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m-FULL IDEALS

JUNZO WATANABE

Introduction

An ideal α of a local ring (R, m) is called m-full if am: y = a for some
y in a certain faithfully flat extension of R. The definition is due to
Rees (unpublished) and he had obtained some elementary results (also
unpublished). The present paper concerns some basic properties of m-full
ideals. One result is the characterization of m-fullness in terms of the
minimal number of generators of ideal, generalizing his result in a low
dimensional case (Theorem 2, § 2).

Meanwhile Professor Rees asked me for which ideals is it true that
μ(a) Ξ> μ(b) for all 6 containing α. Surprisingly enough it turns out that
m-full ideals do have this property (Theorem 3, § 2). To prove this we
introduce, in Section 1, three numerical characters Φ, ¥, μ, of m-primary
ideals. Φ and μ are, respectively, the colength and the minimal number
of generators of an ideal modulo a general element, and Ψ is the maxi-
mum of μ(h), where b runs over all the ideals containing a given ideal
(Definitions 1, 2, 3, § 1).

Theorem 1 in Section 2 shows that these are related by an inequality,
from which it immediately follows that an ideal α has the property men-
tioned above if μ(a) = Φ(a) + μ(a). And Theorem 2 shows that this is
precisely equivalent to the m-fullness of the ideal.

The purpose of Section 3 is to show that the converse of Theorem 3
holds in a 2-dimensional regular local ring, thanks to the equality Ψ(ά) =
Φ(a) + μ(a) for any m-primary ideal α. Also we would like to call atten-
tion to the fact that Theorem 1 has grown out of the attempt to gener-
alize Lemma 2 which is easily proved homologically. (See Remark 3, § 3).

In Section 4 we present a theorem of Rees which says that any in-
tegrally closed ideal is m-full, and also we prove an interesting formula

Received October 21, 1985.
Revised April 10, 1986.

101



102 JUNZO WATANABE

for the minimal number of generators of certain monomial ideals in

polynomial rings.

In Appendix we reproduce another theorem of Rees which is basic

in this paper and is used frequently, sometimes as taken for granted,

(cf. Remark 2 (i), § 1).

I wish to express my deepest thanks to Professor D. Rees for his

new ideas and new problems and for many discussions throughout his

stay in Nagoya University early in the year 1983.

Special thanks are also due to Professor H. Yamada who ingeniously

pointed out that a theorem of Mordell falls in with the situation of Sec-

tion 4. Finally I would like to thank Professor H. Matsumura for influ-

ential advices and encouragement.

In what follows I stands for length, and μ and τ are respectively the

minimal number of generators and the type of an ideal, i.e., μ(ά) = /(α/αm)

and τ(α) = l(a: m/α).

§ 1. Definitions and Notation

DEFINITION 1. Let (R, m) be a local ring, and put R' = R{XX, , Xd),

the ring of quotients of the polynomial ring by the multiplicative set

consisting of polynomials having a unit as a coefficient. Suppose m =

(mu , md) and put Y = X1m1 + + Xdmd. We define Φ, an integer

attached to each m-primary ideal of R, by Φ(a) = lR,(R'jaR' + YR').

DEFINITION 2. With the same notation as above, we define μ for m-

primary ideals by p(a) = μRΊYR(aR + YR'/YR').

DEFINITION 3. Let R be a local ring and a an m-primary ideal. We

define Ψ by Ψ(a) = Max {μ(b) | b =) a}.

DEFINITION 4. Let (R, m) be a local ring. (1) Assume first the resi-

due field R/xti is infinite. Then an ideal a of R is said to be m-full if

there exists an element y e R such that am: y = a. (2) When R/m is not

necessarily infinite, let Rf be a local ring which is faithfully flat over R

with infinite residue field and with mRf as the maximal ideal. Then an

ideal α C R is called m-full if aR is "mi^-full" in the sense of (1).

Remark 1. We will consider mostly m-primary m-full ideals. However,

m-full ideals are not necessarily m-primary. Easy examples are prime

ideals. In fact if p is a prime ideal, then it is an associated prime of

rrψ, hence there is y such that mp:y = p.
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Remark 2. (i) It can be proved that Φ(ά) <L IR(R/CC + yR) for any y em.

When the equality holds, we will say that y is a general element for α.

It will be proved that if am: y = a then y is a general element for a. If

the residue field is infinite, a general element exists for any m-primary

ideal or even for any finite number of m-primary ideals. For details see

Appendix.

