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EISENSTEIN SERIES IN HYPERBOLIC 3-SPACE

AND KRONECKER LIMIT FORMULA

FOR BIQUADRATIC FIELD

SHUJI KONNO

§ 0. Introduction

Let L = kK be the composite of two imaginary quadratic fields k
and K. Suppose that the discriminants of k and K are relatively prime.
For any primitive ray class character 1 of L, we shall compute L(l, ϊ)
for the Hecke L-function in L. We write f for the conductor of 1 and
C for the ray class modulo f. Let c e C be any integral ideal prime to f.
We write α = c/(9L\) — %ωx + nω2 as g-module where g, n and &L are, re-
spectively, the ring of integers in k, an ideal in k and the differente of
L. Let L(s,Z) = Tffi^ΣcZiCWiC, s) where T(X) is the Gaussian sum
and, as in (3.2),

Ψ(C, s) = NL/Q(a)s ΣJf e2πί

()

In § 1, 2, for each pair of ideals (m, n) in k, we associate Eisenstein
series in hyperbolic 3-space having characters. For this series, we show
the Kronecker limit formula. In § 3, 4, we show that Ψ(C9 s) is written
as the constant term in the Fourier expansion of the Eisenstein series
with reference to the hyperboHc substitution of SL2(k) (Theorems 4.3, 4.4).
In § 5, we compute the Kronecker limit formula for Ψ(C, s) (Theorems 5.6,
5.7). The limit formula is written as the Fourier cosine series of ω + ώ
(ω — ωf^a) whose coefficients are functions of ω — ώ where ώ is the con-
jugate of ω over k.

NOTATIONS. We denote by Z, Q, R and C, respectively, the ring of
rational integers, the rational number field, the real number field and
the complex number field. For z e C, z denotes the complex conjugate
of z. We write S(z) = z + z and |2f = zz. For ze C, V z means — ττ/2
<argVz ^ τr/2. For an associative ring A with identity element, Λx
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denotes the group of invertible element of A. We write e(x) = e2πίx for x e R

and e[z] - e(S(z)) for zeC. We denote Ka(2Y) = 1/2

§1. Eisenstein series in the 3-dimensional hyperbolic space

We shall consider Eisenstein series with characters in the 3-dimen-

sional hyperbolic space. Let K — C + Cj be the Hamilton quaternion

algebra with j satisfying f = — 1, j-*zj = z for zeC. Let ζ -> ζ denote

the quaternion conjugation in K and let JV(ζ) = ζζ be the quaternion

norm. Let H denote the 3-dimensional hyperbolic space. We write a

point ξ e H as ξ = z + vj for z e C, i; > 0 and consider // to be contained

in K.

Let Bί be the subgroup of SL2(C) consisting of elements b =

u~1 / 2(π f) w ^ u ^ 0, zeC. Then J3j is a complete set of representa-

tives for the space of right cosets SL2(C)ISU(2, C). We shall identify

b = U"1/Z(Q f) € Bι with the point ξ ~ z + vj e H and we can view H —

Bx = SLlC)ISU{2, C). Let f e £Γ and 6 e ^ be as above. For any g =

e SI2(C), we can write

(1.1) gb = vMj Me,

where y, = υ/Nίrί + δ), ^ = {(cez + ^)(rz + δ) + αΐv2}IN(rξ + δ) and

with iV(rf + 5) = |r2 + δf + \ϊfυ\ Thus the left multiplication of g

on JBj induces on £Γ the transformation f ->(α£ + /3)(rf + 3)"1;

α.2, w

The group SL2(C)/{± 1} act on # transitively and

(1.3) ds2 = ι r

is an invariant metric on H.
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Let k == Q(V — dλ) be the imaginary quadratic field of discriminant

— dt. Denote by g the ring of integers in k and by § = g(l/V— c?i) the

inverse differente. Let wk be the number of roots of unity in /e. We

consider k to be contained in C. For an ideal α Φ 0, we write (α) for

the absolute ideal class of α and ζfc((α), s) for the zeta function of (α) in

k. Let α Θ 6 be the module consisting of all pairs (a, b) for aea, b eh.

