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§ 1. Introduction

At the early fifties A. Weil introduced [3] and algebraic approach to

the theory of infinitesimal prolongations of smooth manifolds motivated

by the theory of jets developed by Ch. Ehresmann on one side and also

by the return to Fermat's methods on the infinitesimal calculus of first

order, that makes use of nilpotent infinitesimals.

We start working with associative, commutative, unitary, finite di-

mensional 2?-algebras A having a nilpotent ideal I complementary to R,

this identified with its image by the map R -> A t —> tlA. In this case

A = R φ I and I is the unique maximal ideal of A. Following Weil we

will call these algebras local algebras. The morphisms of /?-algebras will

be the usual ones, that is, i?-linear and compatible with the subjacent

ring structure.

The manifolds will be supposed C°°, Hausdorff, second countable, with

no restriction on the dimension of components, unless explicited stated,

all maps between manifolds C°°; this category of objects and morphisms

will be denoted by 9W. Then in WeiΓs sense an A-near point over a

manifold M i s a morphism of i?-algebras C°°(M) > A. It is a basic re-

sult that there is a canonical one-to-one correspondence between J?-near

points over M and the points of M itself, namely x -̂» εx, where εx is the

evaluation morphism C°°(M) —> R, fy-+f(x). An A-near point η over M is

said to be (infinitely) near to the point x of M if (and only if) p o η cor-
7)

responds to x by the bijection described above; here A >R is the ca-

nonical projection. The Ehresmann's gfc-velocities over M originates in

this point of view from the /^-truncated polynomial algebra in q indeter-

minates with real coefficients.
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Now if M >N is a map between manifolds we have the induced

morphism of i?-algebras C°°(N) -^-> C°°(M), g>-+ g°φ, which gives a map

Ύ]^->ηoφ* associating A-near points over N to A-near points over M; it

is clear that η © ^* is near to φ(x) if η is near x.

To fix notations let TA(M) denote the set of A-near points over M

and TA(φ) denote the map described above from TA(M) to TA(N); TA(M)

can be given a canonical manifold structure in such a way that TA(φ) is

a map between manifolds for any φ, further the correspondences M-^—>

TA(M) φ -̂ —> TA(φ) gives a covariant endofunctor T* of Wl. Also for any

morphism A __ >B of local algebras we have a canonical natural trans-
_ T(X) —

formation TA >TB given by η-+λoη for any η e TA(M). It will be useful

to distinguish with the notation z the natural isomorphism TR -> Id given

by the bijective correspondence between i?-near points and points on

manifolds; here Id denotes the identity functor of SK.

All that was described above in a succinct way is contained in [4]

although in another language; we have stressed the functorial aspect in

describing these ideas for it is exactly this the spirit of this paper.

In 1969, A. Morimoto in his lecture notes [3] worked on many appli-

cations about prolongations of geometrical structures over manifolds by

means of the functors TA. To be explicit about the origins of the problem

treated in this paper we reproduce that part of the introduction to [3]

which refers to it:

"The purpose of this series of papers is to give the results of my

recent works on the prolongation of geometrical structures on a differ -

entiable manifold M to the tangent bundles of higher order, bundles of

pr-jets or more generally to bundles of infinitely near points of arbitrary

kind. Our general method is based on the consideration of the functor

f which assigns to M the bundle f(M) of some kind. The properties

which we use in most parts of this series are the following (1)—(7):

(1) The covariant functor T is multiplicative in the following sense:

f(M X N) is canonically diffeomorphic to f(M) X f(N).

(2) For differentiate maps Φ, Ψ we have the following equalities (in

the case when they have meanings):

f(Φ o Ψ) = f(Φ) o f(Ψ),

T(Φ x Ψ) = f (Φ) X f{Ψ),

f (Φ, Ψ) = (T(Φ), f(Ψ))
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1 \M =

where l^ stands for the identity map of M.

(3) If V is a real vector space of finite dimension, then TV is ca-

nonically a vector space.

(4) If G is a Lie group (acting on a manifold M) then TG is also a

Lie group (acting on the manifold TM).

(5) TGL(n) acts on Ti?n effectively as a linear transformation group.

(6) If P(M, π, G) is a principal fibre bundle then TP(TM, fπ, TG) is

also a principal fibre bundle.

(7) Let {xu , xn} (resp. {JΊ, ,yn}) be a local coordinate system on

a neighborhood ί7 and let J: U->GL(ή) be the Jacobian matrix with

respect to the coordinate systems {xj, {yt} and let {xu , λ\γ} (resp. {yi,

* * > Xv}) be the induced coordinate system on π~\U) in some sense, then

we have the following equality:

where J: π~\U) -» GL(TRn) denotes the Jacobian matrix with respect to

{xv} and {yv} and where j { f ) \ TGLin) -> GL(TRn) is a homomorphism defined

by property (5).

