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0. Introduction

In the study of ordinary differential equations, Malgrange ([Ma]) and Ramis

([Rl], [R2]) established index theorem in (formal) Gevrey spaces, and the notion of

irregularity was nicely defined for the study of irregular points. In their studies, a

Newton polygon has a great advantage to describe and understand the results in

visual form. From this point of view, Miyake ([M2], [M3], [MH]) studied linear par-

tial differential operators on (formal) Gevrey spaces and proved analogous results,

and showed the validity of Newton polygon in the study of partial differential

equations (see also [Yn]).

The purpose of this paper is to extend results in [M3], where spectral proper-

ty in Gevrey spaces of a special integro-differential operator was studied, which

is induced from the Goursat problem formulated from an interior point of a side of

Newton polygon defined by (0.2) below. Precisely, we characterize Fredholm prop-

erty of the Goursat problem by employing the theory of (finite section)

Wiener-Hopf equations, and show that such a property depends deeply on the Hu-

bert factorizability of Toeplitz symbol associated with the Gevrey index. We note

that Fredholm property of the Goursat problem in the category of local holomor-

phic functions was firstly pointed out by Leray ([L]) by an typical example of

operators, and a systematic study of such property is firstly done in this paper.

In order to illustrate our intention, we shall show a typical result which fol-

lows from Theorem 1 in Section 1.

Let P = P(t, x Dt, Dx) be a linear partial differential operator of finite

order with holomorphic coefficients in a neighbourhood of the origin of Ct

 χ Cx,

fi, 1992.
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(0.1) Pit, x Dt, Dx) = Σ Σ aσia(x)tσD'tDΪ,

where N denotes the set of non negative integers. For a triplet (σ, j , a) e N , we

associate a left half line Q(cr, j , a) in a (u, v)-plane defined by

Q{σ, y, a) •= {(«, σ — y) e R2 ^ < y + α}.

Then a Newton polygon iV(P) of the operator P is defined by,

(0.2) N(P) : = ch{Q(σ, , α) *σ Λ rGr) * 0},

where ch{ } denotes the convex hull.

For a given 5 > 0, we draw a line Ls with slope k '-= l/(s — 1) e R (J {o°}

which contacts to Λ^(P) at a vertex or on a side of iVCP). We put Ns '-= N(P) Π

Ls and define

(0.3) ΛΓ5 : = {(;, a) e N2 αoyα(O) ^ 0, ( + α, - ) e iV5}.

Now the principal part Ps(Dt, Dx) and the Toeplitz symbol fs(z) associated with

the Gevrey index 5 are defined by,

(0.4) Ps(Dt,Dx):= Σ o αo/α(O)A;££,
(j,a)eNs

(0.5) fs(z) = Σ o aVa(0)z~'.
(j,a)<=Ns

We define Gevrey space 2^,0?) (5, M;, i? > 0) as follows.

Let C[[ί, x]] denote the set of formal power series of variables t, x e C,

and Θ{Ω) the set of holomorphic functions on a domain β c C t X C x. Then the

Gevrey space 9S

W{R) is defined by the following isomorphism of Frechet spaces (cf.

Proposition 5.1 which follows),

Borel transf. / /\ t \ ί / s \

(0.6) C[[t,x\] 3^(7?) — + Θ[y~) +\x\<R),

where the Borel transformation is defined by

tιτβ tιxβ

The factorial is defined by the gamma function, rl '•= Γ(r + 1) for r > 0.

We consider the following Goursat problem in ^W(R),

{ '
Pit, x Dt, Dx)u(t, x) = fit, x) e <§s

wiR),
uit, x) - vit, x) = Oit'x"), vit, x) e <§s

wiR),
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where w(t, x) = O(tjχa) in <§*W{R) means that w(t, x)ΓJx~a e 9S

W(R).

Now we can prove the following,

THEOREM 0. Assume Ns Φ φ and (j, a) ^ ch iNs}, the convex hull of points in

Ns. Further we assume

(0.8) fs(z) Φ 0 on I z I = w, and £ d(logfs(z)zJ) = 0.
J\z\=w

Then the Goursat problem (0.7) has the Fredholm property for sufficiently small R > 0.

Precisely, there exists Ro > 0 such that the mapping P : t}χa(§s

w(R) —> ̂ S

W(R) has the

same finite dimensional kernel and cokernel for every R such that 0 < R < i?0. Furth-

ermore, if one of the following conditions is satisfied, then the problem (0.7) is uniquely

solvable in ^(R) for sufficiently small R > 0 :

(i) (j, α) is an gnd £oin£ o/ch {iVs}.

(ii) There exists c > 0 swc/i t/iat {fs(z)zί | z \ = c} is a segment.

(iii) There exists c > 0 sitcfr that 0 ^ ch{/5(z)z ; \z \ = c).

Moreover, every formal solution u(t, x) e C[[t, x]] of the problem (0.7) (if it exists)

belongs to &W(R) for sufficiently small R > 0.

We remark that if s is an irrational, Ns consists of an element whenever it is

not empty, and the problem (0.7) is uniquely solvable in 2^,0?) for every w > 0

for sufficiently small R > 0 ([MH]). Therefore, our interest in this paper is the

case where s is a rational number and Ns includes at least two elements. We also

remark that the necessity of the condition (0.8) will be made clear in Theorem 1

in Section 1.

The proof of Theorem 0, which will be completed in Section 5, is carried out

by converting the problem to the Fredholm property of an integro-differential

operator L>= PD^JD~a on Banach space G^(R) associated with ^(R), which is

defined in Section 1. Therefore, the main part of this paper is the study of

Fredholm property of integro-differential operators on Banach spaces of Gevrey

functions. The case of nonpositive Gevrey index will also be studied, but it is dif-

ficult to state a result for the Goursat problem in such a strict form as Theorem 0.

At the end of this introduction, we give some historical background of the

problem.

From the general theory of the Goursat problem, we can prove that the Gour-

sat problem (0.7) is uniquely solvable in ^S

W(R) for sufficiently small R > 0 under

the following so-called spectral condition,
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(S) I am(Q) I > Σ I am(0) \ wJ~'.
U,β)eNs\ij,a)

(See [H], [W], [Ml], [M2] and [MH].)

On the other hand, some attempts to make analysis of interior points of spec-

tral radius were made by many authors for special operators after the work by

Leray ([G], [L], [Ysl], [Ys2]). Leray studied the following Goursat problem in the

category of local holomorphic functions at the origin.

(λDtDx - Ό) - Dx)u(t, x) = f(t, x), u(t, x) = O(tx).

He proved that the problem is uniquely solvable if λ ^ C \ [— 2, 2]. He also stu-

died the case where i e [— 2, 2], and made clear that the solvability of the prob-

lem depends deeply on the diophantine nature of the number λ. In [M3], Miyake

proved that the interval [— 2, 2] is a spectral set of an associated integro-

differential operator with the Goursat problem (see Theorem 1 and Example 1.1 in

Section 1). Yoshino made a series of studies in this direction in the category of

local holomorphic functions ([Ysl,2,3,4,5]). Leray's example was extended by

Miyake [M3] in Gevrey spaces of positive index and also of non positive index. A

prototype of results in this paper was given there, but a condition like (0.8) was

not awared, which enables us to study general operators.

In Section 1, we shall state our results on Fredholm properties for integro-

differential operators on Banach space of Gevrey functions after some prepara-

tions. In Section 2, we shall study invertibility or norm inequalities for (finite sec-

tion) Toeplitz matrices on (finite section) weighted / space (1 < p < °°), where

we shall see that how the condition (0.8) does play a crucial role in our study. In

Sections 3 and 4, we shall give the proofs of the results, and Theorem 0 will be

proved in Section 5.

