d2jdx2, respec-

tively. We are interested in the asymptotic behavior of Sε(t, x) as ε tends

to 0.

Two kinds of problems are formulated concerning the hydrodynamical

limit: the law of large numbers and the central limit theorem. For the

lattice model (1.1), Fritz [2] proved the law of large numbers in the non-

stationary case (in fact, he investigated more general lattice system) and

Guo, Papanicolaou and Varadhan [3] gave a quite different approach to

the same problem but in a finite volume case. It is known that Sε(t, x)

converges as ε—>0 to a deterministic limit Y(t, x) which satisfies a diffusion

equation

(1.6)
D{γ)

dt dxl dx

with a certain diffusion coefficient D(ϊ).

On the other hand, the equilibrium fluctuation problem which is the

main problem of this paper is to investigate the asymptotic behavior of

Vε(t, x) = (Sε(t, x) — 70/V ε for lattice model (1.1) in the stationary case,

where ϊ = E[Sε(t, x)] is independent of (t, x). The result will be formulated

as the central limit theorem for the SDE (1.1). We shall prove that

Vε — (Vε(t, x); t > 0, xeR) converges as ε—>0 to a generalized Ornstein-

Uhlenbeck process V(t) characterized by an SDE

(1.7) dVit) = D(γ)ΔV(t)dt + V~2Fdw(t)

where the constant D(ϊ) is the same one as in (1.6) (see Section 2, Theorem

2.2 and Remark in detail), Δ — d2/dx2, V = d/dx, and w(t) is a cylindrical

Brownian motion on L2(R). Spohn [10] investigated the equilibrium

fluctuation problem for an interacting Brownian particles' model. In this

paper we shall follow the method due to Rost [7] and Spohn [10].
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§ 2. Main result

Let Rz = {σ ==(•••, σ.u σQyσu - - -);σkeR,ke Z) the space with usual

product topology and denote its Borel field by &(RZ).

Define product measures μi9 λeR, on (Rz, &(RZ)) by

(2.1)

where

(2.2) qλ(x) = M(λ)-1 exp[λx - U(x)]

and

(2.3) M(λ) = ί exptfx - U(x)]dx.
JR

The probability measure μx can be regarded as a Gibbs state associated

with the (formal) Hamiltonian:

(2.4) Hλ(σ) = ΣU(σk)-λΣ<ric
kβZ kGZ

We develop some more notation

(2.5) P(X) = \ogM(X),

(2.6) h(ΐ) = sup[(λr -P(X)], ΐeR.

Then h(J and p(m) are a pair of conjugate convex functions and

(2.7) λ = h'(γ) if and only if γ = p\λ).

Elementary calculation shows

(2.8) $ xqλ(x)dx = (/(λ) .

Moreover, p"(X) is the variance of qλ{x)dx i.e.

(2.9) J (* - p'(X)Yqx(x)dx = p"(X).

One knows also that ^ and /i; are smooth strictly increasing functions.

Let r > 0 be fixed throughout this paper. Let ξ(x) e C°°(R) be a

positive function such that ξ(x) — \x\ if | # | > 1 . We define a Hubert

space as
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(2.10) Vr = ίσe Rz; \σfr = Σ k f Γ* exp[- rξ(x)]dx < oo) .

One can check that μλ{L\) —- 1.

Now we turn to the study of the SDE (1.1). In view of (1.2), the

drift term of (1.1) is linearly bounded and uniformly Lipschitz continuous

in the space L\. Therefore, a standard argument yields the existence and

uniqueness of strong solutions to (1.1) in L\ (cf. [9]):

THEOREM 2.1. For each a e L2

r, the SDE (1.1) has a unique L2

r-valued

continuous strong solution St starting from σ (i.e. So = σ).

Let Tt, t>0 be defined by

(TtF)(σ) = E,[F(St)], FeC(Ll)

where Eσ[ ] means the expectation under the probability law of (l.l)'s

solution St starting from σ e L\. Then we can easily extend {Tt}t^0 to a

self-adjoint strongly continuous contraction semigroup on L2(RZ, μλ) and

check that the Gibbs states μλ9 λeR, are reversible measures of Tt.

Let Sr = ^ e x p [ — rξ(x)] the nuclear space with a topology introduced

from <9*, where &> = ^(R) is Schwartz space. Let £'r be the dual space

of iΎ with the strong topology and <€ = C([0, oo); g'r). Let {S(t, x);t>0,
x e Z) be the solution of (1.1) with initial distribution μx. Then by Theorem

2.1, we know Sε(t, x) = S(t/ε2, [x/ε]) is in ^ (a.s.). Now we can state our

main result:

THEOREM 2.2. Let Vt(t, x) = ε-y2(Sε(t, x) - p'(X)) and Pε be the proba-

bility distribution of Vε on &. Then Pε converges as ε —> 0 to a distribution

of a generalized Ornstein-Uhlenbeckprocess V = {Vt}ί>o weakly on cβ. The

process {Vt} satisfies the following equation

(2.11) dVt = p"(λ)-ιΔVtdt

where Δ = d2ldx2, F = d/dx and wt is a cylindrical Brownian motion on

L\R).

Remark. From the relationship (2.7), we have p"(λ)-1 = h"{pf(λ)).

However, it is known that h"(ϊ) = D(ϊ); the diffusion coefficient appearing

in (1.6) (cf. [1] [2] [3]).
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§ 3. Sketch of the proof and Boltzmann-Gibbs principle

Let Vε be the stationary process defined as in Section 2. From (1.4),
we get an equation for Vε(t, x)

dVu(t, x) = J L Jtl7
/(VTy,(ί, x) + p\λ))dt + S2FΛdwAt, x),

(3.1) V e

xeR, t> 0.

Tending ε to 0 in (3.1), the second term converges to \Γ2^Pdw(t) (at least
formally). The difficulty in the proof of Theorem 2.2 lies in the compu-
tation of the first term. Although it is nonlinear, Rost [7] and [8] suggest
that it should converge to a linear term p"(X)~ίΔV(t); precisely saying,
our goal will be the following:

PROPOSITION 3.1 (Boltzmann-Gibbs principle). For each t > 0 and fe $r,

Jsf(Γ ds ί d* * {tf'(S.(*, x)) - p'Vr'SXs, *W(*)YΊ -* 0 ,
(3.2) L\Jo JΛ v ε / J

as ε —> 0 .

