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CERTAIN UNITARY REPRESENTATIONS OF THE

INFINITE SYMMETRIC GROUP, II

NOBUAKI OBATA

Introduction

The infinite symmetric group SL is the discrete group of all finite

permutations of the set X of all natural numbers. Among discrete groups,

it has distinctive features from the viewpoint of representation theory and

harmonic analysis. First, it is one of the most typical ICC-groups as well

as free groups and known to be a group of non-type I. Secondly, it is a

locally finite group, namely, the inductive limit of usual symmetric groups

©w. Furthermore it is contained in infinite dimensional classical groups

GL(oo), O(oo) and U(oo) and their representation theories are related each

other.

Our present interest lies in irreducible unitary representations of ©oo.

Its factor representations of type II have been studied considerably in [6].

While, its irreducible representations have been investigated only in a

few particular cases, see [1] and [4]. So it is important to have a large

stock of irreducible representations. The present paper is a continuation

of the author's previous one [3], where we have discussed irreducible rep-

resentations of ©M parametrized by certain automorphisms of X.

Let Aut (X) be the group of all automorphisms of X. For each Θ e

Aut (X) we denote by H(θ) the subgroup of all finite permutations g e ©TO

which commute with θ. We define unitary representations Uθ'χ as the

induced representations ϊτίά%γθ)X, where X is a unitary character of H{θ).

The results in [3] are restricted to particular automorphisms θ to discuss

their irreducibility and equivalence. In the present paper, we first de-

termine the class of automorphisms θ e Aut (X) for which the unitary rep-

resentation Uθ'x is irreducible. Next we give a complete classification of

the irreducible representations Uβ*x.

Received March 5, 1986.

143



144 NOBUAKI OBATA

We shall now give a brief sketch of the contents. In Section 1, we

recall the structure of the subgroups H(θ).

In Section 2, we find the class of automorphisms θ satisfying the

following property:

(A) \H(β): Higθg'1) Π H(θ)\ = oo for all ge ©^ - H(fl).

Let P be a subset of {2, 3, }, possibly P — φ (the empty set). We

denote by AutP(X) the set of all automorphisms θ e Kut(X) written in

cycle-notation as follows:

ft Π Γf (JP jP . . . jP \Ό — 11 11 \ln0lnl lnp-\) >
pβP n=l

where the cycles {ilA- -ίζp-ι) are pairwise disjoint. If P does not contain

2, we denote by Autp (X) the set of all automorphisms θ e Aut (X) of the

form:

θ = UJi) Π Π («o& iSp-i),
pGP n=l

where the cycles (jjj) and (ίζoίζr - iSP_i), p e P, n > 1, are pairwise disjoint

and \X — supp θ\ = 0 or oo. If P contains 2, we tacitly understand Autp(X)

to be empty. Put AutP (X) = Aut°P (X) U Autp (X). Then it is proved that

θ e Aut (X) has the property (A) if and only if it belongs to AutP (X) for

some P.

In Section 3, irreducibility of the unitary representations Uθ'χ will

be discussed. The property (A) is relevant to the following assertion, (see

Theorem 3.2).

THEOREM (Irreducibility). Let P be a subset of {2, 3, } and let θ be

a member of Autp (X). Then the unitary representation UΘJX is irreducible

for any unitary character X of H(θ).

The next step is to discuss unitary equivalence between two irreducible

representations Uθ'x and Uθ''χ/. Section 4 contains a proof of the follow-

ing result, (see Theorem 4.12).

THEOREM (Equivalence). Let θ and θf be members of AutP (X) and

Autp,(X), respectively. And let 1 and lf be unitary characters of H(θ) and

H{θr), respectively. Then two unitary representations Uθ'χ and JJθ''r are

equivalent if and only if the following three conditions are satisfied: (i)

P = P 7 ; (ii) H(θ') = TH(θ)ϊ-1 for some ϊe^; (iii) V(rhϊ-X) = X(h) for all

h e H(θ).

Finally, in Section 5, we shall discuss the relationship among three
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classes of irreducible representations 77+,77~ and U. Here we denote by

77+ and 77" the set of all irreducible representations p*l = Ind!~x@oo_n p X 1

and ρ*sgn = Ind!~χ(Soo_n p X sgn, respectively, where p runs over all equiv-

alence classes of irreducible representations of ©n, 0 < n < oo. If θ be-

longs to Aut^ (X), the irreducible representations t/9'* are contained in

either 77+ or 77". We denote by U the set of all irreducible representa-

tions Uθ'x, where θ e AutP (X) with non-empty P. Then we have the follow-

ing result, (see Theorem 5.3).

THEOREM. TWO irreducible representations are not equivalent if they

belong to distinct classes 77+, 77" or U.

In Appendix A we give an explicit expression of endomorphisms of

©oo. In particular, the result proves that Aut(X) is isomorphic to the

automorphism group Aut(@oo).

Appendix B contains two remarks on representations of 77*. We shall

give irreducible decompositions of certain induced representations and

tensor products.

§ 1. The structure of the subgroups H(θ)

Let X be the set of all natural numbers and let (2L be the group of

all finite permutations of X. The group ©«,, equipped with the discrete

topology, is called the infinite symmetric group. If Y is a subset of X, we

denote by ©(Y) the group of all finite permutations of X which act iden-

tically outside Y. For simplicity, we write ©TC and &^_n for ©({1, 2, , n})

and ©({n + 1, n + 2, •••}), respectively.

Let Aut (X) be the group of all automorphisms of X. Each θ e Aut (X)

can be written in cycle-notation, i.e. as a product of pairwise disjoint cycles.

