P-HARMONIC DIMENSIONS ON ENDS

MICHIHIKO KAWAMURA AND SHIGEO SEGAWA

Dedicated to Professor Masanori Kishi on his sixtieth birthday

Consider an end Ω in the sense of Heins (cf. Heins [3]): Ω is a relatively non-compact subregion of an open Riemann surface such that the relative boundary $\partial\Omega$ consists of finitely many analytic Jordan closed curves, there exist no non-constant bounded harmonic functions with vanishing boundary values on $\partial\Omega$ and Ω has a single ideal boundary component. A density P = P(z) dxdy (z = x + iy) is a 2-form on $\Omega \cup \partial\Omega$ with nonnegative locally Hölder continuous coefficient P(z). Denote by $\mathcal{P}_P(\Omega)$ the class of nonnegative solutions of the equation

(1)
$$L_P u \equiv \Delta u - P u = 0$$
 (i.e. $d * du - uP = 0$)

on Ω with vanishing boundary values on $\partial\Omega$. The P-harmonic dimension of Ω (or the elliptic dimension of P on Ω (cf. e.g. Nakai [8])), dim $\mathcal{P}_P(\Omega)$ in notation, is defined to be the 'dimension' of the half module $\mathcal{P}_P(\Omega)$. The P-harmonic dimension dim $\mathcal{P}_0(\Omega)$ for the particular $P\equiv 0$ is called simply the harmonic dimension of Ω (cf. Heins [3]).

We are particularly interested in the following result by Heins [3]:

THEOREM A. Let $\{A_n\}$ be a sequence of mutually disjoint annuli in Ω satisfying that A_{n+1} separates A_n from the ideal boundary of Ω for every n. Suppose that the sum of moduli of A_n diverges. Then the harmonic dimension of Ω is one.

A density P is said to be *finite* if $\int \int_{\mathcal{Q}} P dx dy < \infty$. The above theorem has been generalized for finite densities P by Nakai [8] and Kawamura [4] as follows:

THEOREM B. Let P be finite on Ω and $\{A_n\}$ be the same as in Theorem A. Then

Received June 17, 1992.

This work was partially supported by Grant-in Aid for Scientific Research, No. 03640042 and 04640145, Japan Ministry of Education, Science and Culture.

the P-harmonic dimension of Ω is one.

The following is another generalization of Theorem A (cf. Segawa [9]):

Theorem C. Let $\{A_n\}$ be a sequence of mutually disjoint sets in Ω such that each A_n consists of at most N mutually disjoint annuli for a positive integer N and A_{n+1} separates A_n from the ideal boundary of Ω for every n. Suppose that the sum of moduli of A_n diverges. Then the harmonic dimension of Ω is at most N.

The main purpose of this paper is to unify Theorems B and C to a form including both Theorems B and C as special cases. The main theorem is as follows:

MAIN THEOREM. Let P be finite on Ω and $\{A_n\}$ be the same as in Theorem C. Then the P-harmonic dimension of Ω is at most N.

We shall prove a bit more in Theorem 6. In Section 1, we prove a duality relation for P-harmonic dimensions (cf. Theorem 2), which plays a fundamental role for the proof of Theorem 6.

§1. Duality relation

1.1. A relatively noncompact subregion Ω of an open Riemann surface is referred to as a *general end* if the relative boundary $\partial \Omega$ of Ω consists of a finitely many disjoint analytic Jordan closed curves. In this section we assume that Ω is a general end. We denote by β the ideal boundary of Ω . Without loss of generality, we may assume that there exist an open Riemann surface R and its exhaustion $\{R_n\}_{n=0}^{\infty}$ with $\Omega = R - \bar{R}_0$. Let $e_p^{(n)}$ be the solution of the equation (1) on $\Omega \cap R_n = R_n - \bar{R}_0$ with boundary values 1 on $\partial \Omega$ and 0 on ∂R_n . Since $\{e_p^{(n)}\}$ is increasing and dominated by the constant function 1, the limit $e_p = \lim_{n \to \infty} e_p^{(n)}$ exists. Note that e_p is the solution of (1) on Ω with boundary values 1 on $\partial \Omega$ and '0 on the ideal boundary β '. The function e_p is referred to as the P-unit on Ω for P (cf. Nakai [7]). Obviously e_p does not depend on a choice of $\{R_n\}_{n=0}^{\infty}$. We consider the associated operator \hat{L}_p with L_p which is introduced by Nakai (cf. [7], [8]):

