Y. Teranishi

Nagoya Math. J.
Vol. 112 (1988), 153-169

NONCOMMUTATIVE CLASSICAL INVARIANT THEORY

YASUO TERANISHI

§1. Introduction

Let K be a field of characteristic zero, V a finite dimensional vector space and G a subgroup of $G L(V)$. The action of G on V is extended to the symmetric algebra on V over K,

$$
K[V]=K \oplus V \oplus S^{2}(V) \oplus \cdots \oplus S^{n}(V) \oplus \cdots
$$

and the tensor algebra on V over K,

$$
K\langle V\rangle=K \oplus V \oplus V^{\otimes^{2}} \oplus \cdots \oplus V^{\otimes^{n}} \oplus \cdots
$$

Here $S^{n}(V)$ and $V^{\otimes n}$ denote the n-th symmetric power and n-th tensor power of V respectively.

We denote by $K[V]^{G}$ and $K\langle V\rangle^{G}$ the invariant ring of G acting on $K[V]$ and $K\langle V\rangle$, respectively. A main result of invariant theory says that, if G is linearly reductive, $K[V]^{G}$ is finitely generated. On the other hand Dicks and Formanek [2] proved that, if G is a finite group and not scalar, $K\langle V\rangle^{a}$ is not finitely generated. Lane [4] and Kharchenko [3] independently proved that, for arbitrary subgroup G of $G L(V), K\langle V\rangle^{a}$ is a free associative K algebra.

In classical invariant theory one deals with the special linear group $S L(n)$. Consider the general n-ary form of degree r

$$
f=\sum \frac{r!}{r_{1}!\cdots r_{n}!} a_{r_{1} \cdots r_{n}} x_{1}^{r_{1}} \cdots x_{n}^{r_{n}}, \quad r_{1}+\cdots+r_{n}=r
$$

with coefficients $a_{r_{1}, \ldots, r_{n}}$ which are indeterminates over K.
If, for a linear transformation with determinant one, x_{1}, \cdots, x_{n} undergo a linear transformation $x_{i}=\sum_{j} g_{j i} x_{j}^{\prime}, g=\left(g_{j i}\right) \in S L(n), f$ is transformed into f of the form $f^{\prime}=\sum r!/ r_{1}!\cdots r_{n}!a_{r_{1} \cdots r_{n}}^{\prime}, x_{1}^{\prime r_{1}} \cdots x_{n}^{\prime r_{n}}$. The mapping $a_{r_{1} \cdots r_{n}} \mapsto g\left(a_{r_{1} \cdots r_{n}}\right)=a_{r_{1} \cdots r_{n}}^{\prime}$ defines a representation of $S L(n)$ on the vector space spanned by $a_{r_{1} \ldots r_{n}}$'s over K.

[^0]A homogeneous polynomial $J\left(a_{r_{1} \cdots r_{n}}\right)$ in the indeterminates is called an invariant if (*) $J\left(g\left(a_{r_{1} \cdots r_{n}}\right)\right)=J\left(a_{r_{1} \cdots r_{n}}\right)$ holds for all $g \in S L(n)$. Let $K\left[a_{r_{1} \cdots r_{n}}\right]^{S L(n)}$ denote the ring of invariants. The main problem in classical invariant theory is to determine the structure of $K\left[a_{r_{1} \ldots r_{n}}\right]^{S L(n)}$. In 1890 Hilbert proved that $K\left[a_{r_{1} \ldots r_{n}}\right]$ is finitely generated by using Hilbert's basis theorem and Cayley's Ω process. All invariants of arbitrary n-ary form are written down by famous Clebsch-Gordan's symbolic method. But the explicit structure of $K\left[a_{r_{1} \cdots r_{n}}\right]^{S L(n)}$ is not known except special cases ([7], [9]).

Let us consider $a_{r_{1} \cdots r_{n}}$ as noncommutative variables over K. Let $K\left\langle a_{r_{1} \ldots r_{n}}\right\rangle$ be the free associative algebra generated by $a_{r_{1} \ldots r_{n}}$'s. A homogeneous element $J\left(a_{r_{1} \cdots r_{n}}\right)$ of degree d in the noncommutative graded ring $K\left\langle a_{r_{1} \cdots r_{n}}\right\rangle$ is called a noncommutative invariant of degree d if it satisfies (*) for any $g \in S L(n)$. We denote by $K\left\langle a_{r_{1} \cdots r_{n}}\right\rangle^{S L(n)}$ the ring of noncommutative invariants. For a nonnegatve integer d, we write $K\left\langle a_{r_{1} \cdots r_{n}}\right\rangle_{d}^{S L(n)}$ for the vector space of invariants of degree d. Let V be a vector space of dimension n, that is the standard $S L(b)$-module, and $\alpha_{1}, \cdots, \alpha_{n}$ be a basis of V. Then by the mapping $a_{r_{1} \cdots r_{n}} \mapsto \alpha_{1}^{r_{1}} \cdots \alpha_{n}^{r_{n}}, K\left[a_{r_{1} \cdots r_{n}}\right]$ is, as an $S L(n)$-module, isomorphic to $K\left[S^{r}(V)\right]$ and $K\left\langle a_{r_{1} \cdots r_{n}}\right\rangle$ is, as a $S L(n)$-module, isomorphic to $K\left\langle S^{r}(V)\right\rangle$.

We write $c(n, r, d)$ and $\bar{c}(n, r, d)$ for dimension of $K\left[a_{r_{1} \cdots r_{n}}\right]_{d}^{S L(n)}$ and $K\left\langle a_{r_{1} \cdots r_{n}}\right\rangle_{d}^{S L(n)}$ respectively. In section 2, some notations from representation theory of the general linear group are introduced and we give combinatorial formulas for $c(n, r, d)$ and $\bar{c}(n, r, d)$. In section 3 , we give explicitly a free generating set of $K\left\langle a_{r_{1} \cdots r_{n}}\right\rangle^{S L(n)}$. The basic idea is to use the (noncommutative) symbolic method, by which all noncommutative invariants are written down explicitly. In section 4 we give dimension formulas of invariants. In section 5, instead of the usual Hilbert series $\sum c(n, r, d) t^{d}$, we shall investigate a formal power series

$$
F_{n, d}(t)=\sum_{r \in N} c(n, r, d) t^{d r}
$$

We shall prove that, if $d \geqq 2 n-1, F_{n, d}(t)$ satisfies the following functional equation

$$
F_{n, a}(1 / t)=(-1)^{n d-n-d} t^{n d} F_{n, a}(t) .
$$

In the last section we shall investigate the ring of invariants of skew symmetric tensors.