For any non-zero (fractional) ideals m, n in k, we define

(1.4) £ m > n (f,u J ) M 2 ) S ) =

Here ξ = z + vj e H, (uu u2) e C2 and s € C; the summation is taken over
all (jn, 7Ί) e {m ® n}\{(0,0)}. The series converges absolutely for Re (s) > 1.

We consider Em>n(ξ, uu u2, s) to be a kind of Eisenstein series.

To get the Fourier expansion of Em}U(ξ, uu u2, s), we put

(1.5) D(ξ, u,s)= Σ e[- mu]N(ξ + m)-2s (Re (s) > 1)
metn

where ξe H, ueC and se C. The self-dual Haar measure on C, with re-

spect to the basic character z—•#[— z], is \dz A dz\ = 2dxdy (z = x + yi).

The dual lattice of m in C, with respect to the bicharacter (zu z2) —>

e[— ^i^]) is m = m"1^.

LEMMA 1.1. We have the Fourier expansion

(1.6) D& u, s) = 8J-

— u

Γ(2s)
2 β - l

^ = 1 or 0, according as uem or m>Z.

Proof, Let Q be the fundamental parallelogram for C/m and let

IQI = VdiiVfc/Q(m) be its area. Then 2:->Z)(f, w, s)e[— wz] is periodic with

period lattice m. Expanding this into Fourier series, we get

(1.7) D(ξ, u,s)=

Applying Mellin transformation to this and by e~xy2~ίXYdX =v2τrc~F2/2,
J — oo

we get
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(1.9) Γ(2s)ge(v) =
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2π f- . . .
V dxNk/Q{m) Jo

Consequently, we have

(1.10) ge(v) = υ»-
V di

(1.11)
Γ(2s)

— M
- u\v)

(£φu).

Substituting (1.10) and (1.11) in (1.7), we obtain (1.6).

Let α be any non-zero ideal in k. For ueC and seC, we define

(1.12) Ga(s, u) = Σ ' β [ - αw]|iV, / β(α)|- s.
0#α6o

PROPOSITION 1.2. We have the Fourier expansion

(1.13) Em,.(ξ, «,, u2) s) - A(s) + B(s) + C(s)

A(s) = ι;2siVt/Q(mn)sGm(2s, « J ,

B(β) = ̂  2 ^ 2 / 9 ~ !> N>κW-WUny G π ( 2 s _ x, ̂  / o r M, 6 ft
Γ(2s) V d

^ / 9
Γ(2s)

= 0 for Wj 6 in ,

V di

Γ(2s)

X ui^,

Proof, Since

£ — ux

! ^ — ut)\v)e[— n{£ — u,)z — nu2]

u2, s) = ^

, «„ β)

by Lemma 1.1 and by (1.12), we obtain the proof.

The function Em>n(ξ, 0, 0, s) also satisfies a functional equation. Let α

and b be non-zero ideals in k. For cekx and s e C , we define

(1.14) r.(α, b, c) =

The summation is taken over all b e b\{0} such that cb'1 e α"1. It is a

finite sum and we see that τs(a, b, c) = 0 unless ce α-1b. By a little com-

putations we find that
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(1.15) r,(α, 6, c) = τ./b" 1, a~\ c).

THEOREM 1.3. Let Em>n(ξ, ult w2, s) be as in (1.4). Then

*„,.(£, s) = Γ(2s)(2κμ^ίY"sEmM, 0, 0, s)

is continued to the whole s-plane meromorphically and satisfies

(1.16) <^,n(f, s) = *,-,,„,-,(?, 1 - β).

Proof. Let i^ = κ2 = 0 and £ = m/V — <2, in (1.13). We see

(A(s) = wMNklQ(m-ln))%A^-1), 2s)

(1.17)

B(s) = wk

 Γ (^f - ^ -^(i^JV ̂ m-'^y-'Udi-'), 2s -

x
For any non-zero ideal α in k, Z({a~ι), s) = Γ(s)(2π/</ d^-'ζJS^'1), s) is con-

tinued to the whole s-plane meromorphically and satisfies Zda'1), s) =

Z((ά),l — s). Moreover rs_1/2 and K2s_ι are holomorphic in the whole s-

plane, they satisfy (1.15) and K2s-ι — Kλ_2s. From these we obtain the

proof.