(2)
$$\hat{L}_{P} u \equiv \Delta u + 2\nabla (\log e_{P}) \cdot \nabla u$$

where e_P is the P-unit on Ω . Denote by $B_P(\Omega)$ the class of bounded solutions of the equation

$$\hat{L}_p u = 0$$

on Ω with continuous boundary values on $\partial\Omega$. Note that $1 \in B_P(\Omega)$. To begin with we show the following

LEMMA 1. Suppose that u belongs to $B_p(\Omega)$. Then u satisfies the following inequalities:

$$\min_{p \in \partial \Omega} u(p) \leq \inf_{p \in \Omega} u(p) \leq \sup_{p \in \Omega} u(p) \leq \max_{p \in \partial \Omega} u(p).$$

Proof. We have only to show the last inequality since -u also belongs to $B_P(\Omega)$. By adding a constant we may assume $u \geq 0$. Set $M = \max_{p \in \partial \Omega} u(p)$. Let v_n be the solution of (1) on $\Omega \cap R_n$ with boundary values u on $\partial \Omega$ and 0 on ∂R_n . Since $\{v_n\}$ is increasing and $v_n \leq Me_P$ $(n=1,2,\ldots)$, $v=\lim_{n\to\infty} v_n$ exists and is a solution of (1). It is clear that $v/e_P \leq M$ on Ω . Thus we complete the proof if we show that $u=v/e_P$, or $ue_P=v$.

Note that $L_P(ue_P)=0$ and $0\leq v\leq ue_P$ on Ω . There exists a constant C>0 such that $0\leq u\leq C$, i.e. $0\leq ue_P\leq Ce_P$. Let w_n be the solution of (1) on $\Omega\cap R_n$ with boundary values 0 on $\partial\Omega$ and e_P on ∂R_n . Then $w_n=e_P-e_P^{(n)}$. By the minimum principle, $0\leq ue_P-v\leq Cw_n$ on $\Omega\cap R_n$. Since $\lim_{n\to\infty}e_P^{(n)}=e_P$, $\lim_{n\to\infty}w_n=0$ and therefore $ue_P=v$.

1.2. Let $B_P^0(\Omega)$ be the subspace of $B_P(\Omega)$ which consists of functions with the limit 0 at β :

$$B_P^0(\Omega) = \{ u \in B_P(\Omega) : \lim_{p \to \beta} u(p) = 0 \}.$$

Next consider the quotient space

$$\mathcal{B}_{P}(\Omega) = B_{P}(\Omega) / B_{P}^{0}(\Omega)$$

and denote by $\dim \mathcal{B}_{p}(\Omega)$ the dimension of the linear space $\mathcal{B}_{p}(\Omega)$. Our first achievement of this paper is the following duality relation for $\mathcal{P}_{p}(\Omega)$ and $\mathcal{B}_{p}(\Omega)$ (cf. Segawa [9]):

THEOREM 2. If either $\mathcal{P}_p(\Omega)$ or $\mathcal{B}_p(\Omega)$ is of finite dimension, then the P-harmonic dimension dim $\mathcal{P}_p(\Omega)$ coincides with dim $\mathcal{B}_p(\Omega)$:

$$\dim \mathcal{P}_{P}(\Omega) = \dim \mathcal{B}_{P}(\Omega)$$
.