Notation

$$
\begin{aligned}
\boldsymbol{N} & \text { nonnegative integers } \\
\boldsymbol{Q} & \text { rational integers } \\
\langle a\rangle_{n} & \text { for } a \in N, \text { the vector }(a, \cdots, a) \in N^{n} \\
|X| & \text { for a set, cardinarity of } X . \\
a \mid b & \text { for } a, b \in N, a \text { divides } b .
\end{aligned}
$$

§ 2. Representation of the general linear groups

In this section we summarize the results on the representations of the general linear group $G L(n)$ which we will use later.

A Young diagram λ with n rows is a nonincreasing sequence of positive integers $\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right), \lambda_{1} \geqq \lambda_{2} \geqq \cdots \geqq \lambda_{n}$. We think of λ as a sequence of rows of "boxes" of length $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. For example

$$
\lambda=(4,2,1)=\square
$$

A Young tableau is a numbering of the boxes of a Young diagram with integers $1,2, \cdots$. If a Young tableau has $i_{1} 1$'s, $i_{2} 2$'s, \cdots, the sequence $\left(i_{1}, i_{2}, \cdots\right)$ is called the weight of a Young tableau.

Let V be a vector space of dimension n. There is a $1-1$ correspondence between Young diagrams with m boxes and $\leqq n$ rows and irreducible $G L(n)$-submodules of $V^{\otimes m}$. We write [λ] for the irreducible $G L(n)$ module in $V^{\otimes m}$ corresponding to λ. Then one dimensional irreducible $G L(n)$ submodule of $V^{\otimes m n}$ corresponds to the rectangular Young diagram with n rows and m columns. The following lemma is a special case of the Littlewood-Richardoson rule [5].

Lemma 2.1. Let μ be a Young diagram. Then

where λ ranges all Young diagrams which can be built by the addition of r boxes to the Young diagram μ, no two added boxes appearing in the same column of λ.

A Young tableau Y is called column strict if the entries of Y increase down columns and do not decrease across rows. Figure 1 gives an example of column strict tableau with weight (2.2.3).

1	1	2	3
2	3		
3			

Figure 1
A rectangular Young tableau Y with n rows is called column strict Young tableau of degree d if Y is column strict and has weight $\langle r\rangle_{d}$. We denote by $K(n, r, d)$ the set of all column strict Young tableaux of degree d. By Lemma 2.1, we obtain:

Proposition 2.2.

$$
\operatorname{dim} K\left\langle a_{r_{1} \cdots r_{n}}\right\rangle_{d}^{S L(n)}=|K(n, r, d)| .
$$

Example 2.3. Figure 2 gives the column strict Young tableau of degree 4 for $(n, r, d)=(2,2,4)$.

Figure 2

By Proposition 2.2, noncommutative invariants of degree 4 for (n, r) = $(2,2)$ has 3 linearly independent invariants.

§3. A free generating set of the noncommutative ring of invariants

In this section we will construct a free generating set of the ring of invariants $K\left\langle a_{r_{1} \ldots r_{n}}\right\rangle^{S L(n)}$. Let V be an n dimensional vector space and $\alpha_{1}, \cdots, \alpha_{n}$ a fixed basis of V. Consider the $S L(n)$ equivariant isomorphism $\varphi: K<S^{r}(V)>\rightarrow K\left\langle a_{r_{1} \cdots r_{n}}\right\rangle$ obtained from the mapping $\alpha_{1}^{r_{1}} \cdots \alpha_{n}^{r_{n}} \mapsto$ $a_{r_{1} \cdots r_{n}}$. For positive integers k_{1}, \cdots, k_{n}, and d, $\left(k_{1}<k_{2}<\cdots<k_{n} \leqq d\right.$, let $\left\langle k_{1}, \cdots, k_{n}\right\rangle$ be the tensor in $\otimes^{d} K[V]$ defined by

$$
\begin{aligned}
& \left\langle k_{1}, \cdots, k_{n}\right\rangle \\
& \quad=\sum_{\sigma} \operatorname{sgn} \sigma 1 \otimes \cdots \otimes \alpha_{\sigma(1)} \otimes \cdots \otimes \alpha_{\sigma(2)} \otimes \cdots \otimes \alpha_{\sigma(n)} \otimes \cdots \otimes 1 .
\end{aligned}
$$

Here the sum ranging over all permutations on n letters $1, \cdots, n$ and $\alpha_{\sigma(1)}, \cdots, \alpha_{\sigma(n)}$ appear in k-th, \cdots, k_{n}-th places in the tensor product and other factors are all 1.

Obviously $\left\langle k_{1}, \cdots, k_{n}\right\rangle$ is invariant under the action of $S L(n)$. Let

i_{1}	j_{1}	\cdot	m_{1}
i_{2}	j_{2}	\cdot	m_{2}
\cdot	\cdot	\cdot	\cdot
i_{n}	j_{n}	\cdot	m_{n}

be a column strict Young tableau of degree d. Since each number out of $1,2, \cdots, d$ appears r times in Y,

$$
\left\langle i_{1}, \cdots, i_{n}\right\rangle\left\langle j_{1}, \cdots, j_{n}\right\rangle \cdots\left\langle m_{1}, \cdots, m_{n}\right\rangle
$$

is a $S L(n)$-invariant tensor in $\otimes^{d} S^{r}(V)$. We set

$$
F(Y, a)=\varphi\left(\left\langle i_{1}, \cdots, i_{n}\right\rangle\left\langle j_{1}, \cdots, j_{n}\right\rangle \cdots\left\langle m_{1}, \cdots, m_{n}\right\rangle\right) .
$$

Then $F(Y, a)$ is a noncommutative invariant. We say that $F(Y, a)$ is an invariant associated with a column strict Young tableau Y of degree d.