In the rest of this section, we give an outline of the proof of this
proposition. For convenience, we intrdoce some notation:

φ(x) = Uf(x) - p"(λ)-'x, x e R ,

fϊ\x) = εvχΔεf)(ex), f o r / 6 ^ r ,

Φ(f)(σ) = ί Φ(σίxl)f(x)dx , for fe Sr, σβ L\ ,
J R

= Φ(f)(St), St = {S(t,x);xeZ}eLl(si.8.)9 t>0,

It is easy to check that R(ε) = the l.h.s. of (3.2). Hence our goal is
to show that limε_oi?(e) = 0. We define a class of shift operators {τq}qeR

as follows: For q e R, σβL2

r, and any functional F of σ,

(τtF)(σ) = F{τqσ) .

Now take geC^(R) satisfying ίg(x)dx = 1 and fixί>0, feSr. For
every T, e > 0, choose N = [T'U^t], then we have from the stationarity
of S(t, x):
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[ N-l / nn+l)T \2-|

N' Σ ( dsΦ(fϊ\ s))\+ Rs(ε)
dsΦ(f(/\s)ΐ] + Rz(ε)

ds Γ dwΦ(Λε), s)Φ(fϊ\ s)λ + Λ,(e)

where

Ώ (Λ — At2!1'2 I rfς I
Jo Jo

and < ) stands for the expectation with respect to μλ it will be sometimes

denoted by < )Λ to be made its dependence on λ clear (Section 6). These

three terms can be estimated as follows.

LEMMA 3.2.

( 1 ) If f dq\(Φ(g)τqT2tΦ(g)> - <Φ(£)>2| < oo, then
J R

(3.3) lim<(Γ tΦ(g /ί>))*> = || J/IP f dq{<Φ(g)τqTuΦ(g)y - <Φ(g)>2}.
β-o JΛ

(2 ) lim<(T#(g*/^) - TtΦ(βψ> = 0, for all t > 0.
s-0

( 3) lim i2,(e) = 0.
β-0

Proof. ( 1 ) By the uniqueness of solutions of eq. (1.1), it is easy to

see that Tt{τqΦ(g)) = τ-q(TtΦ(g)). Thus

m(σ) == f dqf?(q)τ-qTtΦ(g) .

Noting that (TtΦ(g*f(f)} = 0, we have

= f dp(ΔJ){p) f dq(Δ.f){eq + P){<Φ(g)τqΆtΦ(g)> ~ <Φ(g)>2} •
J B J R
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Therefore (3.3) is established by letting ε -» 0.

( 2 ) We compute

Besauce the r.h.s. tends to 0 as ε —> 0, the assertion is proved.

(3) R3(ε)<2εiTE\\ dsΦ\ff, s)I = 2eιT \ ds(Φ2(f(f))

< 2s4T2<ΦVo)> J dxdy 1 I W _ M ) /?WWy)

Taking the limit ε -^ 0 proves the conclusion. Π

This lemma shows

1IΞ R(ε) < 4t*T-*\\Δf\f. Γ ds Γ du \ dq{(Φ(g)τqTιs_u]Φ(g)} - <Φfe)>2} .
c-»0 Jθ JO J

Hence, it is sufficient to show that

(3.4) Km Γ-2 Γ ds Γ d^ f dq{<Φ{g)τqT^Φ(gy> - <Φfe)>2} = 0 .
Γ-^co JO JO J

Clearly, this is equivalent to the following statement:

(3.5) lim f dq{(Φ(g)τqTtΦ(g)> - <Φ(g)Y) - 0 .

However a simple calculation proves

= Σ {(Φ(g)τnTtΦ(g)) - <Φ(g)>% t>Q.
n=~oo

Therefore (3.5) is equivalent to its lattice form:

(3.6) lim Σ {(Φ(g)τnTtΦ(g)) - <Φfe)>2} = 0.

Now, we introduce a Hubert space Jf with inner product {F\G} =

Σn=-«> {(Fτ^G) - <F><G>}, F>Getf. This space will be discussed in detail

in Section 4. By Proposition 6.2, Tt is ergodic in Jf, and

(3.7) lim 7VF - p"(λyι(F\F0{gy>F0(g) in f̂, for F e JT

where Fo(^) - ί (σ(x) - p'(λ))g(x)dx. Therefore
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lim J ] M {<Φ(g)τnTtΦ(g)> - <Φ{g)Y} = (t'{λ)-χΦte)\FM>%

A simple calculation shows that (Φ(g) | F0(g)> = 0. Consequently, we es-

tablish (3.6). Thus Boltzmann-Gibbs principle is shown.

The definition of the Hilbert space Jί? and the ergodicity of Tt in 34?

will be dealt with in Sections 4, 5 and 6. The martingale approach will

be applied for showing the main theorem in Sections 7 and 8.

§ 4. Construction of the Hilbert space 34?

As explained in Section 3, we want to introduce a Hilbert space 34? with

the inner product < | ). In this section, we shall define the space 34? by

completing a class of local functions and investigate the relation between

the Z,2-norm approximation and the ̂ -norm approximation.

First we define the classes of local functions:

2,loc {J 2,[fc,fc]
kez+

LEMMA 4.1. Assume Ft e^. ioc satisfy <Fi> = 0, i = 1, 2. Then,

(4.1) ( 1 ) Σ K F i u F M < ( 4 a + ί ) ( F l ) < o o , if Fλ e ^ 2 , c - α , α ] , a e Z
n=-oo

(4.2) (2) Σ <JFirκF2> = l i m - A — (( ± τtFλ( ± τkF2)\

(4.3) (3) jt_ (F^F,} > 0

Proo/. ( 1 ) Since F1(σ) = Ft(σ-a, • • •, σ j 6 ^"2>[_„,„], we have

n, • • -,σa+n)}\Σ
la

Σ
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(4.5) R(ή) = (2n + I)"1

However, since Fu F2e^r

2>ί.β>βl with some βeZ\

= 0 for k > 2/3. Therefore

= {F^τkF2y =

\R(n)\ <
2n +

Taking the limit τι -^ oo in (4.4), we prove (4.2).