§2. Kronecker limit formula for Eisenstein series

Let EmJξ, ul9 u2, s) = A(s) + B(s) + C(s) be as in Proposition 1.2. We

discuss the following two cases respectively. Case (a) (ul9 u2) e m-1g ® n"1^,

case (b) (uί9 u2) g m"1^ Θ n~ιQ.

Case (a). In this case by (1.4), we may assume that ux = u2 = 0.

THEOREM 2.1. The function Em}n(ξ, 0,0, s) is continued holomorphic-

ally to Re (s) > 1/2 except for the simple pole at s = 1. At s = 1,

Em,n(ξ, 0, 0, s) has the expansion

(2.1) EU9U(ξ9 0, 0, s) = y 1 + ^ { ^ ^ ^ ^ ( n - 1 ) - 2
d1 s — 1 dj I

(2.2) ^(n-1) = lim ζ ^ t r 1 ) , s) - * * _ 1 ..
wkv dt s — 1 J
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The function hmiXl(ξ) is defined by

(2.3) hmjξ) = ^-N^m-'nKAm-1

+ 4 27 1̂/2(̂ 1, n, ή)vKx(4π\n\v/\/^ΐι)e[— nzlV— dx] .

Proof can be done as in [1], [3], using Proposition 1.2.

Case (b). In this case we have

THEOREM 2.2. Suppose (ul9 u2) e m^g φ xr% Then Em^(ξ, uu u2i s) is

holomorphic in Re (s) > 1/2 and we have

(2.4) Emtn(ξ, ul9 u2,1) = b(ul9 u2) + Nk/Q(mn)GJ2,

m —

X e[— n(m — u^)z — nu2]
n

where b{uu u2) is given by

(0 if ux e nr'g

(2.5) b(uuu2)= 2π Λ 7 , ,ntΛ , v ,
-7==iVfc/Q(n)Crn(l, w2) v ^i e TΠ" g and u2 & n~ g .

Proo/. In Proposition 1.2, A(s) and C(s) are holomorphic in Re (s) >

1/2. As to B(s), it is 0 when u^m'1^; it is holomorphic when i^em^g

and ι/2 ^ H-1g ([12], p. 77, § 10). Again by Proposition 1.2, we obtain the

proof.

As an analogy of logl^w;, z)jη(z)f for the Kronecker's second limit

formula, we write ψ(ζ, ξ) for the right hand side of (2.4). For any ξ e H,

let &s = m-'gf + n-'g be the g-lattice in K. Let ζ = d + C2; € K, (d, ζ2 € C)
and f = 2; + vj e H. When ζ g jSfe, we define

(2.6) ψm i Π(d f) = &f- ~C 2, Ci " — C2) + Nk/Q(mn)Gm(2, - 1 ζ X 2

\ V V ) \ V )

1
0τfcn6π n

X e[—n(mz + ζj].

Then we have

(2.7) EmJξ, u19 u2,1) = ψ m , π ( - M,f + M2, f)

We see easily t h a t
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(2.8) fajζ + ζ0, ξ) = ψm>B(ζ, ξ) for ζ0 e

Let i"1 be the subgroup of SL2(k) defined by

(2.9) Γ = \\, r)eSLί(k)
a B

(n Θ m)( ) = n Θ m
ϊ δ

Then Γ/{± 1} is a discrete subgroup of SL2{C)I[± 1} and act on // prop-

erly discontinuously. For I ^j eΓ, we write ύ2 = a^2 + βtyi a n d ώi =

7Ί/Z + δuλ. Then (z21? β2) e m^g Θ n^tj if and only if (uu uz)em~1Q®n-%

Furthermore, we see that

(2.10) Em,Maξ + β)(Tξ + δ)~\ ύl9 ύ2, 8) = Em,n(ξ, uu u2, s).

PROPOSITION 2.3. For any yl ^Λ e Γ, we have

( i) hWtn((aξ + β)(ϊξ + δ)"1) - /ιul)Π(f) - log N(ΐξ + ̂ )2

(ii) ψmJζ(Tξ + δ)-\ (aξ + β)(ϊξ + δYι) = VΛπ,n(ζ, f).

Proof, (i) It is well known ([1], [3]). (ii) For any ζeK, we write

ζ = — z/if + M2 with wt, w2 e C Let ώ2 — αw2 + ^ ^ and ύγ — ϊu2 + δut be

as above. Since — ύx(aξ + β)(ϊς + δ)~] + ύ2 = ζ(Γf + £)~\ we obtain the

proof.