The proof of the above theorem is given in no.1.4. By the definition of

 $\mathcal{B}_{P}(\Omega)$ and the fact $1 \in \mathcal{B}_{P}(\Omega)$, dim $\mathcal{B}_{P}(\Omega) = 1$ is equivalent that $\lim_{p \to \beta} u(p)$ exists for every u in $B_{P}(\Omega)$. Therefore Theorem 2 implies the following, which was originally obtained by Hayashi [3] (cf. Nakai [7]):

COROLLARY 3. The P-harmonic dimension dim $\mathcal{P}_P(\Omega)$ is one if and only if there exists $\lim_{p\to\beta} u(p)$ for every u in $B_P(\Omega)$.

1.3. Consider the linear space & generated by $\mathcal{P}_{P}(\Omega)$, i.e.

$$\mathscr{E} = \{h_1 - h_2 : h_1, h_2 \in \mathscr{P}_{\mathcal{P}}(\Omega)\},\$$

and the bilinear functional

$$(u, h) \mapsto \langle u, h \rangle = -\int_{\partial \Omega} u * dh = \int_{\partial \Omega} u \frac{\partial h}{\partial n} ds$$

defined on $B_p(\Omega) \times \mathscr{E}$ where $\partial/\partial n$ is the inner normal derivative. Let $g_n(\cdot, p)$ be the Green's function of (1) on $\Omega \cap R_n$ with pole at p for each $n \in \mathbb{N}$, the set of positive integers. Note that $g_n(\cdot, p)$ converges to the Green's function $g(\cdot, p)$ of (1) on Ω with pole at p uniformly on each compact subset in $\Omega \cup \partial \Omega$. Set

$$Q = \{ h \in \mathcal{P}_{P}(\Omega) : \langle 1, h \rangle = 1 \}.$$

We maintain

LEMMA 4. If $u \in B_p(\Omega)$, then

$$\limsup_{p \to \beta} u(p) = \sup \langle u, Q \rangle$$

and

$$\liminf_{p \to \beta} u(p) = \inf \langle u, Q \rangle$$

where $\langle u, Q \rangle = \{\langle u, h \rangle : h \in Q\}.$

Proof. We first show that

(4)
$$u(p)e_p(p) = -\frac{1}{2\pi} \int_{\partial \Omega} u * dg(\cdot, p) \quad (p \in \Omega)$$

for every $u \in B_P(\Omega)$. Suppose that $p \in \Omega \cap R_n$. Let u_n be the solution of (3) on $\Omega \cap R_n$ with boundary values u on $\partial \Omega$ and 0 on ∂R_n . By Lemma 1, u_n converges to u uniformly on each compact subset in $\Omega \cup \partial \Omega$. Observe that $u_n e_P$ is the solu-

tion of (1) on $\Omega \cap R_n$ with boundary values u on $\partial \Omega$ and 0 on ∂R_n . Hence the Green's formula yields that $u_n(p)e_p(p)=-(1/2\pi)\int_{\partial\Omega}u*dg_n(\cdot,p)$. By letting

 $n \to \infty$, we have (4).

Take an arbitrary cluster value a of u at β and a sequence $\{p_n\}$ with $\lim_{n\to\infty}p_n=\beta$ and $\lim_{n\to\infty}u(p_n)=a$. Applying (4) to $1\in B_p(\Omega)$, we see that $e_p(p_n)=-(1/2\pi)\int_{\partial\Omega}u*dg(\cdot,p_n)$, i.e.

$$-\int_{\partial\Omega}*d\frac{g(\cdot,p_n)}{2\pi e_p(p_n)}=1.$$

From this it follows that a suitable subsequence of $\{(1/2\pi) g(\cdot, p_n)/e_P(p_n)\}$ converges to a function G, which belongs to Q, uniformly on each compact subset of $\Omega \cup \partial \Omega$. By (4) we also have

$$u(p_n) = -\int_{\partial\Omega} u * d \frac{g(\cdot, p_n)}{2\pi e_p(p_n)}.$$

Therefore we conclude that

$$a = -\int_{\partial\Omega} u * dG,$$

i.e. $a \in \langle u, Q \rangle$, which implies

$$\inf \langle u, Q \rangle \leq \liminf_{\substack{p \to \beta}} u(p) \leq \limsup_{\substack{p \to \beta}} u(p) \leq \sup \langle u, Q \rangle.$$