(3) is consequence of (4.2). •

Lemma 4.1 enables us to define the Hubert space Jf:

DEFINITION. For Fl9 F2 e J s , i0C) set

(4.6) <F,|F2> = Σ «F1τnF2} - <F1><ίi» .
n= — oo

We define the Hubert space Jf as the completion of i^ioe with inner

product <• I •> modulo {F: (F\F} = 0}. We shall denote the norm cor-

responding to <• I •> by H IU

Finally, we discuss the relationship between the convergences in two

spaces L\RZ, μλ) and Jf.

LEMMA 4.2. Suppose Fn e ^r

2,ί-n,n^ satisfies

(4.7) Hmn(F2

ny = 0.

7i->oo

Then

(4.8) l im<F.|F n > = 0.

Proof. The conclusion follows since Lemma 4.1 (1) implies

D

n - <Fn})τk(Fn - <FTO»

< (4ι» + l)((Fn - <FB»2> < (4Λ

LEMMA 4.3. Suppose Fu F^e^f satisfy <Fj> = <F2> = 0 and

(4.9) <F I F2> = Km - ^ — - ( ( Σ uF)( ± τtFt)) .

Proof. This is a consequence of (4.4) and (4.5). •
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LEMMA 4.4. Let FeL\Rz,μx) and assume there exists

satisfying <FTO) = 0, n = 1, 2, , and δ > 2

(4.10) <(Fn - F)2> < Cn~δ

with C independent of n. Then

(4.11) \<FτkF)\ < C'(l + l^l) 1^ 2, A e Z

where C is independent of k. Moreover if <5 > 4, F = lim^*, FTO m

therefore

Proof. Let ̂  = F t and Gn = F n - 2 ^ , n = 2, 3, . Then by (4.10)

F = Σn-i ̂ w in L2(RZ, μx) and there exists a constant d > 0 such that

(4.12) <G£>1/2 < C^- δ / 2 .

Note that m + n < \k\ implies <GnτfeGm> = <Gn><rfcGm> = 0. We can there-

fore compute by Schwarz inequality and (4.12)

l<Fr,F>|<ΣΣ|<GΛGm>|<C? Σ m-^n'"*
< σa + \k\γ-!/2

where C is independent of k. Thus (4.11) is established and we also have

(4.13) Σ Σ |<GBτRGro>| < C ( l +

Finally, by (4.12) and (4.13) we have

Σ Σ Σ l<GΛGra>|+ Σ
N'l N l

II x N •*•' \x 2^ JLΛ LΛ LΛ \\^n<>k^m/\ ^ L-i

( 4 Λ 4 ) ,*,^.-jr+^-,+i
< C?2iV( Σ n-d/2) + C Σ (1 + l&l)1^2

\n=N + l " " '

If 3 > 4, then l i m ^ JVΣΓ-i^i/r'* = 0 and L f c e z ( l + l^l)1-^2 < oo. Con-

sequently, the r.h.s. of (4.14) tends to 0 as iV->oo. Therefore lim^-^F^ = F

in jf and FeJf. D

§ 5. Semigroup and its generator in Jf

In this section we shall discuss properties of the semigroup Tt and

its generator L, which will be defined in ffl. We define a class of nice

functions, which will be the core for L:

(5.1) ^o Ξ {F(σ) = F((7_w? •• , θ € # ' ϊ i c - » . W 3
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LEMMA 5.1. S o is dense in Jf.

Proof. Since ^ 0 is dense in Ώ = L2(RZ, μλ), we have

(5.2) ^ o n ^ 2 ( [ _ m , m ]

L 2 = ̂ l f [ . m ι m ] , for each meN.

By Lemma 4.1(1)

(F\F) < (4m + 1)<F2> , for

Hence, (5.2) implies that

Thus

Therefore, 2ft

U (^oί

meJV

^ 2 , l o c

in

ij 2, [ m, m] j

mθiV

for each m e N.

^2,[-m,m] = U ^ 2
meiV

, G

Now we discuss the properties of Tt and L. First, we show that the

function TtF with Fe@0 is in jf. To this end, consider the following

local SDE's on [— n,n]: For each neN,

(5.3)

dS(t, -ή) = {£/'(£(*, - Λ + 1)) -

+ V~2(dβ(t, -n + 1) - dj8(ί, - Λ ) ) ,

, A) = ΔxU
f(S(t, k))dt + VΎF.dβit, k\ k = - τι + 1, , n - 1,

, n) = {U'(S(t, - n ) ) - 2C7/(S(ί, n)) + £/'(S(ί, τi - 1)}Λ

+ S2(dβ(t9-n)-dβ(t,n)),

where Δxa* = αfc+1 — 2αfc + α*-i and Vxak = αfc+1 — αfc, for sequence {ak}.

The generator of the process determined by the SDE (5.3) is denoted by

Ln with domain @(Ln) and the corresponding semigroup by Tttΐl = eLnt.

Then

(5.4) Ln = t (r^—)2 - t WifldV*
i = -n\ OGί' i = -n O(Ji

where dldσn+ί = 3/3(/_n, and σn+ί = σ_n. Note that μf\dσ^-n * dσn) =

Π*—n^a(^*)d(7fc, λeR, are the reversible measures of the SDE (5.3).