(ii) It is easy to see that ¥(a) < oo. Indeed we have μ(b) <L μ(a) +

l(b/ά), for any ideal 6 containing α. Hence Φ(ά) <̂  μ(ά) + l(R/ά). (cf.

Theorem 1.)

§ 2. The inequality Ψ <; Φ + μ

THEOREM 1. Let (R, m) be a local ring and a an m-primary ideal.

Then it holds that μ(a) ^ Ψ(ά) £ Φ(ά) + μ(ά).

Proof. Only the second inequality requires proof. We prove it by

induction on Φ. As in Definition 1, put R = R(XU , Xd), m =

(mu , md), Y = X1m1 + + Xdmd, where d = μ(m). Let denote the

composition of the natural maps R —> R -> R/YR. Assume first Φ(ά) = 1.

This means that α = m. It follows that α contains elements α1? α2, ,

ad_1 e J?, such that (au α2, , ad_u Y)R = mi?7. In particular /z(α) = d — 1.

Now if 6 is any ideal containing α, then b/(au , ad_^)R is a principal

ideal because it is an ideal of the ring R/(au , ad_1)R in which the maxi-

mal ideal is generated by one element. Hence μ(b) <̂  d. Thus ^(α) ^ d,

and we are done with the case 0 = 1. Now assume the inequality to be

true for all 6 with Φ(b) <L n — 1, and assume Φ(α) = n. Let 6 be any ideal

containing α. It suffices to show that μ(b) ^ Φ(α) + μ(α). First assume

that Φ(b) < n. Then by induction hypothesis we have μ(b) <I Φ(b) + /*(£)).

It is easy to see that μ(b) ^ lφ/a) + μ(ά) — Φ(ά) — Φ(b) + μ(a). Combining

these together we have μ(b) ^ Φ(ά) + μ(ά). Next assume that Φ(b) = 0(α),

i.e., b = α. Let r = μ(b). Then we may choose a minimal generating set

of bR as follows:

and

(Note μ(b) = μ(6i?0 since R-+R is faithfully flat). We want to show that

ί ^ 0(ct). Obviously n̂  e bi?7: Y for each i. Denote the images of xu , xέ
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in hR': YjhR by xf, , xf. From the exact sequence

0 > R'/KR': Y-*->R'lhR' > R'/KR' + YR' > 0

we have lR,(bR': Y/hR') = Φ(b) = n. Suppose t > n. Then {x*y ,x*}

cannot be a minimal generating set of the ideal they generate in the ring

R'/hR'. Thus there are elements αl5 , at e R\ at least one a unit, such

that axxf + + atxf == 0, i.e., α ^ + + atxt e bR. Hence a^Yx^ +

• + at(Yxt) e ybi?7 c mbR'. This contradicts the fact that we have

chosen Yxu i — 1, , t as a part of a minimal generating set of hR'.

Hence t <L n, and μ(b) = t + r <, Φ(a) + μ(α) as wanted. This completes

the proof.

COROLLARY. Let (A, m) be an Artin local ring. Then for any ideal I

of A and for any element y of m we have

Proof. Put R — A and a — 0 in the theorem.

Remark 1. Theorem 1 and its corollary are in fact equivalent. To

derive Theorem 1 from Corollary observe that if we put A = i?/αm, then

(1) φjfl) = ΦR(am) and (2) ¥A(0) = !ΓΛ(α). In fact (1) is obvious. For (2) it

suffices to prove that ¥A(0) <I lΓΛ(α), the other inequality being obvious.

By definition there exists an ideal b of R such that μ(i + am/am) = ΦA(0).

Consider μ(b + a). This is equal to l(b + α/bm + am) ^ l(h + am/bm + am)

= μ(b + am/am). Hence WA(0) ̂  ^ ( a ) as wanted.

One might ask when does the equality ΨA(0) = Φ (̂0) hold. This will

be discussed in [4].

THEOREM 2. Let (R, m) be a local ring and a an m-primary ideal.

Then the following conditions are equivalent.

( i ) α is m-full.

(ϋ) τ(α) = Φ(a) and μ(ά) = r(α) + /*(α).

(iii) μ(ά) - Φ(α) + μ(a).

(iv) ^(α) = Φ(αm).

For proof we need an easy

LEMMA 1. If am: y = a then a: m = a:y.