For each p = oo, 2, 3, , we denote by θp the product of all cycles of

length p appearing in the cycle-notation of θ, and by iV(p, θ) the number

of such cycles. Thus, each θ 6 Aut (X) admits the expression: θ = θΰOθφz ,

where θp is a product of N(p, θ) cycles of length p. We call it the canonical

expression of θ.

For each θ e Aut (X) we denote by H(θ) the subgroup of all finite per-

mutations of X which commute with θ:

In order to describe the structure of H(θ), we introduce several subgroups.

We set
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H'(Θ) = {ge&^ gθ = θg and suppgcsuppθ) ,

where supp θ = {i e X; θ(ΐ) * ϊ). Obviously, H(θ) = ©(X - supp 0) X H'(θ)

and HXθJ) = {e}. Let 0 = O ^ g be the canonical expression of θ e

Aut(X) and let θp = Π S ' ^ (i«oί»i i«P-i) be a cycle-notation of 0P, 2 <

p < oo. We define -A(#p) to be the subgroup generated by all the cyclic

permutations (inOίnl- inp_i), Λ = 1, 2, -,N(p9 θ). We denote by S(0P) the

subgroup of all permutations g e ©^ having the following properties: (i)

s u p p g c supp 0P; (ii) there exists some σe<3N(Pt9) such that g(ink) = ίσ(n)k

for all n and ^. Obviously, A(θp) is isomorphic to the restricted direct

product Zp X Zp X (iV(p, 0)-times) and S(0P) is isomorphic to <S>N{Piθy

The following result was proved in [3].

PROPOSITION 1.1. Let θ = ΘJdφz be the canonical expression of θ e

Aut (X). Then

H(θ) - <B(X - supp θ) X H'(θd X ff'fa) X •

m the sense of restricted direct product. Furthermore, for each p, 2 < p <

oo, we have

H'(θp) = S(0P) x A(0P) (semίdirect product).

Remark. Since ©^ is a normal subgroup of Aut (X), for any θ e Aut (X)

the map g ^ θgθ~\ geQ^, induces an automorphism θ of ©„,. As is seen

in Appendix A, every automorphism of ©^ is obtained in this manner.

Therefore H(θ) coincides with the subgroup of all permutations of ©L

fixed under the automorphism θ.

% 2. Characterization of certain automorphisms

This section will be devoted to the study of automorphisms θ e Aut (X)

satisfying the conditions (A) and (B) below:

(A) \H(Θ): H(gθg-χ) Π H(θ)\ = oo for all g e ©OT - H(θ)

(B) the normalizer of H(θ) in ©^ coincides with H(θ) itself, i.e.

gH(θ)g~1 = H(θ) implies geH(θ).

Obviously, the condition (A) implies (B). The main results are the

following

THEOREM 2.1. The condition (B) is satisfied for θ e Aut (X) if and

only if the following three conditions are fulfilled:

( i ) iV(oo,#) = 0;



INFINITE SYMMETRIC GROUP 147

(ii) N(p, θ) = 0 or oo for any p > 3;

(iii) \X - supp ^ | ^ 2 or N(2, θ) ^ 1.

THEOREM 2.2. ΪTie condition (A) is satisfied for θ e Aut (X) i/ and only

if the following three conditions are fulfilled:

( i ) N(™fθ) = 0;

(ii) N(p, θ) = 0 or oo /or any p > 3;

(iii) one o/ the next three conditions:

(a) N(2,θ) = 0;
(b) iV(2,0) = cx>;

(c) JV(2, θ) = 1 and | Z - supp θ\ = 0 or oo.

We begin with the following

PROPOSITION 2.3. The condition (B) is not satisfied for any #e Aut(X)

with N(oo,θ) > 1.

Proof Take distinct i and j e supp θ^ and consider the transposition

g = (ij). Then fl(0) - gH(θ)g~ί though g does not belong to H(θ). Q.E.D.

LEMMA 2.4. Lei tf = [J^i (I#«oini ίnP-i), 1 < Â  < oo, and Zeί r = ( Ό Ί

• -jp-i) be a cycle of length p. Then ΐ commutes with θ if and only if (i)

supp TczX — supp θ; or (ii) T = (inoim' iwp-i)9 /or some n > 1 and #, 1 <

q <p. In case of (ii), n and q are uniquely determined and (p, q) = 1.

LEMMA 2.5. Let θ = Π ^ (Wmi- *^-i) aftd ^ = Πn-i (ΛoΛi J»P-i).

Assume ίΛaί supp β = supp θ' = X Γ/ien fl(ί) = fl"(^) ί/ and on/j if θ' =

θq for some q >1 with (p, g) = 1.

LEMMA 2.6. Let θ = Π^i(^o^i • in2,-i), 1 < Λ^< oo. Then the nor-

malizer of H'(θ) in ©(supp θ) is equal to H'(β) itself if and only ifN=oo

or p = 2.

The proofs of the above three lemmas are easy and omitted. The

following result is an immediate consequence of Lemma 2.6.

PROPOSITION 2.7. Let θ e Aut (X) with iVζoo, θ) = 0. If 1 < ΛΓ(p, θ) <

oo /or some p > 3, Z/ie condition (B) is noί satisfied.

LEMMA 2.8. Lei 0eAut(X) iwίΛ iV(oo, θ) = 0. 7%en ίΛe nex£ ί/iree

conditions are eqiυalent:

( i ) ίΛe normalizer of H(θ) in ©^ is α subgroup of ©(X — supp 0) X

©(supp θ),
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(ii) gH(θ)g~1 = 2/(0) implies £(supp 0) c supp 0,

(iii) \X - supp ^ 2 or JV(2, 0) ^ 1.