§ 3. Reduction of the problem

Let L = kK be the biquadratic field composed of two imaginary

quadratic fields k and K with discriminants — dx and — d2 respectively.

We assume that dx and d2 are relatively prime. Denote by oL the ring

of integers in L and by QL the differente of L. Let f be any integral

ideal in L. Denote by EL(f) the group consisting of units in L which

satisfy Ξ 1 mod f. Let 1 be any primitive ray class character modulo f

in L. For any a e oL satisfying ((a), f) = 1, we can write X((a)) = X^a)

where Xγ is a character of (oL/f)x. We write X for X̂  Let L(s,X) be the

Hecke L-series. Our aim is to compute L(l, X).

Let Γo e Lx be such that (Γo) = ϊ)/(#Lf) with an integral ideal Γ) which

is prime to f. We define

n z ) = 2^) Σ y.{P)e{ΊτLIQ{Pγ,)).
p m o d f

Note that T(X) Φ 0 since X is primitive. Let C be any ray class modulo f

in L and let c e C be an integral ideal which is prime to f. For a — c/(#Lf),

we put
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(3.1) Ψ,{a, s) = NL/Q(ay Σ" e(ΎxL/Q (μ))\NL/Q(μ)\-* (Re (s) > 1) .
0<)f

The summation is taken over all non-associated classes (μ)f in α\{0} with

respect to EL(\). Then W^a, s) depends only on C but not on the choice

of c. Therefore we define

(3.2) W(C, s) = ΨJa, s).

It is known that

(3.3) L(s, 1) = Til)-1 Σ Ϊ(C)¥(C, s)
c

where the summation is taken over all ray classes modulo f, ([10]).

Thus to obtain L(l, %), we compute the limit formula for Ψ(C, s).

§ 4. Limit formula for W(C9 s)

Let M = QiVd^) be the real quadratic subfield of L. Let x -> x be

the non-trivial automorphism of L over k. If y e M, we write yr for y.

We write oM for the ring of integers in M. Put f0 = f Π o^ and let -Bi(f0)

be the group consisting of units x e M with x = 1 mod f0 and totally

positive. Let e > 1 be the generating element of -Eί(f0). Note that ε > 1

> εf > 0. Let ε0 be a generating element of EL(\) modulo the torsion

subgroup. We choose ε0 such that |εo| > 1 and fix once and for all. Since

εoεo € E£(l), let e be the least positive integer such that (εoεo)
e e 2£ί(f0).

LEMMA 4.1. We have (εoεo)
e = ε̂  for g = 1 or 2.

Proof. We can write (εoεo)
e = eg for g ^ 1. Suppose g > 2. This

impHes legs"112 = es~2 > 1. As an element of i^(f), we write ε = ζε? where

g >̂ 1 and ζ is a root of unity. From 1 < [εgβ"113' = εe~Q, we see e > #.

Since ε* = |εo|
2ηεo|

2(e-Q) == ε2|ε0|
2(e-9), we get (eoeQ)e-q e E£(\o). This is a con-

tradiction.

Let C be any ray class modulo f and let c 6 C be an integral ideal

prime to f. We write a = c/(#Lf)-as g-module;

(4.1) α = go*! + nω2.

Here {<*>!, α>2} (ωjeL;j= 1,2) are linearly independent over & and n is a

non-zero (fractional) ideal in β. We shall fix the expression (4.1) and we

write ω — ωϊιω^

LEMMA 4.2. We can find an element ί Λe SL2(k) such that
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ω ώ\/ε 0\ (a b\ίω ώ\

i iΛo W = lc d)\i i]
a

(ii) ( n θ /

/72 particular, we have ε — cω + d and εf = cώ + rf.

Proof. Take non-zero wen. Since, ĉ ε, nα)2ε e α, we find α J e n and

β, d e g such that nω2ε = aω2 + βω1 and ωje = 7co2 + δa>i Then ί α rj =

(o i ) " ϊ r «) s a t i s ί i e s (j> a n d ̂ >-
Let Z1 be the group defined by (2.9) with m = g. By Lemma 4.2,

1 Λ is a hyperbolic element of Γ, it generates an infinite cyclic sub-

group of Γ9 moreover it has two fixed points ω, ώ in C. From now on,

we deal Em>n(ξ, uu u29 s) with m = g, n being as in (4.1) and

(4.2) Uj = ΎτL/k(ω3) (j = 1,2).

