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CENTROAFFINE IMMERSIONS OF CODIMENSION TWO

AND PROJECTIVE HYPERSURFACE THEORY

KATSUMI NOMIZU* AND TAKESHI SASAKI * *

Affine differential geometry developed by Blaschke and his school [B] has

been reorganized in the last several years as geometry of affine immersions. An

immersion /of an ^-dimensional manifold M with an affine connection V into an

(n + 1)-dimensional manifold M with an affine connection V is called an affine

immersion if there is a transversal vector field ξ such that Vxf*(Y) =

f*{VxY) + h(X,Y)ξ holds for any vector fields X, Y on Mn. When / : Mn-+

R is a nondegenerate hypersurface, there is a uniquely determined transversal

vector field ξ, called the affine normal field, an essential starting point in classical

affine differential geometry. The new point of view allows us to relax the non-

degeneracy condition and gives us more freedom in choosing ξ; what this new

viewpoint can accomplish in relating affine differential geometry to Riemannian

geometry and projective differential geometry can be seen from [NP1], [NP2], [NS]

and others. For the definitions and basic formulas on affine immersions, centroaf-

fine immersions, conormal (or dual) maps, projective flatness, etc., the reader is re-

ferred to [NP1]. These notions will be generalized to codimension 2 in this paper.

In this paper we present a systematic study of centroaffine immersions of an

w-manifold into Rw + — {0}. Such immersions were studied in [W] by adhering to

the original features (including apolarity and local convexity assumption) of the

Blaschke theory as much as possible. Our approach is more general in that we fol-

low the spirit of the recent development mentioned above. In particular, our work

is motivated by, and applied to, projective differential geometry.

The paper is organized as follows. In Section 1 we develop the basic machin-

ery for centroaffine immersions of codimension 2, obtain two fundamental forms h

and T and two cubic forms C and <5. The vanishing of T or h is given a geometric
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interpretation (Propositions 1.3, 1.4, 1.5). In Section 2, we consider lifts/ :M—>

Rw — {0} of a given immersion F : M—»P and find projective invariants

through such affine models/ In Section 3, we define the dual mapping of F : M—•

P by means of a lift/and prove a result about selfdual immersions (Proposition

3.5). In Section 4, we study projective flatness and umbilicity for/ : M~^Rn+ —

{0} (Theorem 4.1) and its projective interpretation (Theorem 4.3). In Section 5, we

prove a number of uniqueness theorems for centroaffine immersions M~• Rw + —

{0} as well as for immersions M—> P w , among which Theorems 5.7, 5.8 and 5.9

are the main results. In Section 6, we show that / : M—• Rn+ — {0} for which

Vh = 0 and rank h > 2 lies on a quadratic cone (Theorem 6.3)—a generalization

of the classical theorem of Pick and Berwald for affine hypersurfaces. In Section

7, we draw, under the assumption VT — 0, another geometric conclusion that M

lies on a quadratic hypersurface or an affine hyperplane (Theorem 7.3).

§1. Centroaffine geometry of affine submanifolds of codimension two

We use the following notation throughout this paper. By D we mean the stan-

dard flat affine connection of R and by X] the radial vector field on R —

{0}: 77 = Σ?=! x%d/dx\ where {x ,. . . ,χn+ } is an affine coordinate system. The

letter ω denotes a parallel volume form of R that is fixed once and for all. Let

M be an w-manifold and / a n immersion of M into R — {0}. Assume / is trans-

versal to η. We choose, at least locally, a vector field £ along/ such that, at each

point x ^ M, the tangent space Tf{x)R
n is decomposed as the direct sum of the

span R{η}, the tangent space f*TxM, and the span R{ξ}. According to this decom-

position, the vectors Dxη, Dxf*Y, and Dxξ, where X, F a r e vector fields on M,

have the following expressions:

Dxη=f*X,
(1.1) DXUY= T(X,Y)η +U(VXY) + h(X,Y)ξ,

Dxξ = p(X)η -U(SX) + τ(X)ξ.

An n-ίorm θ is defined by

(1.2) θ(Xlf...fXn) = ω(f*Xv...,fJCn, ξ, η).

Thus we have several objects associated with ξ. They have the following prop-

erties.

PROPOSITION 1.1.

(1) V is a torsion-free affine connection on M.
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(2) h and T are symmetric tensors.

(3) Vxθ = τ(X)θ.

In the following, we occasionally identify a tangent vector (field) X with its

image f*X if there is no danger of confusion. Let R and R denote the curvature

tensors of the connection D and the connection V, respectively. Using (1.1), we

get

DXDYZ = DX(T(Y, Z)η + VYZ + h(Y, Z)ξ)
= X(T(Y,Z))η + T(Y,Z)X

+ T(X, VγZ)η + VXVYZ + h(X, VγZ)ξ

+ X(h(X, Z))ξ + h(Y, Z) (p(X)η - SX + τ(X)ξ)

and

DΆY]Z = T([X,Y], Z)η + Vιx,YiZ + h([X,Y), Z)ξ.

Hence we get

RE\X,Y)Z = R(X,Y)Z + T(Y, Z)X- T(X, Z)Y- h(Y, Z)SX + h(X, Z)SY
+ mX,VγZ) - T(Y,VXZ) +X(T(Y,Z)) - Y(T(X,Z))

- T([X,Y]Z) + p(X)h(Y,Z) - p(Y)h(X,Z)}η
+ {h(X, VYZ) - h(Y, VXZ) + X(h(Y, Z)) - Y(h(X, Z))

- h([X,Y]Z) + τ(X)h(Y,Z) - τ(Y)h{X,Z))ξ
= R(X,Y)Z+ T(Y,Z)X~ T(X, Z)Y - h(Y, Z)SX + h(X, Z)SY

+ {{VXT){Y,Z) - (VYT)(X,Z) +p(X)h(Y,Z)-p(Y)h(X,Z)}η
+ {(Vxh)(Y,Z) - (Vγh)(X,Z) + τ(X)h(Y,Z) - τ(Y)h(X,Z)}ξ.

