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DISTRIBUTIVE AND RELATED IDEALS
IN GENERIC EXTENSIONS

C. A. JOHNSON

§ 0. Introduction

Let A: be a regular uncountable cardinal and I a /c-complete ideal on

tc. In [11] Kanai proved that the /i-distributivity of the quotient algebra

P(tc)/I is preserved under Λ -C.C. μ-closed forcing. In this paper we extend

Kanai's result and also prove similar preservation results for other naturally

occurring forms of distributivity. We also consider the preservation of

two game theoretic properties of I and in particular, using a game theoretic

equivalent of precipitousness we give a new proof of Kakuda's theorem

([10]) that the precipitousness of / is preserved under Λ -C.C. forcing.

Our set theoretical notation and terminology is reasonably standard.

Throughout tc will denote a regular uncountable cardinal, / a proper non-

principal /c-complete ideal on tc (in the sense of [2, p. 7]), and P a forcing

notion. We will only be interested in the case when \\-p- "tc is regular

and / generates an ideal on κ\ and hence throughout we assume that

\\-jr "V* (if x c: V and \x\ < tc then there exists a y e V such that \y\v < tc

and x c: y)". J will denote the P name for the ideal on tc generated by I.

DEFINITION. P is (μ, η, ̂ -distributive iff whenever pe P and < Wa\a<μ)

is a sequence of maximal antichains below p in P, each of cardinality </ϊ,

there is a g e P such that qKp and for each a < μ, \{reWa\r is com-

patible with q}\ < η. P is said to be (μ, η, oo)-distributive if it is (μ, η, λ)

distributive for each λ We omit the η in the case η=l.

I is said to be (μ, η, ̂ -distributive iff the Boolean algebra P(tc)/I is

(μ, η, ^-distributive.

§ 1. (μ, fc, oo) and (μ, oo)-distributivity

In this section we make use of generic ultrafilters to prove some preser-

vation results for (μ, tc, oo) and (μ, oo)-distributivity.
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Recall that R(I) is the forcing notion whose conditions are sets A e I+

(= P(re) - I) with A < A' iff A g Af. If D is i?(/)-F-generic (where Vis

our ground model), then D is an ultrafilter on P(fc)C) V extending /*, the

filter dual to I, and within V(D) we may form the ultrapower VκjD (see

[6]). I is said to be precipitous iff ||̂ τy- "V/D is well founded", and in this

case we identify VκjD with its transitive collapse.

(μ, re, oo) and (μ, oo)-distributivity are related to R(I) by the following

THEOREM 1.1 (a) ([8]). For μ < re, I is (μ, re, oo)-dίstrίbutίυe iff ||β(7)-

(b) I is (μ, oo)-dίstrίbutίve iff W-^jy "Vμ c Γ .

COROLLARY 1.2. // / is (ω, re, oo)-distributive then I is precipitous.

Let j denote the natural embedding j : V—> V'jD, then Baumgartner and

Taylor [1] defined P to be J-regular iff ||^T/)

 tfVp e P lqej(P) (q<j(p)

and q\\jiP) j~\H) is P-F-generic)", where H denotes the canonical name

for the j(P)-V(D)-generic set. They also proved the following.

LEMMA 1.3 ([1, p. 603]). // P has the rc-chain condition then ||^(T) "llίcpy

j'\H) is P-V-generic".

THEOREM 1.4 ([1, Theorem 5.2])/f. Suppose I is precipitous and P is I-

regular. If D is R(I)-V-generic, H is j(P)-V(D)-generic and G = j~\H) is

P-V-generic, then in V(D)(H), j : V-+VKID may be extended to an elementary

embedding j : V(G)-> V*/D(H) such that U={Xe P(/c) Γ) V(G)\ [id] e ](X)} is

R(JG)-V(G)-generίc (where [id] denotes the equivalence class of the identity

function in VK/D).

j is given by j(xG) = O'(x))^. Moreover it is easy to check that V(G)κjU

and V(D)(H) = V(G)(U).

Now for our preservation results.

THEOREM 1.5. Suppose ω < μ < K, P has the rc-chain condition and I

is (μ, re, oo)-distributίve. If \\-^jγ "j(P) is (μ, μ, oo)-distributive", then ||-p- "J

is (μ, re, oo)-distributive9'.