. . . (He continues describing the distribution of subjects in the work,

which doesn't concern us here, and then finalizes with:).

The author conjectures that if a covariant functor f has the pro-

perties (1)~(7), then there exists a local algebra A such that f will be

(or will be near to) the functor which assigns the bundle of infinitely near

points of A-kind".

The last assertion above was the motivation for the investigations

made in this paper.

§ 2. Auxiliary results and remarks

Before stating the approach we had given to the conjecture raised by

Morimoto we will make some remarks of auxiliary nature.

Rl. If a covariant endofunctor T of 2ft preserves products then T(l)

is a singleton for any singleton 1.

In fact, it suffices to observe that if 1 > 1 X 1 > 1 is the cartesian

product then Γ ( l ) ^ - Γ(l X 1) - ^ i Γ(l) must be also a product in 2ft, that
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is, Γ ( l χ 1) T(P)'T{q)> T(ΐ) X Γ( l) is a diffeomorphism and observe that

T(p) = T(q) (because p = q).

Now if M >N is any constant map between manifolds whose unique

value is y e N then T(φ) is constant since T(φ) factorizes through the

singleton T({y}) and the value of T(φ) is that of the map T({y}) -» T(N)

obtained from the inclusion {y}-+N.

R2. If T is a product preserving covariant endofunctor of Wl we can

define for any manifold M a map M > T(M) such that for any map

M >N between manifolds we have the following commutative diagram:

T(M)

- I
M-

T(φ)

Ψ

T(N)

t

In fact, let iM{x) be the value of the constant map T({x}) -> T(M)

obtained by application of T on the inclusion {x} —> M; the commutativity

of the above diagram follows from the commutativity of :

T(M)

}) > T(N)

Further the smoothness of the maps ίM depends only on the smoothness
i R

of R > T(R). To see this observe that iM is smooth iff ίM \ U is smooth
θ

for any domain of a chart U >Rn onto Rn.

Now iM I U — ίMov where U > M is the inclusion and so the follow-

ing commutative diagram gives the conclusion for n > 0:

T(R)n

Note that the assertion of the smoothness of iM \ U is trivial for n = 0

since then U is a singleton.

Now if the maps iM are smooth they furnish a natural transformation
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Id >T, where Id denotes the identity functor of 2JI.

R3. If a product preserving covariant endofunctor T of 2W admits a

natural transformation Id >T, then it is unique and is given by the

maps described at R2. In fact, given such i we look at the following

diagram, with x e M:

T({x}) > T(M)

where the base arrow is the inclusion and the top arrow T applied to it.

m
R4. Let R X R ^ R be the ring operations on R, that is, m and a

a
are respectively the multiplication and addition; applying T to m and a
and using the canonical diffeomorphism T(R X i ? ) ^ T(R) X T(R) (note

that we are always considering T covariant product preserving endofunctor

of 2Jί) we obtain two smooth maps T(R) X T(R) ^ T(R). Since com-
a

mutativity and associativity of m and a can be expressed by means of

commutative diagrams these are also properties of μ and a as a consequence

of functoriality; by a similar argument we have that μ is distributive

with respect to a. Now the question of neutral elements for both μ and

a can be treated as follows. We will exemplify only with a since it is

almost the same with μ. Let R >R be the constant map whose value

is zero; we have ao(idR, Z) = iάR = a<>(Z, idΛ) and so ao(idTiR), T(Z)) =

id r ( β ) = a o (T(Z), idΓ ί Λ )) and as was observed at R l the map T(Z) is

constant and has as its unique value iB(0) which in that manner is the

neutral element of a. In this way we have a ring with unity (iR(ΐ))

structure on T(R) given by a and μ.

Observe now that "set-theoretical naturality" of the maps iM re-

marked at R2 reduces the question about the smoothness of iR to that

of continuity since we have now iR as a ring morphism and it is sufficient

to consider the (abelian) Lie group structure of R and T(R). The author

has strong reasons to belief that it is the case that iR is continuous.

Now since R is a field we find that iR is injective or constant; in

the last case iR{0) = ίR{l) and these being the neutral elements of T(R)

we have that T(R) is trivial: it reduces to {/Λ(0)}. This together with an
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examination of the last diagram of R2 shows that iM is locally constant

and so constant in the connected components of M. Since we are prima-

rily interested in prolongations of manifolds we will work in the sequel

only with these T for which iR is injective and continuous. This will

have as a consequence that iM is always an embedding (see the end of

Section 3).

EXAMPLE. With respect to the injectivity of iM we can look at the

following situation: let C be the connected component functor which as-

sociates to any manifold M the discrete manifold C(M) —set of connected

components of M— and for any map M > N the map C(M) > C(N)

sending S e C(M) to the element of C(N) which contains φ(S). In this

case the map M > C(M) associates to any xeM the connected com-

ponent of x in M, and obviously is not injective, unless M is discrete.