Proof Obviously a:mcza:y, while a: m — (αm:j>): m = (am: m): y Z)

a:y.
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Proof of Theorem 2. Let denote the natural map R-^RfYR as

before. Then, by definition, Φ(am) = Z(ϊ?/αm) = Z(j?/α) + Z(α/αm) = Φ(a) +

μ(d). Hence (iii) and (vi) are equivalent. We prove (i) implies (ii). Since

μ, τ, p, and Φ are all stable under a faithfully flat extenstion, we may

assume R/m is infinite. Choose y such that am: y = a and consider the

exact sequences

( * ) 0 > Rja:y -^-> R/a > R/a + yR > 0

and

(**) 0 > R/am: y —?U R/am > R/am + yR > 0 .

From (*) and from Lemma 1, we have l(Rfa + yR) = l(a:yla) = l(a: m/α) =

τ(α). From the similar exact sequence as (*) with aR; and Y in place of

α and y, we have Φ(ά) = lR,(R'laR' + YR') ^ r(α220. Since R-+R is faith-

fully flat, r(α) = τ(aR'), and from Remark 2 (i) it follows that τ(a) = Φ(α).

This is the first equality of (ii). From (**) we have l(R/am + yR) =

/(αm ^/αm) = Z(α/αm) — /i(α). Exactly the same argument as for Φ(a) — τ(a)

shows that Φ(am) = μ(ct), proving the second equality. The implication

(ii) d> (iii) is trivial. We have already shown (iii) & (iv). It remains to

prove (iv) φ (i). Note that we may assume R/m is infinite. Then we can

choose a general element y for am. By definition Φ(am) = l(R[am + yR).

From the short exact sequence (**) above, it follows that l(am:y/am) =

Φ(ava). But μ(a) = Z(α/αm). Thus (iv) implies araiy = α, i.e., α is m-full.

We will say that an (m-primary) ideal α has the Rees property if

μ(a) 2̂  μ{b) for any ideal b containing α.

THEOREM 3. Let (R, m) be a local ring. Then an m-primary m-full

ideal has the Rees property.

Proof. By Theorem 2, we have μ(a) = Φ(a) + μ(a). By Theorem 1,

we have μ(a) — Ψ(a). This is the Rees property.

§3. The m-full ideals in a two dimensional regular local ring

THEOREM 4. Let (R, m) be a two dimensional regular local ring.

Suppose that a is an m-primary ideal and n is the integer such that a C mn

and a ςzί mn+1. Then the following conditions are equivalent.

( i ) α is m-full.

(ii) μ(a) = n + 1.
(iii) α has the Rees property.
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Proof. First we prove that Φ(ά) = n. As before we may assume R/xn

is infinite. Let y e m be any element. Then we have m + yR 2 m2 + yR 2

• 2 mn + yR^>a + yR, and l(R/a + yR) JΞ> n. Hence in order to prove

φ(a) = n it suffices to show the existence of y such that l(R/a + j>i?) = n.

The condition α c mn and α ςzί mw+1 means that a contains an element a

such that aemn and a£mn+\ Let m = (tu t2)R. Then α may be written

as a homogeneous from in tλ and ί2 of degree n with coefficients in R,

and not all of them in m. Since i?/m is infinite, we may assume, after a

suitable linear transformation of tλ and t2, that a is of the form

a = (unit)*? + c^Γ1^ +

Let y = t2. Then jF2/yi? is a DVR with (^) as the maximal ideal. Clearly

a = tiR mod yR, and we have l(Rja + j2?) = n, as wanted. We note also

that μ(a) = 1, which is clear because α mod yR is an ideal of a DVR.

Now the equivalence of (i) and (ii) follows immediately from Theorem 2.

The implication (i) φ (iii) was proved in Theorem 3. Assume (iii). Then

μ(a) ;> μ(mn) = n + 1. On the other hand, μ(α) <; Φ(α) + /2(α) ^ n + 1,

Thus (ii) follows.

Remark 3. The implication (i) cφ> (ii) and (iii) in the theorem is due

to Rees. He proved it using Lemma 2 below. Lemma 2 itself was origi-

nally proved by Burch homologically ([1] Corollary 2). (We outline her

proof below). On the other hand the same lemma is proved, as was done

in the proof of the Theorem 4 above, as a consequence of Theorem 1. It

gives us a non-homological proof. Thus we may consider Theorem 1 as

a broad generalization of Lemma 2.

LEMMA 2 (Burch). Let (R, m) be a regular local ring of dimension 2.

Let a be an m-primary ideal of R such that a C mn and a qt mn+ί. Then

we have μ(a) <1 n + 1.

Proof. Write a minimal free resolution of α:

0 >Rf-1-^+R' >a.

