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ON THE EXISTENCE OF OPTIMAL CONTROL FOR
CONTROLLED STOCHASTIC PARTIAL

DIFFERENTIAL EQUATIONS

NORIAKI NAGASE

§ 1. Introduction

In this paper we are concerned with stochastic control problems of
the following kind. Let Y(t) be a d'-dimensional Brownian motion defined
on a probability space (β, ̂ ", JFt, P) and u(t) an admissible control. We
consider the Cauchy problem of stochastic partial differential equations
(SPDE in short)

(1.1)

dp(t, x) = L(Y(t), u(f))p(tf x)dt + M(Y(t))p(t, x)dY(t)

xeRd, t > 0

p(0, x) = φ(x)

where L(y, u) is the 2nd order elliptic differential operator and M(y) the
1st order differential operator.

By a solution p(t) = pu(t)9 we mean iϊ1(t)-valued J^-adapted process
which satisfies

(P(t), V) = (Φ, V) + ΐ <L(Y(s), u(s))p(s), vyds
Jo

(M(Y(s))p(8),v)dY(8), t>0
Jo

for any smooth η where < , •> is the pairing between H1 and Hι and
( , •) is L2(Rd) inner product (see [4], [7]).

The SPDE (1.1) is related to the filtering, stochastic control with
partial observation, population genetics etc. and investigated by Pardoux,
Krylov & Rozovskii and Rozovskii & Shimizu, etc.

The purpose of this paper is to prove the existence of optimal controls
for the following problem. Define a criterion J(u) by
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<t> Hι=Hι(Rd) denotes the Sobolev space Wι

2(Rd), 1=0, ±1,
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(1.2) J{u) = E[F(p«) + G(pu(T))]

where F and G are real valued functions on L2(0, T; L2(Rd)) and D(Rd)

respectively. Now we want to minimize J(u) by a suitable choice of an

admissible process u.

In Section 2 we will recall some known results in our convenient way

and formulate our problem precisely. In Section 3 we will prove that

the solution pu depends on u continuously which derives the existence

of optimal control [Theorem 3.2]. In Section 4 we apply our results to

stochastic control with partial observation, where an observation noise

may depend on a state noise.

The author wishes to thank Professor M. Nisio for her valuable sug-

gestion and encouragement and the referee for many helpful comments.

§ 2. Notation and preliminaries

We assume the following conditions (A.1)~(A.3).

(A.1) Jb: ΊRd X R d ' > Rd <g> R L

σ: Rd X R d ' > R d ® R d '

a: Rd X R d ' >R d ®R d

h: Rd x Rd' >Rd'

are bounded and continuous and a is symmetric.

(A.2) There exists δ > 0 such that

2a{x,y) - 3σ(:c,y)σ*(x,y) > δl for any (x,y)eRd X W

where σ* is the transposed matrix of σ.

(A.3) α( ,y), σ( ,y) are C^-class in x e R d ,

h( ,y), b(^y) are C^-class in x e R d ,

and their derivatives are bounded and continuous in (x,^)eRχRd',

where m = max {2, m} and m is a given nonnegative integer.

Let Γ be a convex and compact subset of RL.

DEFINITION 2.1. ^ = (Ω, &r

9 P, Y, u) is called an admissible system,

if (Ω, J^, P) is a probability space and u is a .Γ-valued measurable process

and Y is a cf-dimensional (J^^-Brownian motion on (Ω, ^, P), where
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2ί denotes the totality of admissible systems.
For s/e% π^ denotes the image measure of (Y, u) on C(0, T; R4') X

L\0,T;Γ).
Endowing the uniform topology on C(0, T; Rd') and the weak topology

on L2(0, T; Γ), we have

LEMMA 2.1. {π^ srf β 21} is compact under the Prokhorov metric. (See
Fleming & Pardoux [2] Lemma 2.3.)

Define L{y, u) e Se(E\ H% M\y) e se{H\ D(Rd)) (k - 1, . , d\ y e Rd\
ueΓ)hy

(2.1) <L(yyu)p,q)= - ± («,,(-, y)-|P-, J^L) + ± (b^9yf u)p,

(2.2) (M\y)p, η) = ~

for p, qeH1 and 9 6i2(Rd), where (., •) = the inner product in L2(R«),
<•,•) = the duality pairing between H1 and ff1 and

Σ

By (A.1)~(A.3), there exists a > 0 and JleR such that

(2.3) - 2<L(y, u)p,p} + λ\\p\\l > a\\p\\l + 3 Σ ||Λf*(y)p|β
k-Ί

for any peH\ ye~Rd, ueT

where || ||{ = the ff-norm (Z = 0, ± 1, •) (for the proof, see §2 of Krylov
& Rozovskii [4]).