2.1. THEOREM. Let T be a covariant product preserving endofunctor

of 2ft such that R >T(R) is continuous and injective. Then the R-algebra

structure given by iR and the operations μ and a (described at R4) splits

as an R-algebra into a finite sum of local algebras, and these components

are uniquely determined.

Proof. T(R) is a finite dimensional 2?-algebra by Lemma 1, Appendix;

to get the conclusion by applying Lemma 3, it is necessary to show that

1 + xλ is invertible in T(R) for any x e T(R). Now the consideration of

the map R-^R, ί •—> 1 + t2, which is smooth and multiplicatively invertible,

gives the desired result, by the definitions of the ring operations on T(R)

and functoriality.

§ 3. Generalized Weil's functors and generalized prolongation

functors

3.1. DEFINITION. SL will denote the category that has as objects the

Z?-algebras which splits as i?-algebras in a finite sum of local algebras and

as morphisms the i?-algebra morphisms.

See Lemma 3 in the Appendix another characterization of the objects

of SL.

3.2. DEFINITION. GP will denote the category that has as objects
T ΊR

the product preserving covariant endofunctors 3ft >3R for which R >
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T(R) is injective and continuous (see R2, 3, 4 of §1), and as morphisms

T >S the natural transformations.

Let A be an object of SL and Ax © 0 As an splitting of it as a

finite sum of local algebras. There is an obvious bijection between

homΛ_alg (C°°(M), A) and TAl(M) X X TAt(M), for any manifold M, and

by transport we have a canonical smooth manifold structure on homB_aig

(C°°(M), A), which by Lemma 3, Appendix, depends only on A; let's still

use the notation TA(M) for this manifold. We will call TA a generalized

Weil's functor.

Now it is clear that for any smooth map M-—>N we can define, like

in the case of Weil's functors, a smooth map TAM-^\ TA(N) in such a way

that M^->TA(M)φ^->TA(φ) is a covariant endofunctor TA of Tt and

that it is product preserving. It is also clear how to define natural trans-
— T(λ) — λ

formations TA > TB for any rnorphism A > B of SL in such a way that

T(λoμ) = T(λ)oT(μ) if C >A is another morphism of SL; in particular

we have Id -» TA corresponding to R —> A for any A—it is clear that R

— > TA(R) is injective and continuous.

3.3. PROPOSITION. T: SL -> GP given by A —-> TA and (A > B)
_ T(λ) —

-^-> TA > TB is a covariant functor.
Proof. Immediate.

On the basis of 2.1 we know that any object of GP gives origin to

an object T(R) of SL. As a consequence of the naturality we see easily

that T(R) >S(R) is a morphism of SL if T >S is a morphism of GL
Z 7*

(of course together the observation that if Id >• T and Id > S are the
unique morphisms from Id to T and S respectively (see R2, 3, of §1) then

A ° i
A o i = j since Id > S is also a morphism of GP).

3.4. PROPOSITION. The correspondences T -̂ —> T(R), Λ -^—> ΛR define

a covariant functor A: GP -* SL.

We have now two endofunctors A o T of SL, and T o A oΐ GP. It is

immediate to define, like in [4], a natural isomorphism AoT >1 S L by

ωA(η) = η(iάR) for any object A of SL and any 77 in A{TA) — TA(R).

Also for any object T of GP and for any manifold M by the definition

of the jR-algebra structure on A(T) we see that the map C°°(M) -
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/ι-» T(f)(z) is an element of TMT){M) for any ze T(M), and thus we have

a map T(M)~—> TMT)(M); the verification that for any T we have a

morphism T UJT>TA(T) given by these maps is a straight forward one, as is
Ξ —

the verification that lGL-^-^T o A given by these Ξτ is a natural trans-

formation.

To see that Ξ is not an isomorphism it is sufficient to look at the

functors T X C of GP, where T is an object of GP and C is the functor

of the example after R4, § 1.

Although Ξτ in general is not an isomorphism there is a simple case

in which it is and has a nice consequence. In fact we can see directly

from the definition of Ξτ and of ωA that ΞfA is just Tiωj1) = T(ωA)~ι and

so ΞTA: TA->TMfA) is an isomorphism and then:

3.5. PROPOSITION. Every natural transformation TA > TB is deter-

mined by the commutative diagram:

ΞT.

T(AR)^ y

that is any such A is given by T(ωB o AR o ω^1), in particular there are no

other morphisms in GP, TA >TB besides those given by the functor T; A

is an isomorphism if and only if AR is so.

Proof. Immediate from what has been said above.