Then α is generated by the (μ — 1) X (μ — l)-minor determinants of the

matix M. Hence α c m^"1. Hence μ — 1 <I n.

§ 4. Application

THEOREM 5 (Rees). Let (R, m) be an integrally closed integral domain.

Then any integrally closed ideal a (not necessarily m-primary) is m-full.
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Proof. Let (am)' be the integral closure of am. It suffices to find an

element z (in a suitable faithfully flat extension of R) such that (am)7: z

= a, because, then α c am: z a (am)': z = a. Recall that an integrally

closed ideal α is a finite intersection of valuation ideals. I.e., there are

a finite set of discrete valuations υt of rank 1, non-negative on R, and

positive integers et such that for x e R,

x e a φ=Φ Vt(x) ̂  et for all L (See [2] p. 353 Theorem 3.)

It is harmless to add some additional υ3 (non-negative on R) with e3 =

Vj(a) := Mina€aVj(d). Therefore we can choose vt (1 <I i ^ ή) which work

both for α and for (am)7, i.e. such that

α = {z e RI ̂ (2) >̂ ι̂ (α) for all j},

(am)' ^= {ze Rlυfc) ^ ^((αm)') for all i].

Note that ui((αm)/) = v^am) = v^ά) + ^(m). If iZ/m is finite, we replace

i? by R(X) (as in Definition 1), and we may assume iϋ/m is infinite. Then

we can find an element z e m such that v^z) = ^(m) for all i. Hence

V: z = α as desired.

THEOREM 6. Lβί i? = ^[X1? . . . , X J be the polynomial ring over any

field k. Let aγ <1 α2 ̂  ^ αn 6e /ixerf positive integers and let a be the

ideal of R spanned by the set of monomials {Xf1 Xζn | pxjax + pja2 +

• + pJttn ^ 1} We define Nt(au , at) to be the number of non-negative

integer solutions (pu -,Pi) in Zι of the inequalities 0 ^pjax + +

pjdi < 1. Then

μ(a) = Nn^iau , an_,) + Nn_2{au , αn_2) + .. . + N,{a,) + No,

with the convention NQ = 1.

Proof. Put m = (Xu ,Xn), i?7 = i?m, and α7 = aRm. One sees easily

that am: Xn = a. Hence af is m-full in the local ring Rf. By Theorem 2

we have μ(α') = Φ(α;) + /2(α7). Since α is a graded ideal of R, μR(a) ==

μRf{af). Now we calculate Φ(αO and ρ(αθ. Since α is generated by mono-

mials, z = Xt + + Xn is a general element for α. Put R = R/zR, and

consider ά = αR. If we eliminate Xn, we see that α is the ideal of

k[Xu - - ,Xn-i] spanned by the monomials {Xf1 Xp

n

n--1

1\pιlαι + +

Pn-il^n-i ^ 1} Hence by induction on n, μ(ά) = Nn_2 + + No. For Φ{αf)

we count the number of the monomials of k[Xu -,Xn_Λ which are not

contained in ά. This is precisely equal to Nn_x{αu α2, , αn_^). Q.E.D.
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Remark 4. It is easy to see that Nλ(a) = a and N2(a, b) — \{{a + 1)

-(b + 1) — GCD(α, 6) — 1}. Hence in the case n = 3, we have

μ(a) = iV^, α2) + ΛΓ^) + No = i{(α2 + lX^ + 3) - GCD (α1? α2) - 1}.

As to N3(a, b, c) there is a theorem due to Mordell describing this number

using certain number theoretic function (Dedekind sums) provided that

a, b, c are pairwise coprime. (See [3] p. 39 Theorem 5.) For higher dimen-

sional case no results of this kind seem to be available.

Appendix

THEOREM A. Let (R, m) be a local ring with residue field k = Rim.

Let πιu , τnt be elements of m and let y = J] χίmz with xι e R. Let

Xu - - , Xt be indetermίnates over R, let S = R[XU , Xt], and let Y =

ΣXiirii, and let R/ denotes S localized at mR[Xu , Xt]. Finally let a be

an m-prίmary ideal of R. Then lR,(RflaR; + YR) < lR(R/a + yR). Further,

if k is infinite, then there exists a non-zero radical ideal 6 of k[Xu , Xt]

such that the equality holds above if and only if the ideal (X1 — xl9

Xt — χt), does not contain 6. {xt denotes the image of xt in k.)

