THE MINIMUM AND THE PRIMITIVE REPRESENTATION OF POSITIVE DEFINITE QUADRATIC FORMS

YOSHIYUKI KITAOKA

Let M, N be positive definite quadratic lattices over \mathbf{Z} with $\operatorname{rank}(M)=m$ and $\operatorname{rank}(N)=n$ respectively. When there is an isometry from M to N, we say that M is represented by N (even in the local cases). In the following, we assume that the localization M_{p} is represented by N_{p} for every prime p. Let us consider the following assertion $\mathrm{A}_{m, n}(N)$:
$\mathrm{A}_{m, n}(N)$: There exists a constant $c(N)$ dependent only on N so that M is repre. sented by N if $\min (M)>c(N)$, where $\min (M)$ denotes the least positive number represented by M.

We know that this is true if $n \geq 2 m+3$, and a natural problem is whether the condition $n \geq 2 m+3$ is the best or not. It is known that this is the best if $m=1$. But in the case of $m \geq 2$, what we know at present, is that there is an example N so that $\mathrm{A}_{m, n}(N)$ is false if $n-m=3$. We do not know such examples when $n-m=4$. Anyway, analyzing the counter-example, we come to the following two assertions $\operatorname{APW}_{m, n}(N)$ and $\mathrm{R}_{m, n}(N)$.
$\operatorname{APW}_{m, n}(N)$: There exists a constant $c^{\prime}(N)$ dependent only on N so that M is represented by N if $\min (M)>c^{\prime}(N)$ and M_{p} is primitively represented by N_{p} for every prime p.
$\mathrm{R}_{m, n}(N)$: There is a lattice M^{\prime} containing M such that M_{p}^{\prime} is primitively represented by N_{p} for every prime p and $\min \left(M^{\prime}\right)$ is still large if $\min (M)$ is large.

If the assertion $\mathrm{R}_{m, n}(N)$ is true, then the assertion $\mathrm{A}_{m, n}(N)$ is reduced to the apparently weaker assertion $\operatorname{APW}_{m, n}(N)$. If the assertion $\mathrm{R}_{m, n}(N)$ is false, then it becomes possible to make a counter-example to the assertion $\mathrm{A}_{m, n}(N)$. As a matter of fact, the assertion $\mathrm{R}_{m, m+3}(N)$ is false in a certain kind of lattices N and it yields examples of N such that the assertion $\mathrm{A}_{m, m+3}(N)$ is false. Note that $\mathrm{APW}_{1,4}(N)$ is true for every N although $A_{1,4}(N)$ is false in general.

We proved in [4] that the assertion $\mathrm{R}_{m, 2 m+2}(N)$ is true if $m \geq 2$. The aim of this paper is to show that the assertion $\mathrm{R}_{m, 2 m+1}(N)$ is also true if $m \geq 3$ (Theorem

[^0]in §2).
To what extent is the assertion $\mathrm{R}_{m, n}(N)$ is true?
In §3, we give some remarks on the asymptotic formula for the number of isometries from M to N.

We denote by $\mathbf{Z}, \mathbf{Q}, \mathbf{Z}_{p}$ and \mathbf{Q}_{p} the ring of integers, the field of rational numbers and their p-adic completions.

Terminology and notation on quadratic forms are those from [5], [6]. For a lattice M on a quadratic space V over \mathbf{Q}, the scale $s(M)$ denotes $\{B(x, y) \mid x, y$ $\in M\}$. Even for the localization M_{p} it is similarly defined. $d M, d M_{p}$ denote the discriminant of M, M_{p} respectively.
For a subset S of a positive definite quadratic space V, we put

$$
\min (S)=\min _{Q}(S):=\min \{Q(x) \mid 0 \neq x \in S\}
$$

For a matrix $A,{ }^{t} A$ denotes the transposed matrix of A.
For square matrices $A_{1}, \ldots, A_{n}, \operatorname{diag}\left(A_{1}, \ldots, A_{n}\right)$ means $\left(\begin{array}{lll}A_{1} & & \\ & \ddots & \\ & & \\ & & A_{n}\end{array}\right)$.

§1

The aim of this section is to prove the following preparatory theorem.
TheOrem. Let m be a natural number $(\geq 3), p$ a prime number and M a lattice on a positive definite quadratic space V over \mathbf{Q} with $\operatorname{dim} V=m, s(M) \subset \mathbf{Z}$ and $s\left(M_{p}\right)=\mathbf{Z}_{p}$. Suppose that there is a basis $\left\{w_{1}, \ldots, w_{m}\right\}$ of M such that

$$
\left(B\left(w_{i}, w_{j}\right)\right) \equiv \operatorname{diag}\left(\varepsilon, B_{1} p^{a_{1}}, \ldots, B_{u} p^{a_{u}}\right) \bmod p^{2 a_{u}}
$$

where $\varepsilon \in \mathbf{Z}_{p}^{\times}, B_{i}$ is even unimodular for $1 \leq i \leq u$ with $(1,1)$-entry not divisible by $2 p$ and $2<a_{1}<\cdots<a_{u}$. Put $s:=\left[a_{1} / 2\right]$ where $[x]$ is the largest integer not exceeding x. Let κ be a real number with $0<\kappa<1 / 7$. Then there is a positive constant C independent of M but dependent on m, κ and p, which satisfies the following: If we have the inequality

$$
\min (M)>C,
$$

then there is an element w of M so that $w=\sum_{i=2}^{m} f_{i} w_{i} \in M$ whth $f_{2} \not \equiv 0 \bmod p$, and $f_{3} \equiv \cdots \equiv f_{m} \equiv 0 \bmod p$, and w satisfies the followings:
(i) $\min \left(M+p^{-s} \mathbf{Z}[w]\right) \geq \min (M)^{\kappa}$.
(ii) $s\left(M+p^{-s} \mathbf{Z}[w]\right) \subset \mathbf{Z}$.
(iii) $\operatorname{ord}_{p}\left(d\left(\mathbf{Z}\left[w_{1}, p^{-s} w\right]\right)\right) \leq 2$.

The assertions (ii) and (iii) are satisfied for every f of the above form and so the rest of this section is devoted to prove the assertion (i).
Throughout this section, m, p, κ, s and M denote those given in Theorem.
Definition For a real number x, we define the decimal part $\lceil x\rceil$ by the conditions

$$
-1 / 2 \leq\lceil x\rceil<1 / 2 \quad \text { and } \quad x-\lceil x\rceil \in \mathbf{Z} .
$$

Lemma 1. Let q_{1}, q_{2} and K be positive numbers. If an integer u satisfies the following inequalities (1) and (2):

$$
\begin{equation*}
\min _{p^{s} \times b}\left(\left\lceil b p^{-s}\right\rceil^{2} q_{1}+\left\lceil b u p^{-s}\right\rceil^{2} q_{2}\right)<K, \tag{1}
\end{equation*}
$$

where b runs over the set of integers not divisible by p^{s},

$$
\begin{equation*}
\frac{1}{4} \sqrt{q_{1} / K}<|u|<\frac{1}{2} \sqrt{q_{1} / K} \tag{2}
\end{equation*}
$$

then we have

$$
\begin{equation*}
q_{1} q_{2} \leq 16 K^{2} p^{2 s} \tag{3}
\end{equation*}
$$

Proof. We note that $\left\lceil b p^{-s}\right\rceil$ depends only on $b \bmod p^{s}$. So we may suppose that an integer b with $0 \neq|b| \leq p^{s} / 2$ gives the minimum of the left-hand side of the inequality (1). Then we have $K>\left\lceil b p^{-s}\right\rceil^{2} q_{1}=b^{2} p^{-2 s} q_{1}$ and so the inequality $|b|<\sqrt{K / q_{1}} p^{s}$. The condition (2) implies, then the inequality $|b u|<p^{s} / 2$ and so $K>\left\lceil b u p^{-s}\right\rceil^{2} q_{2}=b^{2} u^{2} p^{-2 s} q_{2} \geq u^{2} q_{2} p^{-2 s} \geq q_{1} q_{2} /(16 K) \cdot p^{-2 s}$, which is nothing but the inequality (3).

Lemma 2. Let q_{1}, q_{2} and K be positive numbers and u_{0} an integer. Suppose that a natural number e satisfies an inequality

$$
p^{e}<\frac{1}{4} \sqrt{q_{1} / K}
$$

If the inequality (1) holds for every integer u with $u \equiv u_{0} \bmod p^{e}$, then we have the inequality (3).

Proof. By the inequality $\frac{1}{2} \sqrt{q_{1} / K}-\frac{1}{4} \sqrt{q_{1} / K}>p^{e}$, we can take an integer u so that $\frac{1}{4} \sqrt{q_{1} / K}<u<\frac{1}{2} \sqrt{q_{1} / K}$ and $u \equiv u_{0} \bmod p^{e}$. The assertion follows immediately from Lemma 1.

Lemma 3. Let $\left\{v_{1}, \ldots, v_{m}\right\}$ be a basis of M. Suppose $\left(B\left(v_{i}, v_{j}\right)\right)=\operatorname{diag}\left(q_{1}, \ldots\right.$, $\left.q_{m}\right)>0$. For an element $w:=\sum_{i=1}^{m} r_{i} v_{i} \in M$, we have

$$
\min \left(M+p^{-s} \mathbf{Z}[w]\right)=\min _{\substack{b \in \mathbf{Z} \\ b w \notin p_{M}}}\left(\sum_{i=1}^{m}\left\lceil b r_{i} p^{-s}\right\rceil^{2} q_{i}\right)
$$

if $\min \left(M+p^{-s} \mathbf{Z}[w]\right)<\min (M)$.
Proof. Suppose that $y=x+p^{-s} b w(x \in M, b \in \mathbf{Z})$ gives the minimum $\min \left(M+p^{-s} \mathbf{Z}[w]\right)$. If $b w \in p^{s} M$, then $y \in M$ follows and this contradicts $\min (M$ $\left.+p^{-s} \mathbf{Z}[w]\right)<\min (M)$. Thus we have $b w \notin p^{s} M$. Moreover putting $x=\sum_{i=1}^{m} x_{i} v_{i}$ ($x_{i} \in \mathbf{Z}$), the minimality implies

$$
Q(y)=\sum_{i=1}^{m}\left(x_{i}+b r_{i} p^{-s}\right)^{2} q_{i}=\sum_{i=1}^{m}\left[b r_{i} p^{-s}\right\rceil^{2} q_{i},
$$

which completes the proof.

Definition. For a positive numbers a, b, we write

$$
a \ll b
$$

if there is a positive number c dependent only on $m=\operatorname{rank} M$ such that $a / b<c$. If both $a \ll b$ and $b \ll a$ hold, then we write

$$
a \asymp b .
$$

Lemma 4. Let $\left\{v_{1}, \ldots, v_{m}\right\}$ and $\left\{w_{1}, \ldots, w_{m}\right\}$ be bases of M such that ($B\left(v_{i}\right.$, $\left.v_{j}\right)$) is reduced in the sense of Minkowski. We define an element $A \in G L_{m}(\mathbf{Z})$ by

$$
\left(w_{1}, \ldots, w_{m}\right):=\left(v_{1}, \ldots, v_{m}\right) A
$$

For an element $w:=\sum_{i=1}^{m} f_{i} w_{i} \in M$, we define integers r_{i} by

$$
{ }^{t}\left(r_{1}, \ldots, r_{m}\right):=A^{t}\left(f_{1}, \ldots, f_{m}\right) .
$$

Then there is a positive constant c_{1} dependent only on m so that

$$
\min \left(M+\mathbf{Z}\left[p^{-s} w\right]\right) \asymp \min _{\substack{b \in \mathbf{Z} \\ b \in \notin p_{M}}}\left(\sum_{i=1}^{m}\left\lceil b r_{i} p^{-s}\right\rceil^{2} Q\left(v_{i}\right)\right)
$$

if

$$
\begin{equation*}
\min \left(M+\mathbf{Z}\left[p^{-s} w\right]\right)<c_{1} \min (M) . \tag{4}
\end{equation*}
$$

