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§0. Introduction

Let L = kK be the composite of two imaginary quadratic fields %
and K. Suppose that the discriminants of 2 and K are relatively prime.
For any primitive ray class character X of L, we shall compute L(1,X)
for the Hecke L-function in L. We write f for the conductor of X and
C for the ray class modulo {. Let ce C be any integral ideal prime to f.
We write a = ¢/(9.f) = g, + nw, as g-module where g, n and 9, are, re-
spectively, the ring of integers in &, an ideal in 2 and the differente of
L. Let L(s, %) = T > W(C)¥(C,s) where T(X) is the Gaussian sum
and, as in (3.2),

VG, 8) = Nugle)' 331 €70 | Nesa)|* -
“f

In §1, 2, for each pair of ideals (m, n) in %, we associate Eisenstein
series in hyperbolic 3-space having characters. For this series, we show
the Kronecker limit formula. In §3, 4, we show that ¥'(C, s) is written
as the constant term in the Fourier expansion of the Eisenstein series
with reference to the hyperbolic substitution of SL,(k) (Theorems 4.3, 4.4).
In § 5, we compute the Kronecker limit formula for ¥(C, s) (Theorems 5.6,
5.7). The limit formula is written as the Fourier cosine series of w + &
(0 = wi'w,) whose coefficients are functions of o — @ where & is the con-
jugate of w over k.

Norations. We denote by Z, @, R and C, respectively, the ring of
rational integers, the rational number field, the real number field and
the complex number field. For ze C, z denotes the complex conjugate
of z. We write S(z2) = z + Z and |2 = 22. For zeC, v z means — r/2
<arg+y z < /2. For an associative ring A with identity element, A*
mugust 6, 1987.
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denotes the group of invertible element of A. We write e(x) = ¢*** for xe R

and e[z] = e(S(z)) for ze C. We denote K,(2Y) = 1/2 J.me“’“”'"t“‘dt.
0

§1. Eisenstein series in the 3-dimensional hyperbolic space

We shall consider Eisenstein series with characters in the 3-dimen-
sional hyperbolic space. Let K= C + Cj be the Hamilton quaternion
algebra with j satisfying = — 1, j'2j =z for ze C. Let { — denote
the quaternion conjugation in K and let N(£) = { be the quaternion
norm. Let H denote the 3-dimensional hyperbolic space. We write a
point Ee H as § = z + vj for 2ze C, v > 0 and consider H to be contained
in K.

Let B, be the subgroup of SL,C) consisting of elements b =
v“’2<8 i) with v >0, ze C. Then B, is a complete set of representa-
tives for the space of right cosets SL,(C)/SU(2,C). We shall identify

b= v"‘”(g i) € B, with the point &£ = 2z + vje H and we can view H =

B, = SL,(C)/SU2,C). Let ¢ H and be B, be as above. For any g =

<f;‘ g) e SL,(C), we can write

(1‘1) gb — v1—1/2<v1 Zl)c1

where v, = v/N(7& + 0), 2, = {(@z + B)Tz + &) + aTV*}/N(7¢ + 8) and

Tz4+0 —Tv

= N(r 8) 1
¢ v+ 9 < Tv Tz + 0

)e SU(2, C)

with N(7€ + 6) = |1z + 6} + |r[v*. Thus the left multiplication of g =

(?f g) on B, induces on H the transformation & — (@ + BE + 8)°';

_ (az + B)Iz + 6) + aTV v j
N@Ge + ) NG@e+0)" "

The group SL,(C)/{* I} act on H transitively and

1.2)  (af + P)TE + 0)

(1.3) ds® = v-*(dv* + dzdz)

is an invariant metric on H.
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Let &= Q(~— d)) be the imaginary quadratic field of discriminant
— d,. Denote by g the ring of integers in % and by § = g(1/v/ — d,) the
inverse differente. Let w, be the number of roots of unity in k. We
consider & to be contained in C. For an ideal a # 0, we write (a) for
the absolute ideal class of a and {,((a), s) for the zeta function of (a) in
k. Let a® b be the module consisting of all pairs (a, b) for aca, beb.
For any non-zero (fractional) ideals m, n in k, we define

P s e[— mu, — nu,)
(1'4) Em,n(E’ ul, u25 S) - UZ k/Q(mn) (m’n)ZGIn:(-B“ —_"]V—(;‘Ei—{__—_mjzsz

Here & = z 4+ vje H, (u,, u,) € C* and s e C; the summation is taken over
all (m, n) e {(m ® n\{(0,0)}. The series converges absolutely for Re (s) > 1.
We consider E, (&, u,, u,, s) to be a kind of Eisenstein series.