Proof, Evidently, (i) and (ii) are^equivalent. According to (iii), con-

sider the following three possibilities:

( I ) \X- supp0| ^=2;

(II) \X - supp 0| = 2 and N(2, 0) ^ 1;

(III) |X - supp 0| = 2 and JV(2, 0) = 1.

In order to prove the assertion, we have only to show that (I) implies (i)

(or (ii)), that (II) implies (i) (or (ii)) and that (ii) fails under (III).

Case (I). Suppose that gH(θ)g~1 = 2/(0), ge^. We first note that

(B(X - supp 0) X H\θ) = ©(X - £(supp 0)) X H\gθg'1).

If |X — supp #1 = 0, obviously (ii) is satisfied. We suppose that \X—

supp 0 I = 1, say, X — supp0 = {i}. It is sufficient to show that g(i) = i.

Suppose otherwise, then (g'XOA/V Λ) € 2/(0) for some j1,j2, , jk e supp 0.
By assumption, {ίg(j?)g{jd -g(jk)) also belongs to 2/(0). Since i is fixed

under 0, so are g"OΊ), ̂ (Λ)> > ^(Λ) This contradiction implies that

έf(O = i
Finally we assume that \X — supp0| > 2. Consider arbitrary distinct

three elements iu ί2, i3e X — supp 0. Obviously, (ίλί2) and (i^) belong to

2/(0). By assumption, (g(h)g(ί2)) and (g(h)g(h)) also belong to 2/(0). This

implies that g(Q and g(i2) are fixed under 0 or that 0 contains the cycle

(g(h)g(h))- The latter is impossible because (g(h)g(h)) e 2/(0). Thus, gfa),

g(ί2) and g(i3) are fixed under 0. Hence X — supp θdX — g(supp 0) as

desired.

Case (II). Suppose that gH(θ)g~1 = 2/(0), # e ©,.. We put X - supp 0

= {£,;}. Viewing that (if) e 2/(0) = gH(θ)g~\ we see that both g"1^) and

g"1^) are fixed under 0 or that 0 contains the cycle (g~\i)g~\j)). It is

sufficient to prove that the latter does not occur.

If JV(2, 0) = 0, obviously 0 contains no cycle of length 2.

We assume that JV(2, 0) > 2 and that 0 contains the cycle (g'\ΐ)g'ι(j)).

Take another cycle (&A) which is contained in 0 and put ϊ = (g'\i)k^)

(g~\j)h) e 2/(0). Then, also gT^"1 e 2/(0). This implies that (i θg(kt))(j θg(k2))

= (ig(kί))(jg(k^))9 therefore, g(fei) and (̂Λ2)
 a r e fixed under 0. This con-

tradicts the choice of kx and k2.

Case (III). We put X — supp 0 = {i1? i2}, 02 = (jj'2) and g = (ίJdtiJi).
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Then, g(X — supp θ) = {juh} ^F X — supp θ, namely, g(supp θ) ^ supp θ.

While, we have H(θ) = gH(β)g'1 because #(0) = ©(ft, i2}) X @({Λ,Λ}) X

#'(08) X •••• QE.D.

PROPOSITION 2.9. Le£ 0eAut(X) with JV(oo,0) = O. If | X - s u p p # |

= 2 and N(2, θ) = 1, the condition (B) is not satisfied.

This follows immediately from Lemma 2.8. With these preparations,

we now give a proof of our first main assertion.

Proof of Theorem 2.1. In view of Propositions 2.3, 2.7 and 2.9, we

have only to show that the conditions (i), (ii) and (iii) implies (B). Sup-

pose that gH(θ)g~1 — H(6), g e ©^ By assumptions (i) and (iii) we see that

g e ©(X — supp θ) X ©(supp θ) with the help of Lemma 2.8. If supp θ = φ

(the empty set), i.e. θ = e, obviously the condition (B) is satisfied. We

assume that supp θ ̂  φ. Let p be the smallest number with θp ^ e and

put θp= Πί-i(i»oi»i i»p-i), where N = oo if p > 3 and l < i V < o o if

p = 2. The cycle (ίnOini -inp-i) belongs to H(θ) = gH(θ)g~1 for every n,

so the cycle (g~1(ino)g'\ini)' "g'Kkp-i)) belongs to H(θ). In particular,

g'Xino),g~\ini), ',g~\inP-d belong to supp#p because of the choice of p.

In other words, we have supp θp = #(supp θp). In a similar way we can

show that supp θp is invariant under g for every p, namely, g e ©(X —

supp θ) X ©(supp θ2) X ©(supp 03) X . It follows from Lemma 2.6 that

g e ©(X - supp 0) x ff'(fl2) X H'{θd X ••- = H(θ). Q.E.D.

Now we come to a proof of Theorem 2.2. Since the condition (A)

implies (B), we may assume the conditions (i), (ii) and (iii) in Theorem

2.1. According to the condition (iii), we shall divide Theorem 2.2 into

two propositions below.

PROPOSITION 2.10. Let #eAut(X) have the following properties: (i)

JV(oo, θ) = 0; (ii) N(p, θ) - 0 or oo for any p > 3; (iii) JV(2, θ) ^ 1. Then

the condition (A) is satisfied if and only if N(2, θ) = 0 or oo.

Proof. First we assume that N(2, θ) - 0 or oo. We put P = {p > 2;

•ZV(P> oo) = oo. lϊ P — φ, i.e. <9 = β, the condition (A) is obviously satisfied.

