S. Konno

Nagoya Math. J.
Vol. 113 (1989), 129-146

EISENSTEIN SERIES IN HYPERBOLIC 3-SPACE AND KRONECKER LIMIT FORMULA FOR BIQUADRATIC FIELD

SHUJI KONNO

§0. Introduction

Let $L=k K$ be the composite of two imaginary quadratic fields k and K. Suppose that the discriminants of k and K are relatively prime. For any primitive ray class character χ of L, we shall compute $L(1, \chi)$ for the Hecke L-function in L. We write f for the conductor of χ and C for the ray class modulo \mathfrak{f}. Let $\mathfrak{c} \in C$ be any integral ideal prime to \mathfrak{f}. We write $\mathfrak{a}=\mathfrak{c} /\left(\vartheta_{L} \mathfrak{f}\right)=\mathfrak{g} \omega_{1}+\mathfrak{n} \omega_{2}$ as \mathfrak{g}-module where $\mathfrak{g}, \mathfrak{n}$ and ϑ_{L} are, respectively, the ring of integers in k, an ideal in k and the differente of L. Let $L(s, \chi)=T(\chi)^{-1} \sum_{c} \bar{\chi}(C) \Psi(C, s)$ where $T(\chi)$ is the Gaussian sum and, as in (3.2),

$$
\Psi(C, s)=N_{L / Q}(\mathfrak{a})^{s} \sum_{(\mu)_{\mathrm{F}}}^{\prime \prime} e^{2 \pi i T r_{L / Q}(\mu)}\left|N_{L / Q}(\mu)\right|^{-s}
$$

In $\S 1$, 2 , for each pair of ideals ($\mathfrak{m}, \mathfrak{n}$) in k, we associate Eisenstein series in hyperbolic 3 -space having characters. For this series, we show the Kronecker limit formula. In $\S 3,4$, we show that $\Psi(C, s)$ is written as the constant term in the Fourier expansion of the Eisenstein series with reference to the hyperbolic substitution of $S L_{2}(k)$ (Theorems 4.3, 4.4). In §5, we compute the Kronecker limit formula for $\Psi(C, s)$ (Theorems 5.6, 5.7). The limit formula is written as the Fourier cosine series of $\omega+\check{\omega}$ ($\omega=\omega_{1}^{-1} \omega_{2}$) whose coefficients are functions of $\omega-\tilde{\omega}$ where $\tilde{\omega}$ is the conjugate of ω over k.

Notations. We denote by $\boldsymbol{Z}, \boldsymbol{Q}, \boldsymbol{R}$ and \boldsymbol{C}, respectively, the ring of rational integers, the rational number field, the real number field and the complex number field. For $z \in C, \bar{z}$ denotes the complex conjugate of z. We write $S(z)=z+\bar{z}$ and $|z|^{2}=z \bar{z}$. For $z \in C, \sqrt{\bar{z}}$ means $-\pi / 2$ $<\arg \sqrt{z} \leqq \pi / 2$. For an associative ring A with identity element, A^{\times}

Received August 6, 1987.
denotes the group of invertible element of A. We write $e(x)=e^{2 \pi i x}$ for $x \in \boldsymbol{R}$ and $e[z]=e(S(z))$ for $z \in C$. We denote $K_{z}(2 Y)=1 / 2 \int_{0}^{\infty} e^{-Y(l+t-1)} t^{z-1} d t$.

§1. Eisenstein series in the $\mathbf{3}$-dimensional hyperbolic space

We shall consider Eisenstein series with characters in the 3-dimensional hyperbolic space. Let $K=C+C j$ be the Hamilton quaternion algebra with j satisfying $j^{2}=-1, j^{-1} z j=\bar{z}$ for $z \in C$. Let $\zeta \rightarrow \bar{\zeta}$ denote the quaternion conjugation in K and let $N(\zeta)=\zeta \bar{\zeta}$ be the quaternion norm. Let \boldsymbol{H} denote the 3 -dimensional hyperbolic space. We write a point $\xi \in \boldsymbol{H}$ as $\xi=z+v j$ for $z \in \boldsymbol{C}, v>0$ and consider \boldsymbol{H} to be contained in K.

Let B_{1} be the subgroup of $S L_{2}(C)$ consisting of elements $b=$ $v^{-1 / 2}\left(\begin{array}{ll}v & z \\ 0 & 1\end{array}\right)$ with $v>0, z \in C$. Then B_{1} is a complete set of representatives for the space of right cosets $S L_{2}(C) / S U(2, C)$. We shall identify $b=v^{-1 / 2}\left(\begin{array}{ll}v & z \\ 0 & 1\end{array}\right) \in B_{1}$ with the point $\xi=z+v j \in \boldsymbol{H}$ and we can view $\boldsymbol{H}=$ $B_{1}=S L_{2}(C) / S U(2, C)$. Let $\xi \in \boldsymbol{H}$ and $b \in B_{1}$ be as above. For any $g=$ $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in S L_{2}(C)$, we can write

$$
g b=v_{1}^{-1 / 2}\left(\begin{array}{cc}
v_{1} & z_{1} \tag{1.1}\\
0 & 1
\end{array}\right) c_{1}
$$

where $\left.v_{1}=v / N(\gamma \xi+\delta), z_{1}=\{(\alpha z+\beta) \overline{(\gamma z+\delta})+\alpha \bar{\gamma} v^{2}\right\} / N(\gamma \xi+\delta)$ and

$$
c_{1}=N(\gamma \xi+\delta)^{-1 / 2}\left(\begin{array}{cc}
\overline{\gamma z+\delta} & -\bar{\gamma} v \\
\gamma v & \gamma z+\delta
\end{array}\right) \in S U(2, C)
$$

with $N(\gamma \xi+\delta)=|\gamma z+\delta|^{2}+|\gamma|^{2} v^{2}$. Thus the left multiplication of $g=$ $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ on B_{1} induces on \boldsymbol{H} the transformation $\xi \rightarrow(\alpha \xi+\beta)(\gamma \xi+\delta)^{-1}$;

$$
\begin{equation*}
(\alpha \xi+\beta)(\gamma \xi+\delta)^{-1}=\frac{(\alpha z+\beta)(\overline{\gamma z+\delta})+\alpha \bar{\gamma} v^{2}}{N(\gamma \xi+\delta)}+\frac{v}{N(\gamma \xi+\delta)} j \tag{1.2}
\end{equation*}
$$

The group $S L_{2}(C) /\{ \pm I\}$ act on \boldsymbol{H} transitively and

$$
\begin{equation*}
d s^{2}=v^{-2}\left(d v^{2}+d z d \bar{z}\right) \tag{1.3}
\end{equation*}
$$

is an invariant metric on H.

Let $k=\boldsymbol{Q}\left(\sqrt{-d_{1}}\right)$ be the imaginary quadratic field of discriminant $-d_{1}$. Denote by g the ring of integers in k and by $\tilde{g}=g\left(1 / \sqrt{-\overline{d_{1}}}\right)$ the inverse differente. Let w_{k} be the number of roots of unity in k. We consider k to be contained in C. For an ideal $\mathfrak{a} \neq 0$, we write (a) for the absolute ideal class of \mathfrak{a} and $\zeta_{k}((\mathfrak{a}), s)$ for the zeta function of (\mathfrak{a}) in k. Let $\mathfrak{a} \oplus \mathfrak{b}$ be the module consisting of all pairs (a, b) for $a \in \mathfrak{a}, b \in \mathfrak{b}$. For any non-zero (fractional) ideals $\mathfrak{m}, \mathfrak{n}$ in k, we define

$$
\begin{equation*}
E_{\mathrm{m}, \mathrm{n}}\left(\xi, u_{1}, u_{2}, s\right)=v^{2 s} N_{k / \mathbf{q}}(\mathfrak{m n})^{s} \sum_{(m, n) \in \mathfrak{m} \oplus \mathfrak{n}}^{\prime} \frac{e\left[-m u_{1}-n u_{2}\right]}{N(n \xi+m)^{2 s}} . \tag{1.4}
\end{equation*}
$$

Here $\xi=z+v j \in \boldsymbol{H},\left(u_{1}, u_{2}\right) \in C^{2}$ and $s \in \boldsymbol{C}$; the summation is taken over all $(m, n) \in\{\mathfrak{m} \oplus \mathfrak{n}\} \backslash\{(0,0)\}$. The series converges absolutely for $R e(s)>1$. We consider $E_{m, n}\left(\xi, u_{1}, u_{2}, s\right)$ to be a kind of Eisenstein series.

To get the Fourier expansion of $E_{\mathrm{m}, \mathrm{n}}\left(\xi, u_{1}, u_{2}, s\right)$, we put

$$
\begin{equation*}
D(\xi, u, s)=\sum_{m \in m} e[-m u] N(\xi+m)^{-2 s} \quad(\operatorname{Re}(s)>1) \tag{1.5}
\end{equation*}
$$

where $\xi \in \boldsymbol{H}, u \in C$ and $s \in C$. The self-dual Haar measure on C, with respect to the basic character $z \rightarrow e[-z]$, is $|d z \wedge d \bar{z}|=2 d x d y(z=x+y i)$. The dual lattice of \mathfrak{m} in C, with respect to the bicharacter $\left(z_{1}, z_{2}\right) \rightarrow$ $e\left[-z_{1} z_{2}\right]$, is $\widetilde{\mathfrak{m}}=\mathfrak{m}^{-1} \tilde{\mathfrak{g}}$.