3.6. PROPOSITION. For any object T of GP there exist canonical bi-

jections between the following sets:

( i ) the morphisms of GP from T to Id;

(ii) the morphisms of SP from A(T) to R;

(iii) the maximal ideals of A{T).

Moreover if At 0 0 As is a splitting of A(T) into a sum of local algebras

there are exactly s morphisms A(T) >R, 1 < i < s, determined by pXej) =

δij9 where et is the unity of At.

Proof, (i)^^(ii). Given T > Id let A(π) = πR associated to it; if

A(T) >R is given we take π = τoT{p)oΞτ where TR > Id is the ca-

nonical isomorphism. It is esay to see that these are inverses one of

the other.
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ηn

(ii)^>(iii). Given A(T) >R we have that Ker(p) is a maximal ideal

given a maximal ideal I of A(T) we know that A(T) = Rξ& I, by Lemma

2, Appendix, since as was shown at the proof of 2.1 we have 1 + a2 iπ-

vertible for any aeA(T); take then for p the composition A(T)^ A(T)[I

Now, since for any morphism A(T) >R we have p(ej2 = p(et) and

P(ei)p(ej) = 0 iί ί φ j, it is obvious that there is one and only one ί e

{1, , s} such that p(e3) = 5iJ? 1 <jf < s; since et is the unity of Ai and

each At is a local algebra p is determined by the values p{e^) on the other

side the composition A-^ Ai-^R gives a morphism A > R such that

Let now T be an object of GP, Id > ϊ 7 the unique morphism from

Id to T and T >Id any one of the morphisms described in the last pro-

position. Since we have that both π o ί and 1 are morphisms Id ~> Id, by

R2, Section 1, we have πoi = 1, that is, for any manifold M the map iM

is a section of πM.

3.7. PROPOSITION. For any object T of GP we have that the maps iM

given by the unique morphism Id > T are embeddings, being sections of

πM for any morphism T >Iά of GP.

This justifies to call the objects of GP generalized prolongation

functors.

There is also the following remark:

If an object T of GP is isomorphic to some TA, with A an object of SL

through Σ then ώΓ is an isomorphism and Σ = T(σ) o Ξτ where A(T) ——> A

is an isomorphism of SL.
A{Σ) —

In fact applying A to Σ gives the isomorphism A(T) > A(TΛ). On

the other side A(TA) > A is an isomorphism of SL, and the commutative

diagram below, together Tiωj1) = ΞTA as was remarked earlier, gives the

result with a = ωA o A(Σ).

A(T)Ίfϊ ^ ± A{TA)'2\
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§ 4. A full subcategory of GP and an answer to Morimoto's
conjecture

4.1. DEFINITION. L will denote the full subcategory of SL that has
as objects the local algebras.

4.2. DEFINITION. IP will denote the full subcategory of GP that has
as objects these T of GP satisfying: AL (Algebraic locality), A{T) is a
local algebra, LD (Local determination). For any manifold M and open
submanifold U of M the diagram below is a pull-back:

m%T(M)

U

where U > M is the inclusion and T > Id is the unique morphism

from T to Id (see 3.6).

Remark. Since for W = πi\U) we have a pull back diagram

W >T(M)

where the top arrow is the inclusion, the requirement LD above is equi-
valent to: T(v) is a diffeomorphism onto π^(U).

It is trivial that the restrictions of A to IP and T to L gives respec-
tively functors IP-+L and L -»IP, which will be still denoted by A and T.

4.3. THEOREM. (T, A) is an equivalence between the categories IP and

Proof. Since, as we have seen after 3.4, AoT > 1SL is a natural

isomorphism, with the old A and T, restricting to L gives the first part;

also by restricting the natural transformation 1GL > To A (with the old

A and T) to IP and still denoting it by Ξ, we will show that it is an

isomorphism. Since by 3.6 we have unique natural transformations T

> Id and TAiT) > Id we have X-Ξτ — π; then to show that for any T

in IP and any manifold M we have a diffeomorphism given by (ΞT)M it

is sufficient to show {Ξτ)M\π^(U) is a diffeomorphism onto Xj/(Z7), where
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U ranges through an open covering of M.

Since T(v) is a diffeomorphism onto π^(JJ) and TMT)(v) a diffeomor-

phism onto T^{U), where U > M is the inclusion, the diagram below

shows that it is sufficient to verify that (Ξτ)σ is a diffeomorphism when

U ranges through an open cover of M.