Given two a_{r} and $a_{r}\left(r=\left(r_{1}, \cdots, r_{n}\right), s=\left(s_{1}, \cdots, s_{n}\right) \in N^{n}\right.$ with $|r|=$ $|s|=r)$, we say that a_{r} is bigger or equal than a_{s}, if $r=\left(r_{1}, \cdots, r_{n}\right)$ is lexicographically bigger or equal than $s=\left(s_{1}, \cdots, s_{n}\right)$. Moreover, given two noncommutative monomial $M_{1}=a_{r(1)} \cdots a_{r(d)}$ and $M_{2}=a_{s(1)} \cdots a_{s(d)}$, we say that M_{1} is lexicographically bigger or equal than M_{2}, if $M_{1}=M_{2}$ or, for the first factors $a_{r(j)}, a_{s(j)}$ such that $a_{r(j)} \neq a_{s(j)}, a_{r(j)}$ is bigger or equal than $a_{s(j)}$. Suppose that each number $i, 1 \leqq i \leqq d$, appears i_{1} times in the first row of a given Young tableau Y of degree d and i_{2} times in the second row of Y, etc. We set $[\mathrm{i}]=\left(i_{1}, \cdots, i_{n}\right)$. Then it follows from the construction of $F(Y, a)$ that the highest term in the monomials of $F(Y, a)$ is $a_{[i]} \cdots a_{[d]}$. For example, in Example 2, the highest terms of Y_{1}, Y_{2} and Y_{3} are $a_{20}^{2} a_{02}^{2}, a_{20} a_{11}^{2} a_{02}$ and $a_{20} a_{02} a_{20} a_{02}$, respectively. In particular, different column strict Young tableaux Y_{1} and Y_{2} have different highest terms. Gathering up we have proved the following

Theorem 3.1. To each column strict Young tableau Y of degree d, associate the noncommutative invariant $F(Y, a)$. Then $F(Y, a)$'s constitute a free basis of the vector space $K\left\langle a_{r_{1} \cdots r_{n}}\right\rangle_{d}^{L(n)}$.

In particular noncommutative invariants associated with all column strict Young tableaux of degree $d(d \in N)$ generate the ring of invariants $K\left\langle a_{r_{1} \cdots r_{n}}\right\rangle^{S L(n)}$.

Example 3.2 (Almkvist, Dicks, and Formanek [1]). Consider the binary form of degree n :

$$
f=\sum\binom{n}{k} a_{k} x_{1}^{k} x_{2}^{n-k} .
$$

The column strict Young tableau of degree 2 is

$$
Y=\begin{array}{|c|c|c|c|c|c|}
\hline 1 & 1 & \cdot & \cdot & \cdot & 1 \\
\hline 2 & 2 & \cdot & \cdot & \cdot & 2 \\
\hline
\end{array}
$$

The associated invariant of degee 2 is

$$
\begin{gathered}
F(Y, a)=\varphi\left(\alpha_{1} \otimes \alpha_{2}-\alpha_{2} \otimes \alpha_{1}\right)^{n} \\
=\sum(-1)^{n-k\left({ }_{k}^{n}\right)} a_{k} a_{n-k} .
\end{gathered}
$$

If n is even, say $2 s$, there exist unique column strict Young tableau of degree 3 ,

The associated invariant of degree 3 is

$$
\begin{aligned}
F(Y, a)= & \varphi\left(\alpha_{1} \otimes \alpha_{2} \otimes 1-\alpha_{2} \otimes \alpha_{1} \otimes 1\right)^{s}\left(\alpha_{1} \otimes 1 \otimes \alpha_{2}-\alpha_{1} \otimes 1 \otimes \alpha_{2}\right)^{s} \\
& \times\left(1 \otimes \alpha_{1} \otimes \alpha_{2}-1 \otimes \alpha_{2} \otimes \alpha_{1}\right)^{s} \\
= & \sum_{i=0}^{s} \sum_{j=0}^{s} \sum_{k=0}^{s}(-1)^{i+j+k}\binom{s}{i}\binom{s}{j}\binom{s}{k} a_{s-i+j} a_{s-j+k} a_{s-k+i} .
\end{aligned}
$$

Let Y_{1} and Y_{2} be column strict Young tableaux of degree d_{1} and d_{2} respectively. We write $Y_{1} \hat{\oplus} Y_{2}$ for the Young tableau which is obtained from Y_{1} and Y_{2} as follows: after adding the Young tableau Y_{2} from right
to Y_{1}, replace each entry, say i, in Y_{2} by $i+d_{1}$. For instance, if

$Y_{1}=$| 1 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 2 | 3 | 4 | 4 |,$\quad Y_{2}=$| 1 | 1 | 2 |
| :--- | :--- | :--- |
| 2 | 3 | 3 |,

$Y_{1} \oplus Y_{2}$ is given by

$Y_{3}=$| 1 | 1 | 2 | 3 | 5 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 3 | 4 | 4 | 6 | 7 | 7 |.

Obviously $Y_{1} \oplus Y_{2}$ is a column strict Young tableau of degree $d_{1}+d_{2}$, and $F\left(Y_{1} \hat{\oplus} Y_{2}, a\right)=F\left(Y_{1}, a\right) F\left(Y_{2}, a\right)$. Since $\left(Y_{1} \hat{\oplus} Y_{2}\right) \hat{\oplus} Y_{3}=Y_{1} \hat{\oplus}\left(Y_{2} \hat{\oplus} Y_{3}\right)$, we may write $Y_{1} \oplus Y_{2} \hat{\oplus} Y_{3}$ for $\left(Y_{1} \hat{\oplus} Y_{2}\right) \hat{\oplus} Y_{3}$ or $Y_{1} \hat{\oplus}\left(Y_{2} \hat{\oplus} Y_{3}\right)$.