From the equations

DxDγξ = Dx(p(Y)η -SY+ τ(Y)ξ)
= X(p(Y))η + p(Y)X ~ iT(X, SY)η + VX(SY) + h(X, SY)ξ}

+ X(τ(Y))ξ + τ(Y){p(X)η - SX+τ(X)ξ},
DιXιY]ξ = p([X,Y])η - SίX,Y] + τ([X,Y])ξ,

we get

RD(X,Y)ξ = p(Y)X - p(X)Y- VX(SY) + VY(SX) - τ(Y)SX + τ(X)SY
+ S[X,Y] + {X(p(Y)) - Y(p(X)) - T(X, SY) + T(Y, SX)

+ τ(Y)p(X) - τ(X)p(Y) - p([X,Y])}η
+ {h(Y,SX) ~ h(X,SY) +X(τ(Y)) - Y(τ(X)) - τ([X,Y]))ξ

= p(Y)X-p(X)Y- (VXS)(Y) + (VXS)(X) -τ(Y)SX+τ(X)SY
+ {(VxP)(Y) - (Vγp)(X) - T(X, SY) + T(Y, SX)
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+ τ(Y)p(X) - τ(X)p(Y)}η

+ {h(Y, SX) - h(X, SY) + (Vxτ)(Y) - (Vγτ)(X)}ξ.

Since the connection D is flat, we have equations of Gauss (1.3), of Codazzi (1.4),

(1.5), (1.6), and of Ricci (1.7), (1.8):

(1.3) R(X,Y)Z = h{Y, Z)SX - h{X, Z)SY- T(Y,Z)X+ T(X,Z)Y

(1.4) {VXT){Y,Z) + p{X)h{Y,Z) = (VYT)(X,Z) + p(Y)h(X,Z)

(1.5) (Vxh)(Y,Z) + τ(X)h(Y,Z) = (Vγh)(X,Z) + τ(Y)h(X,Z)

(1.6) (VXS)(Y) - τ(X)SY+ p(X)Y = (VYS)(X) - τ(Y)SX + p(Y)X

(1.7) TiX, SY) - T(Y, SX) = (Vxp)(Y) - (Vγp)(X) + τ(Y)p(X) - τ(X)p(Y)

(1.8) h(X,SY) - h(Y,SX) = (Vxτ)(Y) - (Vγτ)(X) = dτ(X,Y).

From (1.3) we have

(1.9) Ric(F,Z) =trS h(Y,Z) - h(SY,Z) - (n - 1)T(Y,Z).

At this point we present the following basic lemma that will be repeatedly

used.

LEMMA 1.2. Let V be a vector space of finite dimension. Suppose σ is a linear

form and h a symmetric bilinear form on V such that

σ(X)h(Y, Z) = σ(Y)h(X, Z) for all X,Y,Z^ V.

If rank h > 2, then σ = 0.

We now study what the vanishing of T and h means for a given immersion / :

PROPOSITION 1.3. If T vanishes and rank h > 2, then the image of the immersion

is contained in an affine hyperplane which does not go through 0 and the vector field ξ

is tangent to this hyperplane.

Proof If T= 0, then (1.4) says p(X)h(Y", Z) = p(Y)h(Xy Z). By Lemma

1.2, p = 0 and, therefore, the distribution spanned by f^iTjM) and ξx, x G M, is

parallel relative to D this implies the result.

The immersion / considered to be a mapping into this hyperplane is an affine

immersion of M as a hypersurface, relative to the induced flat connection Dr on

the hyperplane, / satisfies

)ξ and Dg - - f*(SX) + τ(X)ξ.
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Figure 1 (Prop. 1.3) Figure 2 (Prop. 1.4)

PROPOSITION 1.4. If h vanishes and n > 2, then the image of the immersion is

contained in a hyperplane through 0.

Proof If h = 0, then the distribution spanned by f*{TxM) and f}f{x), x G M,

is parallel relative to D.

In the situation of this proposition, the immersion / defines a centroaffine

hypersurface immersion and the tensor T is the fundamental tensor of this immer-

sion.

We put

C(XJ,Z) = (Vxh)(Y,Z) + τ(X)h(Y,Z)
( } δ(X,Y,Z) = (VXT){Y,Z) +p(JC)h(Y,Z).

Both are symmetric in their arguments (cf. (1.4), (1.5)). We call C the (first) cubic

form and δ the second cubic form.

We shall next examine how various objects depend on ζ. Another choice, say

ξ\ of transversal vector field is related to ξ by

where λ is a nonzero scalar function, a is also a scalar, and U is a tangent vector

field. Let 7", V, h'', p', S', and r ' denote the quantities corresponding to ξ'. By

(1.1) we have

DXUY= T(X,Y)η +UVXY+ h{X,Y){λξ' - aη - f#U)
= {T(X,Y) - ah(X,Y))r, + U(VXY- h(X,Y)U) +λh(X,Y)ξ',

Dxξ = p(X)η- USX + τ(X) Uξ' -aη-UU)
= {p(X) - aτ(X)}η - f*(SX + τ(X) U) + λτ{X)ξ'.
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On the other hand, we have

λDxξ' -X(a)η - aUX

,U) -ah(X,U))η+f*(VxU-h(X,U)U) +λh{X,U)ξf).

Term-by-term comparison shows

(1.11) VXY= VxY-h(X,Y)U

(1.12) T'(X,Y) = T(X,Y) - ah(X,Y)

(1.13) h'(X,Y) = λh(XJ)

(1.14) r'GX) = τ(X) - Xilogλ) + h(X,U)

(1.15) λp'UC) = p{X) + X(a) + T{X,U) - ah{X,U) - aτ(X)

(1.16) λS'X= SX+ τ(X)U- aX- VxU+h(X,U)U.