To get the Fourier expansion of E, (&, w,, u, s), we put
(1.5) D¢, u,s) = 2, e[— mulN(E +m)y  (Re(s) > 1)

mem
where £ H, ue C and se C. The self-dual Haar measure on C, with re-
spect to the basic character z —e[— 2], is |dz A dz| = 2dxdy (z = x + ¥i).
The dual lattice of m in C, with respect to the bicharacter (z, 2, —
e[— 2,2,], is Tl = m™'§.

Lemma 1.1. We have the Fourier expansion

s oo 228 — 1) 1 E(Z;'L')Zs ) 1
16) D u )= du T@s) v aNygm) © I'@s) v & N.o(m)
x 3y | —u [2*"K23-,<4nw — ulv)e[— (£ — u)z]

where §, = 1 or 0, according as uem or not.

Proof. Let @ be the fundamental parallelogram for C/m and let
|@Q| = v/ d, N o(m) be its area. Then z — D(&, u, s)e[— uz] is periodic with
period lattice m. Expanding this into Fourier series, we get

.7 D, u, s) = z‘?ﬁ, gve[— (¢ — u)?]
1 e[(4 — u)z] _
(1.8) %w-@Lﬂﬁiﬁﬁ&A&L

Applying Mellin transformation to this and by J+w e X2 -1XY X — /O c Y,

we get
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(1.9) I'(25)g{v) =

-2t - (27)2/¢t lé«-u]ﬂt‘.’.s - 2dt

% j "o
v d, Nk/Q(m) 0
Consequently, we have

2r'(2s — 1) 1

110 g = BLESD o =,
_ 220 1 ¢ —u| 3
aw e =05 e [ K10 — uly)

£ +u).
Substituting (1.10) and (1.11) in (1.7), we obtain (1.6).
Let a be any non-zero ideal in k. For ue C and se C, we define
(1.12) Gis,u) = 37 e[~ aul|Nio(a)|™" .
ProposiTiON 1.2. We have the Fourier expansion

(1.13) E, (& uy, u,, 8) = A(s) + B(s) + C(s) ;
A(s) = V¥ Ny ,o(mn)°G,(2s, u,) ,

— g2-2s 2x(2s — 1) Z\th/cz(m)sAZVk/Q(n)s
B = v e Va,
=0 for ugm,
_ 2(2z)* JV/:/Q(m)x‘1 k/Q(n)s ’ ;| — uy
C(S) N F(2s) \/E anZn;en m:L_‘ljem n
X vKy,_(4z|n(é — u)lv)e[— n(é — u)z — nu,] .

G.(2s — 1,u,) for u,efm;

2s -1

Proof. Since
E, (& wy, uy, 8) = v* k,Q(mn)so;&;;m e[— mu,]| N, o(m)|*
+ U* ,C,Q(mn)sh;e'“ e[— nu,]D(ng, u,, s),
by Lemma 1.1 and by (1.12), we obtain the proof.

The function E, (&, 0,0, s) also satisfies a functional equation. Let a
and b be non-zero ideals in k. For ce k* and se C, we define

(1.14) (3,5, €) = Nejo(a)'~2Ny,q(6) 2 3 Ny g(ch2) .
b

The summation is taken over all be b\{0} such that cb-'ea™'. It is a
finite sum and we see that z,(a, b, ¢) = 0 unless ce a~'6. By a little com-
putations we find that
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(1.15) (a,0,¢) = c_ (b7, a"l, ¢).
TuaeoreM 1.3. Let E, (&, u,, Uy, s) be as in (1.4). Then
Ennl&, 8) = I'2s)(2z/v d,) *E, (£ 0,0,5s)
is continued te the whole s-plane meromorphically and satisfies
(1.16) Eunl§, 8) = Errm-a(§,1 — ).
Proof. Let u, = u, =0 and ¢ = m/v/ — d, in (1.13). We see

A(8) = w0 Nyjo(m~'m))*Cu((m™), 29)
I'2s — 1) 2z

. B(s) = kaﬁ(vz we(m™ ) —*C((n™), 25 — 1)
) 2 2r \* ,
©&) = s («/Td ), 2 men e

X Ky, i(4z|n|v/v d,)e[— nzlv — d]] .