(2.3) is called the coercivity condition.
For an admissible system s/=(Ω, &, P, Y, u), putting L ̂ (ί)=L(Y(t), u{t))

and M^(t) = M*(Y(t))9 we consider the Cauchy problem of SPDE on

(dp(t) = L*(t)p(t)dt + M"(t)p(t)dY(t)

(2.4) t>0

where M"(t) = (M"ι(t)9 , M"d'(t)).
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DEFINITION 2.2. By a solution of SPDE (2.4), we mean an £P-valued

J^-adapted process p(t) defined on (Ω, J*", P) such that

( 1 )

( 2 ) for any η e H1 and ί e [0, Γ]

(2.5) (p«), η) = (0, 9) + Γ <L"(β)p(β), 9>cfe + Γ (M'(8)p(8), η)dY(8)
JO JO

holds.

By the coercivity condition (2.3), we have the following proposition.

(See [5], [7].)

PROPOSITION 2.1. For each s/ e SI, the equation (2.4) Λαs α unique

solution p = p " which satisfies

(2.7) p e L2((0, Γ ) χ β ; # Λ + 1 ) Π i 2 ( β ; C(0, T; iϊ*))

end

IIPWIB = 11̂112 + 2 Γ (L«(s)p(s),p(s)}ds
(2.8) J°

+ 2 Γ (M"(8)p(8),p(8))dY(β) + Γ ||Λf"p(β)||Jcfe .
Jo Jo

TΛβ solution p = p* of the SPDE (2.4) is called the response for s/.

Remark 2.1. We can apply the results of Pardoux [7] also to the

triplet (V, H, V*), where V = Hι + \ H = Hι and V* = fl7"1 (/ = 0,1, , m).

Define L(y, u) e J?(Hι+\ Hlί), M(y) e J?(Hι+\ Hι) similarly to L(y, u), M(y),

where we replace <•, > and ( , •) by "<•, X = the duality pairing between

Hlί and Hι+1" and "( , >)t = the inner product in Hι" repsectively in

(2.1), (2.2). Then the coercivity condition holds. (In (2.3), || ||0 and Hid are

replaced by || ||t and || ||ι+i respectively.) Appealing to Krylov & Rozovskii

[4], the solution p of (2.4) turns out a unique solution of SPDE (2.9)

(dp(t) == L(Y(t), u(ί))p(t)dt + M(Y(t))p(t)dY(t)

(2.9) I t > 0

Moreover p(t) satisfies similar equality to (2.8). (i.e. " 0 " is replaced

by "Z".)

Let F: L2(0, T;f l m + 1 )->R and G : Hm-+R be weakly continuous

functions.
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For si e Sϊ, we define the pay-off function J{si) by

(2.10) J ( Λ O = E[F(p«) + G(p-(T))].

We want to minimize its value by a suitable choice of si e St.

§ 3. Existence of optimal control

First of all we will prove that the solution p^ of (2.4) depends on si

continuously.

THEOREM 3.1. If π^n) -> K* in law, then

(3.1) p " ( n ) >p* in law as L2(0, T; Hm+ι)-random variable

and

(3.2) p*{n>(T) >p*(T) in law as Hm-random variable,

where we endow the weak topologies on L2(0, T; Hm+ί) and Hm.

For the proof we need the following two lemmas.

LEMMA 3.1. There exists a constant K > 0 such that

(3.3)

(3.4) E{sup\\p*(t)\\ϊ\<K\\φtfι
o^t<τ

(3.5) E{^\

for any J / e Si. (Z = 0,1, , m).

According to [6] we introduce the spaces J^r(D) and Jfr(T, D) as

follows. Set ψ( , x) = the Fourier transformation in t of ψ( , x), \\-\\2ι D = the

ίΓ(D)-norm and || ||* = the norm of the dual space (Ή\D))*, where'*we

identify H^D) with its dual space.

jfr(D) = [ψ e U{~ oo, oo H\D))', | ^ |τΓllΨWHi dτ < oo}

where

[) JΨ(t)\\l,ndt

where
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HΨlLrr(r.D) = inϊ{\\φ\\^(D);φ(t) = ψ(t) a.e. on [0, T]}.