Formula (1.13) implies that the conformal class of h is independent of the

choice of ζ. When the class h is nondegenerate we say that the immersion is non-

degenerate. If we assume nondegeneracy, then one can find a vector field ξ so that

r = 0 because of (1.14); in this case, θ is F-parallel. We say that this choice of ξ

defines (or that the pair {/, ξ} is) an equiaffine immersion. Further, we can res-

trict the choice of ξ so that the form θ is equal to the volume form of the non-

degenerate metric tensor h such ξ is uniquely determined mod η up to sign. We

call this pair {/, ξ} a Blaschke immersion of codimension two. Formulas (1.12),

(1.13), and (1.16) with U= 0 show

Γ(X,Y) + h'(S'XJ) = T(XJ) + h(SXJ) - 2ah{XJ).

By determining the scalar function a we can assume that ζ is so chosen that

(1.17) \xk{T(X,Y) + h(SX,Y)} = 0.

If this condition is satisfied, we say that £ is pre-normalized. In particular, a pre-

normalized Blaschke immersion {/, ξ} is uniquely determined up to sign.

Remark. Consider the situation where / is a nondegenerate hypersurface im-

mersion into an affine hyperplane in Rw + — {0} and where ξ is an equiaffine nor-

mal relative to this immersion:

DXUY = f+iVxY) + h(X,Y)ξ and Dxξ= -f^(SX).

Then we can regard / as an immersion into Rw + — {0}. Let ξ = ξ + aη. Then it

is easy to see that ξ is pre-normalized only when a — -^— trS. The associated
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quantities are given by

T(X,Y) = -^h(X,Y)f S=S--^I, and p = ~d(trS)

and V=Vy h = h, and r = 0.

Let us return to the general situation and prove a result which is more pre-

cise than Proposition 1.3.

PROPOSITION 1.5. Assume rank h > 2. Then the image of the immersion is con-

tained in an affine hyperplane if and only if T — ah for some scalar function a.

Proof Assume T= ah. Replace ξ by ξ' = ξ + aη. Then, (1.12) shows that

7" for ξ' vanishes identically. Hence, Proposition 1.3 implies that the image is

contained in an affine hyperplane. Conversely, if the image lies in a hyperplane

not through 0, then for a vector field ξ tangent to this hyperplane we get Γ = 0.

Formula (1.12) also says that the property T — ah is independent of the choice of

ξ, although the scalar a depends on ξ.

We also have

PROPOSITION 1.6. Let n > 3. Assume V is flat and rank h > 2. Then the image

of the immersion lies on an affine hyperplane and the immersion turns out to be a graph

immersion into this hyperplane.

Proof The condition that V is flat means

(1.18) R(X ,Y)Z = h(Y, Z)SX - h(X, Z)SY - T(Y,Z)X+ T(X,Z)Y=0.

Let {Xlf. . . ,Xr, Xr+Ϊ,. . . ,Xn) be a basis such that {Xr+ι,. . . ,Xn) generates ker h

and h(Xif X) = ε, δ ί 7, εt = ± 1, for 1 < i, j < r. For i Φ j , choose k Φ i, j

(n > 3). By letting X = Xif Y= Xk, Z = Xjt (1.18) implies - T(Xk, Xj)X{ +

T(Xi9 Xj)Xk = 0. Hence, T(Xi9 Xj) = 0. For i Φ j let X=Xi9Y=Z= X,. Then

(1.18) implies

h(Xj, X})SX{ - T(Xj9 Xf)X{ = 0.

If 1 < < r, then SX{ = μXt where μ = TtXj9 X})/h{Xjf Xf). Since rank h > 2,

t h i s i d e n t i t y h o l d s for all i a n d μ is i n d e p e n d e n t of j.lίr+l<j< n, t h e n T(Xjf

Xj) — 0. T h e r e f o r e , w e h a v e

S = μl and T(X ,Y) =μh(JC9Y).
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By changing ξ to ξf = ξ ~\~ μη, the equations (1.11), (1.12), and (1.16) allow us to

assume S = 0 and T = 0. By Proposition 1.3 and Example 3 of [NP1] we get the

conclusion.

We conclude this section with the following formulas for later applications.

PROPOSITION 1.7. Under the change of ξ to ξ' = λ~ (ξ + aη + f*U) the cubic

forms C and δ transform as follows:

λ~ισ(XJ,Z) = C(X,Y,Z) + h(X,Y)h(U,Z) +h(Y,Z)h(U,X)

+ h(Z,X)h(U,Y)

δ'(X,Y,Z) +aUV1C'(X,Y,Z) = δ(X,Y,Z) + h(X,Y)T(U, Z)

+ h(Y,Z)T(U,X) + h(Z,X)T(U, Y)

Proof. The first identity is similar to the affine hypersurface case (see [NP2]).

The second one is calculated as follows.

(VxT){YyZ)+ p'{X)h'(YyZ)

= X(Γ(Y,Z)) - T'(V'XY,Z) - T'(Y,V'XZ) +λp'(X)h(Y,Z)

= X(T(Y,Z) - ah(Y,Z)) - T(V'XY,Z) + ah{V'xYyZ)

- T(Y, ΨXZ) + ah{Y, VXZ) + λpr{X)h(Yy Z)

= X(T(Y, Z)) - X(a)h(Y, Z) - aX(h(Y, Z))

- T(VXY,Z) +h(X,Y)ΠU,Z) + ah{VxY,Z) - ah(U,Z)h(X,Y)

- T(Y,VXZ) + h(X,Z)T(U,Y) +ah(Y,VxZ) - ah(U,Y)h(X, Z)

+ {p(X) + X(a) + T(X, ID - ah(X, U) - aτ(X)}h(Y,Z)

= δ(X,Y,Z) -aC(X,Y,Z) +h(X,Y){T(U,Z) - ah(U,Z)}

+ h(Y,Z){T(U,X) - ah(U,X)} + h(Z,X){T(U,Y) - ah(UJ)}.

§2. Projective hypersurfaces

Let 7Γ : Rw — {0} —* Pw be the natural projection where P w is a projec-

tive space of dimension n + 1. Let F be an immersion of an n-manifold M into

P . Then, locally, there is an immersion / of M into R ~ {0} such that π * /

= F. We call / a local lift of F and use the notation F — [/]. Another local lift g

is written as g — φf for some nonzero scalar function φ. In this section we want

to obtain ralations of the invariants for / and those for g and, thereby, to find out

what invariants can be attached to the immersion F.