LEMMA 5.2. Let Fe@Q satisfy (F) = 0. Then, for every t0 > 0 and

δ > 0, ί/iβre exisίs α constant C such that

(5.5) \(FτkTtF)\<C(l + \ k \ ) - s , forkeZ, ί e [ O , ί J .
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Moreover, Tt,nF-+TtF is 2tf as n -> oo and especially Tt

Proof. Let S(t, σ) = {S(t, k, σ)}kez be the solution of (1.1) with initial

value σ = {σk}kez and Sw(t, σ) = {S(w>(*, A, σ)}Jβ.n the solution of (5.3) with

initial value {#*}]?=_n. Since Fe@0 has a form F(σ) = F(σ-a9 , σα), with

some aeN, we see for τi > α

<»>(ί, σ))] -

where CF =F
ί = — a

< C,p sup £[|S ( w )(ί, A, s) - S(t, k, σ)\]

. Now we set

Im(t) = sup E[\S^(t, k, a) - S(t, k, σ)f] .
&G[-α-ra,α + m]

Then for every m: 0 <m<n — a — 2 and tm: 0 < tm < t,

UO = sup E\\ Γ{AU'(SW(tm+u k, σ))
fe[ ] LIJO

Consequenly,

Ut) < (16(α + Aft)-"1 Γ Λ, Γ Λ,. Γ""""' Λ,.^,/,...^
Jo Jo Jo

Noting that

<I.-«-ι(s)> < f d/ii Σ 2E[S^(s, k, σf + S( 5 j k, σf]

= 4M2(λ)(2n - 1) ,

where M2(λ) = x?Qχ(x) dx, we have
JΛ

—Hn—x&n - a - 1)!

This implies that there exists a constant CΊ such that

<(ΓίfTCF - TtF)2} < Cin-
δ, for each δeZ\

Lemma 4.4 gives an estimate on (TtFτkTtF} and therefore on (FτkTtF)

by replacing t by ί/2. This completes the proof. •
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Since (5.5) verifies that Σiΐ—~k\(TtFτhTtFy\<oo for F e S 0 , by

Lemma 4.3, we obtain the following form of (TtF\TtF):

(5.6) (TtF\ TtF) = lim -^—(( Σ

PROPOSITION 5.3. Tt can be extended uniquely to a strongly continuous

self-adjoint contraction semigroup on £P.

Proof. By (5.6), for each t > 0 and Fe@0 satisfying <F> = 0,

n + 1 IU

Thus IIΓ.FIU ;< HJPIÎ  for all F e ^ 0 , We can therefore extend Tt from

to ^ in such a manner that

(5.7) || TtF\\, < || F|U for all F e ^ .

It is easy to check that for F, G e ^ 0 ,

(5.8) <F\TtG) = (TtF\G} .

This implies the symmetry of Tt with the help of (5.7).

Finally we show the strong continuity of Tt, i.e.

(5.9) || TtF - F|U -> 0 , a s ί - > 0 , foral

In fact, it is enough to show that (5.9) holds for F e S 2 ; use (5.7) noting

that ^o is dense in tf. We see from (5.5) that for each F e @0,

\{(TtF - F)τkF}\ < \{TtFτkF\ + \(FτkF}\

keZ,

and the r.h.s. is summable in k. Moreover, we know that {(TtF — F)τkF}

~> 0 as t -> 0 by the fact Tt is ZΛstrongly continuous. Thus Lebesgue's

dominated convergence theorem proves

< ( 2 V F - F ) | F > = £ <(TtF-F)τkF)->0, a s ί - > 0 .

Consequently, we obtain (5.9) for F e ^ 0 by noting

= (T2tF\F) - 2(TtF\F) + <F|F> . D

Let L be the generator of Tt in £?. Its domain is denoted by

We shall see that L has the same form on ^ 0 as the generator of Tt in ZΛ
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LEMMA 5.4. We have S o c @{L) and, for every F(σ) = F(σ~a, , σa) e @Q,

(5.10) (LF)(σ) = - Σ e*'<'*>^{e-*W-^- - 2 - ^ - - ^

Proof, Let 1/ be the generator of T; in L2. We know S o is in the

domain of V and on So, £ ' is given by (5.10). Thus UFe^2>l0C c Jf for

F e So, and || T.L'F - L'F\\, -> 0 as ί -• 0. Moreover,

TtF-F= Γ cfeΓf L
7!?1, μλ - a.e.

Jo

Therefore

II — (TtF - F) - L'F\\ = I — Γ ds(TsL'F - VF)
II ί 11^ II ί Jo ^

< — [* ds\\TsUF - L'F\\*-*0 as ί-»0.
ί Jo

This means that LF = ΊJF. D

We shall see that S o is a domain of essential self-adjointness for L

in the following weak sense:

PROPOSITION 5.5. Let Fe@(L). Then there exist Fne@0 such that

(5.11) lim Fn = F in tf
n-*oo

and

(5.12)

The first task for the proof of this proposition is to derive the following

estimates.

L E M M A 5.6. Let F = F(σ.a, , σa) e3f^ Then for n>a

e?«+Λ>' ίf\l\<oc,
(5.13)

where CF =

'"" - α ) ! if a<\l\<n

Proo/. For every e > 0 and a = {(7fc} 6 LJ, set σ(/, ε) = {σk + δklε} and

[-n,n] = ί^-n, ' * ', (?n}> Then
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(5.14) (t, σ))] \

CP sup E[\S™(t,k,σ(l,ε))-S™(t,k,σ))\]

where S ( n ) is defined as in the proof of Lemma 5.2. To get further esti-

mates on the r.h.s. of (5.14), set

(5.15)
Ut)= sup E[\S«>(t,k,σ(l,ε))-S™(t,k,σ))\]

for m = 0, 1, , 7i

We have, from the SDE (5.3), for m = 0, 1, , n - a - 1

JUO = sup E\ 13we + Γ {4I7'(S<">(8, A, σ(/, β)))
*e[-β-m,o + m] LI JO

rt

4(α + A) dsJe

m+1(s) , if |/| > a + m ,
JO

ct
ε + 4(a + A) I dsJε

m+ι(s), if I/I < a + m .
Jo

For m = n — a, similarly, we have

(5.17) J;_β(ί) < ε + 4(α + A) Γ dsJ°n_a(s).
Jo

This implies with the help of GronwalΓs lemma

(5.18) J;_β(ί) < εe4(α+4) ί .