To be precise;

(4.3)

Then ί̂ !, W2) is of case (a) if and only if f = (1). We write

(a c
(4.4) f* = (aξ + b)(cξ + d)-\ (uf, uf) = (u2, udi . ,

\b a
Then we find that

(4.5) En(ξ*, uf, uf, s) - En(ξ*, Mi, Ma, s) = Sn(f, uλ, u2, s).

Let pω denote the semi-circle in H which is defined by

(4.6) p{t) = z(t) + v{t)j z(t)=*£±*, v(t)= ^ " f

where ί is a positive parameter. We see that p{t)* = p(tε2) ([6]).

THEOREM 4.3. Notations being as above. Let wL(\) be the number of

roots of unity in JBL(f) and RL(\) = 21og|ε0| be the regulator of EL(]).

Then we have

(4.7) W(C, s) = ̂ f ^ i , ^ - Γ
Γ ( s ) 2 ^ ( f ) d 5 l o g ε Jίo

where tQ > 0 is αnj rβα/ number.
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Proof, We put

c o = Γ* En(p(t), «i, ««,«)—
J ί o £

By (4.5), the integrand is invariant by t -> fe2. For (π-, m) e n Θ 8\{(0, 0)},

we write — β = nω + m and — /? = τzd> + m. Then /3 runs over the set

αα)Γ1N\{0} as (n, m) runs over the set n 0 g\{(0,0)}. By (4.2), (4.6) we see that

β [ _ m M l - ^ 2 ] = β(TrL/Q (/3a),)) and iV(^(0 + m) = (ί2!/3f + |/3 f)/(Z2 + 1).

Substituting ί = \βlβ\t\f\ we get

(4 8) c - | ω ~ ώ | 2 g JV (nV ^ βS

with A = \βlβ\H2

0 and JB = Aε4. Any βeaωϊ\{0} is written as (β\4ζ where

{(j8)f} are complete set of representatives for the non-associated classes of

modulo EL(f), jeZ and ζ is a root of unity in EL{\). Note that

{βωJ)\NL/Q{β)\~* is invariant when β is replaced by βa with aeEJ^).

Thus we get

2 wf INL / Q(β)\ s J—

with A , = |(^)/(/SεOI2ίo and JB,. = A/ for jfeZ. By Lemma 4.1, we see

that Aj = \βlβ\Xε{2g/e)j with g = I or 2 and hence

^ + l ) " g Γ(2s)

Since I®' %f = d2iVk/Q(n)-Wi/β(α), we get

(4.11) \ω - ώ|2 = — * i N ^ L .
! Nk/Q(n) \NL/Q(ωd\

Substituting (4.10), (4.11) in (4.9), we find

c0 = -Π» 2 ewL(\)ds

2 ψ ^ ^ ^

Recalling RL(f) = (̂ /e) log ε, we obtain (4.7).

Consequently, combining Theorems 2.1, 2.2 with Theorem 4.3, we get

T H E O R E M 4.4. Let C be any ray class modulo f in L and let ceC be

an integral ideal prime to f. We write a = c/(£Lf) = gωj + nω2 as Q-module

where n is an ideal in k. Put ω — ωϊ1ω2 and u = TrL / f c(ω ;) (j = 1, 2).
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Let Ψ(C, s) be as in (3.2) and let p(t) be the curve defined by (4.6).
(i) If f = (l)? we have

(4.12) lim (ψ(C, s) - 4πl*jV ί-}

^ « o ( n - ' ) - logd2 - logiVt/Qfn)

21ogε Jίo

where Λg,n(f) is ^ii eTi 6y (2.3) with m = g.

(ii) If \Φ (1), î e Λαi e

(4.13) ?Γ(C, 1) = ^ £ _ 1 Γ£2 ψQJ- M O + "2, rff)) —
Wji(f)cί 2 l o g ε J ί o t

where ψg,π(ζ, ξ) is given by (2.6) with m = g. /τι ίΛe above, tQ > 0 is

rβαZ number.