Remark 3.1. If D is a bounded and open subset of JRd with a smooth

boundary, then, by the compactness lemma ([6] p. 60) the imbedding:

jf 7(T, D) -> L2(0, Γ; H\D)) is compact.

LEMMA 3.2. Let 0 <ΐ < 1/4, £/ιen, /or eαc/i s/ e 21,

p * e jTr(T, D) a.s.

and Z/iere exists K > 0 swc/i

(3.6)

Proo/ o/ Lemma 3.1. (3.3) and (3.4) are easy variants of Corollary 2.2

of Krylov & Rozovskii [4]. Now we will show (3.5). Since the response

p is the solution of (2.9), using Itό's formula, we get

\\p(t)\\ί = WφWt + 4 Γ \\p(8)\\KUs)p(8)9p(8)yιd8
Jo

(3.7) + 2 Γ ||p(β)||ί||M(β)/>(8)||ίdβ + 4 Σ Γ (M*(β)p(s),p(β))ϊώ
J o &=i jo

+ 4 f ||p(ί)||ί(M(β)p(β),P(β)
Jo

where £(ί) = L(Y(t), u(t)) and M(ί) = M(Y(t)).
Hence, using the coercivity condition, we have

E[\\p(t)\\i] - \\φ\\i = 2E[£||p(β)||ί{2<L(β)p,p>t +

+ 4E\\t±(M(s)p,p)ids\
LJo*=o J

C3 8)

So the GronwalΓs inequality derives (3.5).

Proof of Lemma 3.2. For the convenience, we extend p(t) on ( — oo, oo)

in the following way

p(t)=p(t),te[O, T]

= 0, ie(-oo,oo)\[0,Γ|.

Since p(i) is a solution of (2.9), applying Itό's formula, we obtain
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2πiτ(p(τ), η\ = (φ, ηh - (p(T), τ?)2exp{-2πίrT}

( 3 9 ) f <Lp(τ), η\ + Γ exp{-2«rί}(M(ί)p, ηh dY(t)
JO

for any η e H\

Let {̂ fcjfĉ ! be an orthonormal basis in H\ Using (3.3), (3.4) and (3.9),

we have

(3.10) 4πVE[\\p(τ)m = 4πV Σ #{l(p"to, %)2|
2} < #, l l « + K2E[\\ίp(τ)\\ϊ]

fc l

Let 0 < ΐ < 1/4 and 0 < K < 3/2, then

Γ E{\τr\\p(τ)\\%}dτ < ί
J - - J [ri

( 3 Π )

This concludes the lemma.

Remark 3.2. (3.5) implies the uniform integrabίlity of

\\p"(t)\\ldt, ^ e S t .

Remark 3.3. We define the metric d on H = L2(0, Γ; Jϊm + 1(Rd)) by

d(p, ^) = Σ ^ - n i i n ί K e ^ p - q)\, 1} p, q e H

where (*, •) is the inner product on H and {efc}̂ =1 is the orthonormal

basis on H. Then Lemma 3.1 and Prokhorov's theorem imply that the

totality of image measure p* (<$/ e δί) is relatively compact as a set of

measures on the metric space (H, d).

On the other hand, on each bounded set of H the weak topology is

metrizable by the metric d. Therefore, for any weakly closed set F of

if, Ff) {q e H; \\q\\ < r} (r > 0) is closed with respect to the metric d.

Under this observation, {p^ j^eSί} is relatively compact as a set of

measures on H associated with the weak topology.

Proof of Theorem 3.1. Let Dk (k = 1, 2, •) be bounded and open

subsets of ~Rd with smooth boundary, Dk a Dk+i and (J?-i A; = R*

an admissible system J / = (Ω, .F, P, Y, w),
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μ* = the image measure of (Y, u,p^) on S,

μ-% — the image measure of (Y, u, p*) on Sk

where

S = C(0, Γ; W) X L2(0, Γ; Γ) X L2(0, Γ; # w + 1 ( R d ) ) ,

and

Sk = C(0, T7; Rd') X L2(0, Γ; Γ) X L2(0, Γ; iP(jDfc))

endowing the weak topology on L2(0, T; iim + 1(Rd)) and the strong topology

on L2(0, T; H\Dk)). By the compactness of {π^ ^ e S ί } and Remark 3.3,

ψ = {μ*; si eSί} is relatively compact. Moreover, by Lemma 3.2 and Re-

mark 3.1, $βfc = {μί\sί eSK) is relatively compact.