Therefore, combining (5.14), (5.16) and (5.18), we can easily show that the

l.h.s. of (5.14) divided by ε is bounded by the r.h.s. of (5.13) for every I;

\l\<n. D

Proof of Proposition 5.5. Since the space (J«;>o Tt2* is a core for L

(see Reed and Simon [6], II. Th. X. 49), the proof is completed if for every

F = F(σ-a, - - -,σa) e @Q and t > 0, we can find functions Fn e @Q such that

lim Fn = TtF in

and

Take Fn = JΓ,>71JP. Then, although r t f f t F may not be in @Q, there exist
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functions Gme@0 such that Gm^Tt>nF and LGm->LTtnF as m->oo in

L\R2a+\μ^a)) and therefore in tf\ remind Lemma 4.1(1). Thus, it is suffi-

cient to show that

lim(Tt,nF\LTt>nF) = (TtF\LTtF) ,
n—><χ>

since Lemma 5.3 proves Tt,nF^ TtF in tf. Noting that LπF = LF for n

large enough, we have

\{Tt,nF\LTt,nFy - (TtF\LTtF}\ < \(Tt,nF\LTt,nF - LnThnF}\

+ \\Tt,nLnF\\A\Tt,nF - TtF\\x+ \\TtF\\A\Tt,nLF - TtLF\\*.

Here, the second and third terms tend to 0 as n —> oo by Lemma 5.2.

For the first term, noting the facts:

(5.19)

(5.20)

d GΣ
kez

JceZ i = -n

1, i~

we can use Lemma 5.6 to obtain

\(Tt,nF\LTt,nF-LnTt,nF)\
2ψ/τ

 dTt,nF dTt,nF

k=i \ dσn+ι-k dσn

3Tt,nF dTtιnF

dTt,nF

- Σ KU
k = -2n-l

dTt,nF

dTUnF dTt,nF

dσ.n.k dσn

dTt,nF dTt>nF

2n

k = 0

dTtinF

t
k=-2n-l

dTt,nF ))cFe
8(a+A)t (4(α + A)t)n-a

' I (n — ά)l

< 8eί(Ka+A)t(a - — + eHa+Λ)t) (4(α + A)t)n~a.
\ 2 / (n — a)!

This tends to 0 as D

We conclude this paragraph by showing the following lemma which

will be used in Section 6.

LEMMA 5.7. Let F, eS(L) and F2e^QΠ@(Ln). Then



EQUILIBRIUM FLUCTUATIONS FOR GINZBURG-LANDAU LATTICE MODEL 79

where C(n) = 2(2n + ϊ)(4n2 + 2n + 1).

Proof. First, assume that F1 e ^ 0 with <F,> = 0. Notice (5.19) and

use the fact that for a sequence

n

2-J a i = = 2_i 2-1 a i + (2n + l)m >
lez ι = -n mez

if at = 0 for all leZ but finite Z's. Then some tedious but straight-

forward calculations prove that

(5.21) Σ
2n + 1 ^^z ι t

By (5.20) and (5.21) we have for

V

da*

< 2 Σ Σ Σ
keZ IGZ i**-n

< 2(2/z + l)(4n2 + 2n

where Fί is defined by (P?G)(i) = FiG(i), - n < ί < n - 1 and (VΐG)(ri)

= G(— ή) — G(n). Consequently, the desired inequality is verified for

Fjβ^o and F2 e ^0Π^(LTO). However, this concludes the proof with the

help of Proposition 5.5. •

§ 6. Invariant subspace

In this section, we show the ergodicity of Tt in Jf\ Denote by P^f

the subspace of #? invariant under {Tt}. Then the spectral theorem

implies that

(6.1) lim TtF=Ge
ί —»oo
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exists for every F e 3tif. What we prove is that P^f is one-dimensional

subspace of JF. Let us denote the conditional expectation under μψ> of

2)i.n,nl, neZ+ on the hyperplane {σ|l/(2n + l )Σϊ—»** = y) bY

(6.2) i — ± σk=y), yeR,
+ 1 *=-w /2n

and

(6-3) (ΓnF)(σ) = . _ , ,

Note that i4n) is determined independently of λ.

First, we show the following property of

PROPOSITION 6.1. Let GePJP. Then for every Fe@QΓ\^2,[-«,m

(6.4)

Proo/. Proposition 5.3 verifies Ge@(L) and LG = s-lim — (TtG - G)
t-o ί

= 0 in Jf. Moreover by Lemma 5.7

(6.5) <G I LnFγ < C(n) <G | LG> (FLnF) for F e % Π

and therefore

(6.6) <G I LnF> = 0 for each F e

For every Fe^oΠ^.c-n.n], noting TttnFe@(Ln) for Z>0, we choose
Fne@on®(Ln) such that Fm->Ttt7lF and LnFm-+LnTt,nF as m -> oo in

Π(R2n+ί, μψ*). This is actually possible because ^ 0 Π ^ ( L n ) is a core for

Ln in L2(/?2w+1,^n)). However, Lemma 4.1(1) proves that Fm-+Tt>nF and

LnFm->LnTt}7lF as m->oo also in f̂7. Hence, from (6.6), we have

(6.7) (G\LnTt>nFy = 0 for each t > 0 and Fe @Q.

Lemma 4.1(1) verifies also that TttnF is strongly differentiate in J4? as

well as in U(R2n+\ μ™) and (djdt)Tt,nF = LnTt,nF. We therefore have

(6.8) — <G I Γίf nF> = 0 for each t > 0 and F e S o .

This implies

(6.9) <G I Γίf nF> = <G I F> for each t > 0 .

Since the diffusion process with generator Ln is ergodic on every hyper-

plane {σ\ll(2n + l)Σ2β-»ff* = }̂» w e
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(6.10) limTt,nF=ΓnF

strongly in L2(R2n+ί, μψ*). Lemma 4.1(1) again implies that (6.10) holds in

3tf. Letting t -> oo in (6.9) establishes the conclusion. •

For ge CQ{R) such that g(x)dx = 1, we define

(6.11) Ft(g)(σ) = I (σM - p'(λ))g(x)dx .

Remark. ( 1 ) The definition of FQ(g) is independent of the choice of

g, i.e. for gu g2 e C?(R) such that j gt(x)dx = ̂  g2(x)dx = 1, F0(g1) = F0(£2)

in f̂.