§ 5. Computations of the integral

In this section we shall compute the integrals in Theorem 4.4. To

proceed the computations, we take t0 = ε\ tQε2 = ε. Put

dt(5.1) I, = f
J e'

(5.2) It =
t

where pft) = ,ε(ί) + v(t)j (t > 0) is given by (4.6). We write v = (l/2)(ω - ώ)

and for any p e C x , qeC, we define

Cε dt(δ.3) H"(p, g) = vifiKΛAπlplvifyiel— pz(t) — q] + e[pz(i) + q]) .
Jε' t

Step 1. We show that the problem is reduced to the computation of

H(p, q). It is easy to see that

(5.4) £ v(

LEMMA 5.1. We have

/g g\ ΓS i /j.\2 dt

Je'

- = 9.ln! 2 _



140 SHUJI KONNO

Proof. Since v(t) = 2\v\t/(t2 + 1), we write Γ log v(t)\dtlt) = 21og(2|^|)

X Γ (dt/t) + 2 Γ logt(dt/i) - 2 Γ log(l + ?)(dt/t). The first (second) term
J e' J ε' J ε'

is log(4|v|2) logε2 (0, respectively). As to the third term, we write f =

+ Replacing t'1 for t in , we get

2 f log (1 + ί 2 ) — = 4 f log (1 + ί 2 ) — - 4 f log t**-.

Since log(l + X) - H^= 1 ( ( - l)w-V^)Zri (uniformly convergent for 0 ^

X <^ 1), we obtain

Γ log (l
J ε'

This proves (5.5).

Note that τ1/2(g, n, n) = τ1/2(δ, n, — n). In (2.3), let m = g and take

the summation "0 =£ ne n/{± 1}" for "0^=n€n" . By (5.1), (5.3), (5.4),
(5.5), we get

(5.6) Λ = 2 Σ (~~ }Y (1 - ε"2w) - 2(log ε)2

n = \ Π

+ logε 2 . log(4|p | 2 )- ή 7 ^ iVfc/Q(
7Γ 6 + 1

- 4 Σ ' r1/2(g, n, ή)H(nμ^du 0).

Similarly, taking m = g and ζ — — w^ + u2 in (2.6), we get

(5.7) I2 = logε2-b(uu u2) + 2^-±Nk/Q{n)GQ(2, ux)\vf

+ -τ^f=- y/ y/ H(n(m — Wj),

Thus it is sufficient to compute H(p, q). To this purpose, we consider

the differential form on H whose integral along the path ρ(t) (ε' <; t ^ ε)

contains H(p, q).

Step 2. We construct certain closed form on H. Let Bx be as in

§1 and let {— υ^dz, v~ιdυ> v~ldz\ be a basis for the left Bx invarinat

forms on H. We write
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(5.8) η = KA4πv)e[- z] ̂ - - 2iK,{4πv)e[- z] ̂ L + K1(4πv)e[- z] * L
V V V

Since {djdX){X-ιK,{X)) = - X"%(X), η is a closed form. For peCx,

qeC, let 9P>, be the transformation ξ->p~ι/ϊ(% ?)(£) on H. Let (pp,,)*

be the linear map of the cotangent space on H induced by φPιt. We get

(5.9) (ψP,q)*(v) = -ZjKMπWυW- P* ~ <?] —

IPI
 ϋ

iiΓ^lpl^eE- pz - q]^-
v

+
\P\

- 2iK2(4π\p\v)e[- pz - g ]*L .
y

Then (φp,q)*(i)) — (φ-p,-q)*(η) is the closed form what we wanted.

Let us now compute

(5.10) J= Γ W (Ψp,q)*(η) - (φ-,.-9)*(η) •

As we have seen above J does not depend on the choice of the path

joining ^(ε7) and p(ε). We write p(ε') = x0 + 3V + ^oi, />(ε) = *o* + ̂ o*i + vj,

%o = ô + yoι# a n ( i ^* = #* + ̂ ϊ Let /c be the broken line joining p(ε!) -^

x* + yQi + vj -> ̂ (ε).

Step 3. We compute J along K.

LEMMA 5.2. We have

(5.11) J - £ p P ί 9 p p , ^

1 ( ^ ± \ COS (ττS(pω + p ώ + 2q)).