1. Statement of results

Let L = Lit, x DtJ Dx) be an integro-differential operator of finite order

with holomorphic coefficients in a neighbourhood of the origin of Ct X Cx, and

write it in the form,

finite

(1.1) L= Σ Σ aaja{x)t°D'tD
a

x,
N Z

where Z denotes the set of integers. The symbol DJ denotes an integration from

0 to t in the variable t in the formal sense. It is the same for Dx .

The Newton polygon N(L) of the operator L is defined in the same manner as
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(0.2) for partial differential operators by replacing N by Z.

We assume that the Newton polygon N(L) has a side Ns with slope k =

1 /(s - 1) (5 ε Q) which contains the origin.

ML)
Ns (s ^ 1)

N(L)

iVς (5 < 1)

This assumption implies that

sj+(I-s)σ+a<0iίaσja(x) *0,
( ' sj + (1 - s)σ + a = 0 (aσja(x) * 0) if and only if (;' + α, σ - j) e iV5.

In the case s < 1 it is assumed, a priori, that the operator has polynomial coeffi-

cients in the variable t. As a fundamental assumption, we impose the following

condition throughout this paper.

(N) Ns : = {(;, a) e Z x Z <iWe(0) ^ 0, ( + α, - ) e iV5} ^ 0.

We decompose the operator L as follows.

(1.3) L = L0(Dt, Dx) + Lx(t, x \ Dt, Dx) + L2(t, x Dt, Dx),

where

Lo = Σ o aoja(O)DJ

tDx (the principal part),

Σ aσja(x)fDJ

tD
a

x, am(0) = 0 or σ > 1,

I 2 = aσlaίt,x)fD>tD
a

x.

We shall study the Fredholm property and the bijectivity of the following map-

pings on Banach spaces,
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L:GS

W(R)->GS

W(R) (s,w,R>0),

L: G*wUt n) -> GS

W(R n) (s < 0, w, R > 0, n e N ) .

Throughout this paper, a bounded operator L on a Banach space X is said to

be a Fredholm operator if it is a Fredholm operator with an index 0, that is, L has

the same finite dimensional kernel and cokernel.

We define Banach spaces GS

W(R) and GS

W(R n) as follows.

DEFINITION. Let U(t, x) = Σ / f i 9 e N Uιβt
ιxβ/l\β\ e C t l U l I Then we define:

(i) U(t, x) e GS

W{R) (s > 0) ^

(1.4) ί ^ : = Σ

(ii) U(t, x) e GS

W(R n) (s < 0) <=>

(1.5) || t / | L % ) W : = i n f [C ;\Uιβ\< C ^ R S ι + β ( ( n - s ) l + n β ) l \ < ° °

The Toeplitz symbol f(z) of the operator L (associated with the above map-

ping) is defined by

(1.6) f(z) : = Σ o aoja(O)z~j e CU, 2' 1],

where C[s, >ε~ ] denotes the set of polynomials of z and z~ .

When f(z) Φ 0 on a circle Kw>= {z ^ C | z | = w), we denote by ./w(/) the

winding number of / U ) at the origin with respect to the circle Kw,

(1.7) 400 : =

Now our results are stated as follows.

THEOREM 1 (The case s > 0). (i) Suppose the following condition,

QDW f(z) ΦOon Kw, and Iw(f) = 0.

Then there exists a positive constant Ro such that L is a Fredholm operator on

GW(R) for every 0 < R ^ i?0. Furthermore if we define an ideal M [N\ of C[[t, x]]

by

MS[N] ••= W(t, x) e C[[t, x]] ;UIB = 0 for si + β < N),
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and GS

W(R)[N]' = GS

W(R) Π MS[N\, then L is bijective on MS[N] and also

on GW(R)[N] for sufficiently large N and small R > 0. Therefore, L is bijective on

C[[t, x]] /GS

W(R) for sufficiently small R > 0.

(ii) Suppose Lx — 0 in the decomposition (1.3). Then L is a Fredholm operator on

GS

W(R) for some R > 0 if and only if the condition (E)w is satisfied. Furthermore, the

resolvent set of the operator Lo on GW(R) is invariant on R > 0, which we denote by

p(LQ), and we have

(1.8) P(LO)= U p(L;Gs

w(R)),
R>0

where p(L GS

W(R)) denotes the resolvent set of the operator L on GS

W(R).

Remark 1.1. If s ^ 1 in the above theorem, we may assume that the coeffi-

cients of the operator belong to U / ? > 0 GS

W(R) (cf. Lemma 4.2).

Remark 1.2. In course of the proof, we will see that i ^ C belongs to the re-

solvent set of L on GW(R) (for sufficiently small R > 0) if one of the following

conditions is satisfied:

(i) f(z) is a polynomial of z or z~ι and (H)^ is satisfied for/Cz) — λ.

(ii) {f(z) z e Kc} is a segment for some c > 0 and (H)^ is satisfied for

f{z) — λ. In this case, by Szegό's theorem stated in Section 2, σp(L0), the set of

eigenvalues of Lo on GW(R), is invariant for w > 0 and is densely distributed on

this segment.

(iii) λ £ ch{ f(z) z e Kc} for some c > 0 and (H)^ is satisfied for f(z) — λ.

Furthermore the set of eigenvalues, which is included in a domain Q ^ C (H)w

is satisfied for f(z) — λ}, consists of finite points.

THEOREM 2 (The case s ^ 0). Let assume (ΐί)cw is satisfied for c — e and

c — e . Then there exist Ro > 0 and n0 ^ N such that L is a bijection on

GS

W(R n) forO < R < Ro and n > nΌ. Precisely, it holds that

U U p(L;Gs

w(R;n))

(1.9)

^ {λ ^ C ;f(z) — λ satisfies (H)cw for c = es~ and c — e s~ },

where p(L\ GW(R n)) denotes the resolvent set of L on GW(R n).

Our theorems are proved first by showing the same results for the principal

part LQ in Section 3, and then by applying the stability of Fredholm property by
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small perturbations in Section 4. The results for Lo will be proved by showing

that an equation Lo U(t, x) — F{t,x) in GW{R) (resp. in GW(R n)) is decom-

posed into an infinite direct product of finite section Wiener-Hopf equations on fi-

nite section spaces of weighted / space (resp. Wiener-Hopf equations on weighted

Γ spaces). In these studies, we shall see that the Fredholm property depends

deeply on the invertibility or the norm inequality for (finite section) Toeplitz mat-

rices which holds under the condition (ίί)w (cf. Propositions 2.2, 2.3).

We give examples below.

EXAMPLE 1.1 ([M3]). Let Lo = DP Ώ~p'a + D~p Dp

x

+a (p > 1, p + a > 0).

The Gevrey index of this operator is s = 1 + (a/p) > 0, and the Toeplitz sym-

bol is f(z) = z~P + / . Since {/(*) \z | = 1} = [- 2, 2], by Remark 1.2 (ii) or

(iii), we have

p(L0) =C\ch{f(z);z(ΞKj

( 1 1 0 >

+ w ' χur — w

and (Jp(L0) is densely distributed on [— 2, 2]. More precisely, we have

(1.11) σp(LQ) = U {2 cos πθ sin(n + 2)πθ = 0, 0 < θ < 1},

from results in [M3], where the case w = 1 was studied.

EXAMPLE 1.2. Let Lo = ~ D;2 D2

x

+2a + 3D;1 Dι

x

+a ~ J Dt D'1'", where a > 1.