Hence there exist a subsequence {si^nf)}^, a probability μ on S and

a probability //fc on Sk (k = 1, 2, ) such that

(3.12) /^(w/) > μ in law as n' > oo

and

(3.13) μt{nΊ > μk in law as n' > oo .

By Skorohod's theorem, we can construct the Sfc-valued random

variables (Yn,9 un,,pn), (Y, u,p), n' = 1, 2, , on a probability space

(β, ^ , P) such that

(3.14) the law of (YH.9 un.,pn) = μfn\ ri = 1, 2, ,

(3.15) the law of (Y, n,p) = μh

and

(3.16) (Yn,, un.,pn) > (Y, M,p) almost surely (ri • oo)

as Sfc-valued random variables.

Now we will prove the following lemma.

LEMMA 3.3. Let ψ: [0, T ] - > R be an absolutely continuous function

with ψ'eL2(0,T) and ψ(Γ) = 0 and ηeCo(Rd) with suppO?) c Dk, then

(Y, u,p) of (3.16) satisfies

(Φ, )̂Ψ(O) + Γ Ψ'(t)(p(t), η)dt + Γ ψ(t)(L(Y(t), u(t))p, η}dt
(3i7) J ; J o
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Proof. Since pn, is the solution of the SPDE (2.4) for (Yn,, un), using

Itό's formula to (2.5), we get

(φ, η)ψ(0) + Γ ψ'(t)(Pn'{t), η)dt + Γ ψ(i)(L(Yn,(t), Un.(t))pn,, η)dt
(317)

+ Γ φ(t)(M(Yn,(t))pn>, η)dYn,{t) = 0 .
Jo

By Remark 3.2 and (3.16), we get

(3.18) E\ I \\pn.(t) — p(t)\\lDkdt\ > 0 (n' -> oo)

Recalling "supp^) c Dk"9 we obtain

Γ ψ(tKL(Yn,(t), un.(t))pn., η)dt

(3.19) J°
> ψ(0<L(7(0, M(ί»P, 9>Λ in L\Ω).

Jo

(3.20) MtXPn'it), η) > MtXp(t), η) in V({0, T] X Ω)

and

(3.21) ^(0(^(7^(0)^^, ,) > f(tXM(Y(t))p, η) in L2([0, T] X fl).

For the proof of (3.19), putting
Qn-it) = f(tXbu(-,Yn,(t))Pn'(t),η)

and u(t) = (u\t), , uL(t)), we have

Γψ(ί)(6«( , Yκ.(ί))p»-(ί)^)^'(ί)rfί- Γψω(b«( , Y{t))p(t),ri)u\t)dt
(3-22) J° J°

= uι

n.(tXQ« (t) - 9(ί))dί + (4,(<) - uι(t))Q(t)dt.
Jo Jo

By (3.18), the 1st term of the right hand side of (3.22) converges to

0 in D(Ω). By Remark 3.2 and (3.16), we get

(3.23) 2?[{Jo

Γ (uUt) - u\t))q(t)dt)2] —* 0 .

This implies (3.19). (3.20) and (3.21) can be proved similarly. More-

over, combining (3.21) with (3.16), we get

ff(t)(M(Yn,{t))Pn>,v)dYn/t)
(3.24) J°

> ψ(t)(M(Y(t))p, η)dY(t) in L\Ω).
Jo
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Hence, by taking limit of (3.17)n,, we obtain (3.17).

Let ik\ S->Sk be the canonical injection. Then by the definition

(3.25) it(μ"™) = μί™ and ik(μ) = μk.

Let (7, ύ, p) be S-valued random variable whose law = μ. Then (3.25)

implies that the law of (7, ύ9p\D) = μk.

Hence, by Lemma 3.3, (7, ύ,p\D) satisfies the equation (3.17). Noting

that supp()?) C Dk, we obtain

(φ, η)ψ(0) + Γ ψ'(t)(p(t), η)dt + Γ ψ(ί)<L(Y(f), u(t))p, V>dt
(3.26) J ; J o

+ I tfί)(WΫ(t))P,η)dΫ(t) = O.
Jo

Since k is arbitrary, (3.26) holds for any η e C0°°(R
d).

By the same argument as Theorem 1.3 in [7], p becomes a solution

of SPDE (2.4) for (7, ύ). Since the law of (7, ύ) = π"> we get

(3.27) μ = the law of (7, ύ, p) = μ".