T(v)

Consider the open cover of M consisting of those U for which there

exists a chart U > Rn onto Rn. Then we have the commutative diagram:

T(θ)

It is trivial to verify that the map (ΞT)R is the inverse of ωA{T);

together with the fact that horizontal arrows are diffeomorphisms the

conclusion follows. •

The theorem above gives an answer to Morimoto's conjecture. It is

to be noticed that from the seven conditions stated in [3] we used only

(1) and local determination LD of 4.2, which is very natural; besides this

the injectivity of R > T(R) is also assumed (and is justified by com-

mentaries in the end of R 4, § 1) giving as a consequence the fact that

M—^> T{M) are embeddings (3.7). It is also nice that the natural trans-

formation given by the maps T(M)—L—>lVl is an information contained in

T; besides this by the theorem above they are locally trivial fibrations

and also they are the unique natural family of maps T(Λf)—^>M.

We give below another description of the objects in IP without making

the algebraic hypothesis AL of 4.2.

4.4. PROPOSITION. An object T of GP is an object of IP iff there exists

a morphίsm T >Id of GP such that condition LD of 4.2 is satisfied for π.

Proof. We show the non trivial half. Let ϊ 7 —%Id satisfy I D of 4.2.

If we show that Ker(πΛ) = πR

ι{G) is the unique maximal ideal of T(R) we
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y

are done. Consider the inclusion R* > R of the set of non-zero (inveritible)

real numbers and the diffeomorphism T(v) of T(R#) onto ^(i?*) — T(R)\

7r^(0); the invertibility of the elements of T(R)\KR\0) is a consequence of
in

the equation mo(id^ ) σ) = u = Tno(σ, id^), where R* > R* is the con-

stant map ί i—> 1, R* >R* is the map t ^ t~1 and R* X 2?* > R*, (t, s)

>-» t.s, together with the fact that vom = mo(vXv) where R X R > R is

the multiplication of R. m

Remark. We also note that the requirement on T, to be an element of

IP, can be weakened to the condition that T is covariant product preserv-

ing, together with the existence of π satisfying LD of 4.2 and the con-

tinuity of R >T(R) since the injectivity of iR is a consequence of

KR°iR = id^, this last equality being a consequence of the commutativity

of the diagram below:

4.5. PROPOSITION. If T is an object of IP the natural isomorphism

T-^->TMT) is unique up to natural automorphisms of TAiT) of the type T(σ)

where A(T) >A(T) is an automorphism.

y

Proof. If T >TMT) is another isomorphism look at A = Σ o(3τ)~ί

and use 3.5. JS

We will make now a general discussion which applies to all objects

of GP.

Let E be a finite dimensional real vector space with operation R X

E -> E (scalar multiplication) and E X E -> E (addition).

Considering E with its structure of manifold the maps above are

smooth and we can obviously obtain from them A{T) X T(E) -> T(E) and

T(E) X T(E) -> T(E) which furnish a structure of ^(T)-module, as can be

shown with arguments in the line of R4, §1. Moreover it is very simple

to show that if {et\ί e Γ} and {ξ^ieΓ} are dual basis of E and E* then

the map Ί\E)-> A(T) ® E given by z v-+ΣnerT(ξi)(z)®ei doesn't depend
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on the basis and is an ^4(T)-linear isomorphism. If in addition we are

given a structure of 2?-algebra by a map E X E >E, T(E) will be equip-

ped with a structure of A(T)-algebra, where multiplication is deduced

from T(m); further the above isomorphism of ^4(T)-module is also a A(T)-

algebra isomorphism.

Consider now another object S of GP and let S o T be the composed

functor. First of all it is obviously a covariant product preserving functor
% j

of 23Ϊ on the other side if Id > T and Id > S are the unique morph-

isms from Id to T and S then the maps M S{ι")OJ"> S(T(M)) and also M

- ί ^ — > S(T(M)) furnish natural transformations Id > So T which coin-

cide by R2, §2; now take any T >Iά, S >Iά, by 3.7 we have πM°Xτ{M)

o kM == idi¥ and so kM is injective. Then S o T is an object of GP and since

A(S o T) = S(T(R)) by what has been observed above we have a canonical

isomorphism A(S o T) =s A(S) X A(T).

4.6. PROPOSITION. Let T be an object of GP and E a finite dimen-

sional real vector space. Then the A(T)-module structure on T(E) obtained

by means of T from the operations on E is canonically isomorphic to A(T)

® E. If moreover E has an R-algebra structure the A(T)-algebra structure

obtained in a similar way is also isomorphic to A{T) ® E by the above map

T(E) —> A{T) ® E; in particular we have a canonical isomorphism A(SoT)

^ A(S) ® A(T).