Lemma 1.1. We have the Fourier expansion

$$
\begin{align*}
& D(\xi, u, s)=\delta_{u} v^{2-4 s} \frac{2 \pi \Gamma(2 s-1)}{\Gamma(2 s)} \frac{1}{\sqrt{d_{1} N_{k / \boldsymbol{Q}}(\mathrm{m})}}+\frac{2(2 \pi)^{2 s}}{\Gamma(2 s)} \frac{1}{\sqrt{d_{1} N_{k / \mathbf{Q}}(\mathrm{m})}} \tag{1.6}\\
& \quad \times \sum_{u \neq \ell \in \tilde{\mathrm{m}}}^{\prime}\left|\frac{\ell-u}{v}\right|^{2 s-1} K_{2 s-1}(4 \pi|\ell-u| v) e[-(\ell-u) z]
\end{align*}
$$

where $\delta_{u}=1$ or 0 , according as $u \in \mathfrak{\mathfrak { M }}$ or not.
Proof. Let Q be the fundamental parallelogram for C / m and let $|Q|=\sqrt{d_{1}} N_{k / Q}(\mathfrak{n t)}$ be its area. Then $z \rightarrow D(\xi, u, s) e[-u z]$ is periodic with period lattice m. Expanding this into Fourier series, we get

$$
\begin{gather*}
D(\xi, u, s)=\sum_{\ell \in \mathrm{H}} g_{\ell}(v) e[-(\ell-u) z] \tag{1.7}\\
g_{\ell}(v)=\frac{1}{|Q|} \int_{c} \frac{e[(\ell-u) z]}{\left(|z|^{2}+v^{2}\right)^{2 s}}|d z \wedge d \bar{z}| . \tag{1.8}
\end{gather*}
$$

Applying Mellin transformation to this and by $\int_{-\infty}^{+\infty} e^{-X z / 2-i X Y} d X=\sqrt{2 \pi} c^{-Y^{2} / 2}$, we get

$$
\begin{equation*}
\Gamma(2 s) g_{\ell}(v)=\frac{2 \pi}{\sqrt{d_{1}} N_{k / Q}(m)} \int_{0}^{\infty} e^{-v^{2 t}-(2 \pi)^{2 / t| | c-\left.u\right|^{2}} t^{2 s-2}} d t \tag{1.9}
\end{equation*}
$$

Consequently, we have

$$
\begin{align*}
& g_{\ell}(v)=v^{2-4 s} \frac{2 \pi \Gamma(2 s-1)}{\Gamma(2 s)} \frac{1}{\sqrt{d_{1} N_{k / Q}(m)}} \quad(\ell=u), \tag{1.10}\\
& g_{\ell}(v)=\frac{2(2 \pi)^{2 s}}{\Gamma(2 s)} \frac{1}{\sqrt{d_{1}} N_{k / Q}(\mathfrak{n t})}\left|\frac{\ell-u}{v}\right|^{2 s-1} K_{2 s-1}(4 \pi|\ell-u| v) \\
& (\ell \neq u) .
\end{align*}
$$

Substituting (1.10) and (1.11) in (1.7), we obtain (1.6).
Let \mathfrak{a} be any non-zero ideal in k. For $u \in C$ and $s \in C$, we define

$$
\begin{equation*}
G_{a}(s, u)=\sum_{0 \neq a \in a}^{\prime} e[-a u]\left|N_{k / Q}(a)\right|^{-s} \tag{1.12}
\end{equation*}
$$

Proposition 1.2. We have the Fourier expansion

$$
\begin{equation*}
E_{m, n}\left(\xi, u_{1}, u_{2}, s\right)=A(s)+B(s)+C(s) ; \tag{1.13}
\end{equation*}
$$

$$
\begin{aligned}
A(s)= & v^{2 s} N_{k / Q}(\mathrm{mn})^{s} G_{\mathrm{m}}\left(2 s, u_{1}\right), \\
B(s)= & v^{2-2 s} \frac{2 \pi \Gamma(2 s-1)}{\Gamma(2 s)} \frac{N_{k / Q}(\mathrm{~m})^{s-1} N_{k / Q}(\mathfrak{n})^{s}}{\sqrt{d_{1}}} G_{\mathfrak{n}}\left(2 s-1, u_{2}\right) \quad \text { for } u_{1} \in \tilde{\mathfrak{n} t} ; \\
= & 0 \quad \text { for } u_{1} \notin \tilde{\mathfrak{m}}, \\
C(s)= & \frac{2(2 \pi)^{2 s}}{\Gamma(2 s)} \frac{N_{k / Q}(\mathfrak{m})^{s-1} N_{k / Q}(\mathfrak{n})^{s}}{\sqrt{d_{1}}} \sum_{0 \neq n \in \mathfrak{n}}^{\prime} \sum_{u_{\mathbf{l}} \neq \ell \in \mathfrak{n}}^{\prime}\left|\frac{\ell-u_{1}}{n}\right|_{2 s-1} \\
& \times v K_{2 s-1}\left(4 \pi\left|n\left(\ell-u_{1}\right)\right| v\right) e\left[-n\left(\ell-u_{1}\right) z-n u_{2}\right] .
\end{aligned}
$$

Proof. Since

$$
\begin{aligned}
E_{\mathrm{m}, \mathrm{n}}\left(\xi, u_{1}, u_{2}, s\right)= & v^{2 s} N_{k / Q}(\mathfrak{m n})^{s} \sum_{o \neq m \in \mathrm{~m}}^{\prime} e\left[-m u_{1}\right]\left|N_{k / Q}(m)\right|^{-2 s} \\
& +v^{2 s} N_{k / Q}(\mathfrak{m n})^{s} \sum_{0 \neq n \in \mathfrak{n}}^{\prime} e\left[-n u_{2}\right] D\left(n \xi, u_{1}, s\right),
\end{aligned}
$$

by Lemma 1.1 and by (1.12), we obtain the proof.
The function $E_{\mathrm{m}, \mathrm{n}}(\xi, 0,0, s)$ also satisfies a functional equation. Let \mathfrak{a} and \mathfrak{b} be non-zero ideals in k. For $c \in k^{\times}$and $s \in C$, we define

$$
\begin{equation*}
\tau_{s}(\mathfrak{a}, \mathfrak{b}, c)=N_{k / \mathbb{Q}}(\mathfrak{a})^{s-1 / 2} N_{k / \mathbb{Q}}(\mathfrak{b})^{s+1 / 2} \sum_{b} N_{k / \mathbb{Q}}\left(c b^{-2}\right)^{s} \tag{1.14}
\end{equation*}
$$

The summation is taken over all $b \in \mathfrak{b} \backslash\{0\}$ such that $c b^{-1} \in \mathfrak{a}^{-1}$. It is a finite sum and we see that $\tau_{s}(\mathfrak{a}, \mathfrak{b}, c)=0$ unless $c \in \mathfrak{a}^{-1} \mathfrak{b}$. By a little computations we find that

$$
\begin{equation*}
\tau_{s}(\mathfrak{a}, \mathfrak{b}, c)=\tau_{-s}\left(\mathfrak{b}^{-1}, \mathfrak{a}^{-1}, c\right) \tag{1.15}
\end{equation*}
$$

Theorem 1.3. Let $E_{\mathrm{m}, \mathrm{n}}\left(\xi, u_{1}, u_{2}, s\right)$ be as in (1.4). Then

$$
\mathscr{E}_{\mathrm{m}, \mathrm{n}}(\xi, s)=\Gamma(2 s)\left(2 \pi / \sqrt{d_{1}}\right)^{-2 s} E_{\mathrm{m}, \mathrm{n}}(\xi, 0,0, s)
$$

is continued to the whole s-plane meromorphically and satisfies

$$
\begin{equation*}
\mathscr{E}_{m, n}(\xi, s)=\mathscr{E}_{n-1, m-1}(\xi, 1-s) . \tag{1.16}
\end{equation*}
$$

Proof. Let $u_{1}=u_{2}=0$ and $\ell=m / \sqrt{-d_{1}}$ in (1.13). We see

$$
\left\{\begin{align*}
A(s)= & w_{k}\left(v^{2} N_{k / Q}\left(\mathfrak{m}^{-1} \mathfrak{n}\right)\right)^{s} \zeta_{k}\left(\left(\mathfrak{m}^{-1}\right), 2 s\right) \tag{1.17}\\
B(s)= & w_{k} \frac{\Gamma(2 s-1)}{\Gamma(2 s)} \frac{2 \pi}{\sqrt{d_{1}}}\left(v^{2} N_{k / Q}\left(\mathfrak{m}^{-1} \mathfrak{n}\right)\right)^{1-s} \zeta_{k}\left(\left(\mathfrak{n}^{-1}\right), 2 s-1\right) \\
C(s)= & \frac{2}{\Gamma(2 s)}\left(\frac{2 \pi}{\sqrt{d_{1}}}\right)^{2 s} \sum_{0 \neq n \in \mathfrak{m}^{-1}}^{\prime} \tau_{s-1 / 2}(\mathfrak{m}, \mathfrak{n}, n) v \\
& \times K_{2 s-1}\left(4 \pi|n| v / \sqrt{d_{1}}\right) e\left[-n z / \sqrt{-d_{1}}\right]
\end{align*}\right.
$$

For any non-zero ideal \mathfrak{a} in $k, Z\left(\left(\mathfrak{a}^{-1}\right), s\right)=\Gamma(s)\left(2 \pi / \sqrt{d_{1}}\right)^{-s} \zeta_{k}\left(\left(\mathfrak{a}^{-1}\right), s\right)$ is continued to the whole s-plane meromorphically and satisfies $Z\left(\left(\mathfrak{a}^{-1}\right), s\right)=$ $Z((\mathfrak{a}), 1-s)$. Moreover $\tau_{s-1 / 2}$ and $K_{2 s-1}$ are holomorphic in the whole s plane, they satisfy (1.15) and $K_{2 s-1}=K_{1-2 s}$. From these we obtain the proof.

§ 2. Kronecker limit formula for Eisenstein series

Let $E_{\mathrm{m}, \mathrm{n}}\left(\xi, u_{1}, u_{2}, s\right)=A(s)+B(s)+C(s)$ be as in Proposition 1.2. We discuss the following two cases respectively. Case (a) (u_{1}, u_{2}) $\in \mathfrak{m}^{-1} \tilde{\mathfrak{g}} \oplus \mathfrak{n}^{-1} \tilde{\mathfrak{g}}$, case (b) $\left(u_{1}, u_{2}\right) \notin \mathfrak{m}^{-1} \tilde{\mathfrak{g}} \oplus \mathfrak{n}^{-1} \tilde{\mathfrak{g}}$.