This means that any convergent subsequence of {μ^(w)} converges to

μ*. Hence the original sequence {μ^{n)} converges to μ*. So we get (3.1).

Next we consider the law of (7, u,p^,p^(T)) then by the similar argument

we can prove (3.2).

THEOREM 3.2. // F and G are bounded from below, then there exists

an optimal admissible system J / e 21 that is

(3.28) inf{J(J^) s/ e SI} =

Proof. By theorem 3.1,

= E[min{F(p«), n} + min{G(p«(T)), n}]

is continuous on 2ί. Since J(jtf) is the limit function of non-decreasing

sequence {Jn(^)}n=u it is lower-semicontinuous on 2ί. This concludes the

theorem.

§ 4. Optimal control for partially observed diffusions

In this section we will apply Theorem 3.2 to the stochastic control

problems for partially observed diffusions where an observation noise

may depend on a state noise.

We assume the following conditions (A.4)~(A.6).
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(A.4) σ : Rd X W > Rd <g) ~Rd is bounded and continuous

(A.5) There exists δ > 0 such that

σ(x, y)σ*(x, y) - 2σ(x, y)σ*(x, y) > δl for V (x, y) e R* X Rd

(A.6) σ(-,y) is C3-class in JceRd and all derivatives are bounded and
continuous in (x, y) e lRd X Rd.

Put a(x,y) = (σ(x,y)σ*(x,y) + σ(x,y)σ*(x,y))/2, then a(x,y) and σ(x,y)
satisfy (A.2).

Now we will consider the optimal control problems of the following
kind. Let X(t) denote the state process being controlled, Y(t) the obser-
vation process and u(i) the control process. The state and observation
processes are governed by the stochastic differential equations

ίdXitί = b(X(t), Y(t))u(t)dt + d(X(t), Y(t))dW(t) + «(X(0, Y(t))dW(t)

U(0) = f
and

(dY(t) = h{X(t))dt + dW(ί)
( } I y(o) = o
where W and W are independent Brownian motions with values in Rd

and Rd' respectively on a probability space (Ω, J^, P).
The problem is to minimize a criterion of the form

(4.3) J(u) =

In the customary version of stochastic control under partial obser-
vation, u(t) is a function of the observation process Y(s), s <t. Instead
of discussing the problem of this type, we treat some wider class of
admissible controls inspired by Fleming & Pardoux [2].

Let

(4.4) p(t) = exp{£ h(X(s))dY(s) - 1 ^\h(X{s))f ds} .

Then W and Y become independent Brownian motions under a new
probability P defined by

(4.5) dP = p(T)-1dP

and X(t) becomes a solution of the following SDE
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(dX(t) = {b(X(t), Y(t))u(t) - σ(X(t), Y(t))h(X(t))}dt

(4.6) + σ(X(t), Y{t))dW{t) + σ(X(t), Y(t))dY(t)

[
Suppose ξ has a probability density φ e H2(Ή.d).

DEFINITION 4.1. s/ = (β, &, P, W, Y, w, f) is called an admissible

system, if

( 1) (β, J^, P) is a probability space

( 2 ) w is Γ-valued measurable process

( 3) Y is a cί'-dimensional (J^-Brownian motion where

( 4 ) W' is a d-dimensional Brownian motion

( 5 ) f is a d-dimensional random variable and its distribution has

the density φ

( 6 ) ξ, W and (Y, w) are independent with respect to P.

For an admissible system sf, the solution X(t) = X^(ί) of the SDE

(4.6) is called the response for sf. Putting dP = p(T)dP, we define the

pay-off function by

(4.7)

where /, g e L2(Rd) and non-negative.

By the similar argument as Rozovskii [8], we obtain the following.

PROPOSITION 4.1. Let p^ be a solution of the SPDE (2.4) for an ad-

missible system si> then p^(t) is the unnormalized conditional density of

X"(t) with respect to &t. Namely, for every ψ e L°°(Rd), t e [0, T]

(4.8) E[φ(X"(t))p(t)\&t] = (φ,p"(t)) P-a.8.

holds, where ( , •) is the inner product in L2(Rd).

Using (4.8), we get

(4.9) JOO = E [ £ (f,p"(t))dt + (ft/^T

Since (f,p"(t)) and (g,p"(T)) are non-negative, Theorem 3.2 assures

the existence of an optimal admissible system. Namely,
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THEOREM 4.1. There exists an optimal admissible system J$, that is

(4.10) inf J ( J / ) - J(jf).
j/: ad.sys.
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