We now find a free generating set of $K\left\langle a_{r_{1} \cdots r_{n}}\right\rangle^{S L(n)}$. To do so, we introduce a terminology: a column strict Young tableau Y of degree d is called decomposable if there are two column strict Young tableaux Y_{1} and Y_{2} of degree d_{1} and d_{2} respectively such that $Y=Y_{1} \oplus Y_{2}, d=d_{1}+d_{2}$. A column strict Young tableau is called indecomposable if it is not decomposable. For example, in Example 2.3, Y_{1} and Y_{2} are indecomposable but Y_{3} is decomposable. A free generating set of the ring $K\left\langle a_{r_{1} \cdots r_{n}}\right\rangle^{S L(n)}$ is given by the following

Theorem 3.3. The set of noncommutative invariants associated with all indecomposable Young tableaux is a free generating set of the noncommutative invariant ring $K\left\langle a_{r_{1} \cdots r_{n}}\right\rangle^{S L(n)}$.

Proof. If a column strict Young tableau is decomposable, the associated invariant is a product of two invariants, neither of them are not constants. Therefore the set of noncommutative invariants associated with all indecomposable Young tableaux is a generating set of $K\left\langle a_{r_{1} \cdots r_{n}}\right\rangle^{S L(n)}$. It remains to show that this set is free. Assume contrary that some invariants $F\left(Y_{1}, a\right), \cdots, F\left(Y_{k}, a\right)$, associated with indecomposable Young tableaux Y_{1}, \cdots, Y_{k} are not free. Let
(*)

$$
\sum_{1 \leqq i_{i}, \cdots,+i_{p} \leq k} c_{i_{1} \cdots i_{p}} F\left(Y_{i_{1}}, a\right) \cdots F\left(Y_{i_{p}}, a\right), \quad c_{i_{1} \cdots i_{p}} \in K
$$

be a nontrivial relation among $F\left(Y_{1}, a\right), \cdots, F\left(Y_{k}, a\right)$. Then we have

$$
\sum_{1 \leq i_{1}, \ldots, i_{p} \leqq k} c_{i_{1} \cdots i_{p}} F\left(Y_{i_{1}} \hat{\oplus} \cdots \hat{\oplus} Y_{i_{p}}, a\right)=0 .
$$

Now without loss of generality we can assume that degrees of $Y_{i_{1}} \hat{\oplus} \ldots$ $\hat{\oplus} Y_{i_{p}}$ are all equal. Then it is easy to see that, for two column strict Young tableaux with same degree, $Y_{i_{1}} \hat{\oplus} \cdots \hat{\oplus} Y_{i_{p}}$ and $Y_{j_{1}} \hat{\oplus} \cdots \hat{\oplus} Y_{j_{q}}$,

$$
Y_{i_{1}} \hat{\oplus} \cdots \hat{\oplus} Y_{i_{p}}=Y_{j_{1}} \hat{\oplus} \cdots \hat{\oplus} Y_{j_{q}}
$$

if and only if $p=q$ and $Y_{i_{\ell}}=Y_{j_{\ell}}, 1 \leqq \ell \leqq p$. Hence it follows from Theorem 3.1 that the relation (*) is a trivial relation. This contradicts to our assumption and hence the theorem is proved.

ThEOREM 3.4. The ring of noncommutative invariants $K\left\langle a_{r_{1} \cdots r_{n}}\right\rangle^{S L(n)}$ is not finitely generated.

Proof. By Theorem 3.3, it is enough to show that there are infinitely many indecomposable Young tableaux. This is obvious since, for any positive integer d such that $n \mid r d$, the column strict Young tableaux of degree d given by

$1 \cdots 1$	$2 \cdots 2$	\cdots	$s \cdots s$
$s+1 \cdots s+1$	$s+2 \cdots s+2$	\cdots	$2 s \cdots 2 s$
.	\cdot	\cdot	\cdot
.	\cdot	\cdot	$d \cdots d$

is indecomposable.
For a $G L(n)$-module M, we denote by $\chi(M, \varepsilon), \varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)$, the character of M. Let, for a Young diagram, denote by $m(M, \lambda)$ the multiplicity of the irreducible $G L(n)$-module [λ] in the irreducible decomposition:

$$
M=\sum m(M, \lambda)[\lambda]
$$

The character of $[\lambda], \lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$, is given by the Schur function,

$$
\chi([\lambda], \varepsilon)=\left|\begin{array}{c}
\varepsilon_{1}^{\nu_{1}} \cdots \varepsilon_{1}^{\nu_{n}} \\
\cdots \\
\varepsilon_{n}^{\nu_{1}} \cdots \\
\varepsilon_{n}^{\nu_{n}}
\end{array}\right| /\left|\begin{array}{c}
\varepsilon_{1}^{n-1} \cdots 1 \\
\cdots \\
\varepsilon_{n}^{n-1} \cdots 1
\end{array}\right|, \quad \nu_{i}=\lambda_{i}+n-i(1 \leqq i \leqq n),
$$

and hence we have

$$
\chi(M, \varepsilon)\left|\begin{array}{c}
\varepsilon_{1}^{n-1}, \cdots, 1 \\
\cdots \\
\varepsilon_{n}^{n-1}, \cdots, 1
\end{array}\right|=\sum m(V, \lambda)\left|\begin{array}{c}
\varepsilon_{1}^{v_{1}}, \cdots, \varepsilon_{1}^{\nu_{n}} \\
\cdots \\
\varepsilon_{n}^{\nu_{1}}, \cdots, \varepsilon_{n}^{\nu_{n}}
\end{array}\right| .
$$

Therefore $m(M, \lambda)$ is the coefficients of $\varepsilon_{1}^{\nu_{1}} \cdots \varepsilon_{n}^{\nu_{n}}$ in the expression of

$$
\chi(M, \varepsilon)\left|\begin{array}{lll}
\varepsilon_{1}^{n-1} & \cdots & 1 \\
\varepsilon_{n}^{n-1} & \cdots & 1
\end{array}\right|
$$

Let, as before, V be the standard $G L(n)$-module. Then

$$
\chi\left(S^{r}(V), \varepsilon\right)=\sum \varepsilon_{1}^{r_{1}} \cdots \varepsilon_{n}^{r_{n}}, \quad r_{1}+\cdots+r_{n}=r .
$$

For positive integers d and r, let $\underline{m}, \underline{m}_{1}, \cdots, \underline{m}_{d}$ be vectors in N^{ℓ}. If $\underline{m}=\underline{m}_{1}+\cdots+\underline{m}_{d}$, the set of vectors $\left\{\underline{m}_{1}, \cdots, \underline{m}_{d}\right\}$ is called a partition of m, here no account is taken of the order of the parts. The ordered sequence ($\underline{m}_{1}, \cdots, \underline{m}_{n}$) is called on ordered partition of \underline{m}. We will denote by $A(\underline{m}, d, r)$ (resp. $\bar{A}(\underline{m}, d, r)$) the set of all partitions (resp. ordered partitions) of \underline{m} into d parts of length r. For instance, $A((2,2,2), 3,2)$ $=1, \bar{A}((2,2,2), 3,2)=6$.