Proof. By reduction theory, we know that there exist positive constant c_{2}, c_{3} which depend only on m so that

$$
\begin{equation*}
c_{2} \sum_{i=1}^{m} x_{i}^{2} Q\left(v_{i}\right) \leq Q\left(\sum_{i=1}^{m} x_{i} v_{i}\right) \leq c_{3} \sum_{i=1}^{m} x_{i}^{2} Q\left(v_{i}\right) \quad \text { for } \quad x_{i} \in \mathbf{R} . \tag{5}
\end{equation*}
$$

We introduce a new quadratic form Q^{\prime} on M defined by

$$
Q^{\prime}\left(\sum_{i=1}^{m} x_{i} v_{i}\right):=\sum_{i=1}^{m} x_{i}^{2} Q\left(v_{i}\right) .
$$

Putting $c_{1}:=c_{2} / c_{3}$, the assumption (4) and the inequalities (5) imply

$$
\begin{aligned}
\min _{Q^{\prime}}\left(M+\mathbf{Z}\left[p^{-s} w\right]\right) & \leq c_{2}^{-1} \min _{Q}\left(M+\mathbf{Z}\left[p^{-s} w\right]\right) \leq c_{3}^{-1} \min _{Q}(M) \\
& \leq \min _{Q^{\prime}}(M)
\end{aligned}
$$

Because of $w=\sum_{i=1}^{m} r_{i} v_{i}$, Lemma 3 implies

$$
\min _{Q^{\prime}}\left(M+p^{-s} \mathbf{Z}[w]\right)=\min _{\substack{b \in \mathbf{Z} \\ b w \notin p^{s} \mathbf{Z}}}\left(\sum_{i=1}^{m}\left\lceil b r_{i} p^{-s}\right\rceil^{2} Q\left(v_{i}\right)\right)
$$

Moreover the inequalities (5) yield

$$
\min _{Q}\left(M+p^{-s} \mathbf{Z}[w]\right) \asymp \min _{Q^{\prime}}\left(M+p^{-s} \mathbf{Z}[w]\right),
$$

which completes the proof with the above equality.
Lemma 5. Let a matrix $A=\left(a_{i j}\right)$ be an element of $G L_{m}(\mathbf{Z})$. Suppose $a_{\alpha 2} \not \equiv 0$ $\bmod p(1 \leq \alpha \leq m)$. Then there is an integer β with $1 \leq \beta \leq m$ and $\beta \neq \alpha$ so that for given integers $k_{i}(1 \leq i \leq m)$ with $k_{\alpha}=0$, there exists a vector $x={ }^{t}\left(x_{1}, \ldots\right.$, $\left.x_{m}\right) \in \mathbf{Z}^{m}\left(x_{1}=0\right)$ satisfying

$$
g_{i} \equiv k_{i} \bmod p^{s-1} \quad \text { for } \quad i \neq \beta
$$

where we put ${ }^{t}\left(g_{1}, \ldots, g_{m}\right):=A x$.

Proof. If $s=1$, then the assertion is clear and so we may assume $s \geq 2$. Denote by A_{i} the i-th column vector of A and take integers b_{i} so that $a_{\alpha i} \equiv b_{i} a_{\alpha 2}$ $\bmod p^{s-1}$. The equation

$$
\begin{aligned}
A\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots & 0 \\
0 & 1 & -b_{3} & -b_{4} & \cdots & -b_{m} \\
0 & 0 & 1 & 0 & \cdots & 0 \\
\vdots & & & \ddots & & \vdots \\
0 & & & \cdots & & 1
\end{array}\right) \\
\quad=\left(A_{1}, A_{2}, A_{3}-b_{3} A_{2}, \ldots, A_{m}-b_{m} A_{2}\right)
\end{aligned}
$$

implies that there is an $(m-2) \times(m-2)$ submatrix of

$$
\tilde{A}:=\left(A_{3}-b_{3} A_{2}, \ldots, A_{m}-b_{m} A_{2}\right)
$$

whose determinant is not divisible by p. Since the α-th row of \tilde{A} is congruent to 0 modulo p^{s-1}, there is an integer $\beta(\neq \alpha)$ such that the determinant of the submatrix of \tilde{A} which misses α and β-th rows from the matrix \tilde{A} is not divisible by p. Let $T \in G L_{m}(\mathbf{Z})$ be a matrix so that its multiplication from the left induces the interchange of α (resp. β)-th row and the first (resp. second) row. Then the lower $(m-2) \times(m-2)$ submatrix C of $T \tilde{A}$ is regular modulo p. Now we define integers x_{3}, \ldots, x_{m} by

$$
C^{t}\left(x_{3}, \ldots, x_{m}\right) \equiv{ }^{t}\left(k_{3}^{\prime}, \ldots, k_{m}^{\prime}\right) \bmod p^{s-1}
$$

where we put ${ }^{t}\left(k_{1}^{\prime}, \ldots, k_{m}^{\prime}\right):=T^{t}\left(k_{1}, \ldots, k_{m}\right)$. Then we have

$$
\left.\begin{array}{rl}
T\left(\sum_{i=3}^{m} x_{i}\left(A_{i}-b_{i} A_{2}\right)\right) & =T \tilde{A}^{t}\left(x_{3}, \ldots, x_{m}\right) \\
\equiv\left(\begin{array}{c}
0 \\
\cdots
\end{array} \cdots\right. \\
* & \cdots \\
C
\end{array}\right)\left(\begin{array}{c}
x_{3} \\
\vdots \\
x_{m}
\end{array}\right) \equiv\left(\begin{array}{c}
0 \\
* \\
k_{3}^{\prime} \\
\vdots \\
k_{m}^{\prime}
\end{array}\right) \bmod p^{s-1} . . ~ \$
$$

Hence, putting $x_{2}:=-\sum_{i=3}^{m} b_{i} x_{i}, x_{1}=0$ and $x:={ }^{t}\left(x_{1}, \ldots, x_{m}\right)$, we obtain $A x=$ $\sum_{i=2}^{m} x_{i} A_{i}=\sum_{i=3}^{m} x_{i}\left(A_{i}-b_{i} A_{2}\right)$ and so

$$
T A x \equiv\left(\begin{array}{c}
0 \\
* \\
k_{3}^{\prime} \\
\vdots \\
k_{m}^{\prime}
\end{array}\right) \bmod p^{s-1}
$$

Then $T A x$ and ${ }^{t}\left(k_{1}^{\prime}, \ldots, k_{m}^{\prime}\right)=T^{t}\left(k_{1}, \ldots, k_{m}\right)$ are congruent modulo p^{s-1} except for first and second coordinates, and so $A x$ and $^{t}\left(k_{1}, \ldots, k_{m}\right)$ are congruent modulo p^{s-1} except for α, β-th coordinates. Since the first coordinate of $T A x$ is congruent to $0 \bmod p^{s-1}$, so is the α-th coordinate of $A x$. This completes the proof.

Lemma 6. Let $\left\{v_{1}, \ldots, v_{m}\right\}$ be a basis of M so that $\left(B\left(v_{i}, v_{j}\right)\right)$ is reduced in the sense of Minkowski, and $\left\{w_{1}, \ldots, w_{m}\right\}$ a basis of M given in Theorem. Defining a mat$\operatorname{rix} A=\left(a_{i j}\right)$ in $G L_{m}(\mathbf{Z})$ by $\left(w_{1}, \ldots, w_{m}\right)=\left(v_{1}, \ldots, v_{m}\right) A$, we put

$$
S:=\left\{\begin{array}{l|l}
A f \bmod p^{s} & \begin{array}{l}
t \\
f=\left(f_{1}, f_{2}, \ldots, f_{m}\right), f_{1} \equiv 0 \bmod p^{s}, \\
f_{2} \not \equiv 0 \bmod p, f_{3} \equiv \cdots \equiv f_{m} \equiv 0 \bmod p
\end{array}
\end{array}\right\} .
$$

Choosing a coordinate α by the condition $a_{\alpha 2} \not \equiv 0 \bmod p$, there is a coordinate $\beta(\neq \alpha)$ which satisfies:

For an integral vector $h={ }^{t}\left(h_{1}, \ldots, h_{m}\right) \in \mathbf{Z}^{m}$ with $h_{\alpha} \not \equiv 0 \bmod p$, there exists an element $r={ }^{t}\left(r_{1}, \ldots, r_{m}\right) \in S$ so that

$$
r_{\alpha} \equiv h_{\alpha} \bmod p^{s} \text { and }\left|r_{i}-h_{i}\right| \leq p / 2 \text { if } i \neq \beta
$$

Proof. We take integers $b_{i}(1 \leq i \leq m)$ so that $a_{\alpha i} \equiv b_{i} a_{\alpha 2} \bmod p^{s-1}$. It is easy to see

$$
S=\left\{f_{2} A_{2}+p A x \bmod p^{s} \mid f_{2} \not \equiv 0 \bmod p,^{t} x=\left(0, x_{2}, \ldots, x_{m}\right) \in \mathbf{Z}^{m}\right\}
$$

where A_{2} is the second column vector of A. We define an integer $f_{2}(\not \equiv 0$ $\bmod p)$ by $h_{\alpha} \equiv f_{2} a_{\alpha 2} \bmod p^{s}$, and take integers k_{1}, \ldots, k_{m} so that $k_{\alpha}=0$, and $\left|h_{t}-f_{2} a_{t 2}-p k_{i}\right| \leq p / 2$ if $i \neq \alpha$. Applying Lemma 5 , there is an integer $\beta(\neq \alpha)$ dependent only on A so that there is an integral vector $x=$ ${ }^{t}\left(x_{1}, \ldots, x_{m}\right)$ with $x_{1}=0$ satisfying

$$
g_{t} \equiv k_{t} \bmod p^{s-1} \quad \text { for } \quad i \neq \beta,
$$

putting ${ }^{t}\left(g_{1}, \ldots, g_{m}\right):=A x$. Thus we have

$$
\left(h-\left(f_{2} A_{2}+p A x\right)\right)_{i} \equiv \begin{cases}0 \bmod p^{s} & \text { if } i=\alpha \\ h_{i}-f_{2} a_{i 2}-p k_{i} \bmod p^{s} & \text { if } i \neq \beta, \alpha\end{cases}
$$

Hence $r:=\dot{f_{2}} A_{2}+p A x$ is a required vector in S.

Lemma 7. Keep the situation in Lemma 6. Then we have

$$
a_{12} \not \equiv 0 \bmod p \quad \text { and } \quad a_{t 2} \equiv 0 \bmod p \quad \text { for } \quad i>1
$$

if (i) $m \geq 4$, (ii) $\min \left(M+\mathbf{Z}\left[p^{-s} w\right]\right)<\min (M)^{\kappa}$ for every $w=\sum_{i=2}^{m} f_{i} w_{i} \in M$ with $f_{2} \equiv \equiv 0 \bmod p$ and $f_{3} \equiv \cdots \equiv f_{m} \equiv 0 \bmod p$, and (iii) $\min (M)$ is larger than some constant dependent on m, κ and p.