Case (a). In this case by (1.4), we may assume that $u_{1}=u_{2}=0$.
Theorem 2.1. The function $E_{\mathrm{m}, \mathrm{n}}(\xi, 0,0, s)$ is continued holomorphically to $\operatorname{Re}(s)>1 / 2$ except for the simple pole at $s=1 . \quad$ At $s=1$, $E_{\mathrm{m}, \mathrm{n}}(\xi, 0,0, s)$ has the expansion

$$
\begin{align*}
E_{\mathrm{m}, \mathrm{n}}(\xi, 0,0, s)= & \frac{2 \pi^{2}}{d_{1}} \frac{1}{s-1}+\frac{2 \pi^{2}}{d_{1}}\left\{\frac{w_{k} \sqrt{d_{1}}}{\pi} \alpha_{0}\left(\mathfrak{n}^{-1}\right)-2\right. \tag{2.1}\\
& \left.-\log N_{k / Q}\left(\mathfrak{m}^{-1} \mathfrak{n}\right)-\log v^{2}+h_{\mathfrak{m}, \mathfrak{n}}(\xi)\right\}+O(|s-1|)
\end{align*}
$$

where

$$
\begin{equation*}
\alpha_{0}\left(\mathfrak{n}^{-1}\right)=\lim _{s \rightarrow 1}\left\{\zeta_{k}\left(\left(\mathfrak{n}^{-1}\right), s\right)-\frac{2 \pi}{w_{k} \sqrt{ } \sqrt{d_{1}}} \frac{1}{s-1}\right\} \tag{2.2}
\end{equation*}
$$

The function $h_{m, n}(\xi)$ is defined by

$$
\begin{align*}
h_{\mathfrak{m}, n}(\xi)= & \frac{w_{k} d_{1}}{2 \pi^{2}} N_{k / Q}\left(\mathfrak{m}^{-1} \mathfrak{n}\right) \zeta_{k}\left(\left(\mathfrak{m}^{-1}\right), 2\right) v^{2} \tag{2.3}\\
& +4 \sum_{0 \neq n \in \mathfrak{m}-1_{n}}^{\prime} \tau_{1 / 2}(\mathfrak{m}, \mathfrak{n}, n) v K_{1}\left(4 \pi|n| v / \sqrt{d_{1}}\right) e\left[-n z / \sqrt{-d_{1}}\right] .
\end{align*}
$$

Proof can be done as in [1], [3], using Proposition 1.2.
Case (b). In this case we have
Theorem 2.2. Suppose $\left(u_{1}, u_{2}\right) \notin \mathfrak{m}^{-1} \tilde{\mathfrak{g}} \oplus \mathfrak{n}^{-1} \tilde{\mathfrak{g}}$. Then $E_{\mathfrak{m}, \mathfrak{n}}\left(\xi, u_{1}, u_{2}, s\right)$ is holomorphic in $\operatorname{Re}(s)>1 / 2$ and we have

$$
\begin{align*}
& E_{\mathrm{m}, \mathrm{n}}\left(\xi, u_{1}, u_{2}, 1\right)=b\left(u_{1}, u_{2}\right)+N_{k / Q}(\mathfrak{m n}) G_{\mathrm{m}}\left(2, u_{1}\right) v^{2} \tag{2.4}\\
& \quad+\frac{8 \pi^{2}}{\sqrt{d_{1}}} N_{k / Q}(\mathfrak{n}) \sum_{0 \neq n \in \mathfrak{n}}^{\prime} \sum_{u_{1} \neq m \in \mathfrak{m}_{\mathrm{m}}-\mathrm{l}_{\mathrm{g}}}^{\prime}\left|\frac{m-u_{1}}{n}\right| v K_{1}\left(4 \pi\left|n\left(m-u_{1}\right)\right| v\right) \\
& \quad \times e\left[-n\left(m-u_{1}\right) z-n u_{2}\right]
\end{align*}
$$

where $b\left(u_{1}, u_{2}\right)$ is given by

$$
b\left(u_{1}, u_{2}\right)= \begin{cases}0 & \text { if } u_{1} \notin \mathfrak{m}^{-1} \tilde{\mathfrak{g}} \tag{2.5}\\ \frac{2 \pi}{\sqrt{d_{1}}} N_{k / Q}(\mathfrak{n}) G_{\mathfrak{n}}\left(1, u_{2}\right) & \text { if } u_{1} \in \mathfrak{m}^{-1} \tilde{\mathfrak{g}} \quad \text { and } \quad u_{2} \notin \mathfrak{n}^{-1} \tilde{\mathfrak{g}}\end{cases}
$$

Proof. In Proposition 1.2, $A(s)$ and $C(s)$ are holomorphic in $\operatorname{Re}(s)>$ $1 / 2$. As to $B(s)$, it is 0 when $u_{1} \notin \mathfrak{m}^{-1} \tilde{\mathfrak{g}}$; it is holomorphic when $u_{1} \in \mathfrak{m}^{-1} \tilde{\mathfrak{g}}$ and $u_{2} \notin \mathfrak{n}^{-1} \tilde{\mathfrak{g}}$ ([12], p. 77, §10). Again by Proposition 1.2, we obtain the proof.

As an analogy of $\log \left|\vartheta_{1}(w, z) / \eta(z)\right|^{2}$ for the Kronecker's second limit formula, we write $\psi(\zeta, \xi)$ for the right hand side of (2.4). For any $\xi \in \boldsymbol{H}$, let $\mathscr{L}_{\xi}=\mathfrak{m}^{-1} \tilde{\mathfrak{g}} \xi+\mathfrak{n}^{-1} \tilde{\mathfrak{g}}$ be the \mathfrak{g}-lattice in \boldsymbol{K}. Let $\zeta=\zeta_{1}+\zeta_{2} j \in \boldsymbol{K}$, $\left(\zeta_{1}, \zeta_{2} \in C\right)$ and $\xi=z+v j \in \boldsymbol{H}$. When $\zeta \notin \mathscr{L}_{\xi}$, we define

$$
\begin{align*}
\psi_{\mathrm{m}, \mathrm{n}}(\zeta, \xi)= & b\left(-\frac{1}{v} \zeta_{2}, \zeta_{1}-\frac{z}{v} \zeta_{2}\right)+N_{k / \mathbb{Q}}(\mathrm{mn}) G_{\mathrm{m}}\left(2,-\frac{1}{v} \zeta_{2}\right) v^{2} \tag{2.6}\\
& +\frac{8 \pi^{2}}{\sqrt{d_{1}}} K_{k / \mathbb{Q}}(\mathfrak{n}) \sum_{\substack{0 \neq n \in \mathfrak{n} \in \mathfrak{c} \\
\prime}}^{\sum_{\substack{m--_{\mathrm{g}} \\
m v+\zeta_{2} \neq 0}}^{\prime}\left|\frac{m v+\zeta_{2}}{n}\right| K_{1}\left(4 \pi\left|n\left(m v+\zeta_{2}\right)\right|\right)} \\
& \times e\left[-n\left(m z+\zeta_{1}\right)\right] .
\end{align*}
$$

Then we have

$$
\begin{equation*}
E_{m, n}\left(\xi, u_{1}, u_{2}, 1\right)=\psi_{m, n}\left(-u_{1} \xi+u_{2}, \xi\right) . \tag{2.7}
\end{equation*}
$$

We see easily that

$$
\begin{equation*}
\psi_{w, n}\left(\zeta+\zeta_{0}, \xi\right)=\psi_{1 u, n}(\zeta, \xi) \quad \text { for } \zeta_{0} \in \mathscr{L}_{\xi} . \tag{2.8}
\end{equation*}
$$

Let Γ be the subgroup of $S L_{2}(k)$ defined by

$$
\Gamma=\left\{\left(\begin{array}{ll}
\alpha & \beta \tag{2.9}\\
\gamma & \delta
\end{array}\right) \in S L_{2}(k) \left\lvert\,(\mathfrak{n} \oplus \mathfrak{n})\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\mathfrak{n} \oplus \mathfrak{m}\right.\right\}
$$

Then $\Gamma /\{ \pm I\}$ is a discrete subgroup of $S L_{2}(C) /\{ \pm I\}$ and act on H properly discontinuously. For $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \Gamma$, we write $\hat{u}_{2}=\alpha u_{2}+\beta u_{1}$ and $\hat{u}_{1}=$ $\gamma u_{2}+\delta u_{1}$. Then $\left(\hat{u}_{1}, \hat{u}_{2}\right) \in \mathfrak{m}^{-1} \tilde{\mathfrak{g}} \oplus \mathfrak{n}^{-1} \tilde{\mathfrak{g}}$ if and only if $\left(u_{1}, u_{2}\right) \in \mathfrak{m}^{-1} \tilde{\mathfrak{g}} \oplus \mathfrak{n}^{-1} \tilde{\mathfrak{g}}$. Furthermore, we see that

$$
\begin{equation*}
E_{\mathrm{m}, \mathrm{n}}\left((\alpha \xi+\beta)(\gamma \xi+\delta)^{-1}, \hat{u}_{1}, \hat{u}_{2}, s\right)=E_{\mathrm{m}, \mathrm{n}}\left(\xi, u_{1}, u_{2}, s\right) \tag{2.10}
\end{equation*}
$$

Proposition 2.3. For any $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \Gamma$, we have
(i) $h_{m, n}\left((\alpha \xi+\beta)(\gamma \xi+\delta)^{-1}\right)=h_{m, n}(\xi)-\log N(\gamma \xi+\delta)^{2}$
(ii) $\psi_{\mathrm{m}, \mathrm{n}}\left(\zeta(\gamma \xi+\delta)^{-1},(\alpha \xi+\beta)(\gamma \xi+\delta)^{-1}\right)=\psi_{\mathrm{m}, \mathrm{n}}(\zeta, \xi)$.

Proof. (i) It is well known ([1], [3]). (ii) For any $\zeta \in \boldsymbol{K}$, we write $\zeta=-u_{1} \xi+u_{2}$ with $u_{1}, u_{2} \in C$. Let $\hat{u}_{2}=\alpha u_{2}+\beta u_{1}$ and $\hat{u}_{1}=\gamma u_{2}+\delta u_{1}$ be as above. Since $-\hat{u}_{1}(\alpha \xi+\beta)(\gamma \xi+\delta)^{-1}+\hat{u}_{2}=\zeta(\gamma \xi+\delta)^{-1}$, we obtain the proof.