Suppose in particular that S and T are objects of IP. Then A(S o T)

is a local algebra isomorphic to A(β) ® A{T). To see that S ° T is an

object of IP it remains to check condition LD of 4.2. Let M be a mani-

fold, U >M then inclusion of an open submanifold U of M, T >Id,

S > Id (the unique) natural transformations from T and S to Id, W =

πΊt(U), W-^T(M) the inclusion and T(U) -^~> W the diffeomorphism

given by T(v). Since μ o ΐ> — T(v) and S(μ) is a diffeomorphism onto

%τlM)(W)XϊlM)(πϊ\U)) = (πM o%T(M))(U) the commutative diagram below to-

gether with the fact that the map πM o XTCM) gives a natural transformation

So T->Id lead to the desired conclusion:
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S(T(U)) Smι>)\ S(T{M)) S(T(U)) - ^ l S(W) —->

Xτ(U) I XMUJ) XT{U) I \Xw I Zr(Λf)

Γ( u) — > T(M) T( U)

u
We must notice that the map S(πM) ° XM also furnishes a natural

transformation So T->Id and so coincides with πMoXT{M).

4.7. COROLLARY. (Transitivity of Prolongations [4]). If S and T are

objects of IP so is S o T and there is a canonical natural isomorphism

& ° 1 ^> J- A(S)®A(T)-

Proof. As was observed A(S o T) is isomorphic to A{S) ® ^4(T) by a

canonically given ζ; by 4.3 i T ^ is a natural isomorphism, since S o T is

an object of IP, so it is sufficient to consider T(ζ) o ffSoΓ. •

§ 5. Pseudo infinitesimal prolongations and a projection functor

In this final paragraph we will look at a full subcategory PIP of GP

which includes IP and has as endofunctor R with the property R o R = R

and having IP as its image. Besides this there is a natural transformation

lPIp > R such that the diagram below commutes:

where the oblique arrow is a natural transformation given by inclusions.

In concrete terms, for any object T of PIP and any manifold M, R(T) =
RT is an object of IP, RT(M) is a closed regular submanifold of T(M)

and RT(M)-^>RT(M) is a retraction onto RT(M). Details can be seen

in the discussion after the following definition.

5.1. DEFINITION. PIP will denote the full subcategory of GP that

has as objects those T of GP for which A(T) is a local algebra.

Let T be an object of PIP, M a. manifold and U an open submanifold
n

of M such that a chart £7 >Rn onto IT exists; we have the commuta-

tive diagram below:
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T(U) κ—-> T(Rm) =—> T(R)m

(Ξτ)u I (Ξτ)Rm

Y

and horizontal arrows are diffeomorphisms and also {ΞT)R, which is the

inverse of ωA{T), so that the vertical arrows are diffeomorphisms, in par-

ticular (BT)V. We have also another commutative diagram:

T(U) T(V) > T(M)

(Ξτ)u (ΞT)M
Y Y

V . , .

where U >M is the inclusion and the base arrow is a diffeomorphism
y

onto 1^(U), where TA{T) >Id is the unique morphism from TMT) to Id,

since TAiT) is an object of IP. From this it follows, by means of the above

diagram, that there exists a smooth map π^(?7) > T(U), where T >

Id is the unique morphism from T to Id, in such a way that p% o T(v) is

the identity of T(U)f so that T(v) is an embedding and r% = T(v) ° p%:

KM\U)-> π^iU) is a retraction whose image is that of T(v).

Consider now an open submanifold W of U for which there exists a

chart W-^Rm onto Rm; we have a similar commutative diagram:

T(W) >T(U)

(Ξτ)w I I (Ξτ)u

TA(T)(σ)

a
where W > U is the inclusion. But in this case the two vertical arrows

are diffeomorphisms and so the image of T(σ) is exactly πu\W), that is

T(σ) and ρ% are inverses of each other. Examining the last two diagrams,

taking account of the observation made just now and the definition of the

maps p's and r's we see that T(σ) o p^ = p%\π^{W) and from this r^π^iW)

= r$. Finally if U and V are open submanifolds of M for which there

exists charts U -> Rm, V -> Rm onto Rm and U (Ί V is non empty, let x be

a point of U Γi V and W an open submanifold such that x e W c C7 Π V

and there exists a chart W-> Rm onto i?m. By the argument given above
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we have r^\πM\W) = r$ = TV\KM\V), and so this being the case for any

W we have r%πi\U Γl V) = τ$[πϊ\U Π V). This gives a well defined

smooth map T(M)-^>T(M), since πi\U) cover T(M) when U ranges

through the open submanifolds considered above and the maps π^{U) >

KM\U) are compatible; we have rM\π^(U) = r# and from r j o r j = r% we

conclude rM o rM = ri¥ and also that the image of r^ is a regular sub-

manifold of T(M) since (ϊmrM) (Ί ^(CT) = Im(r£) - Im(Γ(v)) and Γ(y) is

an embedding; also I m ^ ) is closed since it is the fixed point set of rM.

Through up to now we have worked with a single T, in what follows

all objects of GP will enter the discussion so we will denote the maps rM

above by (rτ)M and r# by (rΓ)#. Let T >S be a morphism of PIP. We

have the commutative diagram

T(ΛR)M

T(ΛR)U

which gives (rs)$ o {AM\πM\U)) = AM o (rΓ)^ for any [7, so (rs) o Λ^ = Λ^ o (r r )^

for any M, in other words rs o A = A o rτ.

