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THE MOMENTS OF THE ZETA-FUNCTION

ON THE LINE σ = 1

ALEKSANDAR IVIC* }

1. Introduction

The evaluation of the integral

(1.1) f \ζ{σ+it)\2k dt (σ e R, k e R + fixed)

represents one of the fundamental problems of the theory of the Riemann

zeta-function (see [4] for a comprehensive account). In view of the functional equa-

tion

ζ(s) = χ(s)ζ( l -s),χ(s) = 2V- 1 sin (ψ) Γ(l - s) X | t\^σ (s = σ + t0

it is clear that one has to distinguish between the following three principal cases:

a) c r = l / 2 ("the critical line"),

b) 1/2 < σ < 1 ("the critical strip"),

c) ( 7 = 1 .

Although the cases a) and b), which have countless applications to various

branches of number theory, have been extensively studied in the literature, it

seems that the case c) has been somewhat neglected. Thus it is only recently that

R. Balasubramanian et al. [1] have obtained precise results for the case c) if

k = 1, which is the most important case. If, for T > 3, one defines the function

R(T) by the formula

(1.2) f Ί ζ (1 + it) \2dt = ζ ( 2 ) Γ - πlog T+ R(T),

then it was proved in [1] that

(1.3) R(T) = O(log2/3Γ(loglog Γ) 1 / 3),
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(1.4) f R(f) dt= 0(7),

and

(1.5) f R2(f) dt= O(Γ(loglog T)4).

The starting point for the evaluation of the integral in (1.2) was the approximate

functional equation (see Theorem 1.8 of [3])

l - S

(1.6) ζ(s) = Σ ns + ^ r y + 0(x~σ),
n<x S L

which holds for 0 < σ0 < σ < 2, x > \ t\/π, s = σ + it. In case σ = 1 and k = 1,

(1.6) is sufficient to yield (1.3)-(1.5). For σ = 1 and k Φ 1 one cannot hope for an

approximate functional equation which is as simple and precise as (1.6) is.

2. Formulation of the Theorem

The aim of this note is to study the integral in (1.1) when σ = 1 and k > 0 is

arbitrary, but fixed. To this end we define the function Rk(T) by the formula

(2.1) Γ I ζ ( l + it) \2kdt= TΣ d2

k(n)n~2 + Rk(T) ( Γ > 3 ) ,

so that a comparison with (1.2) shows that

(2.2) R,(T) = - π\ogT+ R(T).

The function dk(n), which appears in (2.1), is commonly called the generalized di-

visor function. When k ( > 1) is an integer, dk(n) denotes the number of ways in

which n may be written as a product of k fixed factors, so that dx{n) — 1 and

d2in) = d(n) — Σδ\n 1 is the number of divisors of n. In the general case {k may

be supposed to be even an arbitrary complex number) one defines dk(ή) by

(2.3) ζk(s) = Π (1 -p~Tk = Σ dk(n)n~s (Re s > 1).
n=l

Here a branch of ζ (s) is defined by the relation

ζ*(s) = expOclog ζ(s)) = exp(- kU Σf'p'") (Re s > 1).
P /=1
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From this definition it follows that dk(n) is a multiplicative function of n for a

given k, and that if pa is an arbitrary prime power, one has

Λ < *\ < Λ^l-k\ k(k + l)- (k + a-l) Γ{k + a)
dk{p) = {-l) ( a )= -, = Γ(k)al

Our result is then the following

THEOREM. Let k > 0 be given and let Rk(T) be defined by (2.1). Then

5k k lOk2 2

(2.4) Rk(T) <k (log T) 3 (loglog T)~* + (log T)~^~ (log log T) 3

+ (logΓ)^3^(loglogΓ)t

while if k > 2 is an integer, then

(2.5) Rk(T) <k\ogk2T.

In conjunction with (1.2) and (1.3) the Theorem provides then fairly sharp

estimates for Rk(T) for each given k > 0. Note that the first term in (2.4) is the

largest one for k > 1 + yΌ.β = 1.77459.... One could also, in analogy with (1.4)

and (1.5), consider the integrals of Rk(f) and Rk(t). However, the presence of the

divisor function dk(n) in the relevant expressions would cause considerable diffi-

culties, and the results would be far poorer than those furnished by (1.4) and

(1.5).