§3. Reduction of the problem

Let $L=k K$ be the biquadratic field composed of two imaginary quadratic fields k and K with discriminants $-d_{1}$ and $-d_{2}$ respectively. We assume that d_{1} and d_{2} are relatively prime. Denote by \mathfrak{o}_{L} the ring of integers in L and by ϑ_{L} the differente of L. Let \mp be any integral ideal in L. Denote by $E_{L}(\mathfrak{f})$ the group consisting of units in L which satisfy $\equiv 1 \bmod \lceil$. Let χ be any primitive ray class character modulo $\tilde{\uparrow}$ in L. For any $\alpha \in \mathfrak{o}_{L}$ satisfying $((\alpha), \mathfrak{\uparrow})=1$, we can write $\chi((\alpha))=\chi_{1}(\alpha)$ where χ_{1} is a character of $\left(\mathfrak{o}_{L} / \uparrow\right)^{\times}$. We write χ for χ_{1}. Let $L(s, \chi)$ be the Hecke L-series. Our aim is to compute $L(1, \chi)$.

Let $\gamma_{0} \in L^{\times}$be such that $\left(\gamma_{0}\right)=\mathfrak{h} /\left(\vartheta_{L} \dagger\right)$ with an integral ideal \mathfrak{h} which is prime to f . We define

$$
T(\chi)=\bar{\chi}(\mathfrak{h}) \sum_{\rho \bmod \mathfrak{f}} \bar{\chi}(\rho) e\left(\operatorname{Tr}_{L / Q}\left(\rho \gamma_{0}\right)\right) .
$$

Note that $T(\chi) \neq 0$ since χ is primitive. Let C be any ray class modulo \tilde{f} in L and let $\mathfrak{c} \in C$ be an integral ideal which is prime to \tilde{f}. For $\mathfrak{a}=\mathfrak{c} /\left(\vartheta_{L} \tilde{\dagger}\right)$, we put

$$
\begin{equation*}
\Psi_{1}(\mathfrak{a}, s)=N_{L / \mathbb{Q}}(\mathfrak{a})^{s} \sum_{(\mu)_{\mathfrak{Y}}}^{\prime \prime} e\left(\operatorname{Tr}_{L / Q}(\mu)\right)\left|N_{L / Q}(\mu)\right|^{-s} \quad(\operatorname{Re}(s)>1) \tag{3.1}
\end{equation*}
$$

The summation is taken over all non-associated classes $(\mu)_{\mathrm{f}}$ in $\mathfrak{a} \backslash\{0\}$ with respect to $E_{L}(\uparrow)$. Then $\Psi_{1}(a, s)$ depends only on C but not on the choice of c. Therefore we define

$$
\begin{equation*}
\Psi(C, s)=\Psi_{1}(\mathfrak{a}, s) \tag{3.2}
\end{equation*}
$$

It is known that

$$
\begin{equation*}
L(s, \chi)=T(\chi)^{-1} \sum_{C} \bar{\chi}(C) \Psi(C, s) \tag{3.3}
\end{equation*}
$$

where the summation is taken over all ray classes modulo f, ([10]). Thus to obtain $L(1, \chi)$, we compute the limit formula for $\Psi(C, s)$.

§4. Limit formula for $\Psi(C, s)$

Let $M=\boldsymbol{Q}\left(\sqrt{\left(\overline{d_{1} d_{2}}\right.}\right)$ be the real quadratic subfield of L. Let $x \rightarrow \tilde{x}$ be the non-trivial automorphism of L over k. If $y \in M$, we write y^{\prime} for \tilde{y}. We write \mathfrak{o}_{M} for the ring of integers in M. Put $\mathfrak{f}_{0}=f \cap \mathfrak{o}_{M}$ and let $E_{M}^{+}\left(\mathfrak{f}_{0}\right)$ be the group consisting of units $x \in M$ with $x \equiv 1 \bmod \mathrm{f}_{0}$ and totally positive. Let $\varepsilon>1$ be the generating element of $E_{M}^{+}\left(\mathfrak{f}_{0}\right)$. Note that $\varepsilon>1$ $>\varepsilon^{\prime}>0$. Let ε_{0} be a generating element of $E_{L}(\mathfrak{f})$ modulo the torsion subgroup. We choose ε_{0} such that $\left|\varepsilon_{0}\right|>1$ and fix once and for all. Since $\varepsilon_{0} \bar{\varepsilon}_{0} \in E_{M}^{+}(1)$, let e be the least positive integer such that $\left(\varepsilon_{0} \bar{\varepsilon}_{0}\right)^{e} \in E_{M}^{+}\left(\mathrm{f}_{0}\right)$.

Lemma 4.1. We have $\left(\varepsilon_{0} \bar{\varepsilon}_{0}\right)^{e}=\varepsilon^{g}$ for $g=1$ or 2.
Proof. We can write $\left(\varepsilon_{0} \bar{\varepsilon}_{0}\right)^{e}=\varepsilon^{g}$ for $g \geqq 1$. Suppose $g>2$. This implies $\left|\varepsilon_{0}^{\ell} \varepsilon^{-1}\right|^{2}=\varepsilon^{g-2}>1$. As an element of $E_{L}(\uparrow)$, we write $\varepsilon=\zeta \varepsilon_{0}^{q}$ where
 Since $\varepsilon^{g}=\left|\varepsilon_{0}\right|^{2 q}\left|\varepsilon_{0}\right|^{2(e-q)}=\varepsilon^{2}\left|\varepsilon_{0}\right|^{2(e-q)}$, we get $\left(\varepsilon_{0} \bar{\varepsilon}_{0}\right)^{e-q} \in E_{M}^{+}\left(\digamma_{0}\right)$. This is a contradiction.

Let C be any ray class modulo \mathfrak{f} and let $\mathfrak{c} \in C$ be an integral ideal prime to \mathfrak{f}. We write $\mathfrak{a}=\mathfrak{c} /\left(\vartheta_{L} \mathfrak{f}\right)$ as \mathfrak{g}-module;

$$
\begin{equation*}
\mathfrak{a}=\mathfrak{g} \omega_{1}+\mathfrak{n} \omega_{2} \tag{4.1}
\end{equation*}
$$

Here $\left\{\omega_{1}, \omega_{2}\right\}\left(\omega_{j} \in L ; j=1,2\right)$ are linearly independent over k and \mathfrak{n} is a non-zero (fractional) ideal in k. We shall fix the expression (4.1) and we write $\omega=\omega_{1}^{-1} \omega_{2}$.

Lemma 4.2. We can find an element $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(k)$ such that
(i) $\quad\left(\begin{array}{ll}\omega & \check{\omega} \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}\varepsilon & 0 \\ 0 & \varepsilon^{\prime}\end{array}\right)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}\omega & \tilde{\omega} \\ 1 & 1\end{array}\right)$,
(ii) $\quad(n \oplus g)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=n \oplus g$.

In particular, we have $\varepsilon=c \omega+d$ and $\varepsilon^{\prime}=c \tilde{\omega}+d$.
Proof. Take non-zero $n \in \mathfrak{n}$. Since, $\omega_{1} \varepsilon, n \omega_{2} \varepsilon \in \mathfrak{a}$, we find $\alpha, \gamma \in \mathfrak{n}$ and $\beta, \delta \in \mathfrak{g}$ such that $n \omega_{2} \varepsilon=\alpha \omega_{2}+\beta \omega_{1}$ and $\omega_{1} \varepsilon=\gamma \omega_{2}+\delta \omega_{1}$. Then $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=$ $\left(\begin{array}{ll}n & 0 \\ 0 & 1\end{array}\right)^{-1}\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ satisfies (j) and (ii).

Let Γ be the group defined by (2.9) with $\mathfrak{m}=\mathfrak{g}$. By Lemma 4.2, $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a hyperbolic element of Γ, it generates an infinite cyclic subgroup of Γ, moreover it has two fixed points $\omega, \tilde{\omega}$ in C. From now on, we deal $E_{\mathfrak{m}, \mathfrak{n}}\left(\xi, u_{1}, u_{2}, s\right)$ with $\mathfrak{m}=\mathfrak{g}$, \mathfrak{n} being as in (4.1) and

$$
\begin{equation*}
u_{j}=\operatorname{Tr}_{L / k}\left(\omega_{j}\right) \quad(j=1,2) \tag{4.2}
\end{equation*}
$$

To be precise;

$$
\begin{equation*}
E_{\mathrm{n}}\left(\xi, u_{1}, u_{2}, s\right)=v^{2 s} N_{k / q}(\mathfrak{n})^{s} \sum_{(m, n) \in \mathfrak{Q} \oplus \mathfrak{n}}^{\prime} \frac{e\left[-m u_{1}-n u_{2}\right]}{N(n \xi+m)^{2 s}} \tag{4.3}
\end{equation*}
$$

Then (u_{1}, u_{2}) is of case (a) if and only if $\mathfrak{f}=(1)$. We write

$$
\xi^{*}=(a \xi+b)(c \xi+d)^{-1}, \quad\left(u_{2}^{*}, u_{1}^{*}\right)=\left(u_{2}, u_{1}\right)\left(\begin{array}{ll}
a & c \tag{4.4}\\
b & d
\end{array}\right) .
$$

Then we find that

$$
\begin{equation*}
E_{\mathrm{n}}\left(\xi^{*}, u_{1}^{*}, u_{2}^{*}, s\right)=E_{\mathrm{n}}\left(\xi^{*}, u_{1}, u_{2}, s\right)=E_{\mathrm{n}}\left(\xi, u_{1}, u_{2}, s\right) \tag{4.5}
\end{equation*}
$$

Let ρ_{ω} denote the semi-circle in \boldsymbol{H} which is defined by

$$
\begin{equation*}
\rho(t)=z(t)+v(t) j ; \quad z(t)=\frac{t^{2} \omega+\tilde{\omega}}{t^{2}+1}, \quad v(t)=\frac{t|\omega-\tilde{\omega}|}{t^{2}+1}, \tag{4.6}
\end{equation*}
$$

where t is a positive parameter. We see that $\rho(t)^{*}=\rho\left(t \varepsilon^{2}\right)$ ([6]).
Theorem 4.3. Notations being as above. Let $w_{L}(\mathfrak{f})$ be the number of roots of unity in $E_{L}(\mathfrak{\uparrow})$ and $R_{L}(\mathfrak{\digamma})=2 \log \left|\varepsilon_{0}\right|$ be the regulator of $E_{L}(\mathfrak{\uparrow})$. Then we have

$$
\begin{equation*}
\Psi(C, s)=\frac{\Gamma(2 s)}{\Gamma(s)^{2}} \frac{R_{L}(\mathfrak{\digamma})}{w_{L}(\uparrow) d_{2}^{s}} \frac{1}{\log \varepsilon} \int_{t_{0}}^{t_{0} \varepsilon^{2}} E_{\mathrm{n}}\left(\rho(t), u_{1}, u_{2}, s\right) \frac{d t}{t} \tag{4.7}
\end{equation*}
$$

where $t_{0}>0$ is any real number.