Proof. Suppose peP and X is P name in V such that p\\-jr " ί e J+

and X ^ (V(0yiύy £V(OyiU". Let E={a<κ\lqeP (q<p and q\\^
"αeX")} , then (Ee V), p\\-p-"X<^E", hence Eel+ and we may find a

sequence (qa\a e E) e V such that for each a e E, qa < p and qa\\-p- " α e X".

Let D be i?(i>V-generic with EeD and H be j(P)-V(D)-geneήc with
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[(qa\a e E}] e H. By Lemma 1.3, G=j~\H) is P-V-generic and, since Vκ/D\=

"[(qa\a e E}] \\ΊτFγ [id] ej(X)", if £7is the R(JG)- V(G)-generic ultrafilter given

in Theorem 1.4 then XG e U. Also, since j(p) > [<gα|α e 2S>], p e G , hence

by our hypothesis (V(G)V£/)" £ V(G)'/U (and so (Vκ/D(H)y £ VK/D(H)).

Therefore in V(D) now we may find an re H and a 7(P) name / such

that rlly^y "f:μ-+VκID(H) and /g VK/D(H)". Clearly we may assume that

/is of the form/ = « α , xf>, sδ

a}\a <μ, δ<δa} where for each a <μ, {sδ

a\δ<δa}

is a maximal antichain below r in j(P) and for each <5 < δa, xδ

a is a j(P)

name in V*/D (and (a, xδ

a) is the./(P) name such that \\-jjpy {a, #*>£= (a, (#«)#))•

Since j(P) is (μ, μ, oo)-distributive there is a tej(P) such that ί < r and for

each a < μ, Ba — {δ <δa\t is compatible with si} has cardinality < μ.

Hence if we let g={((a, xδ

a), sδ}\a<μ, δ 6 Ba}, then by Theorem 1.1, g e V'jD

and clearly ί l ^ "/ = g e VKID(H)", contradicting ί < r. •

Theorem 1.5 may also be proved using the (well known) fact that I

is (μ, K, oo)-distributive iff for each ordinal λ, \\-^JY "for each /, if f:μ-+λ

then there is a function g: μ-±P(λ) such that g e V and for each a < μ,

\g(a)\v< * and /'(a) eg(a)".

Under certain circumstances the converse of Theorem 1.5 also holds.

THEOREM 1.6. Suppose K — μ+, P has the tc-chaίn condition and I is

(μ, K, oo)-dίstributive. If \\-p- "J is (μ, tc, ^-distributive"', then | |^y 'V(P) is

(μ, μ, oo)-dίstributίve".

Proof. Let D be -R(i)-V-generic. By Lemma 1.3 and Theorem 1.4, if

H is ;(P)-V(D)-generic then G=j~\H) is p-V-generic, y(D)(fO = V(G)(U)

and VKID(H) ^ V(G)V£7 for some i?(c/G)-y(G)-generic ultrafilter [7, and since

JG is (μ, K, co)-distributive, (VKID(H)Y <^VK/D(H).

In V(D) now, suppose rej(P) and (Wa\a < μ} is a sequence of maximal

antichains below r in i(P). Let /ι: (J {Wαjα < ^}->Ord be injective and /

be the j(P) name given by / = {««, /ι(g)>, g>|α < ^, g e WJ. Then r\\Tipγ

"f:μ->Oτά", and hence by our argument above there is a tej(P) and a

;(P) name £ e V'/D such that t < r and ίH^p, "/ = g". As in Theorem 1.5

we may assume g to be of the form g = {<<α, ψj>, sδ}\a < μ, δ < δa} where

for each a < μ, {sδ

a\δ < δa} is a maximal antichain below t in j(P) and for

each δ < δa, ψ * is an ordinal.

Suppose α < μ9 then {5α

δ|̂  < α̂} 6 V'/D and so, since P has the /c-chain

condition and j is elementary, |δβ | ^j(μ) = /i. Also if g e Wα is compatible

with t, there exists a δ <δa such that g is compatible with sδ

a, and hence
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since q\\ju>j "/(α) = h(q)" and sδ

a\\jipy "f(a) = g(a) = ψj", we must have

h(q) = ψj. Thus |{g e Wa\ q is compatible with ί}| < /*. •

In [1] Baumgartner and Taylor defined an ideal / on ωx to be pre-

saturated iff I is α>2-preserving (i.e. | |^y "ωζ is a cardinal") and precipitous.