Proof. The choice of A; implies that

J = ί cos (2πS(pz + q))pdz + cos (2πS(pz + q))pdz .
|p|u0

Substitute p = ̂  + p2i, ςr = gj + g2i and z = x + yi with p,, g;, x j e i ?

(j — 1, 2). By a direct computations, we get

o

P I I O) sin (πS(pz$ - p^0)) cos (πS(pzf + pz, + 2q)).
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Note that z0 = (ε2ώ + ω)/{e2 + 1), zf = (ε2ω + ώ)/(ε2 + 1), S(p£0* - pzQ) =

2S(pv)(ε2 - l)/(ε2 + 1) and S(pz* + pzQ + 2q) = S(pω + pώ + 2q). From

this we find (5.11).

Step 4. We obtain another expression for J which contains H(p, q).

Regarding p = p(t) as the C°°-map of R+ into H, let p* be the associated

linear map from the cotangent space on H to that on R+. By a little

computation, we get

LEMMA 5.3. We have

(5.12) <o*(u-2d2) - (vtY'dt, p*(v'2dz) = (vt)'ιdt

p*(v-2dv) - (1 - t*){2\ι>\ί)-ιdt.

By (5.9) and Lemma 5.3, we get

P*«fPP,q)*(v) - (φ-P.-q)*(v))

^ (-ΓT + ^ιMKι{te\PW)\e[-P2{t) -q] + e[pz(t)
\v\p\ v\p\J

- 2ίv(t)K/MP\v(t))(e[-pz(t) - q] - e[pz(t) + ±] ) d t .
Δ\V\t

Note that pjv\p\ + p/^|/)| = \p\S{(pvYx). By (5.3), the integral (5.10) taken

along the path p{t) (ε; ^ t <; ε) is given by

(5.13) Jr

where Jj is

(5.14) Jt = 4 f' ι;«)iΓ2(4π | p | u(ί)) sin (2πS(pz(t) + q)) i f ^ J - Λ

Sίep 5. Computation of Jj. We write Jt — 4ί + )• Replacing t

by ί"1 in , we find that

X

Since z{t) + ^(r 1 ) = ω + ώ and «(ί) - z(t'1) = - 2v(l - ί2)/(l + ί2), we get

J, = - 8 cos (ττS(/7o) + pώ + 2g)) Γ
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For 0 < t <I 1> v(t) = 2\v\tl(l + £2) is the increasing function and we see

Γ"" v-*K2(v) sin(2πS(pv) Jl - (~-^)2

4π\p\vo \ v \4;r|/n/|/

that (1 — f)j(l + t2) = Vl — (ι>(0/M)2 Hence we can rewrite Jx as an

integral in υ. Furthermore, replacing 4π\p\υ by υ, we get

(5.15) Jx = - 8 cos (*τS(pω + pώ + 2ς))

X

where v0 = v(ε) = ι (ε') = 2|v)ε/(l + ε2).

LEMMA 5.4. Lβί ^ and β be real numbers with β > 0. Lei F(v, a, β)

be the indefinite integral of the function f(υ) = v^K^v) sin (ay/l — (βvf)

for 0 < v ^ jS"1. ΓΛβπ zi β have

(5.16) F(u, α, )S) = - sin a- υ-'K^v)

+ Σ

+ vKί(v)'S2k_h2(w))

where Smtn(Z) are the LommeVs functions satisfying ίnhomogeneous Bessel

differential equations

(5.17) Z2-^ + Z°^ + (Z2 - n2)S = Zm+ί ([8], p. 108-109).
dZ dZ

Proof. By the Taylor expansion of sin (ajl — (βv)2), we see that

(5.18) f(ϋ) = g ί l L ^ α W - ' ϋ

The series converges uniformly on any closed interval [A, B] in (0, β-1].