We first consider the relationship between /# and g%. Since

Dxg = Dx(φf) = (Xφ)f+ φDJ,
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we have

g*X = (Xφ)r]/ω + ΦUX = AXlog φ)ηgω + ΦUX

where f%X ̂  Tfix)R
n+ is considered to be in Tg{x)R

n+ by parallel translation. For

the moment we write ηg for rj\g{x) and η for η\f{x). Then

(2.1)

where σ = dlog φ. The quantities for g are denoted with """. We get the follow-

ing formulas with respect to the immersions (/, ξ, η) and (g, ξ, ηg):

(2.2) VXY= VXY+ σ(Y)X+ σ(X)Y

(2.3) TOC, Y) = Hess£,(λ\K) - σ(X)σ(Y) + T(X,Y)

(2.4) ACY,F) = φh(X,Y)

where

Hess! φ = Hessian of log φ = Vσ.

The proof is straightforward by calculating

Dxg*Y= Dx{σ(Y)η8 + φUY)

= X(σ(Y))ηg + σ(Y)g*X +

= X(σ(Y))ηg + σ(Y)g*X+σ(X)(g*Y- σ(Y)ηg)

+ φ{T(XyY)η+UVxY+h(XyY)ξ)

which, on the other hand, should be T(X, Y)ηg + g*(VxY) + h(X, Y)ξ.

Similarly, by the identity

= β(X)ηg-gJX+f(X)ξ,

we have

(2.5) f=τ

(2.6) φp(X) = ρ(X) + σ(SX)

(2.7) φS = S.

Moreover we can see that

= φn+1θ.

Hence, the conformal class of h is preserved and, if/ is equiaffine, i.e. r = 0, then

g is also equiaffine relative to the same ξ.

Let R denote the curvature tensor of V and let 7 and f be the normalized
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(i.e., divided by n — 1) Ricci tensors of V and V, respectively. We see

R(X,Y)Z= R(X,Y)Z+ (Vxσ)(Z)Y- (Vγσ)(Z)X+ σ(Y)σ(Z)X- σ(X)σ(Z)Y

and

f(X,Y) = γ(X,Y) - i(Vxσ){Y) - σ(X)σ(Y)}.

Hence we get

(2.8) T{X,Y) + f(X,Y) = T(X,Y) + r(X,Y).

Assume that h is nondegenerate and that {/, ξ} is a pre-normalized

Blaschke immersion. Then the immersion g has a similar normalization. Let f be

an associated vector field which can be written as

By computation, we see that the identities

λ = φ, φh(U,X) = σ(X), 2a + σ(W=0

determine ξ. Let (V, h, S, T, β) be the data for ξ. They are given by the follow-

ing formulas:

(2.9) VXY= VXY+ σ(X)Y+ σ{Y)X- φh(X,Y)U
(2.10) h(X,Y) = φ2h(X,Y)
(2.11) f(X,Y)= T(X,Y) + (Vxσ)(Y) - σ(X)σ(Y) - aφh(X,Y)
(2.12) φ2SX = SX-aφX-φ{VxU+σ(X)U+σ(U)X} +φ2h(U,X)U
(2.13) φ2β(X) = p(X) + σ(SX) + φX(a) - aφ2h(U, X)

+ φ{(Vxσ)U- σ(X)σ(U) + T(U,X))

We define a quadratic form OΓ by

(2.14) 3~{X,Y) = T(X,Y) + h(SX,Y).

Then we can prove easily the following formulas:

PROPOSITION 2.1.

(1) C = φ2C.

§3. Dual mappings

In this section, we define the dual mapping of a given immersion and discuss
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its elementary properties. We assume the nondegeneracy throughout the section.

Let Rw + 2 denote the dual vector space of Rn+ and η the radial vector field

of RM+2 We define two mappings v and w from M into RM+2 by associating to each

point x two linear functions υ(x) and w(x) on Tf(x)K , which is identified with

the vector space Rw , as follows:

v(x) (ξfω) = 1, υ(x) (ηf{x)) = 0, and v(x) {f*X) = 0 for all X €=

«;(*) (ξ / t e )) = 0, w(x) (r]f{x)) = 1, and wfcr) (/*X) = 0 for all X e

LEMMA 3.1. 77ιg derivatives of the mappings υ and w are given as follows:

(Dxv) (η) = 0 (Dxw) (η) = 0

) (DXW)(UY) = - nx,r>.

The nondegeneracy of h implies that the mapping v defines an immersion, be-

cause from the assumption v^Y— Dγυ = 0 follows Y=0 by the identity

(Dxυ)(f*Y) = — h(X,Y). Since υ(f*X) = 0 and since Dγυ is nonzero, the vec-

tor field η is transversal to the mapping v. Since w(η) = 1 and Dxv(η) = 0, the

vector field w is also transversal to the mapping υ. Because of the definition two

vector fields υ and w are linearly independent. So, the mapping v defines a cen-

troaffine immersion of M. The pair {v, w} is called the dual mapping of {/, ξ}.

The following set of equations

Dxη* = v*X

(3.1) Dxυ*Y= T*(X,Y)η* + υ*(V*xY) + h*{X,Y)w

Dxw = p*(X)η* - v*(S*X) + τ*(X)w

defines the objects V ,h , T , S , p , and τ for the dual mapping v.

LEMMA 3.2.

T*(X,Y) = - h(SX,Y) + rOOr(F) - (F*r)(F)

h*(X,Y) =h(X,Y)

Z(h(X,Y)) = h{VzX,Y) +h(X,V*Y) + τ(Y)h(X,Z).

Proof. These formulas are obtained by differentiating the three equations on

the left hand side of Lemma 3.1. For example,

* ) + τ(Y))
= Dx(υ*Y)(ξ) + (υ*Y)(DxΦ + (F*r)(7) + τ(V*Y)
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•= (T*(X,Y)η* + v*{V*Y) + h*(X,Y)w)(ξ)

τ(V*Y)
= {T*(X,Y) - τ(V*Y)} + {h(SX,Y) - τ(X)τ(Y)}

+ (V*τ)(Y) + τ(V*Y)

shows the first formula. The other two are derived likewise.