It is clear that if I is an (ω, ωu oo)-distributive ideal on ωl5 then I is pre-

saturated (since {{R^ "\ω[\ — ω", see [2, p. 52]) and that the converse holds

for ω3-saturated ideals (see [1, Theorem 4.2]).

Baumgartner and Taylor also proved ([1, Theorem 5.10]) that pre-

saturation is a strictly weaker notion than ω2-saturation in that if P is

the forcing notion for adding a closed unbounded subset of ωx with finite

conditions (i.e. p e P iff p is a finite function mapping ωx into ωx for which

there is a countable closed set C ̂  ω2 so that if h enumerates C in increasing

order, then p c: h; p < p 7 iff p Ξ2p') then ||-p- "ωl = ω1 and ωγ carries no

ω2-saturated ideals", and i f/is a presaturated ideal on ωt then \\-ψ- "3Xe J+,

J\X is presaturated". Using Theorem 1.5, a similar argument yields an

analogous result for (ω, ωly oo)-distributivity.

THEOREM 1.7. // I is an (ω, ωl9 oo)-dίstrίbutive ideal on ωγ and P is the

forcing notion for adding a closed unbounded subset of ωt with finite con-

ditions, then \\-jr "iXe J + , J\X is {ω,ωu c&ydistributive".

Proof. Firstly note that since |JP| = α>1 and forcing with P does not

collapse ωu P is (ω, ω, oo)-distributive. Suppose p e P is such that p\\-jr

'VXe c/+, J\X is not (ω, ωu co)-distributive". In [1, Theorem 5.8] it is shown

that P is J-regular, hence if D is R(I)- V-generic we may find a j(P)-V(D)-

generic set H such that G — j~\H) is P-F-generic and p e G. It is easy

to see that j(P) is P as defined in V(D), hence j(P) is (ω, ω, oo)-distribu-

tive and as in Theorem 1.5 there is in V(D)(H) an i?(Jί?)-V'(G)-generic

ultrafilter U such that (V(G)ωίIU)ω c V(G)ωiIU. Therefore we may find an

XeJg forcing this statement, and hence JG\X is (ω, ωu oo)-distributive,

contradicting p e G . •

COROLLARY 1.8. If ZFC + "coj carries an (ω, ωl9 ^-distributive ideal"

is consistent, then so is ZFC -f "ω1 carries an (ω, ωl9 oo)-dίstributίve ideal

but no ω2-saturated ideals".

It is clear that our arguments in Theorem 1.7 also yield the following.

THEOREM 1.9. Suppose μ < tc, P is Lregular and I is (μ, /c, oo)-dίstrί-

butίve. If \\χ(jγ "j(P) is (μ, μ, ^-distributive", then \\-jr "2Xe J+, J\X is



IDEALS IN GENERIC EXTENSIONS 95

(μ, tc, oo)-distributive".

In [11] Kanai proved that if μ<tc, I is (μ, oo)-distributive and P has the

Λ>ehain condition and is μ-closed then ||-p- " J i s (μ, oo)-distributive". Clearly

under these conditions ||^τy "j(P) is μ-closed", and hence arguments similar

to those of Theorems 1.5 and 1.7 easily yield the following strengthening

of Kanai's result whose proof we leave to the reader.

THEOREM 1.10. Suppose μ < tc, P is I-regular and I is (μ, oo)-dίstributive.

If \\wτy "J(P) is 0"> oo)~distributίυe", then \\-p- "3XeJ+, J\X is (μ, ^-dis-

tributive". Moreover if P has the tc-chaίn condition then we may take X = tc.

In the case when \P\ < tc we can do slightly better.

THEOREM 1.11. Suppose, ω < μ < tc, \P\ < tc and I is (μ, ^-distributive.

If WRΪΪT
 tζI(P) ^ (μ, μ, ^-distributive", then \\-p- " J is (μ, oo)-distributive".

Proof. Suppose p e P and X is a P name such that p\\-f " ϊ e J+ and

X\\MT) 3/://-^Ord? /g V(G)". As in Theorem 1.5 we may find an R(I)-V-

generic set D and a j(P)-V(Z))-generic set H such that G = j~\H) is P-V-

generic and V(D)(H) contains a function /: μ—>Ord with / e V(G).