Proposition 4.1.
(1) $c(n, r, d)= \begin{cases}\sum_{\sigma} \operatorname{sgn} \sigma A\left(\langle d r / n\rangle_{n}+\delta-\sigma(\delta), d, r\right), & \text { if dr/n } \in N, \\ 0 & \text { otherwise }\end{cases}$
(2) $\bar{c}(n, r, d)= \begin{cases}\sum_{\sigma} \operatorname{sgn} \sigma \bar{A}\left(\langle d r / n\rangle_{n}+\delta-\sigma(\delta), d, r\right), & \text { if } d r / n \in N, \\ 0 & \text { otherwise }\end{cases}$ where σ ranges over all permutations on $(n-1, \cdots, 0)$, and $\delta=(n-1$, $\cdots, 0$).

Proof. As is readily seen from the definitions of $A(m, d, r)$ and $\bar{A}(m, d, r)$,

$$
\chi\left(K[a]_{d}, \varepsilon\right)=\chi\left(S^{a}\left(S^{r}(V), \varepsilon\right)=\sum A(\underline{m}, d, r) \varepsilon_{1}^{m_{1}} \cdots \varepsilon_{n}^{m_{n}}\right.
$$

and

$$
\chi\left(K\langle a\rangle_{d}, \varepsilon\right)=\chi\left(\stackrel{d}{\otimes}\left(S^{r}(V)\right), \varepsilon\right)=\sum A(\underline{m}, d, r) \varepsilon_{1}^{m_{1}} \cdots \varepsilon_{n}^{m_{n}} .
$$

Since $c(n, r, d)$ (resp. $\bar{c}(n, r, d)$) is the multiplicity of the irreducible module associated with the Young diagram $\langle d r / n\rangle_{n}$ in the irreducible decomposition of $K[a]_{d}$ (resp. $K\langle a\rangle_{d}$), we see that $c(n, r, d)$ is the coefficient of
(*)

$$
\varepsilon_{1}^{d r / n+n-1} \varepsilon_{2}^{d r / n+n-2} \cdots \varepsilon_{n}^{d r / n}
$$

in the expression of

$$
\chi\left(K[a]_{d}, \varepsilon\right)\left|\begin{array}{c}
\varepsilon_{1}^{n-1} \cdots 1 \\
\varepsilon_{n}^{n-1} \cdots 1
\end{array}\right|=\sum A(m, d, r) \varepsilon_{1}^{m_{1}} \cdots \varepsilon_{n}^{m_{n}}\left|\begin{array}{c}
\varepsilon_{1}^{n-1} \cdots 1 \\
\cdots \\
\varepsilon_{n}^{n-1} \cdots 1
\end{array}\right| .
$$

If we take the term $\operatorname{sgn} \sigma \varepsilon_{1}^{\sigma(n-1)} \cdots \varepsilon_{n}^{\sigma(0)}$ of the second factor we must select the term $A\left(\langle d r / n\rangle_{n}+\delta-\sigma(\delta)\right) \prod_{i=1}^{n} \varepsilon_{i}^{d r / n+n-i-\sigma(n-i)}$ of the first factor in order to obtain the monomial (*). Thus (1) is proved. By the same way we can prove (2).

Remark. If $n=2$, (1) is the Cayley-Sylvester theorem in the classical invariant theory of binary forms and (2) is a result of Michel Brion [1].

§5. A functional equation

In this section we shall prove the following
Theorem 5.1. Let $F_{n, d}(t)$ be the formal power series defined by

$$
F_{n, a}(t)=\sum_{r \in N} \bar{c}(n, r, d) t^{d r} .
$$

Then (1) $F_{n, d}(t)$ is a rational function.
(2) If $d \geqq 2 n-1$,

$$
F_{n, d}(1 / t)=(-1)^{n d-d-n} t^{n d} F_{n, d}(t) .
$$

To prove this theorem, we need a result of Stanley [7]. In general let n and m be positive integers. Let A be an $m \times n$ matrix with integer entries. For a vector $b \in Z^{m}$, set

$$
E(r):=\left\{x \in N^{n}, A x=b\right\}
$$

and

$$
\hat{E}(r):=\left\{x \in N^{n}, A x=-b\right\}, \quad r=0,1,2, \cdots
$$

Let us consider the formal power series:

$$
F(E, t)=\sum_{r \in N}|E(r)| t^{r},
$$

and

$$
\hat{F}(E, t)=\sum_{r \in N}|\hat{E}(r)| t^{r}
$$

Theorem 5.2. (Stanley [7])
(1) $F(E, t)$ and $F(\hat{E}, t)$ are rational functions.
(2) Suppose that the system of linear equations $A x=b$ has a solution $x=\left(x_{1}, \cdots, x_{n}\right) \in \boldsymbol{Q}^{n}$ such that $-1<x_{i} \leqq 0,1 \leqq i \leqq n$. Then

$$
F(E, 1 / t)=(-1)^{\alpha} t^{n} F(\hat{E}, t),
$$

$\alpha=n-r a n k$ of A, assuming that the system of linear equations $A x=0$ has a solution $x=\left(x_{1}, \cdots, x_{n}\right) \in N^{n}, x_{i}>0$ for all i.