Then the Gevrey index of this operator is given by s = l + α i > 2 and the

Toeplitz symbol is given by f(z) = ~o z2 + 3z — ~τ z~ι = ("o" ~" z~l)\z "^ ~o)

3 3
Therefore the condition (E)w is satisfied for -j < w < ~κ. Then the operator Lo is

3 3
a Fredholm operator on G^iR) for ~τ < w < ~κ. In this case, it holds that 0 Ξ

Π 3/4<M,<3/2 ch{f(z) I z\ = w) (see the figures). From the proof of Theorem 1 we

can see that Lo has 1 + a dimensional kernel and cokernel on GS

W(R). (Cf. Exam-

ple 2.1.)



FREDHOLM PROPERTY OF THE GOURSAT PROBLEM 173

w = 0.8 w = 1 w = 1.3

2. Inversion and norm inequality of Toeplitz matrices

We define Banach spaces lp>w (p = 1 or °°, w > 0) of formal Laurent series

by

(2.1)
= Σ i e Z Uj z \\\u L>w: = sup{| Uj I w1 e Z} <

We, sometimes, identify wGz) G / ^ with a sequence M = {uj}jeZ with the above

defined norm. We denote by lPtW (resp. lPw) the set of u(z) ^ lPw with w; = 0 for

j < 0 (resp. > 0). The projection P : Z^^—^ / ^ is naturally defined by

(2.2) P(u) = Σ ; e N w ; z ; for wU) = ΣjGZUjZJ ^ Z^ .̂

For f(z) = Σy=_w/;-ε;' e C U , Γ 1 ] ( - m < w,/_w/n Φ 0), a Wiener-Hopf

equation on lPtW with symbol /(z) is defined by

(2.3) Pf[u] : =

The operator P r is called a Toeplitz operator with symbol f(z). An infinite matrix

Tf defined by

*f'~~ {fj-k'j,k=ΌΛ,2,...,

is said to be a Toeplitz matrix with symbol f(z). Then the equation (2.3) is writ-

ten in the matrix form by

Tu = g^ l (u<Ξ IΪJ(2.3)'
PtW

We note that Pf or Tf defines a bounded operator on lp>w with operator norm,

\,w
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The first purpose of this section is to study the unique solvability of the

Wiener-Hopf equation (2.3) or (2.3/ on lpw. For that purpose, we firstly investi-

gate the condition iΉ)w. The condition (H)w is satisfied if and only if n, m > 0

and the equation zmfiz) = 0 has m roots {μ; }f=1 in {0 < | z \ < w) and n roots

{μw+; }J=i in {| z I > w). Therefore, under the condition (H)^, we have a decom-

position, fiz) = f+ iz) f_ iz), given by

(2.4) f+iz) = Π iz - μm+j), f_iz) = Π ( l - ^ ) ,

where we assumed fn — l without loss of generality. Note that f+iz) (resp.

f-iz)) is holomorphic and does not vanish on ί| z | ^ w) (resp. {w < | z | < °°}).

Such a decomposition is called a Hilbert factorization of fiz) with respect to the

circle Kw. We note that the converse holds, that is, fiz) is Hilbert factorizable

with respect to the circle Kw if and only if fiz) satisfies the condition (H)^. We

omit the proof, since it is easy.

From the decomposition, we see that

f±iz)~ι = ΣjeNb±jz
±J

are absolutely convergent on the circle Kw, and hence they belong to lhw. These

facts imply that Toeplitz matrices Tf-i define bounded operators on lp>w with oper-

ator norms

(2.5) || 7>t-i || = || Λ(zV1 IL ( Ξ Σ , £ N I b±i I w±j).

Under the above consideration, we see that the condition (H)^ implies the follow-

ing decompositions of Toeplitz operator Pf and Toeplitz matrix Tf,

Pf = Pf.Pf+ and Tf=Tf_Tf+,

where Pf+ is a multiplier operator by f+iz). Note that Tf+ (resp. Tf_) is a lower

(resp. an upper) triangle matrix, and has a bounded inverse matrix on lp>w given

by Tf+ = Tf-i (resp. Tf_ = Tf-i). Thus we have seen that under the condition

(H)^, Tf has a bounded inverse matrix on lp>w given in the form, TJ — Tf-i Tf-i,

and its operator norm is estimated by

This estimate is obtained from the following Hausdorff-Young inequality of

discrete type.
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LEMMA 2.1. Let a(z) e llw and b(z) e lPtW, where 1 <p < oo. Then

a(z)b(z) £: ί ί a ; and 100 have \ab\Pw < || a \lw || ft ||ί>a,. iiferg the Banach space lPtW

(1 < p < °°) is defined in the similar manner as in the case p — 1.

We omit the proof, since it is obvious. It is important that the converse holds.

PROPOSITION 2.2. The Toeplitz matrix Tf is bijective, that is, invertible on lPw if

and only if the condition (ΐθw is satisfied. Moreover, suppose that f(z) Φ 0 on Kw and

(2.7) /„(/) := 2̂ 7 § d(\ogf(z)) = k Φ 0.
Li ill J\z\-W

If k > 0 then Tf is injective with k dimensional cokernel, and if k < 0 then Tf is

surjective with — k dimensional kernel

Remark 2.1. Calderόn, Spitzer and Widom ([CSW]) proved this result in the

case where p = °° and w = 1. The above consideration and the proof below show

that this proposition holds for every 1 < p < °°.

Proof We may assume w = 1 without loss of generality. Indeed, it is suffi-

cient to make a change z by wz. This change implies,

Γ/ on / ^ •-* Doo(w)TfDoo(w~1) on /^,

where D^iw) '-= diagίl, w,..., w},...}, a diagonal matrix with the -th diagonal

component w1 (j > 0), and D~ (w) = D^iw' ).

We prove the "only if" part, so we always assume that Tf is bijective on lp.

In what follows, we omit the suffix w = 1, and the condition (H)^ is denoted by

(H). We give the proof dividing into two parts. The proof of latter half of the

statement will be given in part 2.

1) The case/U) e C[z] or CU" 1 ] .

First, we consider the case f(z) = Σ%JjZJ G C[z] (n > 0). We put/te) =

^ ^(^), ̂ "(0) # 0, A: >: 0. Then the Toeplitz matrix Tf is decomposed into

where S+(k) is a shift operator defined by

k

S+(k) : '(WQ, «!, M 2 , . . . ) ι-» ^ 0 , . . . , 0, u0, ulf u2,...).
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This shows that if k > 0, the cokernel of Tf includes k dimensional vector space,

and hence Tf is not surjective. Now we consider the case where /(0) Φ 0. Suppose

that the condition (H) is not satisfied, that is, f(z) = 0 has at least one root in

i\z\ < 1 } .

First assume that f(z) = 0 has at least one root in {| z \ < 1). This implies

that the convergent radius of f(z)~ι •= Σ y > 0 b^ is less than 1. Hence we have

lim sup I bj\ — °°.
y-oo

We put βj = ' ( 0 , . . . , 0, 1, 0, . . . ) ( > 0 ). Then βj does dot belong to the image

of Tf. Indeed, the equation, Tfu= ejt has a unique solution,

y

Uj = ' ( 0 , . . . , 0 , b0, blf b2,...),

which satisfies the equation in the formal sense, but does not belong to lp.

Next suppose that f(z) = 0 has all roots in {| z | > 1} and has at least one

root on {\z\ — 1). It is assumed that Tf is invertible on /^. Since the set of

invertible operators on lp consists of an open set in the set of bounded operators,

there exists a positive constant ε > 0 such that every bounded operator B on lp

satisfying || Tf ~ B || < ε is also bijective on lp, where || || denotes the operator

norm. For any ε > 0, we can give a polynomial g(z) ^ C[z] by a small change of

coefficients of f(z) such that g(z) = 0 has at least one root in {| z \ < 1}, and also

|| Tf — Tg || < ε. This implies that Tf is not bijective on lp.