For any non-zero ideal a in &, Z((a™?), s) = I'(s)2x/v d,)*C.((a™?), s) is con-
tinued to the whole s-plane meromorphically and satisfies Z((a™'), s) =
Z((a),1 — s). Moreover z,_,, and K,,_, are holomorphic in the whole s-
plane, they satisfy (1.15) and K,,_, = K,_,,. From these we obtain the
proof.

§2. Kronecker limit formula for Eisenstein series

Let E, (&, u,, s, s) = A(s) + B(s) + C(s) be as in Proposition 1.2. We
discuss the following two cases respectively. Case (a) (u,, u,) € m~'§ @ n-'§,
case (b) (u, uy) e m~'g ® n-'g.

Case (a). In this case by (1.4), we may assume that u, = u, = 0.

THEOREM 2.1. The function E, .(&0,0,s) is continued holomorphic-
ally to Re(s) > 1/2 except for the simple pole at s=1. At s=1,
E, .(§0,0,s) has the expansion

2r’
2.1 E, (50,058 =
2.1 (& s) d s—1 + d

— log Nygm™n) — log v + hy,(&)} + O(s — 1)

a(nt) — 2

1 2r* {wk v d,

I

where

(2.2) a(nt) = 181_{111 {Ck((n—‘)’ s) — ” 2:;3— s i 1 } :
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The function h,, (&) is defined by

@3)  Ba(e) = “;;‘f* (M- mE(n), 2v?

+4 27 tpm,m, n)vK1(4nln‘v/\/7i;)e[~ nzlvy —dj.

O#n€m—1n

Proof can be done as in [1], [3], using Proposition 1.2.

Case (b). In this case we have

THEOREM 2.2. Suppose (u, w,)em '@ n-'d. Then E, (& u, u,s) is
holomorphic in Re (s) > 1/2 and we have

(24) Em,n(‘?f uh uZy 1) = b(uh uz) + Nk/Q(YITﬂ)Gm(2, ul)vz
8 ? / / - %
+ ;/—%—1 () 2. 2 m “

0#nEn urFEmMEmM—1j

UK1(477-" n(m — ul)lv)

X e[— n{im — u)z — nu,)
where blu,, u,) is given by

0 if uyem'g
(25) b(ul, u2) = 211'

‘1

Proof. In Proposition 1.2, A(s) and C(s) are holomorphic in Re (s) >
1/2. As to B(s), it is 0 when u, ¢ m~'d; it is holomorphic when u, € m—§j
and w, ¢ n~'§ ([12], p. 77, §10). Again by Proposition 1.2, we obtain the
proof.

As an analogy of log|%(w, 2)/5(2)} for the Kronecker’s second limit
formula, we write (¢, &) for the right hand side of (2.4). For any & ¢ H,
let &, = m~'§¢ + n~'d be the g-lattice in K. Let =, + {je K, (§, & e C)
and &€ = z 4+ vje H. When {¢.%,, we define

N, oG, u) if uyem™'§ and u,en'y.

26) Va6, & = b(— 0 G - —j-cz) + NogfmGa(2 — - G)o*

2
+ 8T Kom) 3 3 | K nlntmo + 0))
’\/dl 0#n€n 721@64_:\;;;% h
X e[—n(mz + §)].
Then we have
(2'7) Em,n($7 ul) u25 1) = \!"m,n(— ul& + uz: &) .

We see easily that
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(2‘8) '\[/‘m,n(c + CO’ S) == "!"m,u(C7 &-) fOI‘ CO e gf .
Let I" be the subgroup of SL,(k) defined by

a B
(2.9) r= {(7 5) e SL,(k)

mh® m)(“ ﬁ) =1nd m} .
7T o0

Then [I'/{+ I} is a discrete subgroup of SL,(C)/{+ I} and act on H prop-

erly discontinuously. For <;¥ g) el’, we write 4, = au, + pu, and 4, =

Tu, + ou,. Then (4, @) e m'§@ n~'g if and only if (u, w)em 'gd® n-'g.
Furthermore, we see that

(210) Em,n((“é + ﬁ)(ré + 5)-17 1217 ﬁz: 8) - Em,n(éy ul’ u'lv S) .
ProrositioN 2.3. For any <;¥ g) el’, we have
(1) hy((a + B)TE + 8)7") = hy, (&) — log N(7§ + 6)°
(D) Y5 + )7 (af + PIE + 7)) = v,ulG )

Proof. (1) It is well known ([1], [3]). (ii) For any {e K, we write
(= —ué + u with u,u,eC. Let @, = au, + pu, and 4, = Tu, 4 éu, be
as above. Since — a(a& + p)7E + 8)"' + 4, = L€ + 6)”', we obtain the
proof.