We now assume that P ^ φ. Then # can be written in the form:

0= Π Π (iSoiZi < - i ) .
pep n=i

For a given g e ©^ — i/(#), we choose a sufficiently large iV such that
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supp g does not intersect with U 6 P U ^ { 4 4 •• ,Ci} ForpeP,
ft > N and m, 1 < m < N, we put

k = Q

We now pose the following hypothesis:

(H) for all p e P and for all m, 1 < m < N, there exist two distinct

numbers n and n' > N such that (σp

mn)-ισv

mne H(gθg~ι).

If (H) is false, the set {σp

mn(H(θ) Π H{gθg~ι))\ n> N} contains infinitely many

cosets for some pe P and m, 1 < m < N and this implies (A). Now

suppose (H). Since ( σ ^ ) ' 1 ^ commutes with gθg'\

p-1

= π o
p-l

= Π o

Hence

This implies that gθg'Xί^k) = iv

mk+u 0 < k <p — 1, and that # contains

the cycle (^"Ximo)^"1^!)* 'g'Ximp-i))- Then there exists some m! — m!(rrί),

1 < mf < N, such that

or equivalently,

Since the correspondence m<r+m! is one-to-one, we conclude that

N
— Γ ί Π ( P ( Ί V \. P ( Ί V \\ Γ ί ( J P i p . . . i v λ

p€Pm'=l m>N

This contradicts the assumption g e SL — iϊ(0), namely, (H) is false.

Next we assume that 2 < N(2, θ) < oo. We take two cycles of length

2 contained in θ, say (lΌij) and (jQjι). Consider the cycle g = (ijo) e &<„ —
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H(θ). Obviously we have

H{θ) Π Higθg-1) 3 ©(X - supp θ) X H'(ΘΛ) X H'(βύ X ,

which implies that \H(Θ): H{θ) Π H(gθg~x)\ < |£Γ'(02)| < °°. Consequently,

the condition (A) is not satisfied. Q.E.D.

PROPOSITION 2.11. Let θe Aut(X) have the following three properties:

(i) N(oo, θ) == 0; (ii) N(p, θ) = 0 or oo /or αZί p > 3; (iii) \X - supp θ\ ^ 2

and N(2, θ) = 1. Then the condition (A) is satisfied if and only if \X —

supp θ\ = 0 or oo.

The proof is modeled after the previous one. Theorem 2.2 is a direct

consequence of Propositions 2.10 and 2.11.

§ 3. Irreducible representations

In this section we shall discuss irreducibility of the induced representa-

tion UθiX = Ind|^)X, where X is a unitary character of H(θ), θe Aut(X).

With the help of Proposition 1.1, we can describe a complete stock of

unitary characters of H(θ).

By virtue of Theorem 2.2, any automorphism θ e Aut (X) satisfying

the condition (A) can be written in the following forms:

( i ) θ= Π.6P Π:-i(&& ίSp-i)> where P c { 2 , 3, .};

(ii) θ = OΌΛ) Uvep Π ϊ - i ( M i * * iSp-iλ w h e r e P c { 3 , 4, •} and

|X — supp ^| = 0 or oo.

If P = φ (the empty set), θ is e (the identity) or a transposition according

as (i) or (ii). We denote by Aut^ (X) and Autp (X) the sets of all auto-

morphisms θ e Aut (X) of the form (i) and (ii), respectively. For any subset

P c {2, 3, }, we set AutP (X) = Aut°P (X) U Aut£ (X) with the convention

that Auti> (X) is empty if 2 e P.

The following general result is easy to see, (e.g. [2] or [3]).

LEMMA 3.1. Let G be a discrete group and H a subgroup such that

every H-orbit in the quotient space G/H is an infinite set except {H}. Then

the induced representation Ind£ 1 is irreducible for any unitary character 1

of Ή. Moreover, two representations Ind|X and lnά%X' are equivalent if

and only if X = V.

From Theorem 2.2 and the definition of AutP (X) we see that

IJ Autp(X), where P runs over all subsets of {2, 3, }, coincides with
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the set of all automorphisms θ 6 Aut (X) satisfying

(A7) every #(#)-orbit in <BJH(Θ) is an infinite set except {H{θ)}.

The following result is then immediate from Lemma 3.1.

THEOREM 3.2. If θ e AutP (X), P c {2, 3, }, the unitary representation

Uθ'χ is irreducible for any unitary character X of H(θ). Moreover, two

unitary representations Uθ'χ and Uθiχ/ are equivalent if and only if X — V.

In the rest of this section, we shall give several remarks on repre-

sentations [/'»*, where #eAut(X) does not enjoy the property (A), i.e.

θ e Autp (X) for any subset P of {2, 3, }.

Some notation is needed. Let Y be an infinite subset of X. If θ is

an automorphism of Y, we set H(θ) = {g e ©(7); gθ = θg). Identifying ©( Y)

with ©«,, we agree to put U~dΛ = Indf^X, where X is a unitary character

of H0). If Y is an arbitrary countable set, we denote by ©(Y) the group

of all finite permutations of Y. After usual terminology of finite sym-

metric groups (e.g. [5]), we give the following

DEFINITION. Let Y and Z be disjoint countable sets. Let U and V

be unitary representations of ©(Y) and ©(Z), respectively. The outer

product J7* V is the induced representation lnd%[γ\)

>f^Z) U X V.

Suppose that θ e Aut (X) does not satisfy the condition (A). To begin

with, we shall give a result for the case of iV(oo, θ) > 1.