Proof of Theorem 5.1. For a $d \times n$-matrix X, let $r_{i}(X)$ be sum of entries of the i-th row vector of $X, 1 \leqq i \leqq d$, and $c_{j}(X)$ sum of j-th column vector of $X, 1 \leqq i \leqq n$. Consider, for a permutation σ on the set $\{n-1, \cdots, 0\}$, a system of linear equations E_{σ} :

$$
r_{i}(X)-r_{j}(X)=0, \quad 1 \leqq i \leqq j \leqq d
$$

and

$$
c_{p}(X)-c_{q}(X)=q-p+\sigma(n-q)-\sigma(n-p), \quad 1 \leqq p \leqq q \leqq n
$$

The number $\bar{A}(\underline{m}, d, r), \underline{m}=\left(m_{1}, \cdots, m_{n}\right)$, is interpritated as the number of $d \times n$ matrices such that sum of entries of any row is r and sum of entries of the i-th column is $m_{i}, 1 \leqq i \leqq n$. Therefore by Theorem 4, we have

$$
\begin{aligned}
F_{n, a}(t) & =\sum_{r \in N} \bar{c}(n, r, d) t \\
& =\sum_{r} \sum_{\sigma} \operatorname{sgn} \sigma \bar{A}\left(\langle d r / n\rangle_{n}+\delta-\sigma(\delta), d, r\right) t^{a r} \\
& =\sum_{\sigma} \operatorname{sgn} \sigma F\left(E_{\sigma}, t\right) .
\end{aligned}
$$

For a $d \times n$ matrix X, let \hat{X} denote the $d \times n$ matrix obtained from X by replacing each j-th column vector with the ($n+1-j$)-th vector of $X, 1 \leqq j \leqq n$. Then if X is a solution of E_{σ}, we have:

$$
\begin{aligned}
c_{p}(\hat{X})-c_{q}(\hat{X}) & =c_{n+1-p}(X)-c_{n+1-q}(X) \\
& =p-q+\hat{\sigma}(n-p)-\hat{\sigma}(n-q), \quad 1 \leqq p \leqq q \leqq n
\end{aligned}
$$

and

$$
r_{i}(\hat{X})-r_{j}(\hat{X})=r_{i}(X)-r_{j}(X), \quad 1 \leqq i \leqq j \leqq n,
$$

where $\hat{\sigma}$ stands for the permutation on the set $\{n-1, \cdots, 0\}$ defined by $\hat{\sigma}(n-p)=n-1-\sigma(p-1), 1 \leqq p \leqq n$.

Since, for any permutation of $n-1, \cdots, 0$, sgn $\sigma=\operatorname{sgn} \hat{\sigma}$, we have $N\left(E_{\sigma}, d r\right)=N\left(\hat{E}_{\partial}, d r\right)$ and hence

$$
\sum_{\sigma} \operatorname{sgn} \sigma F\left(E_{\sigma}, t\right)=\sum_{\sigma} \operatorname{sgn} \sigma F\left(\hat{E}_{\sigma}, t\right) .
$$

Let X_{0} be a $d \times n$ matrix whose p-th column vector is (g, \cdots, g), $g=-(p+\sigma(n-p)) / d$. If $d \geqq 2 n-1$, for any σ and p, we have $-1 \leqq g \leqq 0$, and obviously X_{0} is a solution of E_{σ}. Therefore, for any σ, the system of linear equations E_{σ} satisfies the assumption of Stanley's theorem and we have

$$
\begin{aligned}
F_{n, d}(1 / t) & =\sum_{\sigma} \operatorname{sgn} \sigma F\left(E_{\sigma}, 1 / t\right) \\
& =\sum_{\sigma}(-1)^{n d-n-d} \operatorname{sgn} \sigma t^{n d} F\left(\hat{E}_{\sigma}, t\right) \\
& =(-1)^{n d-d-n} t^{n d} F_{n, d}(t) .
\end{aligned}
$$

This completes the proof.
Remark. We record explicit forms of $F_{2, a}(t)$, for $d=3,4,5$.

$$
\begin{aligned}
& F_{2,3}(t)=\frac{1}{1-t^{6}} \\
& F_{2,4}(t)=\frac{1+2 t^{4}+t^{8}}{\left(1-t^{8}\right)^{2}} \\
& F_{2,5}(t)=\frac{1+3 t^{10}+t^{20}}{\left(1-t^{10}\right)^{3}}
\end{aligned}
$$

§6. The ring of invariants of skew symmetric tensors

Let V be a vector space over K of dimension n with a basis $\alpha_{1}, \cdots, \alpha_{n}$. For a positive integer $r, r<n$, let $\wedge^{r} V$ denote the r-times skew symmetric product of V. In this section, considering $\wedge^{r} V$ as an $S L(n)$ module, we shall construct a generating set of the noncommutative ring $K\left\langle\wedge^{r} V\right\rangle^{S L(n)}$. Let

$$
f=\sum a_{i_{1} \cdots i_{r}} x_{i_{1}} \wedge \cdots \wedge x_{i_{r}}, \quad 1 \leqq i_{1}<\cdots<i_{r} \leqq n
$$

be the generic skew symmetric tensor of rank r. Here we consider $a_{i_{1} \cdots i_{r}}$ as independent variables. If, for any linear transformation with determinant one, x_{1}, \cdots, x_{n} undergo a linear transformation

$$
x_{i}=\sum_{j} g_{j i} x_{j}^{\prime}, \quad g=\left(g_{j i}\right) \in S L(n),
$$

f is transformed into f^{\prime} of the form

$$
f^{\prime}=\sum a_{i_{1} \cdots i_{r}}^{\prime} x_{i_{1}}^{\prime} \wedge \cdots \wedge x_{i_{r}}^{\prime}
$$

the mapping $a_{i_{1} \ldots i_{r}} \mapsto a_{i_{1} \cdots i_{r}}^{\prime}$ defines a representation of $S L(n)$ on the vector space spanned by $a_{i_{1} \ldots i_{r}}$'s over K.

Let $K\left\langle a_{\left.i_{1} \ldots i_{7}\right\rangle}\right\rangle$ be the free associative algebra generated by $a_{i_{1} \ldots i_{s}}$'s. Then the mapping $a_{i_{1} \cdots i_{r}} \mapsto \alpha_{i_{1}} \wedge \cdots \wedge \alpha_{i_{s}}$ gives an isomorphisms as $\operatorname{SL}(n)$ modules between $K\left\langle a_{i_{1} \cdots i_{r}}\right\rangle$ and $K\left\langle\wedge^{r} V\right\rangle$. We denote this isomorphism by φ.