§3. Reduction of the problem

Let L = kK be the biquadratic field composed of two imaginary
quadratic fields & and K with discriminants — d, and — d, respectively.
We assume that d, and d, are relatively prime. Denote by o, the ring
of integers in L and by 9, the differente of L. Let | be any integral
ideal in L. Denote by E,(f) the group consisting of units in L which
satisfy = 1mod f. Let % be any primitive ray class character modulo |
in L. For any «eo, satisfying ((«), ) = 1, we can write X((«a)) = %)
where X, is a character of (0,/))*. We write X for 7,. Let L(s,X) be the
Hecke L-series. Our aim is to compute L(1, X).

Let 7,e€ L* be such that (1) = §/(9.f) with an integral ideal [) which
is prime to . We define

T = 1(h) >, 7(P)9(TrL/Q (Pro» .
pmod f

Note that T'(X) # 0 since X is primitive. Let C be any ray class modulo f
in L and let ¢ € C be an integral ideal which is prime to {. For a = ¢/(9.7),
we put
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@D ¥ia,8) = Nyja) 2" e(Trog I Nrolp)l (Re(s) > 1.
[ §

The summation is taken over all non-associated classes (u); in a\{0} with
respect to E,(f). Then ¥(a, s) depends only on C but not on the choice
of ¢. Therefore we define

8.2) U(C,s) = ¥Va,s).
It is known that
(3.3) L(s,x) = T(0)"* ; XC(C, s)

where the summation is taken over all ray classes modulo §, ([10]).
Thus to obtain L(1, X), we compute the limit formula for ¥(C, s).

§4. Limit formula for ¥(C, s)

Let M = Q(vd.d,) be the real quadratic subfield of L. Let x — & be
the non-trivial automorphism of L over k. If ye M, we write ' for 3.
We write o, for the ring of integers in M. Put f, = {N o, and let E;(f)
be the group consisting of units xe M with x = 1modf, and totally
positive. Let ¢ > 1 be the generating element of Ej(f,). Note that ¢ > 1
> >0. Let ¢, be a generating element of E.(f) modulo the torsion
subgroup. We choose ¢, such that |¢| > 1 and fix once and for all. Since
efo € Ei(1), let e be the least positive integer such that (e, € E;(f,).

LemMA 4.1. We have (g5,)° = €€ for g =1 or 2.

Proof. We can write (gg)° = ¢ for g = 1. Suppose g > 2. This
implies |efe™'f = ¢-* > 1. As an element of E(f), we write ¢ = {ef where
g=1 and ¢ is a root of unity. From 1 <|ee'|? = ¢"% we see e > q.
Since ef = |¢ [, "2 = *le, P, we get (eg)° ¢ Ej(f). This is a con-
tradiction.

Let C be any ray class modulo { and let ce C be an integral ideal
prime to . We write a = ¢/(9.]) as g-module;

4.1) a = g, + Nw,.

Here {0, )} (0,€ L;j = 1,2) are linearly independent over k& and n is a
non-zero (fractional) ideal in k. We shall fix the expression (4.1) and we

write o = o ,.

LeEmmaA 4.2. We can find an element <? 2) € SLy(k) such that
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. w @\fe O a b\/o &
(1) = ’
1 1/\0 ¢ c d/\1 1
.. a b
(i1) (n@g)( >=n@g.
c d
In particular, we have ¢ = co + d and ¢ = cd + d.
Proof. Take non-zero n<n. Since, we, nweeca, we find «,7en and
B,0eg such that nes = aw, + po, and e = Yo, + dw,. Then <Z g) =
-1
(6’ ‘1’) (¢ 5) satisfies () and (ii).
Let I' be the group defined by (2.9) with m =g. By Lemma 4.2,
(g 3) is a hyperbolic element of I', it generates an infinite cyclic sub-

group of I, moreover it has two fixed points w,® in C. From now on,
we deal E, (&, u,, u,, s) with m = g, n being as in (4.1) and

4.2) u; = Try () (G=12).