PROPOSITION 3.3. Let 0eAut(X) be such that N(oo,θ)>l. Then

θ = βθ'1 is an automorphism of X — supp #«, and any unitary character 1

of H(θ) is of the form X = 1 X 1 according to the decomposition H(θ) = {e}

X H(θ). Moreover.

where R denotes the regular representation of ©(supp O ~ ©«,. In par-

ticular, Uθ'χ is not irreducible.

Assume that θ e Aut (X) does not satisfy the condition (A) and that

N(oo,θ) = 0. Viewing Theorem 2.2, we shall consider the following three

cases:

( I ) 1 < N(p, θ) < oo for some p > 3;

(II) 2<iV(2,0)<oo;

(ΠI) iV(2, θ) = 1 and 1 < |X - supp θ\ < oo.

The following result is corresponding to (III).
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PROPOSITION 3.4. Let θ e Aut (X) satisfy X — supp θ = {1, 2, , N} and

θ2 = (N + 1 N + 2) wi£/ι 1 < N < oo. TΛerc any unitary character 1 of

H(θ) is of the form l0 X X2 X X, according to H(θ) = ©iV X ©({iV + 1,2V + 2})

X if'(0), lϋΛere θ = 00^. Furthermore, we have

where ©.γ+2 denotes the set of all equivalence classes of irreducible rep-

resentations of ©iv+2 In particular, Uθ'x is not irreducible.

Proof. The decomposition is obtained from transitivity of induced

representations. With the help of the branching rule ([4], Chapter III),

we can see the representation 1^12 of © v + 2 is never irreducible. Therefore

Uθ'τ is not irreducible. Q.E.D.

In case of (I) and (II), it can be verified that Uθ'x is a sum of repre-

sentations of the form p*UΘΛ, where p is an irreducible representation of

finite symmetric groups ©n. However, we can not conclude that UθyX is

not irreducible with the help of indices only, as we did in Proposition

3.4. We conjecture that Uθ'x is not irreducible if pN is large.

Remark. The question of irreducibility of p*U~ΘΛ is left to be solved.

For particular cases, see Corollary 3.5 below and Appendix B.

The following two results are immediate from Theorem 3.2.

COROLLARY 3.5. Let θ e Aut^ (X) and Y a countable set. Let 1 and ε

be unitary characters of H(θ) and ©(Y), respectively. Then ε*Uθ'x is ir-

reducible whenever supp θ — X.

COROLLARY 3.6. Let θ e Aut^ (X) and Y a countably infinite set. Let

εi and ε2 be unitary characters of ©2 and ©oo_2, respectively. Identifying

©(Y) with ©oo, we regard ε^ε2 as a representation of ©(Y). Then, for any

unitary character X of H(θ), ε^ε2^Uθ'x is irreducible whenever supp# = X

and 2 e P.

§ 4. Equivalence

Having in Section 3 proved irreducibility of the unitary representa-

tions Uθ'x, θeAutP(X), P c { 2 , 3 , •••}, we shall now discuss equivalence

among them. The following general result plays an essential role. The

proof is modeled after that of Lemma 3.1.
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LEMMA 4.1. Let K and H be subgroups of a discrete group G and let

1 and 7J be unitary characters of K and £Γ, respectively. If\H:HΓ) gKg~u

= oo for all geG, or if \K:KΓ\gHg~x\ = oo for all geG, then two rep-

resentations Ind | X and Indg lf are disjoint.

Accordingly, for two automorphisms θ and θ' e Aut (X) we consider

the following condition:

(C) \H(Θ): H(θ) Π H{gθ'g'ι)\ = oo for all g e ©M

or \H(Θ')\ H(θ") Π H{gθg-% = oo for all ge ©M.

Our first aim is to show the following

PROPOSITION 4.2. Let θ e AutP (X) and β' e AutP, (X). And let 1 and

V be unitary characters of H(θ) and H(θ'), respectively. Then two unitary

representations Uθ'χ and Uθ'*r are not equivalent whenever P^P\

Obviously, this is a direct consequence of Lemma 4.1 and the follow-

ing

LEMMA 4.3. Let θ e AutP (X) and θf e AutP, (X). Then the condition

(C) is satisfied whenever P ^ P'.

Proof. We may assume that one of the following two possibilities

occurs:

(I) there exists some p > 3 such that pe P — Pr\

(II) 2 e P and P - {2} = P'.

In order to avoid repeating almost the same proof twice, we only show

that (I) implies (C).

Let θp = Πn-i an be the cycle-notation of θp, where each an is a cycle

of length p. Then we have (I-a) an §H(θr) for infinitely many n; or (I-b)

an e H(θf) except finitely many n.

Case (I-a). Given g e ©oo, we put J = {n > 1; an § H(θ') and supp an Π

supp g — φ}9 which is an infinite set by assumption. Suppose that a~?an

6 H(gθ'g"1) for distinct n and nf 6 J. Then, as is easily seen, we have

θranθ
r~^ — a~}. In particular, n' is uniquely determined by n if it exists.

This shows that the set {an(H(θ) ΓΊ Higθ'g'1)); neJ} contains infinitely

many cosets. Hence the condition (C) is satisfied.

Case (I-b). Since an is a cycle of length p > 3, the condition an e

H(β') implies that an e <δ(X — supp θ') or an e ίΓ(βJ) for some g e P / which

is necessarily a divisor of p. Thus, infinitely many αn's belong to <&(X —
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supp#0 or H'(θ'q) for some q.

First we assume that infinitely many an's belong to ©(X — supp θf).