A Young tableau Y is called row strict if the entries of Y do not
decrease down columns and increase across rows. Figure 3 gives an example of row strict tableau of weight ($2,3,1,1$).

1	2	3	4
1	2		
2			

Figure 3
A rectangular Young tableau with n rows is called a row strict Young tableau of degree d if it is row strict and has weight $\langle r\rangle_{d}$. We denote by $R(n, r, d)$ the set of all row strict Young tableaux of degree d. The following lemma and proposition are clear.

Lemma 6.1. Let μ be a Young diagram. Then

where λ ranges all Young diagrams which can built by the addition of r boxes to the Young diagram μ, no two added boxes appearing in the same row of λ.

Proposition 6.2.

$$
\operatorname{dim} K\left\langle a_{i_{1} \cdots i_{r}}\right\rangle_{d}^{S L(n)}=|R(n, r, d)|
$$

Let i_{1}, \cdots, i_{n}, and d be positive integers, $i_{1} \leqq \cdots \leqq i_{n} \leqq d$. Suppose the number 1 appears β_{1} times in the sequence $\left(i_{1}, \cdots, i_{n}\right)$, the number 2 appears β_{2} times in $\left(i_{1}, \cdots, i_{n}\right), \cdots$, and the number d appears β_{d} times in $\left(i_{1}, \cdots, i_{n}\right)$. Let i_{1}, \cdots, i_{n} be the tensor in $\otimes^{d} K\langle V\rangle$ defined by

$$
\begin{aligned}
& \left\langle i_{1}, \cdots, i_{n}\right\rangle=\sum_{\sigma} \operatorname{sgn} \sigma \alpha_{\sigma(1)} \cdots \alpha_{\sigma\left(\beta_{1}\right)} \\
& \otimes \alpha_{\sigma\left(\beta_{1}+1\right)} \cdots \alpha_{\sigma\left(\beta_{1}+\beta_{2}\right)} \\
& \vdots \\
& \otimes \alpha_{\sigma\left(\beta_{1}+\cdots+\beta_{\sigma-1+1)} \cdots\right.} \cdots \alpha_{\sigma(n)}
\end{aligned}
$$

where σ ranges all permutation on $\{1, \cdots, n\}$ and, if a number j does not appear in (i_{1}, \cdots, i_{n}),

$$
\alpha_{\sigma\left(\beta_{1}+\cdots+\beta_{j-1}+1\right)} \cdots \alpha_{\sigma\left(\beta_{1}+\cdots+\beta_{j}\right)}
$$

should be 1 .
Then $\left\langle i_{1}, \cdots, i_{n}\right\rangle$ is invariant under the action of $S L(n)$.
We consider a row strict Young tableau of degree d of the form

i_{1}	j_{1}	\cdot	m_{1}
i_{2}	j_{2}	\cdot	m_{2}
\cdot	\cdot	\cdot	\cdot
i_{n}	j_{n}	\cdot	m_{n}

Then $\left\langle i_{1}, \cdots, i_{n}\right\rangle\left\langle j_{1}, \cdots, j_{n}\right\rangle\left\langle m_{1}, \cdots, m_{n}\right\rangle$ is a $S L(n)$-invariant tensor in $\otimes^{d} K\langle V\rangle$.

Let A be the projection operator from $K\langle V\rangle_{r}$ onto $\wedge^{r} V$, that is $A\left(v_{1} \otimes \cdots \otimes V_{r}\right)=v_{1} \wedge \cdots \wedge v_{r}$. We extend A to the mapping $\otimes^{d} K\langle V\rangle_{r}$ $\rightarrow \otimes^{d} \wedge^{r} V$, denoted also by A. We set

$$
F(Y, a)=\varphi\left(A\left\langle i_{1}, \cdots, i_{n}\right\rangle\left\langle j_{1}, \cdots, j_{n}\right\rangle \cdots\left\langle m_{1}, \cdots, m_{n}\right\rangle\right)
$$

Then $F(Y, a)$ is a noncommutative invariant of degree d in $K\left\langle a_{\left.i_{1} \ldots i_{r}\right\rangle}\right\rangle$.
Example 6.3. Let n be an even integer, say $2 m$. There is one row strict Young tableau Y of degree d of the form

$$
Y=\begin{array}{|c|}
\hline \frac{1}{1} \\
\hline \frac{2}{2} \\
\hline \cdot \\
\hline \cdot \\
\hline \frac{m}{m} \\
\hline
\end{array} .
$$

Then we have

$$
\langle 1,1,2,2, \cdots, m, m\rangle=\sum \operatorname{sgn} \sigma \alpha_{\sigma(1)} \alpha_{\sigma(2)} \otimes \alpha_{\sigma(3)} \alpha_{\sigma(4)} \otimes \cdots \otimes \alpha_{\sigma(n-1)} \alpha_{\sigma(n)}
$$

and hence the associated noncommutative invariant of degree m is given by

$$
F(Y, a)=\sum_{\sigma} \operatorname{sgn} \sigma a_{\sigma(1) \sigma(2)} a_{\sigma(3) \sigma(4)} \cdots a_{\sigma(n-1) \sigma(n)}
$$

In this case $F(Y, a)$ is the (noncommutative) Pfaffian.
Example $6.4(r=3, n=6)$. In this case there are 4 row strict Young tableaux of degree 4:

$$
Y_{1}=\begin{array}{|c|c|}
\hline 1 & 2 \\
\hline 1 & 3 \\
\hline 1 & 3 \\
\hline 2 & 4 \\
\hline 2 & 4 \\
\hline 3 & 4 \\
\hline
\end{array}, \quad Y_{2}=\begin{array}{|c|c|}
\hline 1 & 2 \\
\hline 1 & 2 \\
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline 3 & 4 \\
\hline 3 & 4 \\
\hline
\end{array}, \quad Y_{3}=\begin{array}{|c|c|}
\hline 1 & 3 \\
\hline 1 & 3 \\
\hline 1 & 3 \\
\hline 2 & 4 \\
\hline 2 & 4 \\
\hline 2 & 4 \\
\hline
\end{array}, \quad Y_{4}=\begin{array}{|c|c|}
\hline 1 & 2 \\
\hline 1 & 2 \\
\hline 2 & 4 \\
\hline 3 & 4 \\
\hline 3 & 4 \\
\hline
\end{array} .
$$