Next we show that

(5)
$$\liminf_{p \to \beta} u(p) \le \inf \langle u, Q \rangle \le \sup \langle u, Q \rangle \le \limsup_{p \to \beta} u(p).$$

Suppose that $h \in Q$ and $u \in B_P(\Omega)$. Let h_{nm} be the solution of (1) on $R_m - \bar{R}_n$ (m > n) with boundary values h on ∂R_n and 0 on ∂R_m . The Green's formula yields that

$$\langle u, h \rangle = -\int_{\partial \Omega} u * dh = -\int_{\partial \Omega} u_m e_P * dh = \int_{\partial R_n} u_m e_P * dh - h * d(u_m e_P)$$
$$= \int_{\partial R_n} u_m e_P * dh - h_{nm} * d(u_m e_P)$$

and

$$\int_{\partial R_n} u_m e_P * dh_{nm} - h_{nm} * d(u_m e_P) = \int_{\partial R_m} u_m e_P * dh_{nm} - h_{nm} * d(u_m e_P) = 0$$

where u_m is defined at the beginning of the proof. Therefore, by letting $m \to \infty$, we have

(6)
$$\langle u, h \rangle = \int_{\partial R_n} u e_p * d(h - h_n)$$

where $h_n = \lim_{m \to \infty} h_{nm}$. Applying (6) to u = 1, we also have

(7)
$$\int_{\partial R_n} e_P * d(h - h_n) = \langle 1, h \rangle = - \int_{\partial \Omega} * dh = 1.$$

Hence (6) and (7) imply that

$$\inf_{p \in \partial R_n} u(p) \leq \inf \langle u, Q \rangle \leq \sup \langle u, Q \rangle \leq \sup_{p \in \partial R_n} u(p).$$

Thus (5) follows from the above.

The proof is herewith complete.

1.4. Proof of Theorem 2. By definition, the dimension $\dim \mathcal{E}$ of the linear space \mathcal{E} coincides with $\dim \mathcal{P}_P(\Omega)$.

Consider the \mathscr{E} -kernel ($B_{\mathcal{P}}(\Omega)$ -kernel resp.)

$$K_1 = \bigcap_{h \in \mathcal{B}} \{ u \in B_p(\Omega) : \langle u, h \rangle = 0 \}$$

$$(K_2 = \bigcap_{u \in B_p(\Omega)} \{ h \in \mathscr{E} : \langle u, h \rangle = 0 \} \text{ resp.})$$

of the bilinear functional $(u, h) \mapsto \langle u, h \rangle$. By virtue of Lemma 4, it is easily seen that $K_1 = B_P^0(\Omega)$, and hence $\mathcal{B}_P(\Omega) = B_P(\Omega)/K_1$. Since $\{u \mid_{\partial\Omega} : u \in B_P(\Omega)\} = C(\partial\Omega)$, it follows from $h \in K_2$ that $\partial h/\partial n \equiv 0$ on $\partial\Omega$. Combining this with the fact $h \equiv 0$ on $\partial\Omega$, we have $K_2 = \{0\}$ (cf. e.g. Miranda [6]). Therefore we can consider $\mathcal{B}_P(\Omega) = B_P(\Omega)/K_1$ ($\mathcal{E} = \mathcal{E}/K_2$ resp.) to be a subspace of \mathcal{E}^* ($\mathcal{B}_P(\Omega)^*$ resp.) where we denote by X^* the conjugate space of a linear space X. In particular we have

$$\dim \mathcal{B}_{P}(\Omega) \leq \dim \mathcal{E}^{*}$$

and

$$\dim \mathscr{E} \leq \dim \mathscr{B}_{P}(\Omega)^{*}.$$

Hence we have

$$\dim \mathcal{B}_{P}(\Omega) = \dim \mathcal{E} = \dim \mathcal{P}_{P}(\Omega),$$

since linear spaces of finite dimension are isomorphic to their conjugate spaces.