(2) Particularly, we can take g = l/(2n + l)Xc-n,n] in (6.11), although

this ^ is not in C^(R). We therefore have

(6.12) Fo(£) = 1 Σ (σfc - ^(ί)) in ^
2n + 1 *=-»

for each τ ι e Z + and ̂ e C"(lf) satisfying ^(x)dx = 1.

The purpose of this section is to show the following.

PROPOSITION 6.2. Let GeP^f. Then

(6.13) G = ff\λy\G\Ft(g)yFt{g).

Proof. For every F e S o ί Ί i S , [-«,*], we have by Proposition 6.1

(G\ΓnF) = <G|F>

and, therefore, by (6.12) and Lemma 6.3 which will be stated later

i — ± o k - A*)))+ 1 *—» //

Here we remind the notat ion: [ ]λ = Eμχ[-]. It is, however, easy to check

t h a t

(6.15) A-<F}λ = (F\F0(g)} for every
aλ

Combining (6.14) nad (6.15), we obtain
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<G|F> = P"(λ)-\F\Fΰ(g))(G\Fΰ(g)y .

Consequently,

(G - 9

f\λY\G[F0(g))F0(g)IF) = 0 for all

Since ^ 0 is dense in Jf, we have the conclusion. •

We have used the following lemma for the proof of Proposition 6.2.

LEMMA 6.3. Let F e ®0. Then

(6.16) lim I! ΓnF - P"(λ)-^ <F> a (—A— ± σk - p'(λ))\ =* 0 .
ii dλ \2n + 1 k )\\

Proof. By Lemma 4.2, it is sufficient to show that

(6.17) lim n{Un) + I2(n)} = 0 ,

where

Un) = 2((ΓnF -

Uri) = 2 ( ( < W S

- p'XXr^-iFyJ-J-^- to,- p'(X)jΐ) •
dλ \2n + 1 *—» // /

It will be shown later in Lemmas 6.4 and 6.6 that both n I^ή) and n I2{ή)

tend to zero as n->κ>, •

LEMMA 6.4. Let FeS>0. Then

(6.18) lim n<(ΓnF - (F\,anin+1) Σ»_^,)2> = 0 .

In order to prove this lemma, we use the following local central

limit theorem:

LEMMA 6.5. For η e R, let {Xn} be a sequence of R-valved independent

random variables with the same distribution qv(x + pXη))dx. Let fn(x,r]) be

the density function of l/^ΊιΣlk=iX^ Then, for λeR, there exists εQ > 0

such that

(6.19) fn(x, η) - (2πp"(η))-^ expf - — £ — 1 + rx{x, η)n~^ + o(n^)

uniformly in x e R and η e[λ — ε0, λ + e0], where



EQUILIBRIUM FLUCTUATIONS FOR GINZBURG-LANDAU LATTICE MODEL 83

(6.20) rfa η) = 6'K^)'^ι/Xη)'^MfyX^ - 3p"(V)x)exp[- γ*(

(6.21) Mlη) = J x3g,(x

Proo/. The proof is essentially given in Petrov [5]. The only different

point is that, in our case, we need to check the uniformity in η. But,

since p and h are smooth functions, one can do it easily. •

We notice the following fact:

(6.22) ((ΊA-T Σ °* - P'

wichh can be established by a direct computation and will be useful for

the proofs of Lemmas 6.4 and 6.6.

Proof of Lemma 6.4. We assume that F = F(σ.a, , σa).

Step 1. We compute for n > a + 1

z. n,,_!

2n + 1 *—n

= Z(τz, j ) " 1 ί dσ-n- - dσn-ΛF(σ-a, , σa)-

(6.23) X exp Ψ((2n + ϊ)y, y,

= Z ( n , y y W i h ' i y ) ) - " - 1 f <fc- daJF{σ.n •• ,σa)

X e x p \ h \ y ) Σ, σk - Σ, U(σk)\ In,y(σ-a, --,σa)

= Z(n,y)-\FIn,υ}h.iv)

w h e r e

, y, oA) = xh'(y) - Σ [7(σft) - U(x - Σ α
JcGAΠZ JC6AΠZ

for x,3̂  e R and ( y ^ ^ kAflZ}, and

(6.24) Z(n,y) = ί dσ.n- -d^^exp ^((2Λ + ΐ)y,y, σc

I . , , = Λί(Λ'(y))2°+1 f dσ.,. dσ.._,<foβ+1 -
(6.25)
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Let fn(x> X) be the function defined in Lemma 6.5 and put η = h\y). Then

it is easy to see by a simple computation

(6.26) fn(x, η) = ^M(v)-nZ(n, jlϊx + np\η)) exp [ηWnx + p'(η)]

where

(6.27) Z(n, y) = f d* Λ/n-! expΓ- Σ U(σk) - uίy - Σ σλ] .

This implies

(6.28) Z(n, JΊΓx + ny) = V"»Λf(9)"β-' t V i +"»>Λ(x, 9)

Consequently, by (6.24), (6.27) and (6.28)

Z(M, y) = e' ( 2 B +

= (2M + D-^MW+VtUO, V),

and by (6.25), (6.27) and (6.28)

In,υ=M(Vy
+1Z(2(n-a),(2n+ϊ)y- ± <r»)exp[?((2n+l)y- Σ

(6-30)

τz—αr)

Take ε0 as in Lemma 6.5. Then, by the continuity of y —> ̂  = /ι7(y), there

exists ô > 0 such t h a t

for every y: \y — ρ\X)\ < δ0. We set

y.,. ( y

V 2(n — a) \ 2a
By (6.29) - (6.31) and Lemma 6.5, we have

2(n — a)
( 6 * 3 2 ) = (1

uniformly in (<;_α, , σa) e i?2 α + 1 and ye [p'(λ) - δ0, p'(X) + δ0], where we

denote

(6.33) Jn,v = expf- - 4 f v l "
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Since ρ"{rj)U2 is bounded on [λ — e0, λ + e0],