Proof. We put $K:=\min (M)^{\alpha}$. By making $\min (M)$ large so that

$$
\frac{1}{4} \sqrt{Q\left(v_{\alpha}\right) / K} \geq \frac{1}{4} \min (M)^{(1-x) / 2}>p
$$

Lemma 6 yields that there is an integral vector $r={ }^{t}\left(r_{1}, \ldots, r_{m}\right) \in S$ so that $r_{\alpha} \equiv$ $1 \bmod p^{s}$ and $\frac{1}{4} \sqrt{Q\left(v_{\alpha}\right) / K}<r_{i}<\frac{1}{2} \sqrt{Q\left(v_{\alpha}\right) / K}$ for $i \neq \alpha, \beta$. Defining an element $w=\sum_{i=1}^{m} f_{i} w_{i} \in M$ by ${ }^{t}\left(f_{1}, \ldots, f_{m}\right)=A^{-1} r, r \in S$ yields $f_{1} \equiv 0 \bmod p^{s}$, $f_{2} \not \equiv 0 \bmod p, f_{3} \equiv \cdots \equiv f_{m} \equiv 0 \bmod p$, and then the assumption implies $\min (M$ $\left.+\mathbf{Z}\left[p^{-s} w\right]\right)<\min (M)^{\kappa}<c_{1} \min (M)$ for a sufficiently large $\min (M)$, and then Lemma 4 implies that

$$
\min \left(M+\mathbf{Z}\left[p^{-s} w\right]\right) \asymp \min _{\substack{b \in \mathbf{Z} \\ p^{s} \nmid b}}\left(\sum_{i=1}^{m}\left\lceil b r_{i} p^{-s}\right\rceil^{2} Q\left(v_{i}\right)\right) .
$$

Hence, from the assumption $\min \left(M+\mathbf{Z}\left[p^{-s} w\right]\right)<\min (M)^{x}$ follows

$$
\min _{\substack{b \in \mathbf{Z} \\ p^{s} \nmid b}}\left(\sum_{i=1}^{m}\left\lceil b r_{i} p^{-s}\right\rceil^{2} Q\left(v_{i}\right)\right) \ll \min (M)^{\kappa} .
$$

Taking out α and γ-th coordinates for $\gamma \neq \alpha, \beta$, Lemma 1 gives

$$
Q\left(v_{\alpha}\right) Q\left(v_{\gamma}\right) \ll \min (M)^{2 x} p^{2 s},
$$

which implies

$$
\begin{aligned}
& \quad Q\left(v_{1}\right)^{2} Q\left(v_{\alpha}\right) Q\left(v_{\gamma}\right)=\left(Q\left(v_{1}\right) Q\left(v_{\alpha}\right)\right)\left(Q\left(v_{1}\right) Q\left(v_{\gamma}\right)\right) \\
& \ll\left(Q\left(v_{\alpha}\right) Q\left(v_{\gamma}\right)\right)^{2} \ll \min (M)^{4 x} p^{4 s} .
\end{aligned}
$$

If $1 \notin\{\alpha, \gamma\}$, then it is easy to see, by the assumption on the basis $\left\{w_{i}\right\}$ in Theorem

$$
Q\left(v_{1}\right) Q\left(v_{\alpha}\right) Q\left(v_{\gamma}\right) \asymp d \mathbf{Z}\left[v_{1}, v_{\alpha}, v_{\gamma}\right] \geq p^{4 s} .
$$

Hence the above two inequalities imply $Q\left(v_{1}\right) \ll \min (M)^{4 x}<\min (M)^{4 / 7}$. This is a contradiction if $\min (M)$ is sufficiently large. Thus we have $1 \in\{\alpha, \gamma\}$. By the assumption $m \geq 4$, there is a number γ^{\prime} with $\gamma^{\prime} \neq \alpha, \beta, \gamma$ and $1 \leq \gamma^{\prime} \leq m$. Similarly we have $1 \in\left\{\alpha, \gamma^{\prime}\right\}$ and so $\alpha=1$. Since the number α is given only by the
condition $a_{\alpha 2} \not \equiv 0 \bmod p$, we have $a_{i 2} \equiv 0 \bmod p$ if $i \neq 1$.

Proof of Theorem in the case of $m \geq 4$.

We define bases $\left\{v_{i}\right\},\left\{w_{i}\right\}$ of M, a matrix A and others as in Lemma 6. If there is an element $w=\sum_{i=2}^{m} f_{i} w_{i} \in M$ with $f_{2} \not \equiv 0 \bmod p$ and $f_{3} \equiv \cdots \equiv f_{m} \equiv 0$ $\bmod p$ such that the inequality (i) in Theorem is true, then there is nothing to do. Hence we may assume

$$
\min \left(M+\mathbf{Z}\left[p^{-s} w\right]\right)<\min (M)^{x}
$$

for every $w=\sum_{i=2}^{m} f_{i} w_{i}$ with $f_{2} \not \equiv 0 \bmod p$ and $f_{3} \equiv \cdots \equiv f_{m} \equiv 0 \bmod p$. We will show that this leads us to a contradiction. Assuming that $\min (M)$ is sufficiently large, we have $\min (M)^{\kappa}<c_{1} \min (M)$. Now Lemma 4 implies, for such a vector w

$$
\min _{\substack{b \in \mathbf{Z} \\ p^{s} \nsucc b}}\left(\sum_{i=1}^{m}\left\lceil b r_{i} p^{-s}\right\rceil^{2} Q\left(v_{i}\right)\right) \asymp \min \left(M+\mathbf{Z}\left[p^{-s} w\right]\right)<\min (M)^{x},
$$

where ${ }^{t}\left(r_{1}, \ldots, r_{m}\right)=A^{t}\left(0, f_{2}, \ldots, f_{m}\right)$. Now Lemma 7 implies

$$
a_{12} \not \equiv 0 \bmod p \quad \text { and } \quad a_{i 2} \equiv 0 \bmod p \quad \text { for } \quad i \geq 2
$$

We will show that $a_{j i} \not \equiv 0 \bmod p$ implies $j \leq 2$ if $i \geq 3$. Take a natural number i with $3 \leq i \leq m$ and let f_{i} be an integer with $f_{i} \equiv 0 \bmod p$. Then the above inequality implies, for ${ }^{t}\left(r_{1}, \ldots, r_{m}\right)=A_{2}+f_{i} A_{i}$

$$
\begin{aligned}
\min (M)^{x} & \gg \min _{\substack{b \in \mathbf{Z} \\
p^{s} \nmid b}}\left(\sum_{j=1}^{m}\left\lceil b\left(a_{j 2}+f_{i} a_{j i}\right) p^{-s}\right\rceil^{2} Q\left(v_{j}\right)\right) \\
& \geqq \min _{\substack{b \in \mathbf{Z} \\
p^{s} \nmid b}}\left(\left\lceil b\left(a_{12}+f_{i} a_{1 i}\right) p^{-s}\right\rceil^{2} Q\left(v_{1}\right)+\left\lceil b\left(a_{j 2}+f_{i} a_{j i}\right) p^{-s}\right\rceil^{2} Q\left(v_{j}\right)\right)
\end{aligned}
$$

for every integer $j>1$. Suppose that $a_{j i} \not \equiv 0 \bmod p$ and $j \geq 3$. We will show a contradiction. Let us consider the equation in $x \in \mathbf{Z}$

$$
a_{j 2}+f_{i} a_{j i} \equiv\left(a_{12}+f_{i} a_{1 i}\right) x \bmod p^{s}
$$

It is equivalent to

$$
f_{i}\left(a_{j i}-a_{1 i} x\right) \equiv a_{12} x-a_{j 2} \bmod p^{s}
$$

We note $a_{j 2} \equiv 0 \bmod p$ and $a_{j i} \equiv \equiv \bmod p$. Hence the equation has a solution
$f_{i}(\equiv 0 \bmod p)$ if $x \equiv 0 \bmod p$. So we have, replacing $b\left(a_{12}+f_{i} a_{12}\right)$ by b

$$
\min (M)^{x} \gg \min _{\substack{b \in \mathbf{Z} \\ b^{s} \nmid b}}\left(\left\lceil b p^{-s}\right\rceil^{2} Q\left(v_{1}\right)+\left\lceil b x p^{-s}\right\rceil^{2} Q\left(v_{j}\right)\right)
$$

for every integer $x(\equiv 0 \bmod p)$.
The inequality $\frac{1}{4} \sqrt{Q\left(v_{1}\right) / \min (M)^{x}} \geq \frac{1}{4} \min (M)^{(1-x) / 2}>p$ and Lemma 2 imply

$$
Q\left(v_{1}\right) Q\left(v_{j}\right) \ll \min (M)^{2 x} p^{2 s} .
$$

The assumption $j \geq 3$ and $d \mathbf{Z}\left[v_{1}, v_{2}, v_{3}\right] \equiv 0 \bmod p^{4 s}$ imply

$$
\begin{aligned}
Q\left(v_{1}\right) p^{4 s} & \leq Q\left(v_{1}\right) d \mathbf{Z}\left[v_{1}, v_{2}, v_{3}\right] \ll Q\left(v_{1}\right)^{2} Q\left(v_{2}\right) Q\left(v_{3}\right) \\
& \ll\left(Q\left(v_{1}\right) Q\left(v_{j}\right)\right)^{2} \ll \min (M)^{4 x} p^{4 s}
\end{aligned}
$$

and hence $\min (M) \leq Q\left(v_{1}\right) \ll \min (M)^{4 x}$. Hence if $\min (M)$ is sufficiently large, this inequality does not hold. Thus we have shown $a_{j i} \equiv 0 \bmod p$ if $i \geq 3$ and $j \geq 3$. Hence Lemma 7 yields

$$
A \equiv\left(\begin{array}{ccccc}
* & * & * & \cdots & * \\
* & * & * & \cdots & * \\
* & 0 & 0 & \cdots & 0 \\
& & \cdots & & \\
* & 0 & 0 & \cdots & 0
\end{array}\right) \bmod p
$$

This contradicts $A \in G L_{m}(\mathbf{Z})$ if $m \geq 4$. Thus the theorem has been proved if $m \geq 4$.

Next we must prove the case of $\boldsymbol{m}=3$. Let $\left\{v_{i}\right\},\left\{\boldsymbol{w}_{i}\right\}, A, s$ and others be as above. Assume for every integer $f(\equiv 0 \bmod p)$

$$
\min \left(M+\mathbf{Z}\left[p^{-s}\left(w_{2}+f w_{3}\right)\right]\right)<\min (M)^{\kappa} .
$$

We will show that this leads us to a contradiction, making $\min (M)$ sufficiently large. For an integer $f \equiv 0 \bmod p$, Lemma 4 yields

$$
\min \left(M+\mathbf{Z}\left[p^{-s}\left(w_{2}+f w_{3}\right)\right]\right) \asymp \min _{p^{s} \nmid b}\left(\sum_{i=1}^{3}\left[b r_{i} p^{-s}\right\rceil^{2} Q\left(v_{i}\right)\right)
$$

for ${ }^{t}\left(r_{1}, r_{2}, r_{3}\right)=A^{t}(0,1, f)$, if the left-hand side is less than $c_{1} \min (M)$. Hence we have

$$
\min _{p^{s} \nmid b}\left(\sum_{i=1}^{3}\left\lceil b r_{i} p^{-s}\right\rceil^{2} Q\left(v_{i}\right)\right)<\min (M)^{x}
$$

for every integer $f(\equiv 0 \bmod p)$, assuming that $\min (M)$ is sufficiently large.
Putting $A=\left(\begin{array}{ccc}* & S_{1} & T_{1} \\ * & S_{2} & T_{2} \\ * & S_{3} & T_{3}\end{array}\right)$, we have

$$
r_{i}=S_{i}+f T_{i}
$$

Lemma 8. Put $d_{i j}=S_{i} T_{j}-S_{j} T_{i}$, and take any coordinates α, β such that $S_{\alpha} \not \equiv 0 \bmod p$ and $d_{\alpha, \beta} \not \equiv 0 \bmod p$. Denote by \bar{a} an integer which satisfies $a \bar{a} \equiv 1 \bmod p^{s}$ if $a \not \equiv 0 \bmod p$. If $x \equiv \overline{S_{\alpha}} S_{\beta} \bmod p$ holds for an integer x, then there is an integer $f(\equiv 0 \bmod p)$ so that $r_{\beta} \equiv r_{\alpha} x \bmod p^{s}$. The condition $r_{\beta} \equiv r_{\alpha} x$ $\bmod p^{s}$ implies for $\gamma \neq \alpha, \beta$

$$
r_{r} \equiv r_{\alpha} \overline{d_{\alpha \beta}}\left(d_{r \beta}+d_{\alpha r} x\right) \bmod p^{s}
$$

Proof. Suppose $x \equiv \overline{S_{\alpha}} S_{\beta} \bmod p$. The equation $r_{\beta} \equiv r_{\alpha} x \bmod p^{s}$ is equivalent to

$$
\begin{equation*}
f\left(T_{\beta}-T_{\alpha} x\right) \equiv S_{\alpha} x-S_{\beta} \bmod p^{s} \tag{6}
\end{equation*}
$$

Substituting $x=\overline{S_{\alpha}} S_{\beta}+p y$, it becomes

$$
f\left(T_{\beta}-T_{\alpha} \overline{S_{\alpha}} S_{\beta}-p T_{\alpha} y\right) \equiv p S_{\alpha} y \bmod p^{s}
$$

and so

$$
f\left(d_{\alpha \beta}-p S_{\alpha} T_{\alpha} y\right) \equiv p S_{\alpha}^{2} y \bmod p^{s} .
$$