Then, for a given g e ©«, the set J = {n > 1 an e ©(X — supp θ') and

supp an Π suppg = φ} is infinite. We put an = (inQinί ίnp_i), n>l, and fix

an arbitrary NeJ. Now we consider the cycles bn — (ίmίn0), neJ— {N},

which belong to H(θ'). Since b~}bn = (iminOin'o) f° r distinct TZ and nr eJ

- {N}, b~Jbn does not belong to H{gθg~% This implies |#(0'): #(00 ΓΊ

Higθg-1)] = oo.

Next we assume that infinitely many αw's belong to Hf(θf^), where q

is a divisor of p and belongs to P'. For a given g e ©«, we put J" = {τι

> 1 αn € H'(θ$ and supp αn Π supp g1 = ^}, which is an infinite set by as-

sumption. Let θ'q = f l ; = 1 δ m be the cycle-notation of θq. For each neJ

there exists some m = m(n) such that supp bm C supp an. Obviously, m(n)

^F tti(V) if 7z ̂  Λ7. We see that b^\nΊbm(n) does not belong to Ή{gθg~ι)

whenever n # nΛ In fact, 6-Jn,)6TO(n) e H{gθg~ι) implies θb^θ'1 = 6m ( n ) or

= &m(w')> but both are impossible because supp bm(n) C supp an. Thus we

conclude that \H(θf)\ H(θ') Π Higθg'1)] = oo. Q.E.D.

We are now in a position to discuss the case when both θ and βr

belong to AutP (X), P c {2, 3, }. Let θ = ε\\pePθp be the canonical

expression of θ, where ε denotes the identity or a transposition according

as fleAut^(X) or θ e Autα

P (X). Similarly we put θ' = ε'l\pePθ'p. Let

#P = Un=ιaPn and θp = f l L i ^ be the cycle-notations of θp and θpi re-

spectively. Put

JP(Θ, θf) = {n > 1; α f̂i = (6pm)Q for some m and #},

Jp(θ', θ) = {m > 1; 6pm = (αpn)9 for some Λ and g}.

Then we have a natural bijective correspondence between JΌ(Θ, θ') and

Jp(θ', θ), namely, for each m e Jp(θ', θ) there exist a unique n = n(m) e

Jp(θ, θr) and a unique g = q(m), 1 < q <p, such that bpm = (αpn)
Q. In this

case, necessarily q is relatively prime to p. The complement of Jp{θ, θ')

will be denoted by Kp(θ, θ').

LEMMA 4.4. Let θ and θ'eAutP(X). If ΣPep \KP{Θ, θ')\ = oo or if

Σpep\Kp(θf,θ)\ = oo, the condition (C) is satisfied.

Proof. Without loss of generality we may assume that ΣpeP \KP(Θ, θ*)\

= oo. Then there occurs (I) \KP(Θ, θ')\ = oo for some p e P; or (II)
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< oo for all pe P.

Case (I). If apn 6 H(θ') except finitely many n e Kp(θ, θ'), we can show

that \H(Θ): H(θ) ΓΊ Higθ'g'1)] = oo for all g e <SM. Otherwise, one can verify

that I#(00: H(θ') Π H(gθg-χ)\ = oo for all ^ S r a .

Case (II). We put Po = {p e P; Kp(θ, θ;) is not empty}, which is an

infinite set by assumption. For each p e Po, choose and fix an n e Kp(θ, θ')

and put cp = αpw 6 H'(θp) c #(0). If cp e ©(X - supp #0 for infinitely many

p e Po, or if there exists some qeP such that cp e H'(θ'q) for infinitely many

p e Po, we can see that \H(θf): H(θ') Π H(gθg~ι)\ = oo for all g e ©„. Other-

wise, we can show that \H(Θ): H(θ) ΓΊ H(gθ'g'ι)\ = oo for all g 6 ©„,. Q.E.D.

Keeping the notations introduced before Lemma 4.4, we note that

bpm = (apnim)y
(m) for each m e Jp(θ', θ). Put

M(q, p) = {me Jp(θ\ θ); q(m) - q].

Then we can easily prove the following result.

LEMMA 4.5. If there exists some peP such that \M(q;p)\ = \M(q',p)\

= oo with distinct q and q', then the condition (C) is satisfied.

Viewing Lemmas 4.4 and 4.5, we have only to consider two auto-

morphisms θ = ε UPep θv and θ' = ε' l\pePθpe AutP (X), where θp and θp are

given by
A(p)

ΘV=X\ a

Pn Π
n = l n=l

oo A(p) D{p)

Θ'P=Π a«n Π b^ Π dpm, q'(n) * q,
n — 1 n = l m = l

where 0 < A(p), C(p\ D(p) < oo and ΣPSP {C(p) + D(p)} < oo.

LEMMA 4.6. If there exists some p e P such that C(p) ̂  D(p), the

condition (C) is satisfied.

Proof. Assume that 0 < D(p) < C(p) < oo. Then one can show that

\H(Θ): H(θ) ίΊ H(gθ'g~ι)\ = oo for any ge ©_ Q.E.D.

LEMMA 4.7. 7/ ΣpeP A(p) = oo, ίΛe condition (C) is satisfied.

Proof We can show that |£Γ(0): H(θ) Π H{gθ'g'ι)\ = oo for all ^ 6 ©«,.

Q.E.D.

Suppose now that the condition (C) is not satisfied for θ and 6f 6
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Autp (X). Then it follows from Lemmas 4.6 and 4.7 that Θp and θv are

related as follows:

where ϊp = e except finitely many p. The following result is then immediate.