Next, we consider the case f(z) = ^%-mfjZJ e CU" 1] (m > 0). We put

f(z) = z~ g(z), k > 0 and ̂ (°°) Φ 0. Then Tf has the following decomposition,

Tf=S_(k)Tg= TgS_(k),

where S_(k) is a shift operator defined by

SΛk) : fteo> «i, M2» ) ^'(U

Therefore if k > 0 then operator Tf includes k dimensional kernel, and hence it is

not injective. So we may assume that/(°°) Φ 0. Suppose that/Gε) does not satis-

fy the condition (H), that is, f{z) = 0 has at least one root in {| z | > 1}. By the

same reason as above, we only consider the case that f(z) = 0 has at least one

root in {| z \ > 1} to prove that Tf is not bijective on lp. We put/Cε)~ •= ΣJL0

b_jZ~J. Then we have

lim sup I b_j

It is easy to check
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T, Trx e, = e, (j = 0, 1, 2 , . . . ) , Γ r i e, = '(&_„ b_i+1 bo,O,...).

This shows that Tf does not have bounded inverse on lζ, because

II 2>i βy I,-» oo as >-»«>.

2) The case /(*) = Σ* = _ m / , / ( « , n > 0, /_„/„ # 0).

Let {βj}f=^ be the roots of an equation zmf(z) — 0, and suppose that

I βj I < 1 (1 < < p), I ̂ + ;. I = 1 (1 < j < q), I μp+q+J \ > 1 (1 < < r),

w h e r e p , q, r > 0 a n d p + q+r—m + n.

In what follows, we assume that the condition (H) is not satisfied.

First, we consider the case q = 0. Hence it holds that p < m or p > m. We

consider the following decomposition,

According to the case p < m or p > m, we have the following decompositions of

the Toeplitz matrix Tf,

Tf = SΛm - p)Tf_ Tf+ (p<m)7 Tf= Tf Tf+ S+(p -m) (p>m).

Since Tf± are bijective on lp, we have Tf has (m — p) dimensional kernel or

(p — m) dimensional cokernel according to the case p < m or p > m. This proves

the latter half of the statement in the proposition. Indeed, the number /(/) defined

by (2.7) for w = 1 is given by /(/) = p — m in this case.

Next, we consider the case q Φ 0.

First, we assume p > m. Then we have the following decomposition,

/./ x ρ-m L I'Λ βj\ q$J ( \ p u t p-m r / \ r / \

f(z) = z Π (1 - -f) Π (z - μp+j) = z f.(z)f+(z).

This implies the following decomposition of Tf,

T,= Tf_Tf+S+(p-m).

Since Tf is bijective on lp, Tf+ S+(p — m) should be bijective on lp. But this is

impossible, because if p > m then this operator has positive dimensional cokernel,

and also if p — m then Tf+ is not bijective from the fact that q > 0 as we have

proved in the first part.

Next, we assume p + q < rn. Then we have the following decomposition,



1 7 8 MASATAKE MIYAKE AND MASAFUMI YOSHINO

r/ \ P+q-m jJ1 /-, ft\ π / \ p u t p+q-m £ / \ r / \

f(z) = z Π [1 - -f) Π (z ~ μp+q+j) = 2 fAz)f+(z).

This implies the following decomposition of Tf,

Tf= SΛm-p- q)TfTf+.

Since Tf+ is bijective on lp, S_(m — p — q)Tf should be bijective on lp. But this

is impossible, because if p + q < m then this operator has a positive dimensional

kernel, and also if p + q = m then Tf is not bijective as we have proved in the

first part.

The above considerations show that it should hold that p < rn, p + q > m

and r < n whenever Tf is bijective on lp. On the other hand, by a small perturba-

tion of the coefficients of f(z), we get g(z) such that g(z) = 0 has p + q roots in

{| z I < 1} and g(z) Φ 0 on {| z \ — 1}. Then Tg is not bijective on lp. This, com-

bining with the reasoning in the first part, implies that Tf is not bijective on lp if

the condition (H) is not satisfied.

Thus the proof is completed. •

Next, we study the solvability of finite section Wiener-Hopf equation.

Let u (z) = Σj=oUjZ} and g (z) = Σj=ogjZJ for i V ^ N . Then an N-th

finite section Wiener-Hopf equation with symbol f(z) is defined by

(2.8) Pf[uN)] - g(N)(z) = O ( / + 1 ) ,

where O(z ) denotes the formal power series with power larger than N. An

iV-th finite section Toeplitz matrix Γ/ΛO with symbol f(z) = ΣfjZ ^ CU, z~ ]

is defined by

1 f\JN) •— \Jj~k)j,k=QΛ,2,...,N'

Then the equation (2.8) is written in the matrix form by

(2.8)' 7>0V) um = g(m e Cf+1,

where u '>=t(u0, u1,...,uN) and so on. We take an induced norm \\u \\ίtW;N

from l*tW, that is,

II UN) ||iM).Λ;: = Σf = nl U4\ W3.

We denote by llw[N] the space C equipped with this norm. Now we can prove

the following proposition corresponding to Proposition 2.2.
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PROPOSITION 2.3. Let f(z) satisfy the condition (H)w. Then there exists No G N

such that the equation (2.8) is uniquely solvable for every N > NQ and the following

norm inequality holds.

(2.9) Wu^W^M^KWg^k^iN^No),

where the constant K is independent of N(^N0). Conversely, the norm inequality

(2.9) implies the condition (H)w. Hence the norm inequality (2.9) holds if and only if

the condition (H)w. holds.'w

Remark 2.2. Let \\u \\PtW;N be the induced norm from lp)W (1 <p< °°).

Then the proof below shows that the condition (H)^ implies the norm inequality

(2.9) for every 1 < p < °°. However, we can conclude that the norm inequality

(2.9) implies the condition (H)w if 1 <p < °°, but we do not know whether it

does hold in the case p = °°.

Proof. We assume w = 1 in what follows, and the condition (H)^ is only de-

noted by (H) as pointed out at the beginning of the proof of Proposition 2.2. We

denote by /JΛ7] the space C equipped with the induced norm from l*Λ, and the

norm is denoted by || u 1^. The norm of u ^ lγ (or if) is denoted by || u \\v

For the proof of the former half of the statement, it is sufficient to prove the

norm inequality (2.9) for sufficiently large N. Indeed, (2.9) implies the uniqueness

of solutions, and the solvability follows from the uniqueness of solutions for linear

equations of determined type. We follow the argument by Baxter [B]. The equation

(2.8) is equivalent to

(2.8Γ f(z) um ω = H_ ω + g

 {N) (z) + H+ ω ,

for some H±(z) e /* of the form,

H_(z) = Σ h)Z', H+(z) = Σ h,z\

j = -oo j=N+l

It is sufficient to prove the following inequalities,

1!^ c\\g(N)\\1;N, WHJ ' I Ϊ c\\g

(N)

for a positive constant C independent of u and g if TV is sufficiently large. In-

deed, the equation (2.8)" and Lemma 2.1 imply

II««" \\1;N < II Hj;1/:11 + II gmf;ιf:11 + II HJ;1/:1 i

< II / 11II u _ C II: + II / 11II z : 1 1 I I gW) lN + II z : 1 1 I I ^ / 1 1
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Hence (2.9) follows from (2.10). Let f±{z)~ι = Σ ; G N b±J z±j e /f, and put

B±(N) = Σ δ±,^± ; > .