(6.34) ρ"(y)ί/2o(n-ί/2)

Combining (6.32) and (6.34),

Consequently,

(6.35) {(Z^yY^y - iyyh<{y)

By (6.20) and (6.31), we have

l,» - Zp"{η)yn, JexpΓ- Ί ϊ % τ l ( 2 ( n - «
V. Δp (ϊ])i

.5err .5.
(τι — (x) I 2α + 1 fc=~α J / L 2^(^) JJ

with some θ e (0, ylj2p"(ή)). Set

^ = (y - - ^ Γ T Σ ^Vίi + (y - - ^ — Σ *»)'}
\ 2α + 1 Λ=-« / t \ 2α + 1 *—« / J

Then
(6.36) ^

However it is easy to see that y -> (βvyh'{V) is continuous and therefore

( 6 3 7 ) (Jly>*>(v) < <Jv>viiMn-1) = o(n~ι)

uniformly in y e [p'(λ) — δQ, p\X) + ^0]

Combining (6.35) and (6.37), we have

(6 3#
uniformly in y e [p'(λ) — δ0, ρ'(λ) + δQ] .

Step 2. Set

(6.39) An =

By (6.23) and (6.38)

2n + 1 «~n
Σ ** - AD>
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<(rnF-

( 6 < 4 0 ) < \\F\\i(((Zn, yY'In,v -

= o(n~ι) as ra—• oo

On the other hand, by (6.22)

(6.41)

< 4\\F\\iμx(An)

\4\
) as n—* oo

The combination of (6.40) and (6.41) proves the conclusion.

LEMMA 6.6. Let F e 0O. Then

(6.42)

Proof. Set

(6.43) Jn{y) =

= o.

αx

Then, the conclusion follows if we show that

(6.44) (jj λ ± σX) = o(n->) a s ^ o o ,
\ V 2n + 1 *—n / /

Let An be the set defined by (6.39). Then, we have by (6.15) and (6.22)

\ \ 2n + 1 *=-» / /

(6.45) ^

= o

Noting that

we have

(6.46) (y -
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with some θ e (ρ'(λ) Λ y, p\λ) V y). Notice that \y — ρ\λ)\ < δQ implies

|^ — ^(^)| < ô. Since the function y->(F)h,(y) belongs to C\R), there

exists C > 0 such that

(6.47) d* < C for y e [p'(λ) - δ0, P'(X) + δ0].
df

By combining (6.46) with (6.47), and using (6.22), we obtain

(6.48) \ \2n + 1 *=-« / / 2

This establishes (6.44) with the help of (6.45). •

§ 7. Tightness of {Pε: 0 < ε < 1}

The Boltzmann-Gibbs principle has been established by combining

the results of Sections 4, 5 and 6. In order to show the tightness of

{Pε: 0 < ε < 1} being defined in Section 2, we first derive the following

estimate. The duality between two spaces ir

r and Sr will be simply de-

noted by (,).

LEMMA 7.1. For feir and F e V(R,qλ(x)dx) satisfying \ F(x)qλ(x)dx
JR

= 0, there exists a constant C = C(F, /) > 0 such that

(7.1) <(F(σc,/i3), D]f(x)γ\ < Cε\ 4 = 0,1,2

where D°εf = /, D]f(x) = Γ*/(JC) = e " 1 ^ - ε) - f(x)) and Ό\f= Jε/.

Proo/. Set g = D^/, Λ = 0, 1, 2. Noting that <F(σ,)> = 0 for i e Z,

we have

/ / oo / β(i + l) \4'

<(^c,/. ]), ^(^))4>. = ( ( . Σ ^ . ) . g(*) dx)

(7.2) ) J^ g{x)dx)

Since / e # r implies supo<.^1>* ||iDJ/IU = C r < oo, (7.2) proves the conclusion

with C = 7C}||F|H,(ί l). D

PROPOSITION 7.2. {Ps: 0 < s < 1} is tight on &.
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Proof. Since $r is a nuclear Frechet space, by the theorem in [4],

{Pε: 0 < ε < 1} is tight on <€ if the family of distribution on C([0, oo); R)

of V\(f) = ί Vε(t, x)f(x)dx: 0 < ε < 1, is tight for each fegr. However,

Lemma 7.1 implies E[Vε

Q(fY] < C for ε e(0,1] with some C> 0. Therefore,

noting the stationarity of Vε

t(f), it is sufficient for us to show that there

exists constant M > 0 such that

(7.3) E[(Vl(f) - Vl(f)Y\ < Ml?" , forte [0,1].

Set I(t) = E[(Sl(f) - S'0(f))% where Sj(/) = Js.(ί, »)/(x)dx. Then, by

Itό's formula and Holder's inequality

7(0 = 4 Γ dsEKSKf) - Si(f)Y(U'(SA8, x)), Δtf)}
Jo

(7.4) + 12 Γ ds Σ (Γ(*+ υ Fΐf(x)dxΫE[(S's(f) - S'0(f)f]
JO Λ = -oo\Jeλ; /

< 4 Γ ds/(s)3/4/I(s)1/4 + 12e Γ ds i| Ff/||27(s)1

Jo Jo

where

7,(β) = E[(U'(Se(s, x)), ΔtfY\ =

Notice that

1(8) < W(S .(f) - pW] + 8E[(Si(f) - p'i

) 1 / 2

Since ί (U'(x) — λ)qι(x)dx = 0 and ί (x — p'(λ))q1(x)dx = 0, by Lemma 7.1,

there exist Co and d > 0 independent of e such that

(7.5) 1(8) fζ <V ,

and

(7.6) Us) <ClS\ for 0 < s < 1.

Moreover, from the proof of Lemma 7.1, we know that

(7.7) \\FTf\\<Cf, forθ<β£l.