Since $d_{\alpha \beta} \not \equiv 0 \bmod p$, this is indeed soluble for $f(\equiv 0 \bmod p)$.
Supposing $r_{\beta} \equiv r_{\alpha} x \bmod p^{s}$, we have

$$
\begin{aligned}
& d_{r \beta}+d_{\alpha r} x \equiv S_{\gamma} T_{\beta}-S_{\beta} T_{r}+\left(S_{\alpha} T_{r}-S_{\gamma} T_{\alpha}\right) x \\
\equiv & \left(S_{\alpha} x-S_{\beta}\right) T_{r}+S_{\gamma}\left(T_{\beta}-T_{\alpha} x\right) \equiv\left(T_{\beta}-T_{\alpha} x\right)\left(f T_{\gamma}+S_{\gamma}\right) \text { by (6) } \\
\equiv & r_{\gamma}\left(T_{\beta}-T_{\alpha} x\right) \equiv r_{r} \bar{r}_{\alpha}\left(r_{\alpha} T_{\beta}-T_{\alpha} r_{\alpha} x\right) \\
\equiv & r_{r} r_{\alpha}\left\{\left(S_{\alpha}+f T_{\alpha}\right) T_{\beta}-T_{\alpha}\left(S_{\beta}+f T_{\beta}\right)\right\} \equiv r_{\gamma} \bar{r}_{\alpha} d_{\alpha \beta} \bmod p^{s},
\end{aligned}
$$

which yields $r_{\gamma} \equiv r_{\alpha} \overline{d_{\alpha \beta}}\left(d_{\gamma \beta}+d_{\alpha \gamma} x\right) \bmod p^{s}$,
Lemma 9. We have

$$
\begin{align*}
\min _{p^{s} \not x b} & \left(\left\lceil b p^{-s}\right\rceil^{2} Q\left(v_{\alpha}\right)+\left\lceil b x p^{-s}\right\rceil^{2} Q\left(v_{\beta}\right)\right. \tag{7}\\
& \left.+\left\lceil b \overline{d_{\alpha \beta}}\left(d_{\gamma \beta}+d_{\alpha \gamma} x\right) p^{-s}\right\rceil^{2} Q\left(v_{\gamma}\right)\right)<\min (M)^{x}
\end{align*}
$$

for every integer $x\left(\equiv \overline{S_{\alpha}} S_{\beta} \bmod p\right)$.
Proof. This follows directly from Lemma 8, replacing b by $b \bar{r}_{\alpha}$.
Lemma 10. If the constant C in Theorem is sufficiently large, then we have $\{\alpha, \beta\}=\{1,2\}$ and $\gamma=3$, and $S_{3} \equiv T_{3} \equiv 0 \bmod p$ and

$$
\begin{equation*}
Q\left(v_{1}\right) Q\left(v_{2}\right) \leq 16 \min (M)^{2 x} p^{2 s} \tag{8}
\end{equation*}
$$

Proof. Put $K:=\min (M)^{x}$. Since we may assume

$$
\frac{1}{4} \sqrt{Q\left(v_{\alpha}\right) / K} \geq \frac{1}{4} \min (M)^{(1-x) / 2}>p
$$

applying Lemma 2 to the partial sum on α, β in (7), we have

$$
Q\left(v_{\alpha}\right) Q\left(v_{\beta}\right) \leq 16 K^{2} p^{2 s} .
$$

If α or $\beta=3$, then it implies

$$
\begin{aligned}
Q\left(v_{1}\right) d M & \ll\left(Q\left(v_{1}\right) Q\left(v_{2}\right)\right)\left(Q\left(v_{1}\right) Q\left(v_{3}\right)\right) \ll\left(Q\left(v_{\alpha}\right) Q\left(v_{\beta}\right)\right)^{2} \\
& \leq 16^{2} K^{4} p^{4 s} .
\end{aligned}
$$

Now $d M \geq p^{4 s}$ yields $\min (M) \leq Q\left(v_{1}\right) \ll K^{4}<\min (M)^{4 / 7}$. This is a contradiction if $\min (M)$ is larger than constant dependent on $m=3$. Thus we have $\{\alpha, \beta\}=\{1,2\}$. Since α is taken under the condition $S_{\alpha} \not \equiv 0 \bmod p$ only, we have $S_{3} \equiv 0 \bmod p$, and since β is taken under the condition $d_{\alpha \beta} \not \equiv 0 \bmod p$, we have $d_{\alpha 3}=S_{\alpha} T_{3}-S_{3} T_{\alpha} \equiv 0 \bmod p$, which yields $T_{3} \equiv 0 \bmod p$ by $S_{3} \equiv 0 \bmod p$ and $S_{\alpha} \not \equiv 0 \bmod p$.

Lemma 11. Let e be the least integer such that

$$
\begin{equation*}
p^{e+1} \geq \frac{1}{4} \min (M)^{(1-x) / 2} \tag{9}
\end{equation*}
$$

Then we have

$$
S_{3} \equiv T_{3} \equiv 0 \bmod p^{e}
$$

Proof. Put $K:=\min (M)^{x}$. If $p^{1+\text { ord }_{p} d_{3}}<\frac{1}{4} \sqrt{\min (M) / K}$, then we have $p^{1+\text { ord }_{p} d_{\alpha 3}}<\frac{1}{4} \sqrt{Q\left(v_{\alpha}\right) / K}$, and applying Lemma 2 to the partial sum on α, $\gamma(=3)$ in (7), we have

$$
Q\left(v_{\alpha}\right) Q\left(v_{3}\right) \leq 16 K^{2} p^{2 s} .
$$

This is the contradiction as in the proof of the previous lemma. Thus we have $p^{1+\operatorname{ord}_{p} d_{\alpha 3}} \geq \frac{1}{4} \sqrt{\min (M) / K}$ and hence $\operatorname{ord}_{p} d_{\alpha 3} \geq e$.

Let us see the inequality $\operatorname{ord}_{p} d_{\beta 3} \geq e$. If $S_{\beta} \not \equiv 0 \bmod p$, then replacing b by $b \bar{x}$ in (7), we get

$$
\min _{p^{s} \times b}\left(\left\lceil b p^{-s}\right\rceil^{2} Q\left(v_{\beta}\right)+\left\lceil\overline{d_{\alpha \beta}}\left(d_{3 \beta} \bar{x}+d_{\alpha 3}\right) p^{-s}\right\rceil^{2} Q\left(v_{3}\right)\right)<K
$$

for every integer $\bar{x} \equiv S_{\alpha} \overline{S_{\beta}} \bmod p$. Similarly to the case of α, we have the inequality $\operatorname{ord}_{p} d_{\beta 3} \geq e$.

Next suppose $S_{\beta} \equiv 0 \bmod p$. Then the inequality (7) holds for every integer $x \equiv 0 \bmod p$. Suppose that the minimum of the left-hand side is attained by b with $0 \neq|b| \leq p^{s} / 2$ and $b \equiv 0 \bmod p^{s-1}$. Putting $b=B p^{s-1}$, we have

$$
K \geq\left\lceil B p^{-1}\right\rceil^{2} Q\left(v_{\alpha}\right)=B^{2} p^{-2} Q\left(v_{\alpha}\right) \geq p^{-2} Q\left(v_{\alpha}\right)
$$

and so $\min (M) \leq Q\left(v_{\alpha}\right)<K p^{2}=p^{2} \min (M)^{\alpha}$, which is a contradiction if $\min (M)$ is sufficiently large. Thus the minimum is attained by an integer b with $b \not \equiv 0 \bmod p^{s-1}$ and so (7) implies

$$
\min _{p^{s-1} \nmid b}\left(\left\lceil b x p^{-s}\right\rceil^{2} Q\left(v_{\beta}\right)+\left\lceil b \overline{d_{\alpha \beta}}\left(d_{3 \beta}+d_{\alpha 3} x\right) p^{-s}\right\rceil^{2} Q\left(v_{3}\right)\right)<K
$$

for every $x \equiv 0 \bmod p$. Letting $x=p y$ with $y \not \equiv 0 \bmod p$ and replacing b by $b \bar{y}$, we have

$$
\min _{p^{s-1} \nmid b}\left(\left\lceil b p^{1-s}\right\rceil^{2} Q\left(v_{\beta}\right)+\left\lceil b \overline{d_{\alpha \beta}}\left(d_{3 \beta} p^{-1} \bar{y}+d_{\alpha 3}\right) p^{1-s}\right\rceil^{2} Q\left(v_{3}\right)\right)<K
$$

for every integer $\bar{y} \not \equiv 0 \bmod p$. Here we note $d_{3 \beta} \equiv 0 \bmod p$ by $S_{3} \equiv T_{3} \equiv 0$ $\bmod p$. Hence if $p^{\operatorname{ord}_{p}\left(d_{3 \beta}\right)} \leq \frac{1}{4} \sqrt{Q\left(v_{\beta}\right) / K}$, then Lemma 2 implies

$$
Q\left(v_{\beta}\right) Q\left(v_{3}\right) \leq 16 K^{2} p^{2(s-1)} .
$$

This is a contradiction as in the case of α. Hence we have $p^{\text {ord }\left(d_{3 \beta}\right)}>$
$\frac{1}{4} \sqrt{Q\left(v_{\beta}\right) / K}>\frac{1}{4} \sqrt{\min (M) / K}$ and so $\operatorname{ord}_{p}\left(d_{3 \beta}\right) \geq e+1>e$. Thus we have obtained $d_{3 \alpha} \equiv d_{3 \beta} \equiv 0 \bmod p^{e}$, and so

$$
S_{3} T_{\alpha} \equiv S_{\alpha} T_{3} \bmod p^{e} \text { and } S_{3} T_{\beta} \equiv S_{\beta} T_{3} \bmod p^{e}
$$

Hence we have $S_{3} d_{\alpha \beta}=S_{3}\left(S_{\alpha} T_{\beta}-S_{\beta} T_{\alpha}\right) \equiv S_{\alpha} S_{\beta} T_{3}-S_{\beta} S_{\alpha} T_{3} \equiv 0 \bmod p^{e}$ and so $S_{3} \equiv 0 \bmod p^{e}$ and $T_{3} \equiv \overline{S_{\alpha}} S_{3} T_{\alpha} \bmod p^{e} \equiv 0 \bmod p^{e}$.

Lemma 12. Let f be the least integer such that $p^{f}>c_{5} \min (M)^{x}$, where c_{5} is some absolute constant. Then we have

$$
d_{a 3} \equiv 0 \bmod p^{s-f-1}
$$

Proof. Put $K:=\min (M)^{x}$. Suppose that an integer b with $0 \neq|b| \leq p^{s} / 2$ gives the minimum of the left-hand side of the equality (7).
Suppose $b\left(d_{3 \beta}+d_{\alpha 3} x\right) \not \equiv 0 \bmod p^{s}$; since $d_{3 \beta}+d_{\alpha 3} x \equiv 0 \bmod p^{e}$ by Lemma 11 , the denominator of $b\left(d_{3 \beta}+d_{\alpha 3} x\right) p^{-s}$ divides p^{s-e}. Thus the inequality (7) gives

$$
K>\left\lceil b \widetilde{d_{\alpha \beta}}\left(d_{3 \beta}+d_{\alpha 3} x\right) p^{-s}\right\rceil^{2} Q\left(v_{3}\right) \geq p^{-2(s-e)} Q\left(v_{3}\right)
$$

which implies $Q\left(v_{3}\right)<K p^{2(s-e)}$. Thus the inequality (8) in Lemma 10 gives

$$
\begin{aligned}
p^{4 s} & \leq d M \asymp Q\left(v_{1}\right) Q\left(v_{2}\right) Q\left(v_{3}\right)<16 K^{3} p^{4 s-2 e} \\
& \ll 16 K^{3} p^{4 s} \frac{16 p^{2}}{\min (M)^{1-\kappa}} \quad \text { by }(9) \\
& =16^{2} \min (M)^{4 \kappa-1} p^{4 s+2} .
\end{aligned}
$$