Then || 5±(Λ0 ||L —̂  0 as N~• °°. The equation (2.8)" is rewritten in the form,

um(z)f+(z) = HAz)fAzTι + g(N)(z)f_(zΓ1 + H+(z)fΛzT\

Looking at the coefficients of negative power of z in this equation, we have

H_(z)fΛzYι = - [g{N)fI1]- ~ [Hj:x]_ = - [giN)/:ι]_ - [H+BΛN)]->

where [u]_ '= (I — P)u ^ /f for u(z) ^ /L. Hence we have

< II z : 1 tίx II ̂ w> I U + 1 B_(N)f+1II HJ;1 i.

Since | B_(N)f+ IL ^ IIβ_(Λ0 ||2 II/+ i ^ 0 as ΛΓ^ oo , for any 0 < ε < 1 there

exists iV0 such that || BΛN)f+ \\χ < ε for every N > No. Hence we have

IIH_/:1 i < ι ιr_ ι ι\\ g

W ) ιι 1 ; J V + e ι ι H J ; 1 ι (N>N0).

Next, we notice a relation,

uN\z)f_{z) = HAz)UizYy + gN\z)f+{zYl + H+(z)f+(zΓ\

which follows from (2.8)". Then we have

where [u]N'-= Σj>NUjZS. By taking large Af0 such that \\B+(N)f_ 1̂  < ε holds

for any N > No, we have

II HJ;1 i < || / 1 IL || g
(N) \\1;N + ε II HJ:1 ι (N > N0) .

Now we get (2.10) by taking C = {H/+"1 ||x + \\flι \\λ}/{l - ε2). This proves the

former half of the statement of the proposition.

Let us prove the latter half of the statement. We, first, prove the solvability

of the equation, Tfu = g^ lx.

F o r g = (g0, glf g2,...) e /χ

+ w e p u t g m = (g0, gv...,gN) ^ / J J V ] . L e t

o

gN J
N > No as in the norm inequality (2.9). There exists u = (u0 , ux , . . . ,

u^) e l^N] satisfying Tf{N)uN) = giN) and the norm inequality (2.9) holds.

We identify w with w(Λ0 = («0 , wx , . . . , % , 0, . . . ) ^ /x. It is the same for

/x. The norm inequality (2.9) implies
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Then there exists u — (u0, ulf u2,...) ^ lx such that

lim «"' = «, 0*^0).
ΛΓ->oo

Strictly speaking, the limit N —• °° should be taken over a subsequence of N, but

we may assume as above without loss of generality.

Now it is proved that u satisfies the equation, Tfu = g in /*. Indeed, we

notice the equation,

Σ/,_,«,"" = & for 0 < ί < i V .
; = 0

By the definition of the Toeplitz symbol f(z)ffi_j = 0 if | i — j \ > maχ{| m |, | n |},

and hence the summation is taken is over a fixed finite number of j's for any i.

Therefore, we can take the limit iV—• °° in the above equation, and we have

N oo

lim Σ /„ u)N) = Σ fi-j Uj = gif
ΛΓ-+OO ; = 0 ; = 0

for any fixed /. This shows that Tf u = g in lx.

Next, we prove the uniqueness of solutions. Suppose u Ξ /χ

+ satisfy Tfu = 0.

We take Λ̂  > Λ̂ o, and rewrite the equation in the form,

Σ/,_,u, = - Σ f,_,u, = gf\ 0<i<N.
j=0 j=N+l

The norm inequality (2.9) shows

II / Ά τ\ II II W ) II ^ Ύ7- II W ) II

II «(Λ0 111 = II M \x.N<κ\g \.N,
where g = κg0 , gλ ,..., gN ) . We remark again that the summations in both

hand side are taken over a fixed finite number of i 's, and g{ = 0 for 0 ^ i^ < N

— m a x { | m\, \n\}. Hence we h a v e

\\g(N)\\1;N< C\\u-u(N)\\v

for a positive constant C independent of N. Since || u — u(N) ||x —• 0 as N~* °°,

we have || w ||x = lim^^^ || w(Λ0 ||χ = 0. This proves u = 0 in lγ.

The proof is thus completed. •

We remark that the condition (H)^ implies the unique solvability of the iV-th



1 8 2 MASATAKE MIYAKE AND MASAFUMI YOSHINO

section Wiener-Hopf equation (2.8) only for sufficiently large N, and the condition

does not control small N. For the invertibility of the iV-th section Wiener-Hopf

equations for all N ^ N, we have to impose other additional conditions, which will

be given in the below.

EXAMPLE 2.1 (cf. Example 1.2). Let f{z) = ( 3 ~ * ~ 1 ) ( * + f ) = | V +f) | 3*
9 3 3

- 7 2 " . Then the condition (H)^ is satisfied for 7- < w < -w. The finite section

Toeplitz matrices are given by

/ 0 - 9 / 4 0
/0 -9/4\

7>(o) = (o), τ,ω = r * / 4 , r/2) = 3 0 - 9/4
V 3 U 7 \4/3 3 0

It is easy to check that det(Tf(N)) > 0 for N > 1. Indeed, we have

det(7>(D) = det(7>(2)) = 27/4, det(7>(3)) = 729/16 and det(Tf(N)) =

(27/4) {det(7)UV - 2)) + det(7)(iV - 3))} > 0 for N > 4.

PROPOSITION 2.4. If one of the following conditions is satisfied, then Tf(N) is in-

vertible for every N ^ N :

(i) f(z) is a polynomial of z or z~ , and (H)c is satisfied for some c > 0.

(ii) There exists c > 0 such that if(z) z ^ Kc} is a segment which does not

contain the origin. In this case, the set of eigenvalues of Tf(N) is included in this seg-

ment, and is densely distributed on this segment as N—> °° {Theorem of Szeg'b).

(iii) There exists c > 0 such that 0 £ ch{f(z) ;z<Ξ Kc}.

Note that (ii) is a special case of (iii), but it has a special interest because of

Szegό's precise theorem.

Proof (i) It is obvious, since Tf(N) are triangle matrices with non zero di-

agonal component f0.

(ii) We take a, β e C (| β | = 1) such that h(z) : = β{a - f(cz)} is real

valued on | z | = 1. Then h(z) is written in the Hermitian form,

h(z) =ho+ Σ(h/ + hμ-j),

where h0 ^ R, hj G C and hj is its complex conjugate (j > 1). Then we have

DN(c){aIN+1 - Tf(N))D?(c) =β'1Th(N)1
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where IN+ι is the identity matrix of order N -\- 1, DN(c) '= diag {1, c,..., c },

the diagonal matrix with the -th diagonal component c (0 < j < N) and

D~\c) =DN(c~ι).

Now our result follows from Szegό's theorem below.

THEOREM [S, Satz XXII]. Let h(z) be as above. Then we have

(2.11) U σ(Th(N)) = {h(z);\z\ = 1 } ,
N

where σ(Th(N)) denotes the set of eigenvalues of Th(N) and {•} denotes the closure of

a set of points.

(iii) It is a consequence of the following,

LEMMA 2.5. // Ref(z) > 0 on Kc> then σ(Tf(N)) c Q G C Reλ > 0} for

every N > 0.

Indeed, suppose this lemma and assume that 0 £ch{f(z) z ^ Kc}. Then

we can take a e C (| α | = 1) such that Re{«/(*)} > 0 on Kc. Therefore,

σ(aTf(N)) c Q e C Re>ί > 0}, and hence 7}C/V) is invertible for every JV > 0.