PROPOSITION 4.8. Let θ = ε Y[Pep ®v an^ θ' = £' Γ U Θ P ^ be the canonical

expressions of θ and θf e AutP (X), respectively. Assume that both θ and θ'

belong to AutP (X) (resp. Autp (X)). Then the condition (C) is not satisfied

if and only if there exist a sequence (q(p))peP and λeSL such that dr =

ef = r(ε ΠpG

LEMMA 4.9. Let θ e Autp (X) and θ' e Autp (X). Assume that θp and

θp are related as follows:

where ϊv — e except finitely many p. Then the condition (C) is satisfied if

and only if \X — supp^ | = oo.

Proof. Without loss of generality, we may put θ'2 = ε' = (1 2). First

we assume that \X — supp^ r | = oo. In order to see that \H(Θ): H(θ) ΓΊ

H{gθfg'ι)\ = oo for any ge©^, it suffices to consider the following two

cases: (I) #(1) eX — supp θ; (II) g(l) e supp θp for some p e P.

Case (I). We put Y = {ί e X — supp θ; g(ί) = i, i ^ g(ϊ) and i ^ g(2)},

which is an infinite set by assumption. We put et = (g(l) ί), ie Y. Assume

that σj^iβ Higθ'g"1) for distinct i and j e Y. Then we have

(2θ'g-\i)θ'g-\j)) = (lg-tyg-W

This implies that e'g~\i) — 1 or θ'g~\j) = 1. But this is impossible be-

cause i * g(ΐ) and i * g(2). Thus we have \H(Θ): H{θ) Π Higθ'g'1)] = oo.

Case (II). Let θp = Yl~=1(ίnOίnr - ίnp_1) be the cycle-notation of θp.

We may assume g(l) = ι10. We fix a sufficiently large N such that supp g

and supp ϊp do not intersect with {in0, inU , inp.x} for any n> N. Now

we put σn — Πf=o (hJnk), n> N. Suppose that σ~}σn e H(gθ'g~ι) for distinct

n and nf. Then by a standard argument, we get contradiction. Hence

\H(θ):H(θ)f]H(gθ'g-1)\ = oo.

Next we assume that \X — supp#'| = 0. Then, obviously \X — supp^|

= 2. Therefore we conclude that H(θ') = ϊH(θ)r-1 with T = Πnep ?Ί>e ©~.
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Hence (C) is not satisfied. Q.E.D.

PROPOSITION 4.10. Let θ = WVQPΘV and θf = ε' Y\pep Θ'P be the canonical

expressions of θ e Autp (X) and θr e Autp (X), respectively. Then the condi-

tion (C) is not satisfied if and only if \X — supp#' | = 0 and there exist a

sequence (q(p))peP and Te^ such that θr = efr{\\pePθfv))r-\

This follows directly from Lemma 4.9. Combining the results of Pro-

positions 4.8 and 4.10, we have

COROLLARY 4.11. Let θ and θf e AutP (X). Then the condition (C) is

satisfied if and only if H(θ) and H(θ') are not conjugate in (B00.

With these preparations, we can now discuss equivalence relation

between two unitary representations UθiX and [/*''*', where θ and Qf belong

to Autp (X). It follows from Lemma 4.1 and Corollary 4.11 that they can

be equivalent only when H(θ) and H(θ') are conjugate in ©«,. Conse-

quently, by Lemma 3.1 and Proposition 4.2 we have the following final

result.

THEOREM 4.12. Let θ e AutP (X) and θf e AutP, (X). Let 1 and V be

unitary characters of H(θ) and H(θ')9 respectively. Then two unitary rep-

resentations Uθ'χ and Uθ''χ' are equivalent if and only if (i) P = P'; (ii)

there exists Γ e S M such that H(θ') = rH(θ)Γι\ (iii) V(ϊhϊ-1) = X(h) for all

h e H(θ).

§5. Relationship among 77% 77" and U

For an irreducible representation p of ©n, 0 < n < oo, we form the

outer products p*l and |O*sgn, where 1 is the trivial representation and

sgn the alternating representation of ©<„_„. In the author's previous paper

[3], /o*l and |θ*sgn were denoted by πp and ftp, respectively. We denote

by 77+ and 77" the collections of p*l and |0*sgn, respectively. As was

shown in [1] and [4], the representations in 77+ are irreducible and mutu-

ally inequivalent. The same assertion is true for 77" and it can be shown

that any two representations of 77+ and 77" are mutually inequivalent.

Here we recall the following fact proved in [1] and [4].

PROPOSITION 5.1. Introduce the weakest topology in ©«, in such a

way that (Bn X (SO0_nίs an open set for all n = 0,1, 2, . Then 77+ coincides

with the set of all equivalence classes of continuous irreducible unitary rep-
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resentatίons.

The following result is easily verified.

PROPOSITION 5.2. (1) If θ e Aut£ (X), i.e. θ = e, unitary characters of

H(θ) — ©M are 1 and sgn. Furthermore,

UeΛ ~ 1 (the trivial representation),

jje,sgn ^ S g n ^ β alternating representation).

(2) If AutJ (X), i.e. # = transposition, H(θ) is ίsomorphίc to ©2 X ©oo_2 by

an inner automorphism of ©^ and its unitary characters are ε X 1 and ε X

sgn, where e is a unitary character of ©2. Moreover,

We denote by ί7 the collection of all unitary representations Uθ'x,

where θ e AutP (X) with non-empty subset P and 1 is a unitary character

of H(β).

THEOREM 5.3, Two irreducible representations are not equivalnt if they

belong to distinct classes Π+, Π~ or U.