Thus we have $\min (M)^{1-4 x} \ll p^{2}$, and so making the constant C in Theorem larger, we have a contradiction. Hence we may assume that b runs over integers such that

$$
\begin{equation*}
b\left(d_{3 \beta}+d_{\alpha 3} x\right) \equiv 0 \bmod p^{s} \text { and } p^{s} \nsucc b \tag{10}
\end{equation*}
$$

in the left-hand side of the inequality (7). By $\frac{1}{4} \sqrt{Q\left(v_{\alpha}\right) / K} \geq \frac{1}{4} \min (M)^{(1-x) / 2}>$ $3 p$ for a sufficiently large C, there is an integer y such that $y \equiv \overline{S_{\alpha}} S_{\beta} \bmod p$ and

$$
\begin{equation*}
\frac{1}{4} \sqrt{Q\left(v_{\alpha}\right) / K}<y<y+p<\frac{1}{2} \sqrt{Q\left(v_{\alpha}\right) / K} \tag{11}
\end{equation*}
$$

Put $x=y$ or $=y+p$, and suppose that an integer b with $0 \neq|b| \leq p^{s} / 2$ gives the minimum of the left-hand side of the inequality (7). Then we have

$$
K>\left\lceil b p^{-s}\right\rceil^{2} Q\left(v_{\alpha}\right)=b^{2} p^{-2 s} Q\left(v_{\alpha}\right),
$$

which yields

$$
\left|b x p^{-s}\right|<\sqrt{K / Q\left(v_{\alpha}\right)} p^{s} \cdot \frac{1}{2} \sqrt{Q\left(v_{\alpha}\right) / K} p^{-s}=1 / 2
$$

Hence the inequality (7) gives

$$
\begin{aligned}
K & >\left\lceil b x p^{-s}\right\rceil^{2} Q\left(v_{\beta}\right)=b^{2} x^{2} p^{-2 s} Q\left(v_{\beta}\right) \\
& >b^{2} \frac{Q\left(v_{\alpha}\right)}{16 K} p^{-2 s} Q\left(v_{\beta}\right) \quad \text { by }(11) \\
& =b^{2} \frac{Q\left(v_{\alpha}\right) Q\left(v_{\beta}\right)}{16 K} p^{-2 s} \gg \frac{b^{2}}{16 K},
\end{aligned}
$$

where we used the inequality $Q\left(v_{\alpha}\right) Q\left(v_{\beta}\right) \asymp d \mathbf{Z}\left[v_{\alpha}, v_{\beta}\right] \geq p^{2 s}$. Thus we have obtained $|b|<c_{5} K$ for some absolute constant c_{5}. Then the way of choice of f implies $p^{f}>c_{5} K>|b|$ and we have $f \geq \operatorname{ord}_{p} b$. The equality (10) implies

$$
d_{3 \beta}+d_{\alpha 3} x \equiv 0 \bmod p^{s-\operatorname{ord}_{p} b} \equiv 0 \bmod p^{s-f}
$$

Since this is true for $x=y$ and $=y+p$, we have $d_{\alpha 3} \equiv 0 \bmod p^{s-f-1}$
Lemma 13. Let g be the least integer such that $p^{g}>c_{6} \min (M)^{x}$, where c_{6} is some absolute constant. Then we have

$$
d_{\beta 3} \equiv 0 \bmod p^{s-g-1}
$$

Proof. Put $K:=\min (M)^{\kappa}$. Since α is determined only by the condition $S_{\alpha} \not \equiv$ $0 \bmod p$, replacing α by β, we get the assertion from Lemma 12 if $S_{\beta} \not \equiv 0 \bmod p$. Hence we may assume $S_{\beta} \equiv 0 \bmod p$. So the inequality (7) holds for every integer $x(\equiv 0 \bmod p)$. Letting $x=p y$ with $y \not \equiv 0 \bmod p$ and replacing b by $b \bar{y}$, we have, replacing \bar{y} by y again

$$
\begin{equation*}
\min _{p^{s} \nmid b}\left(\left\lceil b y p^{-s}\right\rceil^{2} Q\left(v_{\alpha}\right)+\left\lceil b p^{1-s}\right\rceil^{2} Q\left(v_{\beta}\right)+\left\lceil b \overline{d_{\alpha \beta}}\left(d_{3 \beta} y+d_{\alpha \beta} p\right) p^{-s}\right\rceil^{2} Q\left(v_{3}\right)\right)<K \tag{12}
\end{equation*}
$$

for every integer $y(\not \equiv 0 \bmod p)$. If the minimum of the left-hand side is given by an integer b with $0 \neq|b| \leq p^{s} / 2$ and $b \equiv 0 \bmod p^{s-1}$, then we have

$$
K>Q\left(v_{\alpha}\right) / p^{2}
$$

noting that the denominator of $b y p^{-s}$ is equal to p. It implies $K p^{2}>Q\left(v_{\alpha}\right) \geq$
$\min (M)$ and so $\min (M)^{1-x}<p^{2}$, which is a contradiction if C is a sufficiently large number. Thus the minimum of the left-hand side of (12) is attained by $b \not \equiv 0$ $\bmod p^{s-1}$. Let an integer b with $0 \neq|b| \leq p^{s} / 2$ give the minimum of the left-hand side of (12) and put

$$
b=a_{1}+a_{2} p^{s-1} \text { with } 0 \neq\left|a_{1}\right| \leq p^{s-1} / 2
$$

Now we claim both $a_{2}=0$ and $|b y|<p^{s-1} / 2$ if $\sqrt{K / Q\left(v_{\beta}\right)}|y| \leq 1 / 2$.
First, let us see

$$
\begin{equation*}
\left|a_{2}\right| \leq p / 2 \tag{13}
\end{equation*}
$$

If p is odd, then we have

$$
\begin{aligned}
\left|a_{2}\right| & =\left|a_{1}-b\right| / p^{s-1} \leq\left(\left|a_{1}\right|+|b|\right) / p^{s-1} \\
& \leq\left(\left(p^{s-1}-1\right) / 2+\left(p^{s}-1\right) / 2\right) / p^{s-1}=p / 2+1 / 2-p^{-(s-1)}
\end{aligned}
$$

and by virtue of the integrality of a_{2}, we have $\left|a_{2}\right| \leq p / 2$. If $p=2$, then we have

$$
\left|a_{2}\right| \leq\left(\left|a_{1}\right|+|b|\right) / 2^{s-1} \leq\left(2^{s-2}+2^{s-1}\right) / 2^{s-1}=3 / 2
$$

and hence $\left|a_{2}\right| \leq 1=p / 2$.
Next, we put

$$
b y \equiv a_{1} y+a_{2}^{\prime} p^{s-1} \bmod p^{s}
$$

with $a_{2}^{\prime} \equiv a_{2} y \bmod p$ and $\left|a_{2}^{\prime}\right| \leq p / 2$. Then we will see that

$$
\begin{equation*}
\left|a_{1} y\right|<p^{s-1} / 2 \text { and }\left|a_{1} y+a_{2}^{\prime} p^{s-1}\right| \leq p^{s} / 2 \tag{14}
\end{equation*}
$$

taking a_{2}^{\prime} with $\left(a_{1} y\right) a_{2}^{\prime} \leq 0$ if $p=2$. The inequality (12) implies

$$
K>\left\lceil b p^{1-s}\right\rceil^{2} Q\left(v_{\beta}\right)=\left(a_{1} p^{1-s}\right)^{2} Q\left(v_{\beta}\right)
$$

and so $\left|a_{1}\right|<\sqrt{K / Q\left(v_{\beta}\right)} p^{s-1}$, which yields $\left|a_{1} y\right|<p^{s-1} / 2$ if $\sqrt{K / Q\left(v_{\beta}\right)}|y| \leq$ $1 / 2$. Hence we have, for $p \neq 2$

$$
\left|a_{1} y+a_{2}^{\prime} p^{s-1}\right|<p^{s-1} / 2+\frac{p-1}{2} p^{s-1}=p^{s} / 2 .
$$

If $p=2$ and $a_{2}^{\prime} \neq 0$, then we have $\left|a_{1} y+a_{2}^{\prime} 2^{s-1}\right|=2^{s-1}-\left|a_{1} y\right| \leq 2^{s-1}$. If $p=$ 2 and $a_{2}^{\prime}=0$, then $\left|a_{1} y\right|<2^{s-1}$ is clear. Thus the inequalities in (14) have been shown, and then the inequalities (12) and (14) yield

$$
K>\left\lceil b y p^{-s}\right\rceil^{2} Q\left(v_{\alpha}\right)=\left(a_{1} y+a_{2}^{\prime} p^{s-1}\right)^{2} p^{-2 s} Q\left(v_{\alpha}\right)
$$

and hence

$$
\begin{equation*}
\left|a_{1} y+a_{2}^{\prime} p^{s-1}\right| \leq \sqrt{K / Q\left(v_{\alpha}\right)} p^{s} \tag{15}
\end{equation*}
$$

Suppose $a_{2} \neq 0$; then we have $a_{2} \not \equiv 0 \bmod p$ by (13) and so $a_{2}^{\prime} \neq 0$. Thus the left-hand side of (15) is larger than

$$
p^{s-1}-\left|a_{1} y\right|>p^{s-1}-p^{s-1} / 2=p^{s-1} / 2,
$$

and hence we have $p^{s-1} / 2<\sqrt{K / Q\left(v_{\alpha}\right)} p^{s} \leq \min (M)^{(x-1) / 2} p^{s}$, which yield the contradiction $\min (M)^{(1-x) / 2}<2 p$. Thus we have shown the claim $a_{2}=0$ and $b=$ a_{1}, that is, an integer b which gives the minimum of the left-hand side of (12), satisfies two inequalities

$$
|b y|<p^{s-1} / 2 \quad \text { and } \quad 0 \neq|b| \leq p^{s-1} / 2 \quad \text { if } \quad \sqrt{K / Q\left(v_{\beta}\right)}|y| \leq 1 / 2
$$

Because of $\frac{1}{4} \sqrt{Q\left(v_{\beta}\right) / K} \geq \frac{1}{4} \min (M)^{(1-x) / 2} \geq p$, we can take $y \not \equiv 0 \bmod p$ so that

$$
\frac{1}{4} \sqrt{Q\left(v_{\beta}\right) / K}<|y|<\frac{1}{2} \sqrt{Q\left(v_{\beta}\right) / K}
$$

then letting an integer b with $0 \neq|b| \leq p^{s} / 2$ give the minimum of the left-hand side of (12), we have $|b| \leq p^{s-1} / 2$ and then the inequality (12) and the above claim $|b y|<p^{s-1} / 2$ imply

$$
\begin{aligned}
& K>\left\lceil b y p^{-s}\right\rceil^{2} Q\left(v_{\alpha}\right)=b^{2} y^{2} p^{-2 s} Q\left(v_{\alpha}\right) \geq b^{2} \frac{Q\left(v_{\alpha}\right) Q\left(v_{\beta}\right)}{16 K} p^{-2 s} \\
& \quad \gg b^{2} / K \text { because of } Q\left(v_{\alpha}\right) Q\left(v_{\beta}\right) \gg p^{2 s} .
\end{aligned}
$$

Thus we have

$$
|b|<c_{6} K \quad \text { if } \quad \frac{1}{4} \sqrt{Q\left(v_{\beta}\right) / K}<|y|<\frac{1}{2} \sqrt{Q\left(v_{\beta}\right) / K}
$$

where c_{6} is an absolute constant. Now we take the least integer g so that $p^{g}>c_{6} K$, which implies $|b|<p^{g}$. Taking an integer z so that $\frac{1}{4} \sqrt{Q\left(v_{\beta}\right) / K}<z<z+p<$ $\frac{1}{2} \sqrt{Q\left(v_{\beta}\right) / K}$, we put $y=z$ or $=z+p$, and let b give the minimum of the left-hand side of (12). Suppose $b\left(d_{3 \beta} y+d_{\alpha 3} p\right) \not \equiv 0 \bmod p^{\mathrm{s}}$; then the denominator of $b \overline{d_{\alpha \beta}}\left(d_{3 \beta} y+d_{\alpha 3} p\right) p^{-s}$ is at most p^{s-e} for the integer e in Lemma 11. Hence the inequality (12) implies $K>p^{-2(s-e)} Q\left(v_{3}\right)$ and hence a contradiction as in the proof of Lemma 12. Therefore we have $b\left(d_{3 \beta} y+d_{\alpha 3} p\right) \equiv 0 \bmod p^{s}$. Noting $|b|<p^{\mathrm{g}}$ as
above, we have $d_{3 \beta} y+d_{\alpha 3} p \equiv 0 \bmod p^{s-g}$ for $y=z$ or $=z+p$. Thus we have $d_{3 \beta} p \equiv 0 \bmod p^{s-g}$ and so ord $_{p} d_{3 \beta} \geq s-g-1$.