Proof of Lemma 2.5. The N-th finite section matrix Tg(N) of

f(cz) is given by T/ΛO = DN(c)Tf(N)D^\c). Let u = \u» ul9...,uN)

Then we have

= (ao,ΰv...,ΰN)Tg(N)

The assumption, Reg(z) > 0 on Kυ implies ReTg(N)[u\ > 0 on C ^ X ί O ) . Hence

σ(T/Λ0) = σ(Tg(N)) c U e C ReΛ > 0}. This completes the proof. D

3. Spectral property of the principal part L0(Dt, Dx)

Recall that the principal part Lo and the Toeplitz symbol f(z) are given by

Lo= Σ o aoia(O)Ώ\Ώa

x, f(z)= Σ o α0
U,a)eNs (j,a)eNs
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We put

K(f) := U €Ξ C / ω - λ satisfies (H)Jy

(3.1)
Γ;(/) : = α e C ; /(*) - Λ satisfies ( H ) w for c = e5"1 and c = es(s~Ώ}.

Then the purpose of this section is to prove the following results.

PROPOSITION 3.1 (The case s > 0). For any fixed R > 0, the operator λI — Lo is

a Fredholm operator on Gw (R) if and only if λ ^ Γw (/), and it is also necessary and

sufficient that there exists N such that λl — Lo is bijective on GS

W(R)[N\. Here

GS

W{R) [N] is the ideal of GS

W{R) defined in Theorem 1. In this case, the operator norm

of the inverse (λl — LQ) is estimated uniformly on R > 0, that is, there exists a

constant K > 0 such that \\ (λl — Lo) \\ ̂  K for every R > 0. Moreover, for λ ^

-Γw"(/) iff(z) ~ λ satisfies one of the conditions in Proposition 2.4, then λ ^ p(L0).

PROPOSITION 3.2 (The case s < 0). Let λ e Γ~(f). Then there exists n0 e N

such that λ belongs to the resolvent set of Lo on GW(R n) for every n > n0 and every

R > 0. Moreover, we have a uniform estimate of || (λl — Lo)~ \ for n > n0 and

R>0.

First, we note that (/, a) G Ns (s e Q) if and only if a = — sj. Let s =

q/p (pi Q e Z, p > 0) be an irreducible fraction. Then the operator LQ is rewrit-

ten in the form,

(3.2) Lo= Σ fj D? D;iq (f_mfn Φ 0, m, n e N),
j=-m

and the Toeplitz symbol f(z) is rewritten by

(3.3) f(z) = Σ fjZ-iP.

j=-m

We prove the propositions by setting λ — 0, so we consider an equation,

(3.4) LQ(Dt, Dx) U(t, x) = Fit, x).

For U(t, x) G C[[/, x]], we put U(t, x) = Σ Uιβt
ιxβ/l\βl It is the same for

F(t, x) ^ C[[/, x]]. Then the equation (3.4) gives the following equations for the

coefficients iUιβ} and iFlβ}.

(3.5) Σfs Uι+Pjtβ_qj = Flβ (-rn<j<n;l + pj,β- qj <Ξ N ) .
i
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Proof of Proposition 3.1. In this case q > 0, since s > 0. We choose a lattice

point (/, j8) e N2 such that / - p < 0. We put d(/, β) = max{; ) β - jq > 0}

( > 0), and define a vector <UllJi) e c ' ( / ' * ) + 1 from [/(*, x) e C[[f, *]] by

Then for £/(£, x) e G*(i?), we have

ll(s) - V ( T I > I *M
I U - Σ ^ Σ \uj\w ) (sl + β)ι,

^

where Σ/) i8 is taken over such /, β mentioned above. We remark that s(l + jp) +

(β~ jq) = sl + β . This shows that °U{ltB) e lhwp[d(l, β)]. We define F(lfβ) from

F(/, x) similarly.

Let Tltβ be the d(l, ^ - t h finite section Toeplitz matrix with symbol g(z) ' =

f(z1/P) = Σ,f, z'1 = Σ, g, z\ that is,

-*/,£ ~ j-k'j,k=O,l d(l,β)

Note that the condition (H)^ is satisfied for f(z) if and only if ( H ) ^ is satisfied

for g(z). The relation (3.5) implies the following equation for °U l>$) and 2?(l>$ ,

(3.7) Tltβ<Uiι β) = &iι'β\

Hence, by (3.6), the operator Lo on GS

W(R) is decomposed into an infinite direct

product of the finite section Toeplitz matrices Tιβ on llu)p[d(l, β)] (see Proposi-

tion 2.3).

Let assume g(z) satisfy the condition (H)^. Then by Proposition 2.3, there

exists No such that Tιβ is invertible on lι>wp[d(l, β)] for every d(l, β) > No, and

the norm inequality (2.9) holds for a positive constant K independent of d(l, β) >

Λf0. This implies that Lo is a Fredholm operator with an index 0 on GW(R), be-

cause d(l, β) —» °° as j8—• °°. The bijectivity of Lo on GS

W(R) [Ni for sufficiently

large N follows from the fact that GS

W(R)[N] is an infinite direct product of

lι>wρ[k] of sufficiently large A 's by the definition of °U ' .

Next, suppose that Lo is a Fredholm operator with an index 0 on GW(R).

Then it follows that det(Tιβ) Φ 0 if d(l, β) is sufficiently large. Indeed, if not so,

Lo should have infinite dimensional kernel and cokernel by the decomposition of

finite section Toeplitz matrices, which is a contradiction. Therefore, Lo maps

GW(R)[N\ into itself, and is injective for sufficiently large N. We fix such a large

N. The following exact sequence of Banach spaces

0 - GS

W(R) [Ni - GS

W(R) - GS

W(R) /GS

W(R) [Ni — 0,
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and the additivity of indices imply that Lo is a Fredholm operator with an index 0

on GS

W(R)[N], and therefore bijective. This means that Lo has a bounded inverse

on GW(R)[N]. This implies that Tιβ is invertible on llwp[d(l, β)] with uniform

norm inequality (2.9) for sufficiently large d(l, β). This shows that g(z) satisfies

the condition (H)^.

We note that if f(z) satisfies (H)^ and also satisfies one of the conditions in

Proposition 2.4, then Tιβ is invertible for every /, β and the norm inequality (2.9)

holds for every /, β. This implies the latter half of the statement.

The proof is thus completed. •

Remark 3.1. The decomposition of the operator Lo into an infinite direct pro-

duct of the finite section Toeplitz matrices iTlβ} implies the following fact; if

Λf{z) I z! = c) is a segment for some c > 0, then by Szegό's theorem in Section

2 we have

(3.8) σ,α0) = U σ(TJ,
l,β

where σp(L0) (resp. σ(Tlβ)) denotes the set of eigenvalues of Lo on GS

W(R) (resp.

of Tιβ). This proves the fact stated in Remark 1.2, (ii).

Proof of Proposition 3.2. The assumption s < 0 implies that the equations

(3.5) give a sequence of infinite systems of linear equations, since q ^ 0. For

(/, jS) e N2 such that / - p < 0 or β + q < 0, we define °Ua'β) e C°° by

U \Ulβ> Ul+p,β-q, Ul+2p,β-2q> - - -' ^U0 > U l > U2 > . . . / •

We define 2F ' similarly. Then the equations (3.5) give the following infinite

equations for °U and &

(3.9) Tg°lί
(ι'β) = &Utβ),

where Tg is the Toeplitz matrix with the symbol g(z) '-= f(zUP). Since f(z)

satisfies the condition (H)CM> for c = e~ and c — e s~ , g(z) satisfies the condi-
/TT\ r P P(S—1) , P pS(S-l) τ τ , τ>, . . . ,-, o rr\

tion \n)c for c — w e and c — w e . Hence, by Proposition 2.2, 1 g is a

bijection on £r for every r in a neighbourhood of a closed interval [wP ePs~Ώ

f

wP ePs's~ι)λ. Precisely, let

Then there exists a constant ε > 0 such that
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r 1 ϋ , P(S-l) ^ ^ pS(S-l) ,

for every r such that e — ε < r < e + ε.