Similar computation shows

LEMMA 3.3.

p*(X) = - p(X) - τ(S*X)

τ*(X) = 0

h(S*X,Y) = - T(X,Y).

Recall the definition of 5" and define ΣΓ by

J*U,F) = T*(X,Y) + h*(S*X,Y).

PROPOSITION 3.4

(1) STUC.Y) + 2Γ*(X,Y) = r ( I ) r ( F ) - (V*τ)(Y).

(2) C*(X,Y,Z) + C(X,Y,Z) = τ(X)h(Y,Z) + τ(Y)h(Z,X)

Proof. The identity (1) follows from Lemma 3.2 and Lemma 3.3. We prove

(2). By definition, we have

C{XJ,Z) =X(h{Y,Z)) - h(VxY,Z) -h(Y,VxZ) + τ(X)h(Y,Z).

Since h = h and r = 0, we obtain

C*(X,Y,Z) = X(h(Y,Z)) - h(V*Y,Z) - h(Y,V*Z).

Hence the sum of these equations gives the formula in view of the third identity of

Lemma 3.2.

We remark here that when r = 0 the formulas take simple forms; in particu-

lar, two connections V and V are conjugate to each other:

(3.2) X(h(Y,Z)) =h(VxY,Z) + h(Y,V*Z).

This is a well-known relation in affine hypersurface theory (see [DNV]).

Let us next consider the dual of the dual: denote by (p, q) the dual of (v, w).

It is determined by
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p(w) = 1, p{υ) = 0, and p(υ*X) = 0

q(w) = 0, ί(t ) = 1, and q(v*X) = 0.

If we put ^ x = aηf(x) + f*x(V) + 6ξ/(X), then a = p{w) = 1, 6 = £(#) = 0, and

/KUHJO = - h(X,V) - bτ{X) = - h(X,V); since h is nondegenerate, V = 0.

Thus />£ = ")7/(x) = /Cr). Similarly, we see qx — ζx +/*XV, where V is defined by

ΛCX'jV) + τQO = 0. Therefore, the dual mapping of the dual is the same as the

original immersion while the transversal vector field changes a little depending on

τ.

Let F be an immersion of M into the projective space P w and / a local lift

of F: [/] — F. The dual mapping υ is associated with a transversal vector field

ξ. The dual mapping υf associated with another vector field ζ' — (ξ + aη + f*U)/λ

differs from f by υr = /if. Hence, [f] = [f'] as mappings into the dual projective

space P n + 1 . Let g be another choice of local lift of F; then, g = φf for a nonzero

scalar function φ. In this case, the dual mapping vg for {g, ξ} is equal to v. So, we

can define the dual immersion F of F by F — [v]. The discussion in the pre-

vious paragraph says that (F ) = F.

We say that the pair {/, ζ) is affinely selfdual if / = Af for a linear iso-

morphism A of Rw + 2 with R n . We say that the immersion F = [/] is selfdual if

F = AF for a projective linear isomorphism A of P w + i with P w .

For both cases, denoting by < , ) the dual pairing of R and Rw+2, we have

</, A'1/} = </, *;> = 0.

This proves

PROPOSITION 3.5. The image of an affinely selfdual (nondegenerate) centro-

affine immersion lies in a quadratic cone, that is, a cone over a quadratic hyper-

surface in an affine hyperplane not passing through the origin. The image of a

selfdual (nondegenerate) projective immersion is part of a nondegenerate quadratic

hypersurface.

§4. Projective flatness and umbilicity

Two torsion-free affine connections V and V are said to be projectively

equivalent if there is a 1-form σ such that

V'XY= VXY+ σ(X)Y+ σ(Y)X.

If σ is closed, we say that V and V are projectively equivalent in a stronger sense.



7 6 KATSUMI NOMIZU AND TAKESHI SASAKI

The connection V is said to be projectively flat if it is a projectively equivalent to a

flat affine connection.

Let us recall the definition of the projective curvature tensor of a connection

F([E, p. 97]). Put

WX(X,Y)Z = R{X,Y)Z - {γ(Y, Z)X - γ{X, Z) Y],

where γ(X,Y) = Ric(X, Y)/(n ~ 1) and

^(A(Y,Z)Y-A(X,Z)Y)
n — 1

where

A(X,Y) = ~ (Ric(X,Y) - Ric(Y,X)).

Then the projective curvature tensor W is defined by

W(X,Y)Z= W1UC,Y)Z+ W2UC,Y)Z.

If V has symmetric Ricci tensor, W2 — 0 and hence W — Wv

If two affine connections V and V are projectively equivalent, they have the

same W. It is known that V is projectively flat if its projective curvature tensor

W is identically zero when n > 3.

Denote by S° the traceless part of S: S° = S — (trS/n)I. Then the identities

(1.3) and (1.9) show

(4.1) ^CY,ίOZ= h(Y,Z)S°X-h(X,Z)S°Y

+ - h(S°X, Z) Y],

(4.2) W2(XJ)Z=-z^—[{h(S°Z,Y) - h(SΎ,Z))X
n - 1

^ ψ j , X ) -h(S°X,Y)}Z.

We prove

THEOREM 4.1. Let n > 3. 77κ? connection V is projectively flat if and only if

either (1) h = 0, or (2) rank h = 1 and S° = v l on ker h, or (3) S° = 0.
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Proof. First, we show the if-part. When (1) or (3) occurs, Evanishes trivial-

ly. We assume the case (2). Let Y ̂  ker h. Then

W,(X,Y)Z = - vh(X, Z) Y- ^ - y h(S°X, Z) Y

W2(X,Y)Z= --^—{h(S°Z,X) -h(S°X,Z)}Y.
n — 1

I f l c k e r / ϊ o r Z e ker h, then W= Wx+ W2 = 0. Let X = Z <έ ker h then W2

= 0. Write S X = λX mod ker /z then, since t rS = λ + (w — l )v = 0, we have

^ = 0. Hence W = 0.