Combining Lemma 12 with Lemma 13, we have

Lemma 14. There is an absolute constant c_{7} so that

$$
d_{13} \equiv d_{23} \equiv 0 \bmod p^{s-h-1}
$$

where h is the least integer so that $p^{h}>c_{7} \min (M)^{\kappa}$.
Lemma 15. The inequality $g<s$ and $d_{13} \equiv d_{23} \equiv 0 \bmod p^{g} \quad i m p l y p^{g} \leq$ $2 \min (M)^{\kappa / 2} p^{s / 2}$.

Proof. We recall

$$
A=\left(\begin{array}{ccc}
* & S_{1} & T_{1} \\
* & S_{2} & T_{2} \\
* & S_{3} & T_{3}
\end{array}\right), d_{i j}=S_{i} T_{j}-S_{j} T_{i},\left(B\left(w_{i}, w_{j}\right)\right)=\left(B\left(v_{i}, v_{j}\right)\right)[A]
$$

Hence we have

$$
\begin{aligned}
\left(B\left(v_{i}, v_{j}\right)\right) & =\left(B\left(w_{i}, w_{j}\right)\right)\left[A^{-1}\right] \\
& \equiv \operatorname{diag}(\varepsilon, 0,0)\left[A^{-1}\right] \bmod p^{g} \\
& \equiv \operatorname{diag}(\varepsilon, 0,0)\left[\left(\begin{array}{ccc}
0 & 0 & * \\
* & * & * \\
* & * & *
\end{array}\right)\right] \text { by } d_{13} \equiv d_{23} \equiv 0 \bmod p^{g} \\
& \equiv\left(\begin{array}{lll}
0 & * & * \\
0 & * & * \\
* & * & *
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & * \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \equiv\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & *
\end{array}\right) \bmod p^{g}
\end{aligned}
$$

Since $\left(B\left(w_{i}, w_{j}\right)\right) \not \equiv 0 \bmod p$ and hence $\left(B\left(v_{i}, v_{j}\right)\right) \not \equiv 0 \bmod p$ by the assump. tion $s\left(M_{p}\right)=\mathbf{Z}_{p}$, we have $Q\left(v_{3}\right) \not \equiv 0 \bmod p$. For $i=1$ or 2 , we put $Q\left(v_{i}\right)=a p^{g}$, $B\left(v_{i}, v_{3}\right)=b p^{g}(a, b \in \mathbf{Z})$, which imply $a p^{g} Q\left(v_{3}\right)-b^{2} p^{2 g}=d \mathbf{Z}\left[v_{i}, v_{3}\right] \equiv 0$ $\bmod p^{2 s}$. Therefore $s>g$ implies $a \equiv 0 \bmod p^{g}$, and so $Q\left(v_{i}\right) \equiv 0 \bmod p^{2 g}$. Thus $s>g$ yields $Q\left(v_{1}\right) \equiv Q\left(v_{2}\right) \equiv 0 \bmod p^{2 g}, \quad$ and hence $p^{4 g} \leq Q\left(v_{1}\right) Q\left(v_{2}\right) \leq$ $16 \min (M)^{2 x} p^{2 s}$ by (8).

Now let us complete the proof of Theorem in the case of $m=3$. If we put $g=s-h-1(<s)$ for the number h in Lemma 14 , we have $p^{s-h-1} \leq$ $2 \min (M)^{\alpha / 2} p^{s / 2}$, and hence

$$
p^{s / 2} \leq 2 \min (M)^{x / 2} p^{h+1}<2 c_{7} \min (M)^{3 x / 2} p^{2}
$$

by virtue of $p^{h-1} \leq c_{7} \min (M)^{\alpha}<p^{h}$. Putting $\tilde{M}:=M+\mathbf{Z}\left[p^{-s} w_{2}\right], \tilde{M}$ satisfies the conditions (ii) and (iii). $[\tilde{M}: M]=p^{s}$ yields $\min \left(p^{s} \tilde{M}\right) \geq \min (M)$ and hence we have

$$
\begin{aligned}
\min (\tilde{M}) & \geq p^{-2 s} \min (M)>2^{-4} c_{7}^{-4} \min (M)^{1-6 x} p^{-8} \\
& \geq 2^{-4} c_{7}^{-4} p^{-8} \min (M)^{1-7 x} \cdot \min (M)^{x} .
\end{aligned}
$$

Thus, if we take a sufficiently large number C which depends on p, c_{7}, we have $\min (\tilde{M}) \geq \min (M)^{\alpha}$. This contradicts our assumption. Thus we have completed the proof in the case of $m=3$.

§2

In this section we show that the assertion $\mathrm{R}_{m, 2 m+1}(N)$ is true if $m \geq 3$.
Theorem. Let m be a natural number ≥ 3, and N a lattice on a positive definite quadratic space W over \mathbf{Q} with $\operatorname{dim} W=2 m+1$. Let M be a lattice on a positive definite quadratic space V over \mathbf{Q} with $\operatorname{dim} V=m$ and suppose that M_{p} is represented by N_{p} for every prime p. Let C_{1} be a positive number. Then there is a positive number C_{2} dependent only on C_{1} and N so that if $\min (M)>C_{2}$, then there is a lattice M^{\prime} on V so that
(i) M^{\prime} contains M,
(ii) M_{p}^{\prime} is primitively represented by N_{p} for every prime p,
(iii) $\min \left(M^{\prime}\right)>C_{1}$.

Remark. In the case of $m=2$, Theorem is false.

The following is immediate.
Corollary. The assertion $\operatorname{APW}_{m, 2 m+1}(N)$ yields the assertion $\mathrm{A}_{m, 2 m+1}(N)$ if $m \geq 3$.

The proof of the theorem is divided into several steps. Let M, N be lattices in Theorem. We may assume that $n(N) \subset 2 \mathbf{Z}$ without loss of generality. Put

$$
S:=\{p \mid p \text { is a prime which divides } 2 d N\}
$$

Lemma 1. If a prime p is not in S, then M_{p} is primitively represented by N_{p}.

Proof. Since p is odd and N_{p} is unimodular, N_{p} is isometric to

$$
\perp_{m}\left\langle\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\rangle \perp\langle d N\rangle
$$

and so M_{p} is primitively represented by N_{p} by Proposition 5.3.2 in [5].

Lemma 2. If a prime p in S and $\operatorname{ind} W_{p}=m$, then there is a constant $c_{p}(N)$ dependent only on N_{p} so that there exists a lattice \tilde{M}_{p} on V_{p} which satisfies (i) $\tilde{M}_{p} \supset M_{p}$ and $\left[\tilde{M}_{p}: M_{p}\right]<c_{p}(N)$,
(ii) \tilde{M}_{p} is primitively represented by N_{p}.

Proof. Let K be a submodule of N_{p} which is isometric to M_{p}; then by Lemma 3 in [3], there exists a submodule L of N_{p} so that $L \cong K$ and [$N_{p} \cap \mathbf{Q}_{p} L$: $L]<c_{p}(N)$ for a constant $c_{p}(N)$ dependent only on N_{p}. By virtue of $L \cong K \cong$ M_{p}, there is an isometry σ from M_{p} to L, and then we have only to put $\tilde{M}_{p}=$ $\sigma^{-1}\left(N_{p} \cap \mathbf{Q}_{p} L\right)$.

Lemma 3. Let p be a prime. There exist two constants $r_{p}(N), c_{p}(N)$ so that there exists a lattice $\tilde{M}(\supset M)$ on V which satisfies
(i) $[\tilde{M}: M]$ is a power of the prime p,
(ii) \tilde{M}_{q} is represented by N_{q} for every prime q,
(iii) $\operatorname{ord}_{p} s(\tilde{M})<r_{p}(N)$,
(iv) $\min (\tilde{M})>c_{p}(N) p^{t / 2} \min \left(T_{0}\right)$, where a positive definite matrix T_{0} is defined by
$M=\left\langle{ }^{t} T_{0}\right\rangle$ with $n\left(T_{0}\right) \mathbf{Z}_{p}=2 \mathbf{Z}_{p}$ by identifying the corresponding matrix and a lattice.

Proof. Let N_{p}^{\prime} be a $2 p^{r} \mathbf{Z}_{p}$-maximal lattice in N_{p} and we assume that r is the least positive integer. r is determined by N_{p}.
Suppose $\operatorname{ord}_{p} s\left(M_{p}\right) \geq r+13$. Write

$$
M=\left\langle p^{r+10+2 a+c} T_{0}\right\rangle
$$

where T_{0} satisfies $n\left(T_{0}\right) \mathbf{Z}_{p}=2 \mathbf{Z}_{p}$ and $a \geq 1, c=0$ or 1 . Putting $b:=5+a$, we have $p^{b} \geq 2^{6}>36$ and then Lemma 2 in [4] implies the existence of a positive constant $c(m, p)$ dependent only on m and p, and a matrix $H \in M_{m}(\mathbf{Z})$ so that $\operatorname{det} H$ is a power of $p, \min \left(p^{2 b+c} T_{0}\left[H^{-1}\right]\right)>c(m, p) p^{b+c} \min \left(T_{0}\right), p^{2 b+c} T_{0}\left[H^{-1}\right]$ $\not \equiv 0 \bmod p^{5}$ and finally $n\left(p^{2 b+c} T_{0}\left[H^{-1}\right]\right) \subset 2 \mathbf{Z}$. Hence there exists a lattice \tilde{M}
(つ M) such that $[\tilde{M}: M]$ is a power of $p, s(\tilde{M}) \mathbf{Z}_{p} \supset p^{r+4} \mathbf{Z}_{p}, \min (\tilde{M})>$ $c(m, p) p^{r+b+c} \min \left(T_{0}\right) \geq c(m, p) p^{t / 2} \min \left(T_{0}\right)$ and finally $n(\tilde{M}) \subset 2 p^{\gamma} \mathbf{Z}$. Thus the assertion (i) is clearly satisfied and then for every prime $q \neq p, \tilde{M}_{q}=M_{q}$ is rep. resented by N_{q}. Since $n(\tilde{M}) \boldsymbol{Z}_{p} \subset 2 p^{\gamma} \mathbf{Z}_{p}$, and $\mathbf{Q}_{p} \tilde{M}=\mathbf{Q}_{p} M$ is represented by $\mathbf{Q}_{p} N$ and moreover $N_{p}^{\prime}\left(\subset \mathbf{Q}_{p} N\right)$ is a $2 p^{\gamma} \mathbf{Z}_{p}$-maximal lattice, \tilde{M}_{p} is represented by N_{p}^{\prime} and hence by N_{p}. Thus the assertion (ii) is satisfied. The assertion (iii) is satisfied for $r_{p}(N)=r+13$. (iv) is satisfied for $c_{p}(N):=c(m, p)$.

Next suppose $\operatorname{ord}_{p} s\left(M_{p}\right)<r+13$; then putting $\tilde{M}:=M$, the assertions (i), \ldots, (iv) are satisfied if $r_{p}(N)=r+13, c_{p}(N)=1$.
Thus the assertion are true for $r_{p}(N):=r+13$ and $c_{p}(N):=\min \{1, c(m, p)\}$.

Lemma 4. There is a lattice $\tilde{M}(\supset M)$ on V which satisfies
(i) any prime number dividing $[\tilde{M}: M$ is in S,
(ii) there is a constant $c(N)$ depending only on N such that

$$
\min (\tilde{M})>c(N) \min (M)^{1 / 2},
$$

(iii) \tilde{M}_{p} is primitively represented by N_{p} if $p \notin S$, or if both $p \in S$ and ind $W_{p}=m$,
(iv) if $p \in S$ and ind $W_{p}=m-1$, then there is a number $r_{p}(N)$ dependent only on N_{p} such that $\operatorname{ord}_{p} s\left(\tilde{M}_{p}\right)<r_{p}(N)$ and \tilde{M}_{p} is represented by N_{p}.

Proof. By Lemma 1, M_{p} is primitively represented by N_{p} if $p \notin S$. Using Lemma 2 if $p \in S$ and ind $W_{p}=m$ and using Lemma 3 if $p \in S$ and ind $W_{p}=$ $m-1$, we have only to enlarge M.