To be precise;

4. E s — 12 A s ’ e[— mu, — nuZ] .
(4.3) (&, Wy, Uy, 8) = VPN, () (m’%:ea@n NOE

Then (u,, u,) is of case (a) if and only if = (1). We write

4d) @ BE+ D), () = u)(z ;)

Then we find that

(4.5) E(&*, uf, uf, 8) = E(&%, us, uy, ) = E(§, s, Uy, 9)
Let p, denote the semi-circle in H which is defined by
. o + @ tlo — @)
@8 )=+ udi; Ay =L2EL, = om0l

where ¢ is a positive parameter. We see that p()* = p(te®) ([6]).

TurorREM 4.3. Notations being as above. Let w,(f) be the number of
roots of unity in E.f) and R, (}) = 2logle)| be the regulator of E.(f).
Then we have

dt

19 RO 1" B oo), w, w9 %

I(s) wy(d; loge

where t, > 0 is any real number.

4.7) ¥(C,s) =
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Proof. We put
toe? d
Cp = L En(P(t)’ Uy, Uy, 3)—;‘

By (4.5), the integrand is invariant by ¢—t. For (n, m)e n @ g\{(0, 0)},
we write — 8 =nw +m and — = né + m. Then B runs over the set
aw;™\{0} as (n, m) runs over the set n ®g\{(0, 0)}. By (4.2), (4.6) we see that
e[— mu, — nu] = e(Tryq(f0) and Nnp(®) + m) = (I8} + \FPIE + 1).
Substituting ¢ = |5/8]8, we get

_ lo—af s s e(Trye(Bw) &t
48 o= 2T N 4w P NJZ(gns [ e
with A = |g/fl: and B = Ae'. Any Be awi\{0} is written as (8);¢]{ where
{(p);} are complete set of representatives for the non-associated classes of
aw7\{0} modulo E,(f), je Z and ¢ is a root of unity in E,(f). Note that
e(Try o (Bw,))| N, ,0(B)|-¢ is invariant when g is replaced by fa with « e E.(f).
Thus we get

© B s—1
4.9 c = wL(f)[Cl) — af" N, o(n)® 3 e(Try,q (o) 4
4.9 ’ 2 ZEY INL/Q(.B)‘ i==e Jay (4 4+ 1)
with A, = |(8¢))/(Be)t: and B, = Ay* for je Z. By Lemma 4.1, we see
that A, = |p/f]te®/7 with g =1 or 2 and hence

1

0 Bj ts-—l 2@ [‘(S)Z
4.10 A dt =
(4.10) PER N G+ g T@2s)
Since Ig; &, Ne o) ' Ny jo(a), we get
(4.11) o —af = % Nie@)

Nijg() [Nyl .
Substituting (4.10), (4.11) in (4.9), we find

_ I'(s) ew,(Ddi
T2 g

Recalling R.(f) = (g/e) loge, we obtain (4.7).
Consequently, combining Theorems 2.1, 2.2 with Theorem 4.3, we get

L¥(C, ).

THEOREM 4.4. Let C be any ray class modulo | in L and let ce C be
an integral ideal prime to §. We write a = ¢/(9,f) = gw, + nw, as g-module
where n is an ideal in k. Put o= oi'w, and u = Tr, (0,) (j=1,2).
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Let U(C, s) be as in (3.2) and let p(t) be the curve defined by (4.6).
(1) If 1= Q), we have

. _ 4°R(1) 1
(412 lim {aIr(c, D P 1}

47*R,(1) { w d;
w,(1)d d,

1 toe? 2 dt
_ TTors Im {log v(t)* — h, . (o(D)} —t“}

a,(n7!) — log d; — log Njq(n)

where h (&) is given by (2.3) with m = g.
(i) If T+ (1), we have

“13) (G, 1) = ERE% 10; -

Vol — wolt) + s, p<t>>itt—

where , (¢, &) is given by (2.6) with m = g. In the above, t, > 0 is any
real number.