§2. Proof of Main Theorem

2.1. In this section, we give a proof of Main Theorem in terms of extremal length.

Hereafter we assume that Ω is a *parabolic* end: i.e. there exist no non-constant bounded harmonic functions on Ω with vanishing boundary values on $\partial\Omega$. The following was proved by Nakai [8] essentially:

PROPOSITION 5. If Ω is parabolic and P is finite on Ω , then every bounded solution of (3) on Ω has finite Dirichlet integral on $\Omega - R_1$.

For the proof we refer to Nakai [8] and Kawamura [4].

2.2. We denote by $\lambda(\Gamma)$ the extremal length of a curve family Γ in Ω . For the definition and details of extremal length we refer to e.g. Ahlfors and Sario [1]. For every positive integer n, let $\Gamma_n(\Omega)$ be the totality of 1-cycles γ in Ω such that γ consists of at most n closed curves and separates $\partial\Omega$ from the ideal boundary β . The following is the main achievement of this paper (cf. Shiga [10]):

THEOREM 6. Suppose that P is finite on Ω . If the extremal length $\lambda(\Gamma_N(\Omega))$ is zero for an $N \in \mathbb{N}$, then the P-harmonic dimension dim $\mathcal{P}_P(\Omega)$ is at most N.

Proof. Set $\Gamma_1 = \Gamma_1(\Omega)$ and $\Gamma_n = \Gamma_n(\Omega) - \Gamma_{n-1}(\Omega)$ $(n = 2,3,\cdots)$. Since $\Gamma_N(\Omega) = \bigcup_{n=1}^N \Gamma_n$, there exists a $\nu \in \mathbb{N}$ such that $\nu \leq N$ and $\lambda(\Gamma_\nu) = 0$. We shall show that $\dim \mathcal{P}_P(\Omega)$ is at most ν . Take arbitrary $\nu + 1$ functions $u_1, \dots, u_{\nu+1}$ in $B_P(\Omega)$. By virtue of Theorem 2, we have only to show that a nonzero linear combination $c_1u_1 + \dots + c_{\nu+1}u_{\nu+1}$ of $u_1, \dots, u_{\nu+1}$ belongs to $B_P^0(\Omega)$.

Consider the 'density' ρ on Ω such that

$$\rho \mid dz \mid = \begin{cases} \sum_{i=1}^{\nu+1} |\nabla u_i| \mid dz \mid & \text{on } \Omega - R_1 \\ 0 & \text{on } \Omega \cap R_1. \end{cases}$$

By Schwarz' inequality and Proposition 5, we have

(8)
$$\int \int_{\Omega} \rho^2 dx dy \leq (\nu + 1) \sum_{i=1}^{\nu+1} D_{\Omega - R_1}(u_i) < \infty,$$

where $D_{\mathcal{Q}-R_1}(u_i)=\int\int_{\mathcal{Q}-R_1}|\nabla u_i|^2\,dxdy$. Set $\Gamma_{\nu}^m=\{\gamma\in\Gamma_{\nu}\colon\gamma\cap R_m=\phi\}$. By means of $\lambda(\Gamma_{\nu})=0$, we have $\lambda(\Gamma_{\nu}^m)=0$ for every $m\in\mathbf{N}$ (cf. Kusunoki [5]). Therefore, because of (8), we can find a sequence $\{\gamma_n\}$ in Γ_{ν} such that γ_n converges to the ideal boundary β and $\lim_{n\to\infty}\int_{\gamma_n}\rho\,|\,dz\,|=0$. In particular, we obtain

(9)
$$\lim_{n\to\infty} \int_{\gamma_n} |\nabla u_i| |dz| = 0 \quad (i = 1, \dots, \nu + 1).$$

By definition, every γ_n consists of exactly ν closed curves $\gamma_{n_1}, \dots, \gamma_{n_{\nu}}$. Accordingly (9) implies that there exist a subsequence $\{\gamma_{n_k}\}$ of $\{\gamma_n\}$ and vectors $\mathbf{v}_i = (a_{i1}, \dots, a_{i\nu}) \in \mathbf{R}^{\nu}$ $(i = 1, \dots, \nu + 1)$ such that