3. The approximate functional equation

The key to proof of the Theorem is the existence of an approximate functional

equation for ζ (1 + it). The main difficulty is that k > 0 is not neccessarily an

integer, so that ζ (s) has branch points at the zeros of ζ(s), which complicates

the use of analytic methods suitable for dealing with this problem. A natural tool

is the asymptotic formula for the summatory function

(3.1) Dk{x) :r=Σ dk(n).
n<x

Sharpening a result of A. Selberg, R.D. Dixon [2] proved

(3.2) Dz(x) = c^xlog2' x + - " + cN(z)x\ogz~ x + + 0^0:log ez~ ),

where N > 1 is an arbitrary but fixed integer, | z \ < A for any fixed A > 0,

Cj(z) = Bj(z)/Γ(z -j+ΐ)(j=l,...,N), and each Bj(z) is regular for
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I z I < A. Since the error term in (3.2) is only by a log-factor of a smaller order of

magnitude than the main term, the use of (3.2) is insufficient to produce an

approximate functional equation for ζ (1 + if) capable of proving (2.4). Instead of

(3.2) we shall use a recent result of H. Nakaya [5], who proved, uniformly for

\z I < A and x > 3,

(3.3) Dz(x) = Φz(x) +Δg(x),

(3.4) Φz(x) = ±

(3.5) Δz(x) € xexp(- clog3/5χ(loglogx)~1/5) (c > 0).

For any 0 < r < ^-, £ = !£(r) is the contour which begins at w = ^ , moves to

w — 1 — r along the real axis, encircles the point w = 1 with radius r in the

counterclockwise direction, and returns to w = -p; along the real axis. The

advantage of (3.3)-(3.5) over (3.2) lies in the fact that the error term in (3.5) is

sufficiently sharp, while at the same time an asymptotic evaluation of the integral

in (3.4) leads to Dixon's formula (3.2) for Dz(x). The error term in (3.5) is

actually the same as in the sharpest known form of the prime number theorem.

Both are a consequence of the best zero-free region for ζ(s), namely

(3.6) ζ ( s ) ̂ O f o r σ > l - C ( l o g O " 2 / 3 ( l o g l o g ί ) " 1 / 3 ( C > 0 , s = σ + i t , t > t 0 ) .

A proof of this result, due essentially to I. M. Vinogradov, may be found in Ch. 6

of [3]. Thus an improvement of the bound in (3.6) would give a better estimate in

(3.5), and consequently lead to a better result in (2.4).

Now we may derive the desired approximate functional equation for ζ (1 + if).

Suppose / c > 0 , σ = Re 5 > 1, l < I m s = / < 7 \ X ^ N + -w, and N is a large

natural number. From (2.3) and (3.3) we have

(3.7) ζ*(s) = Σ dk(n)n~s + f x~s dDk(x)
n<X x

= Σ dk(n)n~s + f x~sdΦk{x) + f x~sdΔk(x).

Absolute covergence and (3.4) give
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In £ we take r — 1 /log X, so that the integrand of the last integral is regular in

£ and on its boundary. In view of (3.5) it follows that the integral converges abso-

lutely for σ > 1, which means that we have obtained analytic continuation of the

left-hand side of (3.8) that is valid for σ = 1. Thus for k Φ 1

dw
1 + it — w

I ΛTΓ yk/Λ I iθ\ iθ τrre*0— it J nΓπ ζ (1 + re )re X dθ -/I Γ1

0\ik
yy ,-1 l~kVr , ,-1 Γ /-, \-k 1 yy ,

< t r X + t I (1 — u) du <kt
2

since ζ(w) = 1 /(w — 1) + 0(1) in the neighborhood of w = 1. Furthermore, for

σ> 1,

(3.10) f x~sdΔk(x) = -Δk(X)X~s + s ΓΔk{x)x~*~ιdx,
Jx Jx

and in view of (3.5) the integral on the right-hand side converges absolutely for

σ > 1. More precisely

(3.11) / Δk(x)x~tt~2dx < / exp(— clog3/5x(loglogx)~1/5) —j x JX x

— \ exp(— cz/3/5(logz/)~1/5) dy < expf— ^log3/5X(loglog X)~1/5).