Proof. We put

$$
c_{0}=\int_{t_{0}}^{t_{0} \varepsilon^{2}} E_{\mathrm{n}}\left(\rho(t), u_{1}, u_{2}, s\right) \frac{d t}{t} .
$$

By (4.5), the integrand is invariant by $t \rightarrow t \varepsilon^{2}$. For $(n, m) \in \mathfrak{n} \oplus g \backslash\{(0,0)\}$, we write $-\beta=n \omega+m$ and $-\tilde{\beta}=n \tilde{\omega}+m$. Then β runs over the set $\mathfrak{a} \omega_{1}^{-1} \backslash\{0\}$ as (n, m) runs over the set $\mathfrak{n} \oplus \mathfrak{g} \backslash\{(0,0)\}$. By (4.2), (4.6) we see that $e\left[-m u_{1}-n u_{2}\right]=e\left(\operatorname{Tr}_{L / Q}\left(\beta \omega_{1}\right)\right)$ and $N(n \rho(t)+m)=\left(t^{2}|\beta|^{2}+|\tilde{\beta}|^{2}\right) /\left(t^{2}+1\right)$. Substituting $t=|\tilde{\beta} / \beta| t_{1}^{1 / 2}$, we get

$$
\begin{equation*}
c_{0}=\frac{|\omega-\tilde{\omega}|^{2 s}}{2} N_{k / Q}(\mathfrak{n})^{s} \sum_{0 \neq \beta \in a \omega \overline{1}}^{\prime} \frac{e\left(\operatorname{Tr}_{L / Q}\left(\beta \omega_{1}\right)\right)}{\left|N_{L / Q}(\beta)\right|^{s}} \int_{A}^{B} \frac{t_{1}^{s-1}}{\left(t_{1}+1\right)^{2 s}} d t_{1} \tag{4.8}
\end{equation*}
$$

with $A=\left.|\beta| \tilde{\beta}\right|^{2} t_{0}^{2}$ and $B=A \varepsilon^{4}$. Any $\beta \in \alpha \omega_{1}^{-1} \backslash\{0\}$ is written as $\left.(\beta)_{f} \varepsilon_{0}^{j}\right\}$ where $\left\{(\beta)_{i}\right\}$ are complete set of representatives for the non-associated classes of $\mathfrak{a} \omega_{1}^{-1} \backslash\{0\}$ modulo $E_{L}(\mathfrak{f}), j \in Z$ and ζ is a root of unity in $E_{L}(\mathfrak{\uparrow})$. Note that $e\left(\operatorname{Tr}_{L / Q}\left(\beta \omega_{1}\right)\right)\left|N_{L / Q}(\beta)\right|^{-s}$ is invariant when β is replaced by $\beta \alpha$ with $\alpha \in E_{L}(\mathrm{f})$. Thus we get

$$
\begin{equation*}
c_{0}=\frac{w_{L}(\mathfrak{f})|\omega-\tilde{\omega}|^{2 s}}{2} N_{k / Q}(\mathfrak{n})^{s} \sum_{(\beta)_{\mathrm{f}}}^{\prime \prime} \frac{e\left(\operatorname{Tr}_{L / Q}\left(\beta \omega_{1}\right)\right)}{\left|N_{L / Q}(\beta)\right|^{s}} \sum_{j=-\infty}^{\infty} \int_{A_{j}}^{B_{j}} \frac{t_{1}^{s-1}}{\left(t_{1}+1\right)^{2 s}} d t_{1} \tag{4.9}
\end{equation*}
$$

with $A_{j}=\left|\left(\beta \varepsilon_{0}^{j}\right) /\left(\tilde{\beta} \varepsilon_{0}^{j}\right)\right|^{2} t_{0}^{2}$ and $B_{j}=A_{j} \varepsilon^{4}$ for $j \in Z$. By Lemma 4.1, we see that $A_{j}=\left.|\beta| \tilde{\beta}\right|^{2} t_{0}^{2} \varepsilon^{(2 g / e) j}$ with $g=1$ or 2 and hence

$$
\begin{equation*}
\sum_{j=-\infty}^{\infty} \int_{A_{j}}^{B_{j}} \frac{t_{1}^{s-1}}{\left(t_{1}+1\right)^{2 s}} d t_{1}=\frac{2 e}{g} \frac{\Gamma(s)^{2}}{\Gamma(2 s)} . \tag{4.10}
\end{equation*}
$$

Since $\left\|\begin{array}{ll}\omega_{1} & \omega_{2} \\ \tilde{\omega}_{1} & \tilde{\omega}_{2}\end{array}\right\|^{2}=d_{2} N_{k / \boldsymbol{Q}}(\mathfrak{n})^{-1} N_{L / \mathbb{Q}}(\mathfrak{a})$, we get

$$
\begin{equation*}
|\omega-\tilde{\omega}|^{2}=\frac{d_{2}}{N_{k / Q}(\mathfrak{n})} \frac{N_{L / Q}(\mathfrak{a})}{\left|N_{L / Q}\left(\omega_{1}\right)\right|} . \tag{4.11}
\end{equation*}
$$

Substituting (4.10), (4.11) in (4.9), we find

$$
c_{0}=\frac{\Gamma(s)^{2}}{\Gamma(2 s)} \frac{e w_{L}(\mathrm{f}) d_{2}^{s}}{g} \Psi(C, s) .
$$

Recalling $R_{L}(\mathfrak{f})=(g / e) \log \varepsilon$, we obtain (4.7).
Consequently, combining Theorems 2.1, 2.2 with Theorem 4.3, we get
Theorem 4.4. Let C be any ray class modulo \mathfrak{f} in L and let $c \in C$ be an integral ideal prime to \mathfrak{f}. We write $\mathfrak{a}=\mathfrak{c} /\left(\vartheta_{L} \mathfrak{f}\right)=\mathfrak{g} \omega_{1}+\mathfrak{n} \omega_{2}$ as \mathfrak{g}-module where \mathfrak{n} is an ideal in k. Put $\omega=\omega_{1}^{-1} \omega_{2}$ and $u=\operatorname{Tr}_{L / k}\left(\omega_{j}\right)(j=1,2)$.

Let $\Psi(C, s)$ be as in (3.2) and let $\rho(t)$ be the curve defined by (4.6).
(i) If $\dagger=(1)$, we have

$$
\begin{align*}
\lim _{s \rightarrow 1} & \left\{\Psi(C, s)-\frac{4 \pi^{2} R_{L}(1)}{w_{L}(1) d_{1} d_{2}} \frac{1}{s-1}\right\} \tag{4.12}\\
& =\frac{4 \pi^{2} R_{L}(1)}{w_{L}(1) d_{1} d_{2}}\left\{\frac{w_{k} \sqrt{d_{1}}}{\pi} \alpha_{0}\left(\mathfrak{n}^{-1}\right)-\log d_{2}-\log N_{k / Q}(\mathfrak{n})\right. \\
& \left.\quad-\frac{1}{2 \log \varepsilon} \int_{t_{0}}^{t_{0} \varepsilon^{2}}\left\{\log v(t)^{2}-h_{8, n}(\rho(t))\right\} \frac{d t}{t}\right\}
\end{align*}
$$

where $h_{\mathfrak{g}, \mathfrak{n}}(\xi)$ is given by (2.3) with $\mathfrak{m}=\mathfrak{g}$.
(ii) If $\mathrm{f} \neq(1)$, we have

$$
\begin{equation*}
\Psi(C, 1)=\frac{R_{L}(\mathrm{f})}{w_{L}(\mathrm{f}) d_{2}} \frac{1}{\log \varepsilon} \int_{t_{0}}^{t_{0} \varepsilon^{2}} \psi_{\mathrm{g}, \mathrm{n}}\left(-u_{1} \rho(t)+u_{2}, \rho(t)\right) \frac{d t}{t} \tag{4.13}
\end{equation*}
$$

where $\psi_{\mathrm{g}, \mathrm{n}}(\zeta, \xi)$ is given by (2.6) with $\mathrm{m}=\mathrm{g}$. In the above, $t_{0}>0$ is any real number.

§ 5. Computations of the integral

In this section we shall compute the integrals in Theorem 4.4. To proceed the computations, we take $t_{0}=\varepsilon^{\prime}, t_{0} \varepsilon^{2}=\varepsilon$. Put

$$
\begin{align*}
& I_{1}=\int_{\iota^{\prime}}^{\varepsilon}\left\{\log v(t)^{2}-h_{8, \mathrm{n}}(\rho(t))\right\} \frac{d t}{t} \tag{5.1}\\
& I_{2}=\int_{\varepsilon^{\prime}}^{\varepsilon} \psi_{\mathrm{g}, \mathrm{n}}\left(-u_{1} \rho(t)+u_{2}, \rho(t)\right) \frac{d t}{t} \tag{5.2}
\end{align*}
$$

where $\rho(t)=z(t)+v(t) j(t>0)$ is given by (4.6). We write $\nu=(1 / 2)(\omega-\tilde{\omega})$ and for any $p \in C^{\times}, q \in \boldsymbol{C}$, we define

$$
\begin{equation*}
H(p, q)=\int_{\iota^{\prime}}^{e} v(t) K_{1}(4 \pi|p| v(t))(e[-p z(t)-q]+e[p z(t)+q]) \frac{d t}{t} \tag{5.3}
\end{equation*}
$$

Step 1. We show that the problem is reduced to the computation of $H(p, q)$. It is easy to see that

$$
\begin{equation*}
\int_{\varepsilon^{\prime}}^{\varepsilon} v(t)^{2} \frac{d t}{t}=2|\nu|^{\varepsilon^{2}-1} \frac{\varepsilon^{2}}{\varepsilon^{2}+1} . \tag{5.4}
\end{equation*}
$$