Hence in V(D) now we may and an reH and a j(P) name / such

that rWjjpy y: μ-^Orά and f&V{j-\H))". As in Theorem 1.5 again we

may find a t < r and a j(P) name ^ = {<<(#, ψ«>, 5^)|α:< μ, δ < βa} such that

for each α < μ, βa*ζ μ and tWj^ "/ = g". Since | P | < Λ, j(P) = {j(p)\p e P},

hence let h = {((a, ψδ

a), q^a < μ, δ < βa} where j(qδ

a) = sδ

a for each a < μ,

δ < βa. By (//, cx5)-distributivity of /, h is a P name in V" and hence

*li,W "/& = fe = ^ - 1 ( H ) e V(j~\H)γ\ contradicting t < r. •

§ 2. (jM, Ac)-distributivity

Our interest in ( ,̂ *r)-distributivity stems from its relationship with

ideal theoretic partition relations (see [7]) and the following.

THEOREM 2.1 ([7]). For each cardinal μ<tc the following are equivalent:

( a ) I is (μ, fc)-dίstrίbutίve

( b ) Ĥ yy "for each fe V'/D, if f\μ-+κ then fe V"

( c ) W < κ(λμ < tc) and for every minimal unbounded I-functίon h,

{a € dom(h)\cί(h(a)) < μ} 6 7,

where h:A-+κ is said to be a minimal unbounded I-functίon if Ael+,

h"\{ρ}) e I for each p < tc, and whenever f:B^tc with B e P(A) Π/+, either
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there exists a σ < K such that f~ι({σ}) e 7+ or an a e B such that f

THEOREM 2.2. Suppose μ is a cardinal, μ < K and I is (μ, ^-distribu-

tive. If P has the κ-chain condition and is (μ, a)-distributive for each a<κ,

then \\-p- "J" is (μ, ^-distributive".

We will need the following

LEMMA 2.3. Suppose P has the tc-chain condition, p e P, Eel+ and

{qa\a e E} cz P is such that for each a e E, qa *ζp. Then there is an r e P

such that r < p and r|]-p- "{a e E\qa e G} e J+".

Proof. Suppose not, then p\\ηr "{a e E\q e G) e J", and so we may find

{rδ\δ < β < Λ:} ̂  P, a maximal antichain below p in P and {Aδ\δ < β < K]

S I such that for each δ < β, rδ\\-jr "{a e E\qa e G} c A". But then A =

U {Aδ\δ <β}el, p||-p- "{a e E\qa e G } c A", and hence if a e E - A, p | | —

"ρΛ g G", contradicting the fact that qa < p. •

Proof of Theorem 2.2. Using Theorem 2.1 (c), suppose p e P and A is

a P name such that p\\-jr "h is a minimal unbounded J-function such that

for each a e dom(Λ), cΐ(h(a)) < μ\ As in Theorem 1.5 we may find an

Eel+, a function g:E-~>tc and a sequence <g*|α:e.E> such that for each

a e E, qa < p and gβ||-p- t fα e dom(/ι) and /i(α:) = g(a)". P is clearly (μ, oo)-

distributive hence, since qa\\-^r "cf(g(a)) < //", we must have cf(g(«))<//.

We show that g is a minimal unbounded /-function, contradicting the

(μ, Λ;)-distributivity of I.

Suppose p < K and g~\{ρ}) e/ + , then by Lemma 2.3 we may find an

r < p such that r\\-p- "{a eg-\{p})\qa e G} e J+" and hence r h r "A"1^}) e

c/+", a contradiction. Suppose B e P(E)f]I+ and f:B—>κ is such that

/(«) <8(<x) f° r e a c h α€ J3. Again we may find an s < p such that s\\-p-
"{a e B\qa e G} e J+" and so s\\-p "{a e B|/(α) < h(ά)} e J+". Hence there is

a ί < 5 and a o < Λ: such that t\\-p- "/"'(ίσ}) 6 J + J ? , thus /^({σ}) e /+.

Finally by (μ, co)-distributivity of P and (μ, Λ:)-distributivity of 7, for

each λ < K, ||-p- "ί" = (λ")r < K". •

§ 3. Precipitousness and games

G(I) is the following infinite game between two players, One and Two:

Player One moves first and chooses a set Ao e I+. Then Two chooses a

set BoeP(Ao)f]I+. One then chooses an AίeP(B0)ΠI+

9 and so on. Thus

they produce a sequence
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of sets in 7+, and Player One wins iff pj{An|ra < ω) = 0.