Second, we prove the converse statement. Assume W^= 0 and rank h = 1.

Let U T i , . . . , ^ } be a basis such that M ^ , ̂ ) = ± 1 and {X2,...,Xn}

generates ker h. When Z = Xι and X Φ Y ̂  {X2,... ,XW}, possible because n > 3,

, r)z = - ^ — {h(s°x,xι) Y - HS'Y.XJXI.
n — 1

Hence, W = 0 implies h(S°X, X1)Y= h(S°Y, X,)X and A(S°Z, XJ = 0 be-

cause X and F a r e linearly independent. Namely, we see S°(ker h) c ker Λ. When

^ί = Z = X t and F e k e r / ί (accordingly, S"F e ker A), W2(X, Y)Z = 0 and

^ J A C S 0 ^ , XJY.

Therefore, S°Y = vY where v = — h(S0Xu XJ/in — l)h(Xu XJ, which shows

the case (2).

Assume next rank A > 2 and W= 0 we see S° = 0. Let {Xv ... ,Xr,Xr+v ...,

Xj be a basis such that {Xr+ι,.. .,Xn) generates ker A and h(Xit X;) — ± δif for

1 < i,j < r. When r > 3 and X Φ Y Φ Z Φ X are in {Xx X),

WX(X,Y)Z = -^rj ih(S°Y, Z)X - h(S°X, Z) Y),

—-—{h(S°Z,Y) -h(SΎ,Z)}X
n - 1

- ~ — {h(S°Z, X) - h(S°X, Z))Y
n - 1

1 '• -°^tχ) - h{S°X,Y))Z.
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Hence, when W = 0, the coefficient of Z says h(S°Y, X) = h(S°X,Y) and, so,

W2 = 0; then the coefficient of X in W, implies h(S°Y, Z) = 0.

When YΦ Z e {Z x,... ,Zr} and X e Qfr+1,... ,ZJ, we have

n — 1
{h(S°ZyY) -h(S°Y,Z)}X

The coefficient of Z shows ft(S'XF) = 0, i.e., S°ker h c ker A. Then the coeffi-

cient of X vanishes:

^ ^ ° Z , Y ) -h(S°Y,Z)} =0,^ r γ 9 ^

from which it is easy to see h(S°Y, Z) = 0 also in this case. Hence we have seen

that there exist scalars v{ such that

(4.3) S% = v{X{ mod k e r h,\<i<r.

Now let both Y = Z and X belong to {Xlf... ,Xr}. Then, W2 = 0 by (4.3) and

WM >Y)Z = h(Y ,Y)S°X + ̂ rj h(SΎ ,Y)X.

Hence, v{ + Vj/(n — 1) = 0 for i Φ j. Since n > 3, it is easy to see \>{ = 0. Then,

W, = 0 implies now S°X = 0, i.e., S° = 0 on tY l f . . . ,Xr).

Consider finally the case where Y= Z ^ {Xv . . . ,Xn} and X ^ ^r+v »̂ «}

We have W2 = 0 and W1(X,Y)Z= h(YJ)S°X. Hence S° = 0 also on {Xr+1,...,

Xn}. This ends the proof.

Remark that the proof is the same as that of Theorem 5 of [NP3] when Ricci

curvature is symmetric.

We say the immersion / is umbilical relative to ξ if S° = 0, i.e., S = vl for

some scalar function iλ

LEMMA 4.2. Assume S = vl and n > 2. Then

(1) dτ = 0.

(2) dv - vτ + p = 0.

(3) α(ξ + vη) is a constant vector where a is defined (locally) by τ = — d log a.
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Proof. (1) follows from the identity (1.8). For (3), it is enough to check

Dxiξ + vη) = ipiX)η - SX + τ(X)ξ) + X(v)η +vX

= τiX)iξ+vη).

The assumption S = vl implies VXS — iXv) Ί. Then, by (1.6),

{X(v) - vτ(X) + p(X)}Y= {Y(v) - MY) + p(Y))X.

lίn>2, (2) follows.

THEOREM 4.3. Assume the immersion f is umbilical. Then each 2-dimensional

linear subspace spanned by ηx and ξx contains a fixed line through the origin; in other

words, each projective line through [fix)] in P w in the direction of [ξx] passes

through a fixed point.

Proof. Put y = fix) + λξ + μη. Then we get

Dxy = iλpiX) + Xμ)η + iX - λSX + μX) + iXλ + λτiX))ξ.

Letting μ = λv — 1 and using (2) of Lemma 4.2, we check

Dxy= iXλ + λτiX))iξ+vη).

Put a = aiξ + vη) and ω — oΓ idλ + λτ). Then we obtain

Dxy = ωϋO a,

which proves the conclusion.

Remark. Our method in this paper makes it possible to recapture Proposition

8 in [NP3] without the assumption of equiprojectivity.

§5. Uniqueness theorems

In this section we are going to establish a number of uniqueness theorems for

centroaffine immersions M —* Rw — {0} and for immersions M~* Pn .

Consider two immersions / : M—* R — {0}, i— 1,2, with transversal

vector fields ξ . We have two sets of invariants (Vfh,T,Sfp,τ). We say

that / and / are affinely (resp. protectively) equivalent if / = Af (resp. if

[/ ] = [Af ]) for a general linear transformation A in GLin + 2, R).

A preliminary uniqueness theorem is stated as follows.



8 0 KATSUMI NOMIZU AND TAKESHI SASAKI

LEMMA 5.1. Assume F 1 = V2, hι = h2

f T1 = T2, S1 = S2, p1 = p2', and

τ — T . Thenf and f are affinely equivalent.

We follow the patterns in [D] and [0] to prove the following.

LEMMA 5.2 Assume F 1 = F 2 =• F, h1 = h2 =• h, and T1 = T2 ='- T. If rank

h > 2, then f and f are affinely equivalent.

Proof. From the equation (1.5),

(Vxh)(Y,Z)- (Vγh)(X,Z) = τ\Y)h(X,Z) - τ\X)h(Y,Z)

= τ2(Y)h(X,Z) - τ2(X)h(Y,Z).