Sublemma. Let $0<k \leq m \leq n$ be integers and N_{p}, K_{1} regular quadratic lattices over \mathbf{Z}_{p} with rank $N_{p}=n$, rank $K_{1}=k$. Moreover we assume that there is a quadratic space U over \mathbf{Q}_{p} such that $\mathbf{Q}_{p} N_{p} \cong \mathbf{Q}_{p} K_{1} \perp U$ and ind $U \geq m-k$. Then there exists a constant $c=c\left(N_{p}, K_{1}, m, k\right)$ such that if $K=K_{1} \perp K_{2}$ is a regular quadratic lattice of rank $K=m$ and K is represented by N_{p}, then there is a submodule $K_{0} \subset N_{p}$, which is isometric to K with $\left[N_{p} \cap \mathbf{Q}_{p} K_{0}: K_{0}\right]<c$.

Proof. This is nothing but Theorem 2 in [3] (r, n, m and M there, are replaced by k, m, n and N respectively).

Lemma 5. Let p be a prime. Assume that there is a decomposition $M_{p}=M_{p, 1} \perp$ $M_{p, 2}$ with rank $M_{p, 1}>1$, then there is an isometry $\sigma: M_{p} \rightarrow N_{p}$ such that $\left[\mathbf{Q}_{p} \sigma\left(M_{p}\right) \cap N_{p}: \sigma\left(M_{p}\right)\right]<c_{p}\left(M_{p, 1}, N_{p}\right)$, where $c_{p}\left(M_{p, 1}, N_{p}\right)$ depends only on $M_{p, 1}$
and N_{p}.

Proof. Put $k=\operatorname{rank} M_{p, 1}$. By virtue of the sublemma, we have only to show ind $U \geq m-k$ where U is determined by $W_{p} \cong \mathbf{Q}_{p} M_{p, 1} \perp U$. We know

$$
\operatorname{dim} U=2 m+1-k=2(m-k)+k+1 \geq 2(m-k)+3
$$

If, hence the inequality ind $U<m-k$ holds, then we have

$$
\operatorname{dim} U \leq 2 \text { ind } U+4 \leq 2(m-k-1)+4=2(m-k)+2
$$

which contradicts $\operatorname{dim} U \geq 2(m-k)+3$. Thus we have ind $U \geq m-k$.

Proof of Theorem.

By virtue of Lemma 4, we may suppose
(i) M_{p} is primitively represented by N_{p} if $p \notin S$ or if $p \in S$ and ind $W_{p}=m$,
(ii) $\operatorname{ord}_{p} s\left(M_{p}\right)<r_{p}(N)$ if $p \in S$ and ind $W_{p}=m-1$, where $r_{p}(N)$ is only dependent on p and N_{p},
(iii) $\min (M)$ is sufficiently large.

We are assuming that $n(N) \subset 2 \mathbf{Z}$ and M_{p} is locally represented by N_{p}. So we have $n(M) \subset 2 \mathbf{Z}$. Let a prime $p \in S$ satisfy ind $W_{p}=m-1$, and put $t_{p}:=$ $\operatorname{ord}_{p} s\left(M_{p}\right)$. By the assumption (ii), we have $0 \leq t_{p} \leq r_{p}(N)$. Let

$$
X:=\left\{x \in N_{p} \mid \operatorname{ord}_{p} Q(x) \leq r_{p}(N)\right\}
$$

The orthogonal group $O\left(N_{p}\right)$ and \mathbf{Z}_{p}^{\times}act on X and the number of orbits is finite. Denote the set of representatives of orbits by \tilde{X}. Hence \tilde{X} is a finite set and if $\operatorname{ord}_{p} Q(x)<r_{p}(N)$ for $x \in N_{p}$, then there exist an isometry $\sigma \in O\left(N_{p}\right)$ and $\varepsilon \in$ \mathbf{Z}_{p}^{\times}such that $\varepsilon \sigma(x) \in \tilde{X}$. For $x \in \tilde{X}$, we take a maximal lattice $N_{x}\left(\subset x^{\perp}\right.$ in $\left.N_{p}\right)$, and put the norm $n\left(N_{x}\right)=p^{n_{p}(x)} \mathbf{Z}_{p}$. We take N_{x} so that $n_{p}(x)$ is minimal, and put

$$
n_{p}=\max _{x \in \tilde{X}} n_{p}(x) .
$$

n_{p} is determined by $r_{p}(N)$, and hence only by N_{p}.
Let $M_{p}=J_{1} \perp \cdots \perp J_{a}$ be a Jordan decomposition, where J_{i} is $p^{b_{i}} \mathbf{Z}_{p}$-modular and $0 \leq b_{1}<b_{2}<\cdots<b_{a}$. By virtue of $s\left(M_{p}\right)=s\left(J_{1}\right)$, we have $0 \leq b_{1}=t_{p}$ $<r_{p}(N)$. If $\operatorname{rank}\left(J_{1}\right)>1$, then noting that the number of possiblities of isometry classes of J_{1} is bounded by a number dependent only on $r_{p}(N)$ and $m=$ (rank $N-1$) /2, Lemma 5 implies the existence of a lattice M^{\prime} such that [M^{\prime} : $M]<c_{p}\left(N_{p}\right)$ and M_{p}^{\prime} is primitively represented by N_{p}, where $c_{p}\left(N_{p}\right)$ depends only on N_{p}. [$\left.M^{\prime}: M\right] M^{\prime} \subset M$ implies $\left[M^{\prime}: M\right]^{2} \min \left(M^{\prime}\right) \geq \min (M)$ and hence
$\min \left(M^{\prime}\right) \geq\left[M^{\prime}: M\right]^{-2} \min (M)>c_{p}\left(N_{p}\right)^{-2} \min (M)$. Since $c_{p}\left(N_{p}\right)$ depends only on N_{p}, $\min \left(M^{\prime}\right)$ is still large if $\min (M)$ is sufficiently large. Next, we assume $\operatorname{rank}\left(J_{1}\right)=1$. If $b_{2}=\operatorname{ord}_{p} s\left(J_{2}\right) \leq n_{p}$ holds, then applying Lemma 5 to $M_{p, 1}:=$ $J_{1} \perp J_{2}$, we can get the similar result. So we may assume

$$
\operatorname{rank}\left(J_{1}\right)=1 \quad \text { and } \quad b_{2}>n_{p} .
$$

Now we take a basis $\left\{w_{1}, \ldots, w_{m}\right\}$ of M so that the matrix $\left(B\left(w_{i}, w_{j}\right)\right)$ satisfies the congruence condition in Theorem in $\S 1$, making it sufficiently close to bases of J_{1}, \ldots, J_{a}. Put $z_{1}:=w_{1}, z_{i}:=w_{i}-B\left(w_{1}, w_{i}\right) Q\left(w_{1}\right)^{-1} w_{1}(i \geq 2)$; then we have M_{p} $=\mathbf{Z}_{p}\left[w_{1}\right] \perp \mathbf{Z}_{p}\left[z_{2}, \ldots, z_{m}\right]$. Put $s:=\left[\left(\operatorname{ord}_{p} Q\left(w_{2}\right)-\operatorname{ord}_{p} Q\left(w_{1}\right)\right) / 2\right]$; by applying Theorem in $\S 1$ to the scaling of M_{p} by $p^{-\operatorname{ord}_{p} Q\left(w_{1}\right)}=p^{-t_{p}}$, there exists an element $w \in \mathbf{Z}\left[w_{2}, \ldots, w_{m}\right](\subset M)$ such that

$$
\begin{gathered}
\min \left(M+p^{-s} \mathbf{Z}[w]\right)>\min (M)^{1 / 8}, s\left(M+p^{-s} \mathbf{Z}[w]\right) \subset p^{t_{p}} \mathbf{Z} \\
\operatorname{ord}_{p}\left(d \mathbf{Z}\left[w_{1}, p^{-s} w\right]\right) \leq 2+t_{p}
\end{gathered}
$$

Now we put

$$
\tilde{M}:=M+p^{-s+n_{p}} \mathbf{Z}[w]
$$

Then we have

$$
\begin{gathered}
\tilde{M} \subset M+p^{-s} \mathbf{Z}[w], \\
\min (\tilde{M}) \geq \min \left(M+p^{-s} \mathbf{Z}[w]\right)>\min (M)^{1 / 8}, \\
\operatorname{ord}_{p} d \mathbf{Z}\left[w_{1}, p^{-s+n_{p}} w\right] \leq 2+t_{p}+2 n_{p} \leq 2+r_{p}\left(N_{p}\right)+2 n_{p},
\end{gathered}
$$

and $\mathbf{Z}\left[w_{1}, p^{-s+n_{p}} w\right] \subset \tilde{M}$ is clear. Hence if \tilde{M}_{p} is represented by N_{p}, there is a lattice $M^{\prime} \supset \tilde{M}$ by Lemma 5 such that M_{p}^{\prime} is primitively represented by N_{p} and [M^{\prime} $: \tilde{M}]$ is bounded by a number dependent only on N_{p}, and it completes the proof of the theorem. Since $B\left(w, w_{1}\right)$ is sufficiently close to 0 , we have

$$
\begin{aligned}
\tilde{M}_{p} & =\mathbf{Z}_{p}\left[z_{1}, \ldots, z_{m}\right]+p^{-s+n_{p}} \mathbf{Z}_{p}\left[w-B\left(w, w_{1}\right) Q\left(w_{1}\right)^{-1} w_{1}\right] \\
& =\mathbf{Z}_{p}\left[z_{1}\right] \perp\left(\mathbf{Z}_{p}\left[z_{2}, \ldots, z_{m}\right]+p^{-s+n_{p}} \mathbf{Z}_{p}\left[w-B\left(w, w_{1}\right) Q\left(w_{1}\right)^{-1} w_{1}\right]\right)
\end{aligned}
$$

Moreover we know that $\operatorname{ord}_{p} Q\left(z_{1}\right)=\operatorname{ord}_{p} Q\left(w_{1}\right)=t_{p}<r_{p}(N)$ and M_{p} is repre. sented by N_{p}, and hence there is an isometry σ from M_{p} to N_{p} so that $\sigma\left(z_{1}\right)=\varepsilon x$ for $\varepsilon \in \mathbf{Z}_{p}^{\times}$and $x \in \tilde{X}$.

Now $\operatorname{ord}_{p} s\left(w_{1}^{\perp}\right)=b_{2}>n_{p}$ implies $s\left(\mathbf{Z}_{p}\left[z_{2}, \ldots, z_{m}\right]\right) \subset p^{n_{p}} \mathbf{Z}_{p}$ and $s\left(M_{p}+\right.$ $\left.p^{-s} \mathbf{Z}_{p}[w]\right) \subset p^{t_{p}} \boldsymbol{Z}_{p}$ implies

$$
B\left(\mathbf{Z}_{p}\left[z_{2}, \ldots, z_{m}\right], p^{-s+n_{p}}\left(w-B\left(w, w_{1}\right) Q\left(w_{1}\right)^{-1} w_{1}\right)\right) \subset p^{n_{p}+t_{p}} \mathbf{Z}_{p}
$$

Finally we have $Q\left(p^{-s+n_{p}}\left(w-B\left(w, w_{1}\right) Q\left(w_{1}\right)^{-1} w_{1}\right)\right) \in p^{2 n_{p}+t_{p}} \mathbf{Z}_{p}$, since $B\left(w, w_{1}\right)$ is sufficiently close to 0 and $Q\left(p^{-s} w\right) \equiv 0 \bmod p^{t_{p}}$ and hence we have

$$
s\left(\mathbf{Z}_{p}\left[z_{2}, \ldots, z_{m}\right]+p^{-s+n_{p}} \mathbf{Z}_{p}\left[w-B\left(w, w_{1}\right) Q\left(w_{1}\right)^{-1} w_{1}\right]\right) \subset p^{n_{p}} \mathbf{Z}_{p}
$$

Hence z_{1}^{\perp} in \tilde{M}_{p} is represented by the maximal lattice $N_{x}\left(\subset x^{\perp}\right.$ in $\left.N_{p}\right)$ of $\operatorname{ord}_{p} n\left(N_{x}\right) \leq n_{p}$ because of $\mathbf{Q}_{p}\left(z_{1}^{\perp}\right.$ in $\left.\tilde{M}_{p}\right) \hookrightarrow \mathbf{Q}_{p} x^{\perp}$ and $\operatorname{ord}_{p} n\left(z_{1}^{\perp}\right.$ in $\left.\tilde{M}_{p}\right) \geq n_{p}$. Thus \tilde{M}_{p} is represented by N_{p}, and hence we have completed the proof of the theorem.