Gλ{I) is the game played as in G(I) except that, in addition, for his

7ith move Player One also chooses a function fn : An —> Ord such that for

each n > 0 and a e An, fn(a) </n_i(α). If Player One can continue the play

for ω moves, he wins; otherwise Two wins.

THEOREM 3.1 ([4] and [5]). The following are equivalent:

( a) I is precipitous

( b ) Player One does not have a winning strategy in G(I)

( c ) Player One does not have a winning strategy in G^I)

( d ) Player Two has a winning strategy in G^I).

Using the game G^I) we first give a new proof of the following theorem

which is originally due to Kakuda ([10]) and (independently) Magidor ([12]).

THEOREM 3.2. 1/ I is precipitous and P has the tc-chain condition then

||-p- f ί J is precipitous".

Proof. Firstly suppose p e P and X and / are P names in V such

that p\\— " ί e J+ and /:X->Ord". As in Theorem 1.5, given any s^p

we may find an Eel+, a function g:E->Oτά (ge V) and a sequence

(qa\aβE) eV such that for each aeE, qa < s and qa\\-jr "a e X and f(a)

= g(α)'\ Since I is precipitous there is a BeP(E)C\I+ and an ordinal d

such that B\\RUY "[g] = 3", and by Lemma 2.3 we may find a n r < s such

that r\\-Ίr"{aeB\q*eG}eJ+".
Suppose now that G is P-V-generic and in V(G), S is a winning

strategy for Player One in Gj(Jσ). By our argument above it is clear that

we may construct a play of

(XO,fθ) (Xufl) (Xn,fn) (Xn + ufn + l)

Yθ ' " Yn

in which Player One plays according to S and such that for each n < ω

there exist names Xn and fn for Xn and /„, conditions pn > sn > r n > p n + 1

e G, Bn, En e Γ (with Bn c En), gn:En-> Ord (gn e V) and <g«|α: e En) e V

satisfying:

( 1 ) pn |hr "Xn e J + and Λ : Xn -> Ord"

( 2) for each a e En, qa

n < sw and g^l^r "α 6 Xn and /n(α) = gΛ(α)"

( 3 ) βj |^τy "feJ = 3n" for some ordinal ^n
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(4) rn\\^"{aeBn\q«neG}eJ+"

(5 ) Yn = {aeBn\q*neG} (and hence since rn e G, Yne P(Xn) Π J+)

( 6 ) ifn>O,pn\\-τ"Xn^{aeBn_ί\q°n_ιeG} and

For each n<ω and aeEn + 1, qa

n+1<pn + u hence qς+1 |br "α e Xn + ί ^

{α e Bn\qa

n e G} and gn + 1(α) - fn + ι(a) < /n(α)", and so α e J3π g En, q
a

n+ί < g£

and by (2), gn+1(α) < gn(α). Hence B n + 1 | | w "δn+1 = \gn+1] < [gn] = 3n", yield-

ing a strictly decreasing sequence of ordinals (δn \ n < α>) contradiction. •

Unlike the game G^/), G(I) is not determined (see for instance [4,

Theorem 1]), and indeed in contrast to precipitousness the property "Player

Two has a winning strategy in G(/)" behaves rather badly in forcing ex-

tensions. / is said to be atomless iff for each A e I+ there are disjoint

sets Ao, A 1 e P ( A ) n / + .

THEOREM 3.3. Suppose I ίs atomless and P is the forcing notion for

adding a Cohen subset of ω, then \\-p- "Player Two does not have a winning

strategy in G(J)".

First we need the following

LEMMA 3.4. If\P\<tc, pe P and X is a P name such that p\\-p- Ί e J+",

then there is an Ael+ and a q < p such that q\\-ψ- "A <= X".

Proof As in Theorem 1.5 there is an Eel+ and {qa\a e E} c; P such

that for each aβE, qa < p and q"\\-p- "a e X". By ^-completeness there is

a q < p such that A = {a e E\qa = q] e I+, and hence q\\-y "A c: X". •

Proof of Theorem 3.3. P = {p\p is a function with dom(p) e ω and

ran(p) c: 2}, ordered by p < q ifϊ p ^) q. Suppose p e P and F is a P name

such thatpH^p- " F is a positional winning strategy for Player Two in G(J)".