Hence, for T '-= τι — τ2, we get

τ(Y)h(X,Z) = τ(X)h(YyZ).

Then, the assumption rank h > 2 implies τ = 0 by Lemma 1.2. Similarly, for
1 2

p '-= p — p , the equation (1.4) shows

p{Y)h{X,Z) =p(X)h(Y,Z)

and we get p = 0. Lastly, for S '= S — S , the equation (1.3) gives

h(Y,Z)SX= h(X,Z)SY

which implies S = 0. Hence the equivalence follows from Lemma 5.1.

We shall further prove

LEMMA 5.3. Assume F = F , h — λh , and T = T — ah , where a and λ

are scalar functions and λ is nonzero. If rank h > 2, then f and f are affinely

equivalent.

Proof. Put ξ2 = (ξ — aη)/λ. Then relative to ξ we see

h2' = λh2, T2' = T2 - ah2, V2' = V2

hence, we can apply Lemma 5.2.

The assumption of Lemma 5.2 can be modified to yield projective equivalence:

LEMMA 5.4. Assume

Vι

xY= VlY+ σ(Y)X+σ{X)Y
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Tι{X,Y) = T2(X,Y) + (Vxσ)(Y) - σ(X)σ(Y)
hι(X,Y) = λh\XJ)

where λ is a nonzero scalar function and o is a closed 1 -form. Then f and f are pro-

jectively equivalent.

Proof Let o = dlogμ locally and consider the immersion g = μf with the

same transversal ξ . Then

V8

XY = V2

xY+σ(Y)X+σ(X)Y

T8(X,Y) = T2(X,Y) + (Vxσ)(Y) - σ{X)σ(Y)

hg(X,Y) = μh\X,Y).

Hence V1 = V8, Tι = T8, and \ι = (λ/μ)h8. Apply Lemma 5.3 to fl and g to

obtain the result.

Now we can drop the condition on T. We prove

PROPOSITION 5.5. Let n > 3. Assume V —V ='V and h = h —'- h. If rank

h > 2, then f and f are affinely equivalent.

Proof Let us recall that the projective curvature tensor W \s the sum of two

tensors Wι and W2 which have expressions given in (4.1) and (4.2). The

right-hand side of W has two expressions, one using 5 and the other using S .

Hence, for S° = S — (trS/n)I where S '-= S — S , we see

h(Y, Z)S°X - h(X, Z)S°Y+ ^ y {h(S°Y, Z)X - h(S°X, Z) Y)

^[{h(S°Z,Y) -h(SΎ,Z))X~ {h(S°Z,X) - h(S°X,Z)}Yl
n - l

JΓΪ ihiSΎ,X) ~ h(S°X,Y)}Z = 0.

Since rank h > 2, the argument in the proof of Proposition 4.1 works and we

have S° = 0, i. e., S = $1 for a scalar 5. Now, the equation (1.3) implies, for T '- =
rr\ 1 rr\2

sh(Y, Z)X - shiX, Z)Y- T(Y, Z)X + T(X, Z)Y=0.

Hence, T(Y,Z) = sh(Y,Z). Take ξ* = ξ2 - sη then, T2' = T2 + sh by (1.12)

and S = 5 + si by (1.16). This means, in particular, T — T = 0 and we can
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apply Lemma 5.2.

THEOREM 5.6. Let n > 3. Given two centroaffine immersions f and f , M—+

Rw — {0}, assume that the induced connections V and V coincide and that h and

h are conformal and of rank > 2. Then both immersions are affinely equivalent.

Proof. By scaling ξ by an appropriate nonzero factor, we can reduce the

case to that of Proposition 5.5 in view of (1.11) and (1.13).

THEOREM 5.7. Let n > 3. Assume V is protectively equivalent in a stronger

sense to V and h is conformally equivalent to h . If rank h > 2, then f is projec-

tively equivalent to f .

Proof By scaling / by an appropriate scalar, we can reduce the case to that

in the previous proposition.

Two theorems above can be further generalized. We consider a pair

( F , h) which arises from an immersion / : M—•» R — {0} together with a

transversal vector field ζ. In the set of all such pairs (V, h) associated to all im-

mersions M—• Rw + — {0}, we define an equivalence relation: ( F , h) ~a (V, W)

if there exist a vector field U and a function λ Φ 0 on M such that

(5.1) VXY= VXY~ h(X, Y)U and W = λh.

It is easily checked that, given / : M~+Rn+ — (0), we get an equivalence class

[ ( F , h)]a independently of the choice of ξ.

THEOREM 5.8. Let n > 3. Two immersions / \ / 2 : M—• Rw + 2 — {0} of rank

^ 2 are affinely e q u i v a l e n t if and only if the e q u i v a l e n c e c l a s s e s [ ( V , h ) ] a and

ί ( V , h ) ] a f o r f a n d f c o i n c i d e .

Proof See the equations (1.11) and (1.13).

Given two immersions F , F :M~^P , we shall say that F and F are

protectively equivalent if there is a projective transformation A of Pn+ such that F

= A F . In this case, any lift f of F and any lift f of F are projectively

equivalent in the sense we defined in the beginning.

Given an immersion F :M—^Pn+ , we consider a pair ( F , h) which arises

from the choice of a lift f :M—•* R — {0} together with a transversal vector
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field ξ. In the set of all such pairs (V, h) associated to all immersions M—• P w + ,

we define an equivalence relation: (V, h) ~ p (V', h') if there exist a closed

1-form σ, a vector field U, and a function λ Φ 0 on M such that

(5.2) ΨxY=VxY+σUOY+σ(Y)X-h(X,Y)U and h'= λh.

It is easily checked by (1.11) and (2.2) that, given F : M — > P , we get an

equivalence class ί(V, h)]p independently of the choice of {/, ξ) representing F.

We define the rank of F as the rank of h. We can now state

T H E O R E M 5 . 9 . Let n > 3 . Two immersions F1, F2 : M — > P n + 1 of rank > 2

are projectively equivalent if and only if the equivalence classes ί ( V , h ) ] p and

ί ( V , h ) ] p for F and F coincide.