Hence if we take

(3.12) X = [expUXlog 7)5 / 3(log log 7)1/3}] + \

with a sufficiently large constant D = D(c) > 0, then we shall have

~\exp(- |log3 / 5Z(loglog^)-1 / 5) < Ύ~\

and (3.7)-(3.11) give, for 1 < t < Γand k > 0, k Φ 1,

(3.13) ζ*(l + it) = Σ d.Mn'1'" + Sk(t)
n<X
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where

(3.14) Sk(t) <k(logk-1X+l)Γ\

This is the desired approximate functional equation in the general case when

k > 0. If k is additionally an integer, then we can use the well-known elementary

result (see (12.1.4) of E. C. Titchmarsh [6])

(3.15) Σ dk(n) = xP^dogx) + Δk(x), Δk(x) <kx
(k 1)/k\ogk 2x,

n<x

where k > 2 and P^^y) is a polynomial of degree k — 1 in y. With the aid of

(3.15), we shall obtain by the method used in deriving (3.13) and (3.14) that

(3.16) ζ * ( l + it) = Σ dk(n)fΓι~u + Ok{fι\ogk~ιT) (l<t<T).

4. Proof of the Theorem

To prove (2.4) we shall use (3.13) and (3.14), while for the proof of (2.5) we

need (3.16). Since both proofs are similar, only the proof of (2.4) will be given in

detail. We have, for k Φ 1,

(4.1)

+

Γ I ζ (1 + it) Γ dt = Ok(log2k~2X + 1) +

Γ I Σ rfΛ(n)n"1"'Ί2Λ+2Ref Γ Σ dk(n)n~ι~n JJf) dt},
Jl n<X lJl n<X >

where X is given by (3.12). To evaluate the first integral on the right-hand side

of (4.1) we use the well-known Montgomery-Vaughan mean value theorem (see

Ch. 4 of [3])

Γ I Σ ann
ιt \2dt = T Σ I tf J 2 + θ ( Σ n\an | 2 ) ,

n<N n<N \<N 'n<N

which is valid for arbitrary complex numbers an. This gives

(4.2) f \ Σ dk{n)n~1~it\2dt={T-\) Σ dl(n)rΓ2 + θ( Σ d\{n)n~ι)
~Ί n^X n<X \<,X '

= TΣ d2

k(n)n~2+ Ok(logk2X),

since

(4.3) Σ dlin) <kX\og'~ιX, Σ dl(n)rΓι <k\og'X.
n<X n<X
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It suffices to indicate now the first bound in (4.3) is obtained, since the second one

follows easily from the first one by partial summation. Note that for σ > 1

(4.4) Σ

with

(4.5) Gk(s) = Σ g k ( n ) n ' s = Π (1 - p Ύ ( 1 + d\(p)p's + d\{p2)p~2s + • • • ) .
n=ί P

But since dkip) — k and dk(n) < A t £ ^ ε it is easily seen that the Dirichlet series in

(4.5) converges uniformly and absolutely for σ > ~κ + δ and any δ > 0. From

(3.2) with z — k2 we have

(4.6) Σ </Λ2(Λ) 2

and since (4.4) implies that dk(n) is the convolution of dki(yι) and gk{n), it follows

from (4.6) that (4.3) holds.

Finally, by using (3.14) and trivial estimation we have

(4.7) Γ Σ dk(n)n-ι~itJkJt)dt<k (\ogk~ιX + \ogX)\ogT,
Jl n<X

and (2.4) follows from (4.1)-(4.3), (4.7) and the definition (3.12) of X.

Note added in Proof. After this work was submitted R. Balasulramanian et al.

[Acta Arith. 65 (1993), 45-51] proved a general result which sharpens (2.4).
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