§3

Let us see the behavior of the expected main term of the number of isometries from M to N when $n=2 m+1$. The expected main term ($=$ Siegel's weighted sum) is given by

$$
c_{m}(d N)^{-m / 2}(d M)^{m / 2} \prod_{p} \alpha_{p}\left(M_{p}, N_{p}\right)
$$

where c_{m} is a number independent of M and N, and $\alpha_{p}\left(M_{p}, N_{p}\right)$ is the local density. If a prime p is odd and both M_{p} and N_{p} are unimodular, then we know

$$
\alpha_{p}\left(M_{p}, N_{p}\right)=\prod_{m+1 \leq e \leq 2 m}^{2 \mid e}\left(1-p^{-e}\right) \times \begin{cases}1+\chi_{p}(-d N d M) p^{-(m+1) / 2} & \text { if } 2 \times m \\ 1 & \text { if } 2 \mid m\end{cases}
$$

where χ_{p} is the quadratic residue symbol. If we assume that $m>1$ and M_{p} is primitively represented by N_{p} for every prime p, then

$$
\prod_{p} \alpha_{p}\left(M_{p}, N_{p}\right)>c(N) \prod_{p}\left(1+\varepsilon_{p} p^{-1}\right)
$$

where primes p in the left-hand side run all over the primes, and primes p in the right-hand side run over the set

$$
\left\{p \mid p \neq 2 \text { and } N_{p} \text { is unimodular but } M_{p} \text { is not so }\right\}
$$

and $\varepsilon_{p}=0$ or $= \pm 1$ and the number $c(N)$ is only dependent on $N . \varepsilon_{p}$ is defined as follows: When $M_{p} / p M_{p}$ is isometric to R of dimension 1 and the radical over $\mathbf{Z} / p \mathbf{Z}, \varepsilon_{p}$ is by definition $\chi_{p}\left(d R d\left(N_{p} / p N_{p}\right)\right)$, where d denotes the discriminant and χ_{p} is the quadratic residue symbol. Otherwise we put $\varepsilon_{p}=0$. The right-hand side can tend to the zero when M varies. Note that there is a constant c such that

$$
\prod_{p \mid t}\left(1-p^{-1}\right)>c(\log \log t)^{-1}
$$

If we do not assume the existence of the primitive representation of M_{p} by N_{p}, then $\alpha_{p}\left(M_{p}, N_{p}\right)$ can tend to the zero for a single prime p when M varies. It is known (Corollary on p. 448 in [3]) that there is a constant $c\left(M_{p}, N_{p}\right)$ so that

$$
\alpha_{p}\left(p^{t} M_{p}, N_{p}\right)>c\left(M_{p}, N_{p}\right) \begin{cases}1 & \text { if ind } W_{p}=m, \\ p^{-t} & \text { if ind } W_{p}=m-1 .\end{cases}
$$

In our case, i.e. rank $N_{p}=2 \operatorname{rank} M_{p}+1$, we have

$$
\alpha_{p}\left(M_{p}, N_{p}\right) \geq\left[M_{p}^{\prime}: M_{p}\right]^{-m} d_{p}\left(M_{p}^{\prime}, N_{p}\right)
$$

for any lattice M_{p}^{\prime} which contains M_{p} and is primitively represented by N_{p}, where $d_{p}\left(M_{p}^{\prime}, N_{p}\right)$ denotes the primitive density. We expect $\left[M_{p}^{\prime}: M_{p}\right] \ll p^{\left(a_{1}+a_{2}\right) / 2}$, where $p^{a_{i}}$ denotes the i-th elementary divisor of the matrix corresponding to M_{p}. When we are concerned with the asymptotic formula of the number of isometries from M to N, we need a stronger estimate for error terms than in the primitive representation case.

On the contrary, from the arithmetic view-point, the primitive representation problem APW $_{m, 2 m+1}$ yields automatically the representation problem $\mathrm{A}_{m, 2 m+1}$ by virtue of the validity of $\mathrm{R}_{m, 2 m+1}(N)$.

Appendix

Proposition. Let M be a lattice on a positive definite quadratic space over \mathbf{Q} of $\operatorname{dim} V=m$. Let $M_{i}(i=0, \ldots, r)$ be a lattice containing M on V, and let $x_{i} \in M_{i}$ give the minimum of M_{v}, i.e. $Q\left(x_{i}\right)=\min \left(M_{i}\right)$ and suppose that a module $K:=$ $\mathbf{Z}\left[x_{1}, \ldots, x_{r}\right]$ is of $\operatorname{rank} r$ and $x_{0} \in \mathbf{Q} K$. Then we have

$$
\begin{aligned}
\prod_{i=0}^{\gamma} \min \left(M_{i}\right) \geq & d\left(K+\mathbf{Z}\left[x_{0}\right]\right)\left[\mathbf{Z}\left[x_{0}\right] \cap M: \mathbf{Z}\left[x_{0}\right] \cap K \cap M\right]^{2} \\
& \times\left[\mathbf{Z}\left[x_{0}\right] \cap K: \mathbf{Z}\left[x_{0}\right] \cap K \cap M\right]^{-2} \min (M)
\end{aligned}
$$

Moreover the index $\left[\mathbf{Z}\left[x_{0}\right] \cap K: \mathbf{Z}\left[x_{0}\right] \cap K \cap M\right]$ divides $\left[M_{0} \cap\left(\sum_{i=1}^{r} M_{i}\right): M\right]$.

Proof. It is easy to see

$$
\begin{aligned}
\prod_{i=1}^{r} Q\left(x_{i}\right) & \geq \operatorname{det}\left(B\left(x_{i}, x_{i}\right)\right)_{i, j \geq 1}=d K \\
& =d\left(K+\mathbf{Z}\left[x_{0}\right]\right)\left[K+\mathbf{Z}\left[x_{0}\right]: K\right]^{2} .
\end{aligned}
$$

Moreover the index $\left[\mathbf{Z}\left[x_{0}\right]: \mathbf{Z}\left[x_{0}\right] \cap M\right] x_{0} \in M$ implies $\quad\left[\mathbf{Z}\left[x_{0}\right]: \boldsymbol{Z}\left[x_{0}\right] \cap\right.$ $M]^{2} Q\left(x_{0}\right) \geq \min (M)$. Hence we have

$$
\prod_{i=0}^{v} Q\left(x_{i}\right) \geq d\left(K+\mathbf{Z}\left[x_{0}\right]\right)\left[K+\mathbf{Z}\left[x_{0}\right]: K\right]^{2}\left[\mathbf{Z}\left[x_{0}\right]: \mathbf{Z}\left[x_{0}\right] \cap M\right]^{-2} \min (M) .
$$

Here we have

$$
\begin{aligned}
& {\left[K+\mathbf{Z}\left[x_{0}\right]: K\right]\left[\mathbf{Z}\left[x_{0}\right]: \mathbf{Z}\left[x_{0}\right] \cap M\right]^{-1} } \\
= & {\left[\mathbf{Z}\left[x_{0}\right]: \mathbf{Z}\left[x_{0}\right] \cap K\right]\left[\mathbf{Z}\left[x_{0}\right]: \mathbf{Z}\left[x_{0}\right] \cap M\right]^{-1} } \\
= & {\left[\mathbf{Z}\left[x_{0}\right] \cap M: \mathbf{Z}\left[x_{0}\right] \cap K \cap M\right]\left[\mathbf{Z}\left[x_{0}\right] \cap K: \mathbf{Z}\left[x_{0}\right] \cap K \cap M\right]^{-1}, }
\end{aligned}
$$

which implies the required inequality. Since the canonical mapping

$$
\left(\mathbf{Z}\left[x_{0}\right] \cap K\right) /\left(\mathbf{Z}\left[x_{0}\right] \cap K \cap M\right) \rightarrow\left(M_{0} \cap\left(\sum_{i=1}^{r} M_{i}\right)\right) / M
$$

is injective, it completes the proof.

Corollary. Let M be a lattice on a positive definite quadratic space V over \mathbf{Q} of $\operatorname{dim} V=m$. Let $M_{i}(i=0, \ldots, m)$ be a lattice containing M on V such that $s\left(M_{i}\right) \subset \mathbf{Z}$ for $i=0, \ldots, m$ and $\left[M_{t}: M\right]$ and $[M,: M]$ are relatively prime if $i \neq j$.
Then we have

$$
\min (M) \leq \prod_{i=0}^{m} \min \left(M_{i}\right)
$$

In particular, $\min \left(M_{i}\right) \geq(\min (M))^{1 /(m+1)}$ for some i.
Proof. Let $x_{i} \in M_{i}$ give the minimum and may assume that $K:=\mathbf{Z}\left[x_{1}, \ldots\right.$, x_{r}] is a module of rank r and $x_{0} \in \mathbf{Q} K$ without loss of generality. Then Proposition yields

$$
\begin{aligned}
\prod_{i=0}^{r} \min \left(M_{i}\right) \geq & d\left(K+\mathbf{Z}\left[x_{0}\right]\right)\left[\mathbf{Z}\left[x_{0}\right] \cap M: \mathbf{Z}\left[x_{0}\right] \cap K \cap M\right]^{2} \\
& \times\left[\mathbf{Z}\left[x_{0}\right] \cap K: \mathbf{Z}\left[x_{0}\right] \cap K \cap M\right]^{-2} \min (M) \\
\geq & d\left(K+\mathbf{Z}\left[x_{0}\right]\right)\left[\mathbf{Z}\left[x_{0}\right] \cap K: \mathbf{Z}\left[x_{0}\right] \cap K \cap M\right]^{-2} \min (M) .
\end{aligned}
$$

On the other hand, the assumption implies $s\left(K+\mathbf{Z}\left[x_{0}\right]\right) \subset s\left(\sum_{i=0}^{m} M_{i}\right) \subset \mathbf{Z}$ and hence $d\left(K+\mathbf{Z}\left[x_{0}\right]\right) \geq 1$. Moreover $M_{0} \cap\left(\sum_{i=1}^{m} M_{i}\right)=M$ implies $\left[\mathbf{Z}\left[x_{0}\right] \cap K\right.$: $\left.\mathbf{Z}\left[x_{0}\right] \cap K \cap M\right]=1$, which completes the proof.

Remark. In the inequality, we need $m+1$ lattices in general. For example, let $p_{1}<\cdots<p_{m}$ be odd different primes, and $M=\mathbf{Z}\left[v_{1}, \ldots, v_{m}\right]$ with $\left(B\left(v_{i}, v_{j}\right)\right)=\operatorname{diag}\left(p_{1}^{2}, \ldots, p_{m}^{2}\right)$. We put

$$
M_{i}=\mathbf{Z}\left[v_{1}, \ldots, v_{i-1}, p_{i}^{-1} v_{i}, v_{t+1}, \ldots, v_{m}\right]
$$

Then $\left[M_{i}: M\right]=p_{i}$ and $\min \left(M_{i}\right)=1$ are clear and $\min (M) \leq \prod_{i=1}^{m} \min \left(M_{i}\right)$ does not hold.

REFERENCES

[1] J. S. Hsia, Y. Kitaoka and M. Kneser, Representations of positive definite quadratic forms, J. reine angew. Math., 301 (1978), 132-141.
[2] Y. Kitaoka, "Lectures on Siegel modular forms and representation by quadratic forms," Springer-Verlag, Heidelberg, 1986.
[3] -, Local densities of quadratic forms, in "Investigations in Number theory (Advanced Studies in Pure Math.)," 1987 pp. 433-460.
[4] -, Some remarks on representations of positive definite quadratic forms, Nagoya Math. J., 115 (1989), 23-41.
[5] -., "Arithmetic of quadratic forms," Cambridge University Press, 1993.
[6] O. T. O'Meara, "Introduction to quadratic forms," Springer-Verlag, 1963.
Department of Mathematics
Nagoya University
Chikusa-ku Nagoya 464-01
Japan

[^0]: Received June 15, 1993.