From (7.4) ~ (7.7), we have

(7.8) I(t) ^ C'ti

where C = \Cψ Cψ + VλCψ C% Therefore, combining (7.4) and (7.6) ~
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(7.8), we have

(7.9) I(ί) < Cε\t1+zμ + ί1+1/2) , for t > 0 ,

where C = lCn"Cψ + lSCn/2C2

f. The desired estimate (7.3) follows from

(7.9). D

§ 8. Proof of main theorem

We are ready to give the Proof of Theorem 2.2. By Proposition 7.2,

from every subsequence {ε'—•()} of {ε}, we can find further subsequence

{ε" -> 0} such that P&>, converges weakly to a certain probability distri-

bution P on ^. Define σ-fields Jίt and Jl on ^ as follows:

),/): 0<s<t, feSr, Ve<#),

Here V(s) e $'r is the evaluation of V at time s. For each / e Sr and

t > 0, consider a function Mε(t, f) on <$:

(8.1) r(

- (β-1/2( ί/'(e1/2 V(β, x) + p'{λ)), ΔJ{x)) dx,
JO

Then, from (3.1), we have

Ms(t,f)(Vε) = V T f ΓfAxJda .ίί.x)

= V2ε Σ Fΐf(x)dxβ(tlε\k).

This means M5(t,f) is the Brownian motion with variance

- Σ ( Fff(x)dx)

defined on the probability space (#, u?, P ε). Consequently,

M.(ί,/) and Me(t,ff-^ Σ

are (Pe, ̂ ^-martingales. Therefore,

(7.3) £"[(M.(ί,/) - M.(β, /))Φ(V)] = 0,

for 0 < s < £ and each .^-measurable bounded and continuous function

Φ: &-+R. Let us denote
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7,(e) = £"[{(V(ί),/) - (V(s),f) -

7,<e) = £»•[[[>(*)-"«< V(M), Δf-

7,(β) = £ " [ [ £ (ε-"2[7'(£

1/2^(w, at) +

- p"^)- 1 V(α, x), J .

Then

(8.4) E""[(MAt, f) - MAs, f))Φ(V)] = W) + Uε") + 7,(β").

Now take the limit ε" —>0 in (8.4). For /1? since pε"->p weakly on

we have

(8.5) J^'O -> £*[(M(ί, /) - M(8, f))Φ(V)]

where M(t,f) = M(ί,/)(V) = (F(ί),/) - (V(0),/) - Z^)" 1 Γ (V(u), Δf)du.
Jo

For I2, it is easy to check that

t - s) J | x - pf(λ)\qx(x)dxε-^\\Δf(x) - ΔJ(x)\dx.

However, since fe&ri ε~1/2 ί \Δf(x) - Δεf(x)\dx -> 0 as ε -> 0. Thus

(8.6)

For I3, we have by Proposition 3.1

(8.7) I,(e)->0.

Combining (8.4) — (8.7) with (8.3), we have

E'[(M(t,f)-M(8,f))Φ(V)] = 0.

Hence, M(t, f) is a (P, ̂ J-martingale. And by the similar method, we

can show that M(t,f)2 — 2\\Ff\\H is a (P, ̂ ^-martingale, too. These imply

that M(t,f) is Brownian motion with variance 2||f7/||2 for each fe£r.

For any (au , an) e Rm, m € N, t0 = 0 < ^ < < tm, fl9 , fm e £„
a simple computation gives that

m m

Σ akM(tk, fk) - Σ {M(tt, σ»/»+ +α m / m ) - iW(ίt-,, «*/,+ +amfm)}.
fe=l fc=l

Noting that the r.h.s. is a sum of independent Gaussian random variables,

we know that the linear combination 2?=i anM{tk, fk) has a Gaussian
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distribution with respect to P. Therefore, {M(t9 f)}t^Oife,r is a Gaussian

system and one can check that its mean is zero and covariance is

(8.8) E*[M(t, f)M(s, g)] = 2(F/, Vg)t A s, for t, s > 0 and /, g e Sr.

On the other hand, it is easy to see (cf. [11]) that V(0) is an δ'r-

valued Gaussian random variable under P with mean zero and covariance

(8.9) £'[( V(0), f) (V(0), g)] = f/'(λ)(f, g), f,ge£r.

For Vetf, define Vetf such that

(VW) = (V(0), e'"/) + M(t,f)(V)

+ θ Γ M(s, e)(ί-'#M/)(V)cfe , / e ί r

Jo

where β = /o"^)-1. Then, from (8.8) and (8.9), {(Vt,/)} 0̂,/e/r i s a Gaussian

system with mean zero and covariance

(8.10) E*[(V(t), f)(V(s), g)] = p"(X)(f, ew"M-1Ag) .

However, V = V, P-a.s from Lemma 8.1 below and therefore P is inde-

pendent of the selection of {ε'}. This means that Pε itself converges to

P weakly. Since the distribution of the solution of (2.11) coincides with

P, we have shown the conclusion of Theorem 2.2.

Finally, we prove the lemma used above.

LEMMA 8.1. P(V = V) = 1.

Proof. First we check that V satisfies

(V(t),f) = (V(0),f) + (/'(λ)-* Γ (V(u), Δf)du + M(t,f)(V).
Jo

This equality also holds for V(t) instead of V(t). To conclude the proof,

it is sufficient to show that

(8.11) E*[\(V(t), f) - (V(t), f)\] = 0 , for all t > 0 and fe A ,

where A is a dense subset of gr. Set V(t) = V(t) - V(t). Then V satisfies

the following equation with probability one:

(V(t), f) = p"{λ)-* Γ ds(V(s), Δf), for t > 0, fe βr.
Jo

However, V(t) is stationary under P and also V(t); see (8.10). We there-

fore have from (8.9)
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E»[\(V(t),f)\] <: P'V)-1 Γ rfS
Jo

< JΎP"(i)- f Λ, Γ eft,- Γ"" dί,
JO JO Jo

1/2

< V~2pf/(λ)-n^Ψ\\Δnf\\LHR)ln\ .

We take A to be the linear hull of {hme~rξ{x); m eN}, where hm(x) =

(2mmWΊϊ)-1/2e-χ2/Ήm(x), and tfm(x), m = 0, 1, 2, are the Hermite poly-

nomials. One can check that Cn\\ Δnhm\fln\ = o(l) as 72->oo for all m e TV

with some constant C. This implies (8.11). •
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