(10)
$$\lim_{k \to \infty} \max_{p \in \tau_{n_{k}j}} |u_{i}(p) - a_{ij}| = 0 \quad (j = 1, \dots, \nu).$$

Evidently we can find $(c_1, \dots, c_{\nu+1}) \in \mathbf{R}^{\nu+1} - \{(0, \dots, 0)\}$ such that $\sum_{i=1}^{\nu+1} c_i \mathbf{v}_i = (0, \dots, 0)$. Therefore, (10) yields that

(11)
$$\lim_{k \to \infty} \max_{p \in \tau_{n_k}} |\sum_{i=1}^{\nu+1} c_i u_i(p)| = 0.$$

Since each γ_n separates $\partial\Omega$ from the ideal boundary β , it follows from Lemma 1 and (11) that $\lim_{p\to\beta}\sum_{i=1}^{\nu+1}c_iu_i=0$. This completes the proof.

2.3. Proof of Main Theorem. Main Theorem is easily verified from Theorem 6 as follows. Assume that $\{A_n\}$ is the same as in Theorem C. Set $A_n = \bigcup_{j=1}^{\nu(n)} A_{nj}$ where A_{nj} 's are mutually disjoint annuli and $\nu(n) \leq N$. Let Λ_n be the totality of 1-cycles γ in A_n such that $\gamma = \bigcup_{j=1}^{\nu(n)} \gamma_{nj}$ where each γ_{nj} is a closed curve in A_{nj} and separates two boundary components of A_{nj} . Set $\Gamma = \bigcup_{n=1}^{\infty} \Lambda_n$. Note that $\Gamma \subset \Gamma_N(\Omega)$. By virtue of Theorem 6, we have only to show that $\lambda(\Gamma) = 0$.

It is well-known that $\lambda(\Lambda_n) = 2\pi/\operatorname{mod} A_n$, where $\operatorname{mod} A_n$ is the modulus of A_n (cf. Ahlfors and Sario [1]). Since A_n 's are mutually disjoint, we see $\lambda(\Gamma)^{-1} \geq \sum_{n=1}^{\infty} \lambda(\Lambda_n)^{-1}$. Hence, from the assumption $\sum_{n=1}^{\infty} \operatorname{mod} A_n = \infty$ it follows that $\lambda(\Gamma) = 0$.

REFERENCES

- [1] L. Ahlfors and L. Sario, Riemann Surfaces, Princeton, 1960.
- [2] K. Hayashi, Les solutions positives de l'equation $\Delta u = Pu$ sur une surface de Riemann, Kōdai Math. Sem. Rep., 13 (1961), 20-24.
- [3] M. Heins, Riemann surfaces of infinite genus, Ann. of Math., 55(1952), 296-317.
- [4] M. Kawamura, Picard principle for finite densities on Riemann surfaces, Nagoya Math. J., **67** (1977), 35-40.
- [5] Y. Kusunoki, On Riemann's period relations on open Riemann surfaces, Mem. Coll. Sci. Kyoto Univ. Ser. A Math., 30 (1956), 1-22.
- [6] C. Miranda, Partial Differential Equations of Elliptic Type, Springer, 1970.
- [7] M. Nakai, Picard principle and Riemann theorem, Tôhoku Math. J., 28 (1976), 277-292.
- [8] M. Nakai, Picard principle for finite densities, Nagoya Math. J., 70 (1978), 7-24.
- [9] S. Segawa, A duality relation for harmonic dimensions and its applications, Kodai Math., J., 4 (1981), 508-514.
- [10] H. Shiga, On harmonic dimensions and bilinear relations on open Riemann surfaces, J. Math. Kyoto Univ., 21 (1981), 861-879.

M. Kawamura Department of Mathematics Faculty of Education Gifu University Yanagido, Gifu 501-11 Japan

S. Segawa Department of Mathematics Daido Institute of Technology Daido, Minami, Nagoya 457 Japan