Let now M >N be a map between manifolds. We can cover Mby

open submanifolds U such that there exists for any such U an open sub-

manifold V of N and φ(U) c V as well there are charts U->Rm, V->Rn,

onto Rm and Rn respectively; we will use the notation ψ to the map

U
φ\U

V in what follows.

The following commutative diagram and the definition of the maps

(rΓ)# and (rΓ)£ show that (rτ)% o (T(ψ)\π~M\U)) = Γ(^) o (rΓ)^, and since this

is true for any such pair we have (rτ)γ o (T(φ)) — T(φ) © (rΓ)M, in particular
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TAiT)(φ)

85

TΛlT)(μ)

A m T{Λκ)υ

where| U >M, V >N are inclusions.

Summing up we can say that we have for any object T in PIP a

covariant endofunctor RT of -3JI given by M->lm(rτ)M φ-> T(φ)\Im(rτ)M.

If P and Q are manifolds and P X Q-^->P, P X Q — U φ a r e the pro-

jections onto the factor of the product we have a commutative diagram

T(P x
(rτ)pχQ\

•RT(P x

Q)
>T(P) X T(Q)

RT(a))
x

so that the fact that the top arrow is a diffeomorphism and so is the

arrow which is the restriction of it to the submanifold RT(P X Q) gives

the conclusion that RT is product preserving.

Now it is obvious that A(RT) — A(T) and since A o rτ = rs o A for any

morphism T > S we have in particular ί = rτ o ίy where Id > T is the

unique morphism from Id to T (since rId = 1 obviously), so that the image

of iM is contained in RT(M) and the morphism Id—> ̂ Tis just i; moreover

R >RT(R) is injective. All this gives that RT is an object of PIP and
R

also gives the functor PIP >PIP, T^—>RT, A-^->R(A) where R(A)M =

AM\RT(M) for any manifold M.

It is clear that if T is an object of IP then RT = T. Now we see

just by the definition of RT that it is isomorphic with TA(T) by means of

the restriction of Ξτ to it, and so by this reason RT is an object of IP

and so R(RT) = RT, which gives R o R = R; in this way the image of R

is IP.

Since TA{T) is an object of IP we have RTA{T) = TMT) and τ>^(Γ) = 1

so that ΞRT is the restriction of Ξτ to RT and
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\

RT

commute; here we are considering the maps (rτ)M as maps T(M) -> T(M)

which give a morphism T -> RT, still denoted by rτ. Considering rτ as

above we have the commutative diagram

T

where the oblique arrow is given by inclusions. Since for any T > S,

morphism of PIP, we have R(Λ) o rτ = rs o R(Λ) we have a natural trans-
T

formation 1PIP > R given by the rΓ 's.

5.1. PROPOSITION. There exists a covariant functor PIP >PIP and

a natural transformation 1PIP >R such that the image of R is IP and

R o R = R, also for any object T of PIP and any manifold M we have that

(rτ)M is a retraction from T(M) to the closed regular submanίfold RT(M)

of T(M).

From (ST)M o (rτ)M - (BT)M, (rτfM = (rτ)M and the fact that *T(M) is

diffeomorphic to TMT){M) through (ΞT)M for any M, it follows that (ΞT)M

is a diffeomorphism iff (rτ)M = iAT{M) iff RT(M) = T(M) iff (rτ)M is injective

iff (ΞT)M is injective.

A construction of retractions T(M) > T(M) works for objects of

GP and connected M with reasonings very similar to those made in this

paragraph, the only difference being that in the place of the unique T

—> Id for objects of PIP we use the morphism T——'—> Id X X Id where

{T—^->Id|l<ΐ<£} is the set of morphisms T7—>Id (see 3.6); one needs

to remember that for connected M and any k there exists for any (xl9

. ., χk) e Mk a chart £/-> Rm onto Rm such that (xly , xk) e U\ The

result is:

5.2. PROPOSITION. For objects T of GP and connected M there are
(TT)M

smooth maps T(M) >T(M), natural in T and M, such that (rτ)
2

M = (rτ)M
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and the image of (rτ)M is a closed regular submanifold of T(M) which is

diffeomorphic to TA(T)(M) through (ΞT)M; moreover (ΞT)M ° (rτ)M = (ΞT)M.

It is an easy matter to verify that the functors TA, with A in SL

have a local determination property analogous to LD of 4.2, that is, for

any manifold M and open submanifold U of M the diagram below is a

pull-back:

ψ / r r λ TA(V)

U x x U >M x x M

where U >M is the inclusion and {TA—^>Id|l < ί < k} is the set of

morphisms TA —> Id according to 3.7.