§5. Computations of the integral

In this section we shall compute the integrals in Theorem 4.4. To
proceed the computations, we take ¢, = ¢/, t,* = ¢. Put

5.1) 1= [ flog o — A (o)) -

52 L= [ = wo® + w0 O) %

where p(t) = z(t) + v(@®)j (¢ > 0) is given by (4.6). We write v = (1/2)(0 — @)
and for any pe C*, ge C, we define

63 Hp,0) = [ vOK.@zlplo®) el p2() — gl + elp=(® + a) %

Step 1. We show that the problem is reduced to the computation of
H(p,q). It is easy to see that

i dt & —1
5.4 Y — = 2P =
(5.4 [ ver St = 2pp i

LemmA 5.1. We have

dt.
4

(5.5) f “Tog vty % = log (4]f) log & — 2log o + 23 =D ey,

nZ
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Proof. Since v(t) = 2|v|¢/(* + 1), we write f 5, log v(t)(dt/t) = 2log (2|v))

X J (dt/t) + 2J51 log t(dtft) — 2{51 log (1 + )(dt/t). The first (second) term

is log (4|v])-log & (0, respectively). As to the third term, we write f =

o

1 3 e
J + J‘ . Replacing ¢t for ¢ in f , we get
& 1 1

2 j log (1 + ﬁ)i‘%‘_ - 4f' log (1 + ﬁ)ﬁlti — 4f log t%

Since log(1 + X) = > 7. ((— D*'/n)X" (uniformly convergent for 0 <
X < 1), we obtain

2[6, log (1 + tz)iitt_ =2 f‘:, Ll—r?n—_i(l — &™) 4+ 2(log €)*.

This proves (5.5).

Note that 7,,(g, 1, n) = 7,.(g, 1, — n). In (2.3), let m =g and take
the summation “0 = nen/{£+ 1}’ for “0#£nen”. By (5.1), (6.3), (5.4),
(5.5), we get

(5.6) i — 1) — &) — 2(log &)*

+ log &*-log (4|v]) — N #e(M((9), 2)|vf

wkd g —1
77.'
- 4 Z, T1/2(Q, n9 n)H(n/‘/_ dla 0) *
O£ne€n/{x1}

Similarly, taking m = ¢ and { = — u,& + u, in (2.6), we get

1

(5.7) I = 10g5 b(uy, uy) + 2 Nk/Q(‘ﬂ)Gg(Z ul)l”lz

+ 8T N Y sy | Mo

4/ d O#£n€n/{x1} u1#meg

H(n(m — u,), nu,) .

Thus it is sufficient to compute H(p,q). To this purpose, we consider
the differential form on H whose integral along the path p(f) (¢ <t <o)
contains H(p, q).

Step 2. We construct certain closed form on H. Let B, be as in
§1 and let {— v-'dz,v-'dv,v"'dz} be a basis for the left B, invarinat
forms on H. We write
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(5.8) n = K(4nv)e[— z]— — 2iK,(4rv)e[— z] YV L K(dzv)e[— z]

Since (d/dX)YX'K(X)) = — X 'Ky(X),  is a closed form. For peC?,
geC, let ¢,, be the transformation & — p"”(ﬁ ({)(E) on H. Let (¢p,,)*

be the linear map of the cotangent space on H induced by ¢,,. We get

(5.9) (9,.%(p) = -2 Ki(4z| p|vjel — pz — q] %2

ip| v
-%memkz—ﬂ%

dv

— 2iK;(4z|plv)e[— pz — Q]T .

Then (g, )*() — (p-,,-)*(3) is the closed form what we wanted.
Let us now compute

(5.10) T= [ @) = (o).

As we have seen above J does not depend on the choice of the path
joining p(¢’) and p(e). We write p(¢)) = x, + y,@ + Vo], ple) = & + 51 + vyJ,
2, = % + yi and zf = xf 4+ yfi. Let & be the broken line joining p(¢/) —
x5+ Yl + vj — P(E)-

Step 3. We compute J along .

LEMMmA 5.2. We have

61D = | (000 = (-p-0)

2 . é
= . -K,(4z| p|v,) sin <27rS(pu) -
€

| p|v,

;%) cos (zS(pw + pd + 2q)) .
Proof. The choice of r implies that

J = %Kl(élﬂip\vo) J. cos (21S(pz + q))pdz + cos (22S(pz + q))pdZz .

Substitute p =p, + pi, ¢ =¢q, + @i and z= x + yi with p,,q,,x,yeR
(j = 1,2). By a direct computations, we get

J = _ 2! K.\(4z|p|v,) sin (zS(pz§ — pz,)) cos (xS(pzf + pz, + 29)) .

g o
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Note that 2z, = (€0 + 0)/(* + 1), zF = (o + &)/ + 1), S(pz¥ — pz,) =
2S(pu)(e® — D) + 1) and S(pzf + pz, + 29) = S(po + pd + 2g). From
this we find (5.11).