We are taking the strategy to be positional (i.e. to depend only on the

last move of the opponent) for notational covenience only. It will be clear

that what follows could be proved without this additional assumption.

We define a P name / of the form / = {((n, Aδ

n),p^)\n < ω, δ < δn}

such that for each n < ω

( 1 ) Wn — {pb

n\δ < δn} is a maximal antichain below p in P, and for

each δ < δnj dom(p^) > n and Aδ

n e I+

(2 ) V/3 < δn + ί 3δ < δn(pi+1 < pi), i.e. Wn + ί refines Wn

(3) if β < δn+1, δ < δn andpt+1<pδ

n thenpί+ί\\-r "ALi c F(Aδ

n) c A%\
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We construct f\m = {((n, A^),p^)\n <m,δ< δn} by induction on m;

do = 1, P°o = P and A°o = κ9 hence suppose we have f\(m + 1) satisfying (1),

(2) and (3). For each δ < δm, pδ

m < p and Aδ

m e I\ hence pδ

m\\^ "F(Aδ

m) e

P(Aδ

m)f}J+", and so by Lemma 3.4 we may find a maximal antichain Tδ

m

below pδ

m in P and sets {Bq\qe Td

m} cz / + such that for each qe Tδ

m, q\\-ψ-

"Bq c: F(Aδ

m)". Since 7 is atomless, for each qeTδ

m there are disjoint sets

B°q,B\eP(Bq)Γ)I\ and so for each i < 2, ^ ί = gU{dom(g), i>}||^-"B* c

F(A^)" and dom(ς^ί) > dom(p^) + 1 > m + 1. Hence we may define

f\(m + 2) = f\{m + l)U{«m + 1, BJ>, gΛί>|i < 2, ge Γ^ for some δ < δm}

such that (1), (2) and (3) continue to hold.

Clearly p\\-jr 7(0), F(f(0)\ /(I), F(/(l)), . . is a play of G(J)? J, and

hence since F is assumed to be winning there is an s < p and an a < tc

such that s\\-p- "Vn < ω, a e fin)99. Pick n > dom(s) and δ < δn such that

s and pδ

n are compatible, then since dom(p^) > n we must have p£ < s

But now if qeTn there is a < 2 such that a & BJ

q, and hence QO'| |-F
?7(7i + 1) = J3̂  and a £ B{", contradicting q~j <q<Pn<s. •

Of course it is crucial that our ideal in Theorem 3.3 should be atom-

less for, as is well known, if I is prime and \P\ < K then ||τr 'Vis prime",

and in particular \\-p- "Player Two has a winning strategy in G(J)".

As for preservation, Lemma 3.4 easily yields the following (rather weak)

result whose proof we leave to the reader.

THEOREM 3.5. Suppose \P\<iκ and P is (ω, co)~dίstrίbutiυe, then if

Player Two has a winning strategy in G(I), \\-p- "Player Two has a winning

strategy in G(J)".

Also, Galvin, Jech and Magidor [4] proved that if I is normal and

prime and P is the Levy collapse for making K into ω2, then \\-ψ- "R(J)

has a dense ω-closed subset (and in particular, Player Two has a winning

strategy in G(J))". The following theorem strengthens this result, (indeed

the proof is similar) and also improves a result of Kanai [11, Corollary 2].

P is said to be μ-directed closed iff whenever Q c: P is directed with

\Q\<μ, there is a p e P such that p < q for each qeQ.

THEOREM 3.6. Suppose μ < K, I is prime and P has the κ-chain con-

dition and is μ-directed closed. Then ||-p- "R(J) has a dense μ-dίrected

closed subset".

Proof. Suppose G is P-V-generic and Xe JQ- As in Theorem 3.2 we
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may find a P name X for X, conditions p > s > re G, E e I+ (= /*) and
<ρα |α:e£;>ey such that for each α e ί , <?α < s, g||-p- "α € X" and r||-p-
"{α e E\q* eG}e J+". Hence F(Z) = {a e E\qa e G} e P(X)Π J£ and Q =
{F(X)|XeJj} is dense in R{JG). The proof that Q is /i-directed closed is
easy and we leave the details to the reader). •
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