As in the discussion of the objects of PIP we obtain by 5.2 for each

object T of GP a covariant product preserving endofunctor RT of 3ft, the

full subcategory of 3ft whose objects are connected manifolds by the same

procedure, M^—>Im(rτ)M, <p*-+T(φ)\Im(rτ)M; since (ST)M gives a diffeo-

morphism natural in T and M, by 5.2, of RT(M) onto f^ ( Γ )(M), we find

that β Γ h a s also the local determination property described above; further

T-^->pT, Λ^—>RΛ, where {RΛ)M = ΛM\RT(M), M connected, is a covariant

functor between obvious categories.

From (Ξτ)Mo(rτ)M = (ΞT)M, (rτ)
2

M = (rτ)M and the fact that RT(M) is

diffeomorphic to TMT)(M), for any connected M, we see that {ΞT)M is a

diffeomorphism iff (rr)^ = idΓ ( J f ) iff (rΓ)Λ is injective iff ΛΓ(M) - Γ(M) iff

(ΞT)M is injective.

We observe also that if T satisfies the local determination property

cited above we have RT(M) = T(M), for M connected and then (ΞT)M is

a diffeomorphism. We don't know what happens for non connected M

even if T has the local determination property.

Appendix

Let £ b e a manifold equipped with smooth operations RX E >Eand

E X E >E that furnishes a real vector space structure. Let D denote

the algebra of dual numbers, that is, a 2-dimensional local algebra linearly

generated by 1 and d with d2 = 0; then TD is (by 4.3) "the tangent bundle/'

which has an additional structure of vector bundle.
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LEMMA 1. The map E-> TDEy e -* TD{ϊe){d), where R-^->E, t->t.e, for

any e e E, and TD(R) = A(TD) had been identified with D by means of ωD,

is a diffeomorphism onto the fiber of zero in TDE and is also linear. In

particular E has finite dimension over R equal to the dimension as a manifold.

Proof. Trivial consequence of the basic theory of manifolds and Lie

groups.

Now we give two algebraic results for the sake of completeness;

probably they would be easily deduced from general structure theories.

The algebras in question are always commutative, associative with unity

1Φ0.

LEMMA 2. Let A be a R-algebra and I a maximal ideal of finite co-

dimension. If for any ae A we have 1 + a2 invertible in A then J? 0 / = A.

Proof. Trivial.

LEMMA 3. Let A be a finite dimensional R-algebra. Then the following

properties are equivalent:

(a) A splits as an algebra into a sum of local algebras.

(b) For any a e A the element 1 + α2 is invertible.

Moreover if (a) is true (equiv. (b)) for A then the local algebras which

make part of the splitting are uniquely determined.

Proof, (a) —> (b). Suppose A — Ax φ © Ak as an algebra where At

are local algebras. It is clear that to verify (b) it is sufficient to examine

the case k — 1, that is when A is a local algebra. Let A = Rζ&I where

I is the unique (and nilpotent) maximal ideal; if a e A then the projection

of 1 + a2 on R is 1 + f where t is the projection of a in R so 1 + α2 is

invertible.

(b) -> (a). We will do induction on n = dim^ A. The case n = 1 being

obvious, let n > 1 and suppose the implication valid for algebras having

dimension less than n. It is clear that for a e A we have aA C N (N

denoting the nil ideal of A) iff a e N, and also that a e N iff a2 e N. Let

e0 e A such that dimΛ e0A is minimum between dim^ eA, e ranging A\N.

Since e\A ci e0A and e\ e N we have dimβ (e2

QA) = dimΛ (e0A) and so e2

0A =

e0A then there exists aQe A such that eQ = e2

0aQ, and this implies (eQaoy =

eoαo and since eo(eoα) = e0 we have eA — eQA where e = eoαo; eA is a non

trivial (e Φ 0) finite dimensional R-algebra with e as unity; we will show
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that eA is a local algebra. Let / be a maximal ideal of eA, x e I and

consider xA = xeA c: eA; if xA = eA we have that x is invertible in eA,

which is not the case since / is an ideal (proper obviously), so dim^ (xA)

< dim^ (eA) and then xe N; by Lemma 2 any z in eA is of the form te

+ x where xeN and so any z in eA not in I is invertible: I is the

unique maximal ideal of eA. Now we have A = eA © (1 — e)A; if eA ξ: A,

that is 1 Φ e, 0 < dim# ((1 — e)A) < dim^ (A) since (1 — e)A is the quotient

of A by the proper ideal eA it has also the required property. So, we

are done.

Knowing that A splits as an algebra into a sum of local algebras it is

an easy matter to verify that the components of this splitting are exactly

the minimal members of the set {aA\a & N} (ordered by inclusion); this

gives the last assertion.
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