Lemma 5.1. We have

$$
\begin{equation*}
\int_{\iota^{\prime}}^{\varepsilon} \log v(t)^{2} \frac{d t}{t}=\log \left(4|\nu|^{2}\right) \cdot \log \varepsilon^{2}-2(\log \varepsilon)^{2}+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}\left(1-\varepsilon^{-2 n}\right) \tag{5.5}
\end{equation*}
$$

Proof. Since $v(t)=2|\nu| t /\left(t^{2}+1\right)$, we write $\int_{\epsilon^{\prime}}^{\varepsilon} \log v(t)^{2}(d t / t)=2 \log (2|\nu|)$ $\times \int_{\varepsilon^{\prime}}^{\varepsilon}(d t / t)+2 \int_{\varepsilon^{\prime}}^{\varepsilon} \log t(d t / t)-2 \int_{\varepsilon^{\prime}}^{\varepsilon} \log \left(1+t^{2}\right)(d t / t)$. The first (second) term is $\log \left(4|\nu|^{2}\right) \cdot \log \varepsilon^{2}\left(0\right.$, respectively). As to the third term, we write $\int_{\varepsilon^{\prime}}^{\varepsilon}=$ $\int_{e^{\prime}}^{1}+\int_{1}^{s}$. Replacing t^{-1} for t in \int_{1}^{e}, we get

$$
2 \int_{\varepsilon^{\prime}}^{\varepsilon} \log \left(1+t^{2}\right) \frac{d t}{t}=4 \int_{\varepsilon^{\prime}}^{1} \log \left(1+t^{2}\right) \frac{d t}{t}-4 \int_{\varepsilon^{\prime}}^{1} \log t \frac{d t}{t}
$$

Since $\log (1+X)=\sum_{n=1}^{\infty}\left((-1)^{n-1} / n\right) X^{n} \quad$ (uniformly convergent for $0 \leqq$ $X \leqq 1$), we obtain

$$
2 \int_{\varepsilon^{\prime}}^{\epsilon} \log \left(1+t^{2}\right) \frac{d t}{t}=2 \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}\left(1-\varepsilon^{-2 n}\right)+2(\log \varepsilon)^{2} .
$$

This proves (5.5).
Note that $\tau_{1 / 2}(\mathfrak{g}, \mathfrak{n}, n)=\tau_{1 / 2}(\mathfrak{g}, \mathfrak{n},-n) . \quad$ In (2.3), let $\mathfrak{m}=\mathfrak{g}$ and take the summation " $0 \neq n \in \mathfrak{n} /\{ \pm 1\}$ " for " $0 \neq n \in \mathfrak{n}$ ". By (5.1), (5.3), (5.4), (5.5), we get

$$
\begin{align*}
I_{1}= & 2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}\left(1-\varepsilon^{-2 n}\right)-2(\log \varepsilon)^{2} \tag{5.6}\\
& +\log \varepsilon^{2} \cdot \log \left(4|\nu|^{2}\right)-\frac{w_{k} d_{1}}{\pi^{2}} \frac{\varepsilon^{2}-1}{\varepsilon^{2}+1} N_{k / \mathbf{Q}}(\mathfrak{n}) \zeta_{k}((\mathrm{~g}), 2)|\nu|^{2} \\
& -4 \sum_{0 \neq n \in \mathfrak{n} /\{ \pm 1\}}^{\prime} \tau_{1 / 2}(\mathfrak{g}, \mathfrak{n}, n) H\left(n / \sqrt{-d_{1}}, 0\right) .
\end{align*}
$$

Similarly, taking $\mathfrak{m}=\mathfrak{g}$ and $\zeta=-u_{1} \xi+u_{2}$ in (2.6), we get

$$
\begin{align*}
I_{2}= & \log \varepsilon^{2} \cdot b\left(u_{1}, u_{2}\right)+2 \frac{\varepsilon^{2}-1}{\varepsilon^{2}+1} N_{k / \boldsymbol{Q}}(\mathfrak{n}) G_{\mathfrak{g}}\left(2, u_{1}\right)|\nu|^{2} \tag{5.7}\\
& +\frac{8 \pi^{2}}{\sqrt{d_{1}}} N_{k / Q}(\mathfrak{n}) \sum_{0 \neq n \in \mathrm{n} /\{ \pm 1\}}^{\prime} \sum_{u_{1} \neq m \in \mathfrak{g}}^{\prime}\left|\frac{m-u_{1}}{n}\right| H\left(n\left(m-u_{1}\right), n u_{2}\right) .
\end{align*}
$$

Thus it is sufficient to compute $H(p, q)$. To this purpose, we consider the differential form on H whose integral along the path $\rho(t)\left(\varepsilon^{\prime} \leqq t \leqq \varepsilon\right)$ contains $H(p, q)$.

Step 2. We construct certain closed form on \boldsymbol{H}. Let B_{1} be as in $\S 1$ and let $\left\{-v^{-1} d z, v^{-1} d v, v^{-1} d \bar{z}\right\}$ be a basis for the left B_{1} invarinat forms on \boldsymbol{H}. We write

$$
\begin{equation*}
\eta=K_{1}(4 \pi v) e[-z] \frac{d z}{v}-2 i K_{2}(4 \pi v) e[-z] \frac{d v}{v}+K_{1}(4 \pi v) e[-z] \frac{d \bar{z}}{v} . \tag{5.8}
\end{equation*}
$$

Since $(d / d X)\left(X^{-1} K_{1}(X)\right)=-X^{-1} K_{2}(X), \eta$ is a closed form. For $p \in C^{\times}$, $q \in \boldsymbol{C}$, let $\varphi_{p, q}$ be the transformation $\xi \rightarrow p^{-1 / 2}\left(\begin{array}{cc}p & q \\ 0 & 1\end{array}\right)(\xi)$ on \boldsymbol{H}. Let $\left(\varphi_{p, q}\right)^{*}$ be the linear map of the cotangent space on \boldsymbol{H} induced by $\varphi_{p, q}$. We get

$$
\begin{align*}
\left(\varphi_{p, q}\right)^{*}(\eta)= & \frac{p}{|p|} K_{1}(4 \pi|p| v) e[-p z-q] \frac{d z}{v} \tag{5.9}\\
& +\frac{\bar{p}}{|p|} K_{1}(4 \pi|p| v) e[-p z-q] \frac{d \bar{z}}{v} \\
& -2 i K_{2}(4 \pi|p| v) e[-p z-q] \frac{d v}{v}
\end{align*}
$$

Then $\left(\varphi_{p, q}\right) *(\eta)-\left(\varphi_{-p,-q}\right) *(\eta)$ is the closed form what we wanted.
Let us now compute

$$
\begin{equation*}
J=\int_{\rho\left(\varepsilon^{\prime}\right)}^{\rho(\varepsilon)}\left(\varphi_{p, q}\right) *(\eta)-\left(\varphi_{-p,-q}\right) *(\eta) . \tag{5.10}
\end{equation*}
$$

As we have seen above J does not depend on the choice of the path joining $\rho\left(\varepsilon^{\prime}\right)$ and $\rho(\varepsilon)$. We write $\rho\left(\varepsilon^{\prime}\right)=x_{0}+y_{0} i+v_{0} j, \rho(\varepsilon)=x_{0}^{*}+y_{0}^{*} i+v_{0} j$, $z_{0}=x_{0}+y_{0} i$ and $z_{0}^{*}=x_{0}^{*}+y_{0}^{*} i$. Let κ be the broken line joining $\rho\left(\varepsilon^{\prime}\right) \rightarrow$ $x_{0}^{*}+y_{0} i+v_{0} j \rightarrow \rho(\varepsilon)$.

Step 3. We compute J along κ.
Lemma 5.2. We have

$$
\begin{align*}
J & =\int_{\kappa}\left(\varphi_{p, q}\right)^{*}(\eta)-\left(\varphi_{-p,-q}\right) *(\eta) \tag{5.11}\\
& =\frac{2}{\pi|p| v_{0}} K_{1}\left(4 \pi|p| v_{0}\right) \sin \left(2 \pi S(p \nu) \frac{\varepsilon^{2}-1}{\varepsilon^{2}+1}\right) \cos (\pi S(p \omega+p \tilde{\omega}+2 q))
\end{align*}
$$

Proof. The choice of κ implies that

$$
J=\frac{2}{|p| v_{0}} K_{1}\left(4 \pi|p| v_{0}\right) \int_{\kappa} \cos (2 \pi S(p z+q)) p d z+\cos (2 \pi S(p z+q)) \bar{p} d \bar{z}
$$

Substitute $p=p_{1}+p_{2} i, \quad q=q_{1}+q_{2} i$ and $z=x+y i$ with $p_{j}, q_{j}, x, y \in \boldsymbol{R}$ ($j=1,2$). By a direct computations, we get

$$
J=\frac{2}{\pi|p| v_{0}} K_{1}\left(4 \pi|p| v_{0}\right) \sin \left(\pi S\left(p z_{0}^{*}-p z_{0}\right)\right) \cos \left(\pi S\left(p z_{0}^{*}+p z_{0}+2 q\right)\right)
$$

Note that $z_{0}=\left(\varepsilon^{2} \tilde{\omega}+\omega\right) /\left(\varepsilon^{2}+1\right), \quad z_{0}^{*}=\left(\varepsilon^{2} \omega+\widetilde{\omega}\right) /\left(\varepsilon^{2}+1\right), \quad S\left(p z_{0}^{*}-p z_{0}\right)=$ $2 S(p \nu)\left(\varepsilon^{2}-1\right) /\left(\varepsilon^{2}+1\right)$ and $S\left(p z_{0}^{*}+p z_{0}+2 q\right)=S(p \omega+p \tilde{\omega}+2 q)$. From this we find (5.11).