We note that g(z) satisfies ( H ) ^ because s < 0, and hence Tg is a bijection

on lt,r for r < w sufficiently near wP. By the definition of the norm in GS

W(R n),

U(t, x) G GS

W(R n) if and only if there exists a non negative constant C such

that

(3.11)
w R

for every (/, β) satisfying the above mentioned condition. Here

(3 12) w ( / ) - ^ + f a

Moreover it holds that || i 7 | | ^ , n = infίC C satisfies (3.11)}. Note that wιβ.n(j)

has polynomial increase or decrease in j according to the position of (/, β). In any

case, °Uiι'β) e Cr (r< wP) whenever U(t, x) e GS

W(R n). Therefore, for any

Fit, x) e GS

W(R ή), the equation (3.9) has a unique solution °lί(ί'β) e £r for

r < wP sufficiently near wp.

In order to prove that Lo is bijective on GS

W(R n) with uniform estimate of

|| Lo || (R > 0) for sufficiently large n, we put

Dw = diag{wι>β;n(j)}~=0,

a diagonal matrix with the j-th diagonal component wιβ.n(j). Then we have that

w K υlβ

 υίί e ιoθfWpf

if (3.11) is satisfied. Hence, in view of (3.9), it is sufficient to show that the oper-

ator norm of Dw Tg Dw on l^p is uniformly bounded on (/, β). This is equiva-

lent to prove

(3.13) sup sup Σ I cik I wp(i-k)whg.n(jΓ\s.n(k) < oo.
lβ j k 0

From (3.10) with r = e*s{5~ι) + ε for k < j and r = ePis~Ώ - ε for k > j , it is

sufficient to prove that for any ε > 0 there exists n0 ^ N such that

(3.14) «W(/Γy, ί ; B(λ:) <
I (/α" s ) + e)*~', 0 < y < ft,
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holds for n > n0. This is a consequence of the following,

LEMMA 3.3. Let tvι β.n(j) be as above. Then we have

-spa-sa + l/n))(j-k) r\ ^ i ^ -
e ,0 < k<j,

Proof. In the case 0 < k ^ j , we have

_ <»-<«+i)s>#«-*> (n - s)I + nβ + (n - (n + l ) s ) j λ; + r

^ nl+ (n + l)β + (n- (n + \)s)pk + r

c \ {n-(n+l)s)p(j-k)

s\ ^ y

n

In the case 0 ^ j < k, we have

WiΛ.ΛJy1 wι>β:n(k)

(n-(n+l)s)p(k-J)

(^ - s)l + nβ+ (n- (n
{n-(n+ί)s\p(k-j)

^ {

n I

This completes the proof of Proposition 3.2. •

4. Proofs of Theorems 1 and 2

Theorems are proved by stability theorems of Fredholm operators.

We denote by Θ(\ x \ < X) the set of holomorphic functions on {x ^ C | x \

< X} and continuous on its closure. For a{x) ^ Θ(\ x \ < X), we put

lUlb := max | a(x) |.

The following lemmas are proved essentially in [M2] and [MH] with a slight change

of notations.

LEMMA 4.1. (i) Let s > 0. // a(x) e 0(\ χ\ < pR) (p > 1), then for any

U(t, x) e GS

W(R), we have a(x) U(t, x) e GS

W(R) and
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(4.1) π\\(s)

U Ww.R'
WpR II ^ Ww,R

(ii) Let s < 0. // a(x) <Ξ0(\x\< pR) (p > e s), then for any U(t, x)

GS

W(R n), we have a(x) U(t, x) e GS

W(R n) and

(4.2)
p - e

ll

Proof. We put a{x) = Σ,arx
r/γl \x pR). They by Cauchy's

integral formula, we have | ar \ < || a \pR γl ApR)7 (7 e N). We put a(x) U(t, x)

= Σ Vιβt
ιχβ/l\βl Then we have

βl
^ = „ aτ Ui,β-r (β —

r=o (β — γ)\γ\ '

(i) The inequality (4.1) is obtained as follows.

1 τ?sl+β β
Ύ I IΛJ JΛ. ^ ii | | ^—, ^—^ i _ _. w R sl+β

)! (sl + βV.

d WnJ? ^ J I ' J ' J U 1 Λ v / I I Γl \ I I

r = 0 Λ 7 \/ = o 0 = 7 Voί \ P I) I /

II II II Γ H ^ S ) ^ Π ~T P II II II ΓT II^5)

= II « l U II u L,R Σp = p_1 II a l u II U \\W>R.

(ii) By the definition of the norm, we have

w R
(in- nβ)\
(nl + (n

nβ)\ 1 ) 0 3 -

r = o

κ (p — γ) ! ((w — s)/+ w(p — 7))! W + ( » ^

Now (4.2) follows from the following inequality,

βl ((n - s)l + nβ)! fa/ + fa + 1)(/3 - γ))\
(β-γ)l ( f a - s)l + n(β- j))\ (nl+ (n + l)β)l

_ nJ- fa - s)l + n(β - γ) + j * β~ ϊ + j
Z.1! »/+(« + 1) (0 - 7) + "1 nl + (n + 1)0 - 7 +
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This completes the proof. •

LEMMA 4.2. If s > 1, then GS

W{R) is a Banach algebra. Precisely, for a(t, x),

U(t, x) e GS

W{R), we have a(t, x) U(t, x) e GS

W(R) and

i A r\\ II r r iKs) ^ II It(5") || TJ | | (s)

(4.3) I I ^ I U < IMLII u\\WtR.

Proof We put a(t, x) = Σ ajat
jχa/jlal, U(t, x) = Σ Uιβt

ιχβ/llβl and

a(t, x)U(t, x) = Σ Vιβt
!xβ/l\βl Then we have

/ is / ! jS!

^ 5 ? ^
Suppose the following inequality which is trivial in the case s = 1,

. . . . (3/ + a ) ! ( s ( / - ; ) + i 8 - a ) ! /! ^ !
( 4 4 ) (s/ + /S)! j\{l-j)\ a\(β- a) ! s x

Then we have

Σ IV I » '* ' " '

/ β WJ ^ w

^ Zi Zι 2 i I CLja I / _ι_ jy) ] I U^j β_a I / / , — \ _ι /Q fJ)))
l,β ;=0 a=0 ^J ' W V^Vί j) i VP Cty ̂  1

w J Rs J + a \ , , ί(;; i ? 5 ; + α

• ) + (j8 — α ) ) ! / ' y α (s; + α ) !

Let us prove the inequality (4.4) in case 5 > 1. Considering the inequalities,

/! β\ < α_+iβ)!
- - α)!'

we have
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Recall the relation between gamma function and beta function, Γ(x + y)

B(x, y) = Γ(x) Γ{y) (x, y > 0). Then we have

j + a)\ jj

l)j)(sl + β- (5-1);)! = (sl + β)\B((s-l)j, sl + β- (s-

These imply

because si + β — (s — l)j + 1 > + α + 1, since 5 > 1. This proves (4.4). D

LEMMA 4.3. Let (σ, ; ' , a) e N X Z x Z

(4.5) s; + (1 - s)σ + a = - δ < 0.