We have

$$
\begin{aligned}
& \langle 1,1,1,2,2,3\rangle=\sum \operatorname{sgn} \sigma \alpha_{\sigma(1)} \alpha_{\sigma(2)} \alpha_{\sigma(3)} \otimes \alpha_{\sigma(4)} \alpha_{\sigma(5)} \otimes \alpha_{\sigma(6)} \otimes 1 \\
& \langle 2,3,3,4,4,4\rangle=\sum \operatorname{sgn} \sigma 1 \otimes \alpha_{\sigma(1)} \otimes \alpha_{\sigma(2)} \alpha_{\sigma(3)} \otimes \alpha_{\sigma(4)} \alpha_{\sigma(5)} \alpha_{\sigma(6)}
\end{aligned}
$$

and hence we obtain

$$
F\left(Y_{1}, a\right)=\sum_{\sigma, \lambda} \operatorname{sgn}(\sigma \mu) a_{\sigma(1)(2) \sigma(3)} a_{\sigma(4) \sigma(5) \mu(1)} a_{\sigma(8) \mu(2) \mu(3)} a_{\mu(4) \mu(5) \mu(3)}
$$

It is known (See p. $81[6]$) that $K\left[\wedge^{3} V\right]_{4}$ contains one invariant and

Then, considering $a_{i j k}(i<j<k)$ as commutative variables, one sees that

$$
\sum_{\sigma, \mu} \operatorname{sgn}(\sigma \mu) a_{\sigma(1) \sigma(2) \sigma(3)} a_{\sigma(4) \sigma(5) \sigma(1)} a_{\sigma(6) \sigma(2) \sigma(3)} a_{\sigma(4) \sigma(5) \sigma(6)}
$$

is an invariant of degree 4 in the commutative ring $K\left[\wedge^{3} V\right]$.
For two row strict Young tableaux Y_{1} and Y_{2} of degree d, and d_{2} respectively, $Y_{1} \hat{\oplus} Y_{2}$ is defined by the same way as in section 3. $Y_{1} \hat{\oplus} Y_{2}$ is a row strict Young tableau of degree $d_{1}+d_{2}$ and $F\left(Y_{1} \oplus Y_{2}, a\right)=$ $F\left(Y_{1}, a\right) F\left(Y_{2}, a\right)$.

Theorem 6.5. The set of noncommutative invariants associated with all row strict Young tableaux of degree d is a basis of the vector space $K\left\langle a_{i_{1} \cdots i_{r}}\right\rangle_{d}^{S L(n)}$.

Proof. We define an ordering on the set of noncommutative monomials in $K\left\langle a_{i_{1} \ldots i_{r}}\right\rangle$ as in the proof of Theorem 3.1. Suppose that each number $j, 1 \leqq j \leqq d$, appears in the j_{1}-th, j_{2}-th, and j_{r}-th rows in a row strict Young tableau Y of degree d. We set $[j]=\left(j_{1}, \cdots, j_{r}\right)$. Then the highest term in the monomials of $F(Y, a)$ is $\pm a_{[1]} \cdots a_{[d]}$. For example, if (n, r) $=(4,2)$,

1	2	3
1	4	5
2	4	6
3	5	6

is a row strict Young tableau of degree 6 and the highest term in the monomials of $F(Y, a)$ is $\pm a_{12} a_{13} a_{14} a_{23} a_{24} a_{34}$. It is easily seen that, for different row strict Young tableaux Y_{1} and Y_{2} of the same degree, the highest terms of associated noncommutative invariants are linearly independent. Therefore combining with Proposition 6.2, the proof is completed.

The notion of decomposable or indecomposable Young tableau is defined by the same way as in section 3 and the following theorems are proved in the exactly same way as the corresponding theorems.

Theorem 6.6. The set of noncommutative invariants associated with all indecomposable Young tableaux is a free generating set of the noncommutative invariant ring $K\left\langle a_{i_{1}} \ldots i_{r}\right\rangle^{S L(n)}$.

Theorem 6.7. The ring of noncommutative invariants $K\left\langle a_{i_{1} \cdots i_{r}}\right\rangle^{S L(n)}$ is not finitely generated.

Remark. Considering $a_{i_{1} \cdots i_{r}}$ as commutative variables, the commutative ring of invariants $K\left[\wedge^{r} V\right]^{S L(n)}$ is generated by invariants associated with all indecomposable Young tableaux.

References

[1] G. Almkvist, W. Dicks and E. Formanek, Hilbert series of fixed free algebra and noncommutative classical invariant theory, J. Algebra, 93 (1985), 189-214.
[2] W. Dicks and E. Formanek, Poincaré series and a problem of S. Montgomery, Linear and Multilinear Algebra, 12 (1982), 21-30.
[3] V. K. Kharchenko, Algebra of invariants of free algebras, Algebras i Logika, 17 (1978), 478-487 (in Russian) ; English translation : Algebra and Logic, 17 (1978), 316-321.
[4] D. R. Lane, Free algebras of rank two and their automorphisms, Ph.D. thesis, Betford College, London, 1976.
[5] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, Clarendon, Oxford, 1979.
[6] M. Sato and T. Kimura, A Classification of irreducible prehomogeneous vector spaces, Nagoya Math. J., 65 (1977), 1-15.
[7] I. Schur, Vorlesungen uver Invariantentheores, Springer-Verlag, Berlin Heidelberg, New York, 1968.
[8] R. Stanley, Combinatorics and Commutative Algebra, Birkhauser, Boston Basel Stuttgalt, 1983.
[9] H. Weyl, The Classical Groups, Princeton University Press, Princeton, New Jersey, 1946.

Department of Mathematics
Faculty of Science
Nagoya University
Chikusa-ku, Nagoya 464
Japan

[^0]: Received July 3, 1987.