Step 4. We obtain another expression for J which contains $H(p, q)$. Regarding $\rho=\rho(t)$ as the C^{∞}-map of \boldsymbol{R}^{+}into \boldsymbol{H}, let ρ^{*} be the associated linear map from the cotangent space on \boldsymbol{H} to that on \boldsymbol{R}^{+}. By a little computation, we get

Lemma 5.3. We have

$$
\begin{align*}
& \rho^{*}\left(v^{-2} d z\right)=(\bar{\nu} t)^{-1} d t, \quad \rho^{*}\left(v^{-2} d \bar{z}\right)=(\nu t)^{-1} d t \tag{5.12}\\
& \rho^{*}\left(v^{-2} d v\right)=\left(1-t^{2}\right)\left(2|\nu| t^{2}\right)^{-1} d t .
\end{align*}
$$

By (5.9) and Lemma 5.3, we get

$$
\begin{aligned}
& \rho^{*}\left(\left(\varphi_{p, q}\right) *(\eta)-\left(\varphi_{-p,-q}\right) *(\eta)\right) \\
&=\left(\frac{p}{\bar{\nu}|p|}+\frac{\bar{p}}{\nu|p|}\right) v(t) K_{1}(4 \pi|p| v(t))(e[-p z(t)-q]+e[p z(t)+q]) \frac{d t}{t} \\
& \quad-2 i v(t) K_{2}(4 \pi|p| v(t))(e[-p z(t)-q]-e[p z(t)+q]) \frac{1-t^{2}}{2|\nu| t^{2}} d t .
\end{aligned}
$$

Note that $p / \bar{\nu}|p|+\bar{p} / \nu|p|=|p| S\left((p \nu)^{-1}\right)$. By (5.3), the integral (5.10) taken along the path $\rho(t)\left(\varepsilon^{\prime} \leqq t \leqq \varepsilon\right)$ is given by

$$
\begin{equation*}
J=|p| S\left((p \nu)^{-1}\right) H(p, q)-J_{1} \tag{5.13}
\end{equation*}
$$

where J_{1} is

$$
\begin{equation*}
J_{1}=4 \int_{\varepsilon^{\prime}}^{\epsilon} v(t) K_{2}(4 \pi|p| v(t)) \sin (2 \pi S(p z(t)+q)) \frac{1-t^{2}}{2|\nu| t^{2}} d t \tag{5.14}
\end{equation*}
$$

Step 5. Computation of J_{1}. We write $J_{1}=4\left(\int_{\varepsilon^{\prime}}^{1}+\int_{1}^{c}\right)$. Replacing t by t^{-1} in \int_{1}^{t}, we find that

$$
\begin{aligned}
J_{1}= & 4 \int_{\varepsilon^{\prime}}^{1} v(t) K_{2}(4 \pi|p| v(t)) \\
& \times\left\{\sin (2 \pi S(p z(t)+q))-\sin \left(2 \pi S\left(p z\left(t^{-1}\right)+q\right)\right)\right\} \frac{1-t^{2}}{2|\nu| t^{2}} d t .
\end{aligned}
$$

Since $z(t)+z\left(t^{-1}\right)=\omega+\tilde{\omega}$ and $z(t)-z\left(t^{-1}\right)=-2 \nu\left(1-t^{2}\right) /\left(1+t^{2}\right)$, we get

$$
\begin{aligned}
J_{1}= & -8 \cos (\pi S(p \omega+p \tilde{\omega}+2 q)) \int_{\varepsilon^{\prime}}^{1} v(t) K_{2}(4 \pi|p| v(t)) \\
& \times \sin \left(2 \pi S(p \nu) \frac{1-t^{2}}{1+t^{2}}\right) \frac{1-t^{2}}{2|\nu| t^{2}} d t .
\end{aligned}
$$

For $0<t \leqq 1, v(t)=2|\nu| t /\left(1+t^{2}\right)$ is the increasing function and we see that $\left(1-t^{2}\right) /\left(1+t^{2}\right)=\sqrt{1-(v(t) / / \nu)^{2}}$. Hence we can rewrite J_{1} as an integral in v. Furthermore, replacing $4 \pi|p| v$ by v, we get

$$
\begin{align*}
J_{1}= & -8 \cos (\pi S(p \omega+p \tilde{\omega}+2 q)) \tag{5.15}\\
& \times \int_{4 \pi|p| v_{0}}^{4 \pi|p \nu|} v^{-1} K_{2}(v) \sin \left(2 \pi S(p \nu) \sqrt{1-\left(\frac{v}{4 \pi|p \nu|}\right)^{2}}\right) d v
\end{align*}
$$

where $v_{0}=v(\varepsilon)=v\left(\varepsilon^{\prime}\right)=2|\nu| \varepsilon /\left(1+\varepsilon^{2}\right)$.
Lemma 5.4. Let α and β be real numbers with $\beta>0$. Let $F(v, \alpha, \beta)$ be the indefinite integral of the function $f(v)=v^{-1} K_{2}(v) \sin \left(\alpha \sqrt{\left.1-(\beta v)^{2}\right)}\right.$ for $0<v \leqq \beta^{-1}$. Then we have
(5.16) $\quad F(v, \alpha, \beta)=-\sin \alpha \cdot v^{-1} K_{1}(v)$

$$
\begin{aligned}
& +\sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{(2 j-1)!} \alpha^{9 j-1} \sum_{k=1}^{\infty}\binom{j-1 / 2}{k} \beta^{2 k}\left(2 k v K_{2}(v) \cdot i S_{2 k-2,1}(i v)\right. \\
& \left.+v K_{1}(v) \cdot S_{2 k-1,2}(i v)\right)
\end{aligned}
$$

where $S_{m, n}(Z)$ are the Lommel's functions satisfying inhomogeneous Bessel differential equations

$$
\begin{equation*}
Z^{2} \frac{d^{2} S}{d Z^{2}}+Z \frac{d S}{d Z}+\left(Z^{2}-n^{2}\right) S=Z^{m+1} \quad \text { ([8], p. 108-109). } \tag{5.17}
\end{equation*}
$$

Proof. By the Taylor expansion of $\sin \left(\alpha \sqrt{1-(\beta v)^{2}}\right)$, we see that

$$
\begin{equation*}
f(v)=\sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{(2 j-1)!} \alpha^{2 j-1} v^{-1} K_{2}(v)\left(1-(\beta v)^{2}\right)^{j-1 / 2} . \tag{5.18}
\end{equation*}
$$

The series converges uniformly on any closed interval $[A, B]$ in $\left(0, \beta^{-1}\right]$. The integration $\int_{B}^{A} f(v) d v$ can be done term by term. Since $j \geqq 1$, $\sum_{k=0}^{\infty}(-1)^{k}\binom{j-1 / 2}{k}(\beta v)^{2 k}$ converges uniformly to $\left(1-(\beta v)^{2}\right)^{j-1 / 2} \quad(0 \leqq v$ $\left.\leqq \beta^{-1}\right)$ by Abel's theorem. Thus, for any $[A, B] \subset\left(0, \beta^{-1}\right]$, we get

$$
\begin{equation*}
\int_{A}^{B} v^{-1} K_{2}(v)\left(1-(\beta v)^{2}\right)^{j-1 / 2} d v=\sum_{k=0}^{\infty}(-1)^{k}\binom{j-1 / 2}{k} \beta^{2 k} \int_{A}^{B} v^{2 k-1} K_{2}(v) d v \tag{5.19}
\end{equation*}
$$

Recall that

$$
\begin{align*}
\int_{A}^{B} v^{-1} K_{2}(v) d v=- & \left.v^{-1} K_{1}(v)\right|_{A} ^{B} \tag{5.20}\\
\int_{A}^{B} v^{2 k-1} K_{2}(v) d v= & (-1)^{k}\left\{2 k v K_{2}(v) \cdot i S_{2 k-2,1}(i v)\right. \tag{5.21}\\
& \left.+v K_{1}(v) \cdot S_{2 k-1,2}(i v)\right\}\left.\right|_{A} ^{B} \quad \text { for } k \geqq 1
\end{align*}
$$

([8], p. 87). By (5.18), (5.19), (5.20), (5.21), we find that

$$
\int_{A}^{B} f(v) d v=F(B, \alpha, \beta)-F(A, \alpha, \beta) .
$$

Let $F(v, \alpha, \beta)$ be as in Lemma 5.4. For any $\lambda \in C^{\times}$and for any v satisfying $0<v \leqq 4 \pi|\lambda|$, we define $F_{\lambda}(v)$ by putting

$$
\begin{align*}
F_{\lambda}(v) & =F\left(v, 2 \pi S(\lambda),(4 \pi|\lambda|)^{-1}\right) \tag{5.22}\\
& =-\sin (2 \pi S(\lambda)) \cdot v^{-1} K_{1}(v)+\sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{(2 j-1)!}(2 \pi S(\lambda))^{2 j-1} \\
& \times \sum_{k=1}^{\infty}\left(c^{j-1 / 2}\right)(4 \pi|\lambda|)^{-2 k}\left\{2 k v K_{2}(v) \cdot i S_{2 k-2,1}(i v)+v K_{1}(v) \cdot S_{2 k-1,2}(i v)\right\} .
\end{align*}
$$

Then, in view of (5.15), Lemma 5.4 and (5.22), we get

$$
\begin{equation*}
J_{1}=-8\left\{F_{p \nu}(4 \pi|p \nu|)-F_{p \nu}\left(\frac{8 \varepsilon \pi|p \nu|}{\varepsilon^{2}+1}\right)\right\} \cos (\pi S(p \omega+p \tilde{\omega}+2 q)) . \tag{5.23}
\end{equation*}
$$

Consequently, by (5.11), (5.13), (5.23), we obtain
Proposition 5.5. Notations being as above. Then we have

$$
\begin{align*}
H(p, q)= & \frac{1}{|p| S(1 / p \nu)}\left\{\frac{\varepsilon^{2}+1}{\varepsilon \pi|p \nu|} K_{1}\left(\frac{8 \varepsilon \pi|p \nu|}{\varepsilon^{2}+1}\right) \sin \left(2 \pi S(p \nu) \frac{\varepsilon^{2}-1}{\varepsilon^{2}+1}\right)\right. \tag{5.24}\\
& \left.-8 F_{p \nu}(4 \pi|p \nu|)+8 F_{p \nu}\left(\frac{8 \varepsilon \pi|p \nu|}{\varepsilon^{2}+1}\right)\right\} \cos (\pi S(p \omega+p \tilde{\omega}+2 q)) .
\end{align*}
$$