Then t Dt Dx is a bounded operator on GW(R) or on GW(R n) according to s > 0

and 5 ^ 0 , and the operator norm is estimated by

(4.6) WfDlDlW^Cw^R"^,

for some positive constant C — C(σ, j , a, s, ή) independent of R. Moreover, if δ > 0,

then t Dt Dx is a compact operator on each Banach space.

Proof W e o n l y p r o v e t h e c a s e 5 > 0, s i n c e i t i s s i m i l a r i n t h e c a s e 5 ^ 0 .

We put f D\Ώa

χυ(t, x) = Σ Vιβt
ιχβ/llβl Then we have

This implies immediately that

II j.σ TΛJ τ^tfrrll(s) ^ r^ί \ °—J r-ισ + 5 II TT

|| t Dt DxU\\WiR < C(σ, j , a, s)w R \\U WιR,

where C(σ,j, a, s) = sup{(sl + β - σ - δ)\l\ /{sl + β)\(l - σ)\ /, β e N}.

This implies the estimate (4.6). Let δ > 0. Then for any ε > 0, there exists N

such that
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\{sl + β-σ~δ)\l\
s u p ( (sl + β)\(l-σ)\

Hence we have,

V [β \ ( 7 _J_ ON I ^ C IΛ/ 1\ || \J Wu) R

sl+β^N ^Sl/ ' P' '

This shows that t Ώ\ D% is approximated by operators of finite rank, and there-

fore a compact operator. This completes the proof. •

Recall the decomposition (1.3) of the operator L,

(4.7) L = LQ + Lλ + L2,

where Lo is the principal part and

Lλ= Σ aσja(x)tσDiD" (aoja(O) = 0 or σ > 0),
s;+(l-s)σ+α=0

L2=
 f Σ β aσja{t,x)fDi

tD
a

x.
sj+(l-s)σ+a<0

From the above lemmas, L2 is a compact operator on each Banach space GS

W(R) or

GS

W(R n) according 5 > 0 or 5 < 0. For the operator norms of L ; (j = 1,2) on

each space, we have

(4.8) || JLy || —• 0 as R-+0.

Proof of Theorem 1. (i) Let the Toeplitz symbol f(z) satisfy the condition

(H)^. Then by Proposition 3.1, there exists iV ̂  N such that Lo is bijective on

GW(R)[N\ and the norm of inverse operator Lo is estimated uniformly on R > 0,

that is, || L~ι || < K for some K > 0 and every R > 0. Therefore, by (4.8) there

exists RQ> 0 such that Z, is bijective on GS

W(R)[N] for every 0 < R < Ro. Now,

by the same way as the proof of Proposition 3.1, we can prove that L is a

Fredholm operator on GS

W(R) for every 0 < R < Ro. This proof shows that if Lo

is bijective on G^iR), then there exists a positive constant Ro > 0 such that L is

bijective on G^(R) for every 0 < R < Ro.

Next, we study the operator L on MS[N\. By the definition of MS[N\, L maps

MS[N] into itself. Precisely, for U(t, x) = Σ C/Zi9 t
ιxβ/llβl e C[[ί, x]], we put

r(C/) : = minis/ + β C//i8 # 0}. Then we have

r(LjU) >r(U), j = 1,2.
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Therefore, by the proof of Proposition 3.1, we see that if det(Tlβ) Φ 0 for si + β

> N, then there exists a recurrence formula to obtain a unique solution in MS[N]

of an equation, LU(t, x) = F(t, x) Ξ MS[N\. This implies that L is bijective on

MS[N] and also on GS

W(R)[N] for sufficiently large N and small R > 0 under the

condition (H)w. The bijectivity of L on C[[t, x]] /GS

W(R) for sufficiently small

R > 0 is now obvious, because C[[f, * ] ] /GS

W(R) = MS[N] /GS

W(R) [N\ for every

N.

(ii) Let Lλ — 0 in the decomposition of the operator L. Suppose that I be a

Fredholm operator on GS

W(R) for some R > 0. Then Lo = L — L2 is also a

Fredholm operator, since L2 is a compact operator. Hence the condition (H)^ is

satisfied.

Next, suppose λ ^ p(L GW(R)) for some i? > 0. Then Λ/ — Lo is a

Fredholm operator on G^(R) as above, and hence λ ^ Γw (/). Therefore, there

exists N such that Λ/ — Lo and also λl — L are bijective on GS

W(R) [N\. Here we

note that the operator norm of L2 on Gw(i?)[iV] tends to 0 as Λf—• °° from the

proof of Lemma 4.3. The exact sequence of Banach spaces,

0 -> GS

W(R) [N] - GS

W(R) - GS

W(R) /GS

W(R) [N\ - 0

implies that an induced operator from λl — L on GS

W(R) /GS

W(R)[N\ ( = finite

dimensional vector space) is bijective. The matrix representation of this operator

is a blockwise triangle matrix with diagonal blocks of the Toeplitz matrices λl ~

Tι>β. Hence, we have det(λl — Tιβ) Φ 0 for every /, β. This shows λ ^ β(L0),

that is,

p(L0) 3 U p(L;G*wUt)).
R>0

The converse relation is obvious. These prove (1.8).

Thus the proof of Theorem 1 is completed. Π

Proof of Theorem 2. It is almost obvious, so we omit it.

5. Proof of Theorem 0

Theorem 0 is a consequence of Theorem 1 and the following proposition.

PROPOSITION 5.1. For s > 0, it holds that

(5.1) Π G » =»*(/?).
0<r<R
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Proof. For U(t, x) = Σι>β Ulβt
ιχβ/ll βl G Gs

w(r), let us prove

U(t, x): = Σ Uιβt
ιχβ/(sΐ)lβl e θ^-^)^ + \x\ < r ) ,

which implies Π 0 < r < / ? G*(r) c: ^ ( i ? ) . By the definition of the norm in GS

W(R),

there exists a positive constant Af such that | Ulβ \ < M(sl + β)\/wιrsl+β (/, β G

N). This implies

r^ . . (sl + BY χβ

Ut(x) : = Σ ί///? py « Mw"V" s f Σ pt -T
β P - β P - γ

ΆΛ _, _s; (s/)! .. »"' (sθ!

where ΣβeN aβx C Σ Aβx means that | aβ \ ^ Aβ for all 8̂ ^ N. Then we have

and the r i g h t h a n d s ide be longs to O((\t \ /w)l/s + | x \ < r).

Converse ly , let D(t, x) = Σ Uιβt
ιxβ/llβl e ΰ((\ t\/w)ι/s + \x\<r). T h e n

we shall prove

U(t,x) := Σ {ϋw-ψ-} jψ e G'.(κr)

for any 0 < K < 1. We denote by || ί /L the maximum of J U(t, x) | on the domain.

Let 0 < T < wrs, and put ξ = r — (τ/w) s. By Cauchy's integral formula, we

have

This implies

1 "'• "rV-ίτ/^^r
The function f(τ) •= τ {r — (τ/w) } (0 < τ < wr ) takes the minimum

value

-1 (5/ + β)Sl+"
W rsl+s(st)slβs



FREDHOLM PROPERTY OF THE GOURSAT PROBLEM 1 9 5

at τ = w{slr/(sl + β)V. Put Uιe = Uw(sl)l/l\. Then we have

Uιs\<\\UL ls,+e(

From Stirling's formula, we see that it holds that

(sl + β)sl+β (sΐ)\ β\

(sl + βV. (sί)> β>'

Hence we have

τ , w

β-

for any 0 < K < 1. This completes the proof. •
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