Proof. It is sufficient to prove that Uθ'χ e U does not belong to Π+.

We realize the representation Uθa on the Hubert space of all complex-

valued square summable functions on (B^IH(Θ), (see [3]). We denote by δ

the delta-function concentrated at the single point H(θ) of ^JHiff). Then,

) - Pf t f
[ 0 otherwise.

On the other hand, as is easily shown, H(θ) is not open with respect to

the topology introduced in Lemma 5.1. Therefore Uθ'χ is not continuous

with respect to this topology and does not belong to Π+. Q.E.D.

Appendix A. The structure of endomorphisms of ©^

Here we shall give an explicit expression of endomorphisms of ©.,.

Let SL be the subgroup of all even permutations in ©oo, namely, the kernel

of the alternating representation: g*->sgng. The group SL is called the

infinite alternating group. We write SL.^ for SL Π ©oo_Ώ.

LEMMA A.I. (1) The only normal subgroups of ©TO are {e}, 2L and

©.. itself
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(2) The only subgroups of ©TO of finite index are 3L and ©«, itself.

(3) The only subgroups of ©^ containing 2L_2 are ^oo, φoo-i, £>oo_2,

(12)^.^12), ©2 X &OO.2 and 2L_2 U (12)(34)8tββ_2, w/iere £ denotes © or St.

This follows by an elementary observation of generators. With the

help of Lemma A.I we get the following

LEMMA A.2. Let K be a subgroup of ©^ and Ω the quotient space

<SJK. Assume that s(g) = {ω e Ω; gω ^ ω] is finite for any ge ©«,. Then

the subgroup K is necessarily equal to ©*,, 2L or conjugate subgroups of

Let End(©00) denote the set of all endomorphisms of ©«,. Given fe

End (©oo), an action of ©^ on X is defined by means of the maps i ι-> /(g)i,

i e X. Under this action X is decomposed into a disjoint union of ©^-orbits

Θ. It follows from Lemma A.2 that \O\ = 1, 2 or oo.

LEMMA A.3. Lei 0 6e cm orδiί containing infinitely many points. Then

the points of Θ are parametrized so that f(g)ίk = ίgW for all k = 1, 2, .

Proof. Since Θ is a transitive ©oo-space, there exists a subgroup K

such that 0 ~ ©oo/if. Since s(f(g)) in 0 is finite, we see by Lemma A.2

that if is a conjugate subgroup of ©«,_!. The desired assertion is then

immediate. Q.E.D.

Since supp/(g) is finite for all ge©^, the number of orbits contain-

ing two or infinitely many points is finite. We denote by Θ%Λ9 ,02,* the

orbits containing two points and Θ^i, , $«,,{ the orbits containing in-

finitely many points. We denote by Θflx the set of all points fixed under

the action i^-*f(g)ί, ίeX. Then we have a partition of X:

X = 0fl* U U ^2,. U U ^~,w .

Viewing Lemma A.3, we regard $«,,„ as an infinite (ordered) sequence. With

these observations, we have the following

THEOREM A.4. For each /eEnd(©o o) there exist unordered pairs of

points 02,m = {;ml,7m2}, m = 1, 2, , s, α îd ordered sequences Θ^^ = {inl9

in2> - -}, n = 1,2, - - -, t, (possibly s = 0 or t = 0) having the following prop-

erties :

( i ) 02>1, , 02,s> 0oofi, , 0oo,t are mutually disjoint as subsets of X;

(ii) for any g e ^ ,
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[ s Ίε(g) t /: j \

Π O " . , ; J Π ί " 1 Y ' " ) ,
m = l A n = l\lng{\) Lng(2)'''/

where ε(g) = 0 if g e 2L and ε(g) = 1 otherwise.

This theorem has many applications. For example, we can determine

certain extensions of ©^-spaces. Here we only mention the following

THEOREM A.5. Let fe End (©«,). Then f is an automorphism of ©ro if

and only if f(g) = θgθ'1 for some θeAut(X). In particular, Aut(X) is

isomorphίc to the automorphism group Aut (©«,).

Appendix B. Some remarks on representations of Π+

Let p be an irreducible representation of ©re, 0 < n < oo, and U an

irreducible representation of ©«,. As we remarked in Section 3, the ques-

tion of irreducibility or irreducible decomposition of the outer product

p*U is open in a general situation. If UeΠ±, however, we can give a

decomposition formula for p*U with the help of transitivity of induced

representations.

THEOREM B.I. Let p and p' be finite dimensional unitary representa-

tions of ©n and ©m, respectively. Then we have

ρ*(ρ'*ΐ) ~ (p*/c/)*l ^ Σi [p*p' τh*l

Applying the above result to the regular representation, we have the

following

COROLLARY B.2. If τ is an irreducible representation of ©n + m, the fol-

lowing identity holds:

dim τ = 2 Σ (dim «)(dim ]S)[α*j8: τ] .

Finally we shall give a decomposition formula for the tensor product

of representations of Π+. The proof is omitted because we need rather

complicated and combinatorial arguments about orbits of certain ©^-spaces.

An analogous assertion for 77" can be obtained easily.

THEOREM B.3. Let p and pf be finite dimensional unitary representa-

tions of ©n and ©m, respectively. Then

min (n,m)

(p*ΐ) ® (p'*ϊ) ~ Σ
io
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where τ(j) is a unitary representation of (3n+m^j given by

τ(J) = Indf +f-_f.x(Sm_,. pj9 pj(σu σ2, σ3) = ρ(σ
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