Step 4. We obtain another expression for J which contains H(p, q).
Regarding p = p(t) as the C”-map of R* into H, let p* be the associated
linear map from the cotangent space on H to that on R*. By a little
computation, we get

Lemma 5.3. We have

(5.12) p*(vidz) = (st)'dt,  p*(vidz) = (vt)'dt
p*(tdv) = (1 — )(2|v|th)'dt .

By (5.9) and Lemma 5.3, we get
0*(95,0*() — (p-p,-)* (7))

(uﬁo] + ——l)v(t)K x| plot)hel— p2(t) — ql + elpz(t) + q])

— 2K, (4x| plv(®))(e[ — pz(t) — q] — e[pz(?) + CJ]) |

Note that p/v|p| + B/vip| = |p|S{(pv)~"). By (5.3), the integral (5.10) taken
along the path p(f) (¢ <t < ¢) is given by

(5.13) J = |p|S((pv)"HH(p, ) —

where JJ, is

G.14)  J, =4 f () K(dx| p|v(®)) sin 22S(p2(t) + q)) Wl_tz_alt

Step 5. Computation of J,. We write J, = 4(f + f) Replacing ¢
¢’ 1
by ¢! in IE, we find that
1

J, = 4 [ w(OK. 4z plv(e)

% {sin (2=S(p2(t) + ) — sin 2aS(pa(t~) + @)} L=V dt.

2|8
Since 2(t) 4+ 2(t™) = 0 + @ and 2(¢) — 2(t™") = — 2(1 — /(1 + t*), we get

J, = — 8cos (S(po + po + 20) | WOKi(4z|plv(e)
1-—£
X sin (27rS(pv)—1—+7) s
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For 0 <t £ 1, v(t) = 2[v|t/(1 + t*) is the increasing function and we see
that (1 — &)/(1 + ) = /1 — (u(®)/|v])’. Hence we can rewrite J;, as an
integral in v. Furthermore, replacing 4z|p|v by v, we get

(5.15) J, = — 8cos (zS(pw + pd + 2q))
M| py| 1 . ( h B v AWZi)
X [T 0K sin (268() J1 (4n\pvi") dv

where v, = v(e) = v(e/) = 2|v|e/(1 + &%).

LEmMMA 5.4. Let o and B be real numbers with > 0. Let F(v, a, p)
be the indefinite integral of the function f(v) = v-'Ky(v)sin (av'1 — (Bv)?)
for 0 <v < B'. Then we have
(5.16) F(v,a, p) = — sina-vK,(v)

& (= 1) ST — 1/2) . .
R 2 B0 ek S i

+ UKl(v)‘Szk—1,2(iv))
where S,,,,(Z) are the Lommel’s functions satisfying inhomogeneous Bessel

differential equations

7 ars as

5.17 Z== Z? — n)S = Zn+ 8], p. 108-109).
(5.17) dZ2+ dZ+( n’) (8], p )
Proof. By the Taylor expansion of sin (av/'1 — (8v)’), we see that
(5.19) f@) = 3 SV g @y — (uyn.
=12 — 1!

The series converges uniformly on any closed interval [A, B] in (0, 8-'].

A
The integration f f()dv can be done term by term. Since j =1,
B

S o (— 1)"<j _kl/z)(ﬁv)” converges uniformly to (1 — (Bv)’y-"* (0 v
< B~") by Abel’s theorem. Thus, for any [A, B] C (0, 3-'], we get

(5.19) ﬁ VK )1 — (o) ido = 3 (— 1)k(f “kl/z)p% f - K (u)d .
Recall that
(5.20) [[v k@i = K@)

(5.21) ﬁ P K(0)dv = (— 120K, (0) S -y.1(i0)
+ vK (V) So-1,2(E0)}E for k=1
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(8], p.87). By (5.18), (5.19), (5.20), (5.21), we find that
ﬁ f@)dv = F(B, a, ) — F(A, a, f).

Let F(v, @, ) be as in Lemma 5.4. For any 2e¢ C* and for any v
satisfying 0 < v < 4z|2|, we define F,(v) by putting
(5.22) Fy(v) = F(v, 22S(2), (4=[2)™")

— 1 -1 = (_‘ 1)j_1 251
= —sin (2zS(2))-v'K,(v) + ]Z:l ©i— D 2zS(2))

_—k 1/2)(471!21)_%{2}60[{2(”) - 183 -2,1(iV) + VK (V) Spi-y (i)} .