The integration f(v)dv can be done term by term. Since j >̂ 1,
JB

ΣΛΓ=O(— l)*γ ~~L j(jSu)2fc converges uniformly to (1 — (βv)2)3-ί/2 (0 <L υ

^ β"1) by Abel's theorem. Thus, for any [A, B] c (0, β"1], we get

(5.19) ι r%(u)( l - (βυ)2y-1/2dυ = Σ (— 1)*(J )i32fc u2*
J ^ A; = 0 \ k / JA

Recall that

(5.20) Γ v^K2(ύ)dv = - ϋ - % ( ϋ ) β

(5.21) Γ iP^KMdu = ( - l)fc{2toίΓ2(ι;). ίS21c_2tl(iv)
J A

vKi(v)-S,k-1,&v)}\
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([8], p. 87). By (5.18), (5.19), (5.20), (5.21), we find that

\"f(v)dv = F(B, a, β) - F(A, a, β).
J A

Let F(υ, a, β) be as in Lemma 5.4. For any λeCx and for any v

satisfying 0 < v <I 4π\λ\, we define Fλ(v) by putting

(5.22) Fλ(v) = F(υ, 2πS(X), (4π\λ\y)

Kί(υ) + £ ^ ^
j=ι (2; - 1)!

X g ( J ' ^k

ll2y4π\λ\)-2k{2k

Then, in view of (5.15), Lemma 5.4 and (5.22), we get

(5.23) Jx = -8{FP,(4TΓ|PH) " F»(ψ^f)} c o s (πS^

Consequently, by (5.11), (5.13), (5.23), we obtain

PROPOSITION 5.5. Notations being as above. Then we have

(5.24) H(p, q) =

Jτι particular, if f = (1)

(5.25) W ^ ί . 0) = , wί*., J

X sin

αi(e + 1)/

If \Φ (1), ί/ιβτι /or any (m, ή) e g Θ n satisfying n(m — ut) Φ 0

(5.26) iϊ(tt(m - Mi), nw) =

X

- Uί)\) + SF

X cos (π TrL/Q(^(m — w^ω + nu2)).
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Finally, we obtained

THEOREM 5.6. Let C be any absolute ideal class in L. For an integral

ideal ceC, we write a = tjQL = Qωx + nω2 (as ^-module), where n is an

ideal in k. We put ω = ωΐxω% and v = | (ω — ώ). Let Ψ(C, s) be the func-

tion defined by (3.2) with f = (1). Then we have

(5.27) Ψ(C, s) = 4π*fl ( - 1 - - + ϋ ! ί 3 ^ ( n - ) - log d2

- logNm(n) + - i _ Σ (~1}n'1 (1 - ε-2") + logε
lθgε n = l 71

- log4 - ^ j i

logε
'=4,0)}

H(n/V — du0) are given by (5.25).

THEOREM 5.7. Let f ^ (1) 6β any integral ideal in L and let C be any

ray class modulo f in L. Suppose c e C is an integral ideal which is prime

to f. Put a — c/(#Lf) = Qω1 + nω2 (as ^-module), where n is an ideal in k.

Further we put Uj — TrL/fc(c^) (j = 1, 2), ω = ^ ^ 2 a^d v = | ( ω — ώ). Lei

?f(C, s) 6β ί/ie function defined by (3.2). 7%erc ί/iβ function Ψ(C, s) is

holomorphic at s = 1 cmd w e Λai e

(5.28) fό( W l , M2) + 4
U)L(f)d2 I log ε ε2 +

Σ
o^«en/{±i} M^

Σ'
n

where H(n(m — w ,̂ ^w2) are ^/ue^ m (5.26).

Remark. In the case of imaginary quadratic field Q(V — d) ( — d; the

discriminant), the Kronecker limit formula was given by

ζ(s, A) = _ ? ? L J _ L _ + 2 r - log Vd"- log2 - logy - 2 l o g | ^ ) | 2 )
We? I s — 1 J

+ O(| s - 1|) (ϊ; Euler constant)

Here A is an absolute ideal class; b e A is an ideal with Z-basis [1, z],

z — x + yί (y > 0); α; is the number of roots of unity in Q(V — d) and

) |2 = ^y + 2Σ σ.1(Λ)β-2*nv cos (2τmx).
6 w=i
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The formula (5.27) may be regarded as a generalization of this. In

fact, μ = J (ω + ώ) and v = J (ω — ώ) corresponds to x and yi, respectively.

The function

Φ(ω, ώ) = i - ^ ]". - i ^ 1 iVfc/β(n)ζfc((g), 2)|̂ )2

, n, ή)H(nl</-dl9 0)
O^n6π/{±1}

(the Fourier cosine series in μ whose Fourier coefficients are the func-

tions of v), can be considered to be an analogy of — log | η{z) |2.
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