In particular, if $\mathfrak{f}=(1)$ and $0 \neq n \in \mathfrak{n}$, then we have

$$
\begin{align*}
& H\left(n / \sqrt{-d_{1}}, 0\right)=\frac{\sqrt{d_{1}}}{|n| S\left(\sqrt{\left.-d_{1} /(n \nu)\right)}\right.}\left\{\frac{\sqrt{d_{1}}\left(\varepsilon^{2}+1\right)}{\varepsilon \pi|n \nu|} K_{1}\left(\frac{8 \varepsilon \pi|n \nu|}{\sqrt{d_{1}}\left(\varepsilon^{2}+1\right)}\right)\right. \tag{5.25}\\
& \times \sin \left(2 \pi S\left(n \nu / \sqrt{-d_{1}}\right) \frac{\varepsilon^{2}-1}{\varepsilon^{2}+1}\right)-8 F_{n \nu / \sqrt{-d_{1}}}\left(4 \pi|n \nu| / \sqrt{d_{1}}\right) \\
&\left.+8 F_{n \nu / \sqrt{-d_{1}}}\left(\frac{8 \varepsilon \pi|n \nu|}{\sqrt{d_{1}}\left(\varepsilon^{2}+1\right)}\right)\right\} \cos \left(\pi \operatorname{Tr}_{L / Q}\left(n \omega / \sqrt{-d_{1}}\right)\right) .
\end{align*}
$$

If $\mathfrak{f} \neq(1)$, then for any $(m, n) \in \mathfrak{g} \oplus \mathfrak{n}$ satisfying $n\left(m-u_{1}\right) \neq 0$ we have

$$
\begin{align*}
& H\left(n\left(m-u_{1}\right), n u_{2}\right)=\frac{1}{\left|n\left(m-u_{1}\right)\right| S\left(\left(n \nu\left(m-u_{1}\right)\right)^{-1}\right)} \tag{5.26}\\
& \quad \times\left\{\frac{\varepsilon^{2}+1}{\varepsilon \pi\left|n \nu\left(m-u_{1}\right)\right|} K_{1}\left(\frac{8 \varepsilon \pi\left|n \nu\left(m-u_{1}\right)\right|}{\varepsilon^{2}+1}\right) \sin \left(2 \pi S\left(n \nu\left(m-u_{1}\right)\right) \frac{\varepsilon^{2}-1}{\varepsilon^{2}+1}\right)\right. \\
& \left.\quad-8 F_{n \nu\left(m-u_{1}\right)}\left(4 \pi\left|n \nu\left(m-u_{1}\right)\right|\right)+8 F_{n \nu\left(m-u_{1}\right)}\left(\frac{8 \varepsilon \pi\left|n \nu\left(m-u_{1}\right)\right|}{\varepsilon^{2}+1}\right)\right\} \\
& \quad \times \cos \left(\pi \mathrm{Tr}_{L / 2}\left(n\left(m-u_{1}\right) \omega+n u_{2}\right)\right) .
\end{align*}
$$

Finally, we obtained
Theorem 5.6. Let C be any absolute ideal class in L. For an iniegral ideal $\mathfrak{c} \in C$, we write $\mathfrak{a}=\mathfrak{c} / \vartheta_{L}=\mathfrak{g} \omega_{1}+\mathfrak{n} \omega_{2}$ (as \mathfrak{g}-module), where \mathfrak{n} is an ideal in k. We put $\omega=\omega_{1}^{-1} \omega_{2}$ and $\nu=\frac{1}{2}(\omega-\widetilde{\omega})$. Let $\Psi(C, s)$ be the function defined by (3.2) with $f=(1)$. Then we have

$$
\begin{align*}
\Psi(C, s)= & \frac{4 \pi^{2} R_{L}(1)}{w_{L}(1) d_{1} d_{2}}\left\{\frac{1}{s-1}+\frac{w_{k} \sqrt{d_{1}}}{\pi} \alpha_{0}\left(\mathfrak{n}^{-1}\right)-\log d_{2}\right. \tag{5.27}\\
& -\log N_{k / \Omega}(\mathfrak{n})+\frac{1}{\log \varepsilon} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}\left(1-\varepsilon^{-2 n}\right)+\log \varepsilon \\
& -\log 4-\log |\nu|^{2}+\frac{w_{k} d_{1}}{2 \pi^{2} \log \varepsilon} \frac{\varepsilon^{2}-1}{\varepsilon^{2}+1} N_{k / Q}(\mathfrak{n}) \zeta_{k}((\mathfrak{g}), 2)|\nu|^{2} \\
& \left.+\frac{2}{\log \varepsilon} \sum_{0 \neq n \in \mathfrak{n} /\lfloor \pm 1\}}^{\prime} \tau_{1 / 2}(\mathfrak{g}, \mathfrak{n}, n) H\left(n / \sqrt{-d_{1}}, 0\right)\right\}+O(|s-1|)
\end{align*}
$$

where $H\left(n / \sqrt{-d_{1}}, 0\right)$ are given by (5.25).
Theorem 5.7. Let $\mathfrak{f} \neq(1)$ be any integral ideal in L and let C be any ray class modulo f in L. Suppose $c \in C$ is an integral ideal which is prime to \mathfrak{f}. Put $\mathfrak{a}=\mathfrak{c} /\left(\vartheta_{L} \mathfrak{f}\right)=\mathfrak{g} \omega_{1}+\mathfrak{n} \omega_{2}$ (as \mathfrak{g}-module), where \mathfrak{n} is an ideal in k. Further we put $u_{j}=\operatorname{Tr}_{L / k}\left(\omega_{j}\right)(j=1,2), \omega=\omega_{1}^{-1} \omega_{2}$ and $\nu=\frac{1}{2}(\omega-\tilde{\omega})$. Let $\Psi(C, s)$ be the function defined by (3.2). Then the function $\Psi(C, s)$ is holomorphic at $s=1$ and we have

$$
\begin{align*}
& \Psi(C, 1)=\frac{2 R_{L}(\mathrm{f})}{w_{L}(\mathrm{f}) d_{2}}\left\{b\left(u_{1}, u_{2}\right)+\frac{1}{\log \varepsilon} \frac{\varepsilon^{2}-1}{\varepsilon^{2}+1} N_{k / Q}(\mathfrak{n}) G_{\mathfrak{g}}\left(2, u_{1}\right)|\nu|^{2}\right. \tag{5.28}\\
& \left.\quad+\frac{4 \pi^{2}}{\sqrt{d_{1}} \log \varepsilon} N_{k / \ell}(\mathfrak{n}) \sum_{0 \neq n \in \mathrm{n} /\{ \pm 1\}}^{\prime} \sum_{u_{1} \neq m \in \mathfrak{g}}^{\prime}\left|\frac{m-u_{1}}{n}\right| H\left(n\left(m-u_{1}\right), n u_{2}\right)\right\}
\end{align*}
$$

where $H\left(n\left(m-u_{1}\right), n u_{2}\right)$ are given in (5.26).
Remark. In the case of imaginary quadratic field $\boldsymbol{Q}(\sqrt{-d})(-d$; the discriminant), the Kronecker limit formula was given by

$$
\begin{aligned}
\zeta(s, A)= & \frac{2 \pi}{w \sqrt{d}}\left\{\frac{1}{s-1}+2 \gamma-\log \sqrt{d}-\log 2-\log y-2 \log |\eta(z)|^{2}\right\} \\
& +O(|s-1|) \quad(\gamma ; \text { Euler constant })
\end{aligned}
$$

Here A is an absolute ideal class; $\mathfrak{b} \in A$ is an ideal with Z-basis [1, z], $z=x+y i(y>0) ; w$ is the number of roots of unity in $\boldsymbol{Q}(\sqrt{-d})$ and

$$
-\log |\eta(z)|^{2}=\frac{\pi}{6} y+2 \sum_{n=1}^{\infty} \sigma_{-1}(n) e^{-2 \pi n y} \cos (2 \pi n x)
$$

The formula (5.27) may be regarded as a generalization of this. In fact, $\mu=\frac{1}{2}(\omega+\overparen{\omega})$ and $\nu=\frac{1}{2}(\omega-\overparen{\omega})$ corresponds to x and $y i$, respectively. The function

$$
\begin{aligned}
& \Phi(\omega, \tilde{\omega})=\frac{\varepsilon^{2}-1}{\varepsilon^{2}+1} \cdot \frac{w_{k} d_{1}}{\pi^{2}} N_{k / Q}(\mathfrak{n}) \zeta_{k}((\mathfrak{g}), 2)|\nu|^{2} \\
& \quad+4 \sum_{0 \neq n \in \mathfrak{n} /\{ \pm 1\}}^{\prime} \tau_{1 / 2}(\mathfrak{g}, \mathfrak{n}, n) H\left(n / \sqrt{-d_{1}}, 0\right)
\end{aligned}
$$

(the Fourier cosine series in μ whose Fourier coefficients are the functions of ν), can be considered to be an analogy of $-\log |\eta(z)|^{2}$.

References

[1] T. Asai, On a certain function analogous to $\log |\eta(z)|$, Nagoya Math. J., 40 (1970), 193-211.
[2] A. F. Beardon, The geometry of discrete groups; Discrete groups and automorphic functions, Proc. Conf. Univ. Cambridge (1975).
[3] J. Elstrodt, F. Grunewald, J. Mennicke, Eisenstein series on three-dimensional hyperbolic space and imaginary quadratic fields, J. reine angew. Math., 360 (1985).
[4] G. Fujisaki, Algebraic number theory (in Japanese), Shōkabō (1974).
[5] E. Hecke, Mathematische Werke, Göttingen (1959).
[6] S. Konno, On Kronecker limit formula for certain biquadratic fields, Advanced Studies in Pure Math., 13 (1988), 297-311.
[7] T. Kubota, Über diskontinuierliche Gruppen vom Picardschen Typus und zugehörige Eisensteinsche Reihen, Nagoya Math. J., 32 (1968), 259-271.
[8] W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and theorems for the special functions of mathematical physics, Grundl. math. Wiss. 52, Berlin-Heidelberg-New York (1966).
[9] C. L. Siegel, Lecture notes on advanced analytic number theory, Bombay (1961).
[10] - Bernoullische Polynome und quadratische Zahlkörper, Gesammelte Abhandlungen Bd IV.
[11] A. Weil, Dirichlet series and automorphic forms, Lecture notes in Math. 189, Springer-Verlag (1971).
[12] -, Elliptic functions according to Eisenstein and Kronecker, Berlin-HeidelbergNew York (1976).

Kobe Women's College of Pharmacy
Motoyama Kitamachi 4-19-1
Higashinada-ku, Kobe 657, Japan