X ki;l(j

Then, in view of (5.15), Lemma 5.4 and (5.22), we get

(23 J = —8{F,(lp) — F, 8&1&13)} cos (@S(po + po + 29) .

52
Consequently, by (5.11), (5.13), (5.23), we obtain

ProprosiTioN 5.5. Notations being as above. Then we have

. 1 £ +1 8er| py|\ . 5 & —1
624 Hp, o = |p|S(1/pv) {enlpvl KI( & 41 ) s (27:S(p )52 -+ 1)

— 8F,(4x|pv) + szr(i”fT‘)} cos (xS(po + pé + 20)) .

52

In particular, if { = (1) and 0 # nen, then we have

_— _ vd; Vd (& + 1) 8er|nv|
625)  Hol=d 0= d,/(nu))‘{ ot K( «/oT,(e“‘+1))

X sin (znsw/w_‘z 52;1) — 8F,,, ~a(4rn|nv|Vd)

e +1
+8F,, (ﬂiﬂlﬁiL)} cos (z Tr, g(noly =) -
: ' 4/d1 (52 + 1)
If § (), then for any (m,n)cg @n satisfying n{m — u,) + 0 we have
1

(5.26) H(n(m — u), nu,) =

In(m — w)|S(mu(m — u))™)

&4+ 1 8er|nu(m — u)|\ . B g1
X {eﬂln,,(m —w)| Kl( 211 )sm 2zS(nv(m ul))?Ti)

- 8Fny(m—u1)(4n-|np(m - ul)l) + 8Fny(m—u1)(§snlnl;‘(—z—‘;’u—l)‘l‘>}
&

X cos (x Tr o(n(m — u)o + nu,)).
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Finally, we obtained

THEOREM 5.6. Let C be any absolute ideal class in L. For an inilegral
ideal ce C, we write a = /9, = gw, + nw, (as g-module), where n is an
ideal in k. We put o = wi'e, and v = (v — @). Let ¥(C, s) be the func-
tion defined by (3.2) with f = (1). Then we have

4R (1) { 1 w di o
527) U(C,s) = L — logd,
G2 U9 = ER A+ P o) ~logd,

o n-1
("7 (1 — ey 4 loge

— log Ny o(n) + 1
lo

g e n=1 n

wedy € =1y (@), 2l

—log4 —1 [ R 2t
o8 gl + 2rfloge &£+ 1

2

S
1og & O#n€n/{=1}

2@, 1 WH(Y =, 0] + O(ls — 1)

where H(n/v/ —d,, 0) are given by (5.25).

THEOREM 5.7. Let f + (1) be any integral ideal in L and let C be any
ray class modulo § in L. Suppose ce C is an integral ideal which is prime
to f. Put a = c/(9.]) = go, + nw, (as g-module), where 1 is an ideal in k.
Further we put u; = Tr (w;) (j =1,2), o = o7'w, and v = 3(0 — @). Let
U(C,s) be the function defined by (3.2). Then the function ¥(C,s) is
holomorphic at s = 1 and we have

(528 ¥(C, 1) = 2EAD (o, w) + izi_}Nk,Q(n)Ga@, )|y

w (. loge &
2 ——
o Nogn) 3 3 [ H(am — w), nu)
«/dl log 3 0#£nEn/{x1} u;=meg

where H(n(m — w)), nu,) are given in (5.26).

Remark. In the case of imaginary quadratic field Q(v —d) (—d; the
discriminant), the Kronecker limit formula was given by

L(s, A) = ﬁi{ 1 +2r —logy/d —log2 —logy — 2 logi;y(z)lz}
wydls —1
+ O(s — 1)) (7; Euler constant)

Here A is an absolute ideal class; be A is an ideal with Z-basis (1, 2],

z=x+ i (y>0); wis the number of roots of unity in Q(v —d) and

— log|n(@) = %y + 2 go-l(n)e‘“” cos (2znx) .
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The formula (5.27) may be regarded as a generalization of this. In
fact, # = }(0 + @) and v = }(w — @) corresponds to x and yi, respectively.
The function

P — 1 wd, ;
; +1 ;z Ny o(MC(), 2)|v)

+4 27 )T1/2(Q, n, n)H(n/v —d,, 0)

0#nen/{x1

v, &) =

(the Fourier cosine series in p whose Fourier coefficients are the func-
tions of v), can be considered to be an analogy of —log|n(2)[.
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