To prove the first part of this Theorem we may assume that R is

Artinian and α = 0. Since Rf = R{XU , Xt) - R(XU -,Xt_x){X^ the

induction on t reduces the assertion to the following

PROPOSITION B. Let (R, m, k) be an Artin local ring, mu m2 e m and

let X be an indeterminate and put R = R(X). Then lR,{RI(Xm1 + m2)R) <;

lR(RI(xm1 + m2)R), for any x in R.

Proof Set A = R[X]l(Xm1 + m2)R[X], B = R(X)l(Xmι + m2)R(X), and

consider the natural homomorphism φ: A -> B. Let B — JQ Z) Jx Z) •

Z)Jn = (0) be a composition series of B, and let I"; = φ~x(J^). Then we

obtain a chain of ideals of A: IQ 13 li 3 z> Jn. Let x be any element

of i?. Then it holds that It: (X — x) = JΓ for all i, since (X — x) is a unit

in JB. Hence, by letting 1% = image of ^ under the natural map

A > ARmR[X]/(X - x)R[X] ~ RKxm, + m2)R ,

we obtain a chain of ideals Jo 2 ί 2 2 ί« This proves the proposition.

Remark. It is easy to see that in this proposition lR,(R/YR) depends

only on the ideal (mu m2, -,mt) and not on a particular choice of elements.
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Proof of the second part of Theorem A. As in the first part, we may

assume that R is Artinian and α = 0. Let S = R[XU - , Xt] and Y =

mxXx + + mtXt. We fix a chain of ideals of S:

( * ) = Io

such that /i//ί+i ~ S/P*, i\ e Spec(S). Since any prime ideal of S con-

tains mS, we may think S/Pt = k[Xu , Xt]lpt for prime ideals pi of

^[Xly , Xt]. By localization at the prime ideal mS, the chain (*) becomes

a chain of ideals in i?'. The isomorphisms

imply

( 1 ) I

Next we consider lR(R/yR). Let xu , xt e R, M = {Xx — xu , Xt — x^S,

and let /: S > S/M en i? be the natural homomorphism. Applying / to

the chain (*) above, we have R = f(I0) Z) /(Jj) D ID /(Jw) = yjR. From

the exact sequence

0 sιiί+1 si if
0

it follows that

Accordingly

( 2 ) = % \i

if

otherwise.

(a)

(b)

C (X, -

0 and ht ® SS/M Φ 0

., X, -

where xt is the image of xt in Rjm = ife. Let B = Π^olV Suppose a set

of elements xu , xt e R is such that (Xι — xl9 , Xt — x^^b. Then

only the null ideal can satisfy the condition (a) of the right hand side of

(2). Hence the set (1) contains the set (2). I.e., lR,(R'IYR) ^ lR(R/yR).

The other inequality was proved in Proposition B. Q.E.D.

Following is a generalization of Theorem A.
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THEOREM C. Let (R, m) be a local ring and a an arbitrary ideal Let

Rf and Y be as in Theorem A. Then

lR,(Ker [Y: R'/aR' > R'/aR']) ^ Zβ(Ker [y: R/aR > R/aR]).

(Note that length can be oo.)

Proof. We may assume a = 0. If R is Artinian 1(0: y) = l(R/yR) as

is easily seen from the exact sequence

0 > 0: y > R - ^ > R > RjyR > 0 ,

and this case is contained in Theorem A.

First we assume that the left hand side of the inequality is finite.

In this case we have to prove the inequality only when the right hand

side is finite. Consider H = H°m(R) and H' = HlR,(Rf). We note that

H' = H® RR\ Suppose 0:y is a module of finite length. Then, with the

identification H= Un(0:m7Z), it is contained in H, hence we have the

commutative diagram:

U U

0 >0:Hy >H-^H > H/yH >0.

Since H is a module of finite length, /(Ker [y: R -* R]) = l(H/yH). The

same is true for R' and Y and Hf. Observe that Theorem A is actually

true for H (or for any module of finite length), instead of R/a for an m-

primary ideal α, the proof being valid verbatim. Thus we have settled

this case. It remains to prove that if the left hand side is infinite then

so is the right hand side. Let 0 = qt Π ίl qn be a shortest primary

decomposition of 0 in R. Then we have 0 = c\xR
f ΓΊ Π c\nR

f as a shortest

primary decomposition in R'. The assumption /(Ker [Y: Rr -> R']) = oo

implies that Y is contained in Vq î?7 for some ί such that Vq î?7 φ vaR\

This means that all the elements m5 (which occur in Y = X] Xjirij) are

contained in Vcf*. Therefore y e <Jq~u and /(Ker [y: R -> R]) = oo. Q.E.D.
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