Remark. Formula (5.2) appears in [NP3], (44), as well as in [S].

§6. Immersions with Vh = 0

In affine hypersurface theory a well-known theorem of Pick and Berwald can

be formulated as follows. If a nondegenerate hypersurface has vanishing cubic

form, then it lies in a quadric. In this section we shall obtain a result of this type

for centroaffine immersions M~» Rn+ — ίθ).

LEMMA 6.1. Assume rank h > 2 and R(X,Y)h = 0. Then dτ = 0 and

SΓ = Hh, i.e., h(SXJ) + T{X,Y) = Hh(X,Y) for some scalar function H.

Proof. By the assumption, we have

hUi(X,Y)Y,Z) +h(Y,R(X,Y)Z) = - (R(X,Y)h)(Y, Z) =0.

Then from (1.3) we have

h(Y,Y)h(SX,Z) -h(X,Y)h(SY,Z) + T(X,Y)h(Y,Z)

(6.1) -T(Y,Y)h(X,Z) +h(Y,Z)h(SX,Y) - h(X, Z)h(SYJ)

+ T(XyZ)h(Y,Y) - T(Y,Z)h(X,Y) =0.

Let {Xlt. . . ,Xr, Xr+1,. . . ,Xn) be a basis such that iXr+ί,. . . ,Xn) generates ker h

and h(Xi9 X) = εfiφ ε{ = ± 1, for 1 < i, j < r. Let 1 < < r and 1 < i < n

with i Φ j . By setting X = Xif Y= Z= Xjt (6.1) implies

(6.2) h(SXif Xj) + T(Xi9 Xj) = 0.
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Next, let r + 1 < / < r and 1 < i < n with i Φ j . Choose k, 1 < k < r, k Φ i

(which is possible by virtue of the assumption rank h > 2). By setting X = Xif

Y= Xk and Z = Xp (6.1) again implies (6.2). Thus (6.2) holds for all i, j (i Φ j).

Now let 1 < t, j <n, iΦ j . If we set X = Z = Xυ Y = Z y, then (6.1) leads

to

i j . J M t . X t ) + n t i t

(6.3) = hOCtiXJMSX^X,) + TiX^Xj)} for 1 < i,j < r

h(SXi9 Xt) + T(Xi9 Xt) = 0 for r + l £ i , n.

(6.2) and (6.3) together imply

ε , ^ ( Z , , X { ) = εjSΓ(Xj9 X ) a n d SΓ(Xi9 X ) = 0 ( i Φ j ) .

Hence, there exists a function H such that ^{X^ Xj) = H h(Xif Xj) for any i, j.

This proves the conclusion.

LEMMA 6.2. Assume rank h > 2, Vh = 0, and n > 2. Then

dH+2p = 0.

Proof. Under Vh = 0, (1.5) becomes τ(X)h(Y, Z) = τ(Y)h(X, Z)\ this im-

pies r = 0 by Lemma 1.2. Since Vh — 0, we have R(X}Y)h — 0 and

(6.4) h(SXfY) + T{X,Y) = Hh(X,Y)

by Lemma 6.1. Differentiating this equation and using the assumption Vh = 0, we

get

h((VzS)X9Y) + (VZT)(X,Y) = (ZH)h{XJ).

On the other hand, (1.4) and (1.6) imply

h«VzS)X,Y) +p(Z)h(X,Y) = h«VxS)Z,Y) +p{X)h{Z,Y)

(VZT)(XJ) + p(Z)h(X,Y) = (VXT)(Y9Z) + p(X)h(Y,Z).

Hence, from the last three equations, we get

Z(H)h(X,Y) +2p(Z)h(X,Y) = X{H)h(Y,Z) + 2p(X)h(Y, Z).

This identity implies the result by Lemma 1.2.

We define for each x ^ M a quadratic cone through x by the following equa-

tion:

Qx= {a(x+ U + μξ)\ h(U, U) + Hμ2 - 2μ = 0, α e R * } .
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This is an analogue of Lie's quadrics ([B], p. 228-9). We now prove

THEOREM 6.3. Assume the immersion M —* R — {0} satisfies that rank h >

2, Vh — 0, and n > 2. Then the image lies on a quadratic cone.

Proof. Fix a point y e Rw + 2 — {0}. For each x e M, y can be written as

U + μξ).

Suppose y <Ξ QXQ. Then, if we can show y e Qχ for every x, the proof is complete.

To see this we compute Dxy by using the fundamental equations. The result is

Dxy = a{X(loga) + ΠX,U) + μp(X))η

+ a(X(\og ά)U + X+ VXU - μSX)

+ {X(loga)μ + h(X, U) + Xμ)ξ.

Note here that τ = 0. On the other hand, since y is fixed, we have Dxy — 0 so,

nx,u) = -
VXU = μSX - X - Z(log α) U

h(X,U) = - μX(\oga) - Xμ.
Using these equations, we get

h(VxU,U)Z= hiμSX-X-X(\og a) U, U)

= μh{SX,U) - hiX,U) - XQog a)h(U,U)

= μ(Hh(X,U) - TiX.U)) -h(X,U) - X(logά)h(U,U)

= μiXiloga) +μp(X)

+ (Hμ - 1) {- μX(log a) - Xμ} - X(log a)h(U,U)

and, hence,

X(h(U,U) +Hμ2 ~2μ)

= 2h(VxU,U) + XH-μ2 + 2HμXμ - 2Xμ

= 2X{\oga){μ - h{U,U) - μ(Hμ - 1)} + (2p(X) + XH)μ\

Therefore, by Lemma 6.2,

X(h(U,U) + Hμ2 -2μ) = - 2X(\oga)(h(U,U) + Hμ2 - 2μ)

this implies that a (h(U,U) + Hμ — 2μ) is constant. Since it is zero at x = x0,

we have h(U,U) + Hμ2 - 2μ = 0.
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LEMMA 6.4. Assume the cubic form C vanishes and rank h > 2. Then dz = 0

andR(X,Y)h = 0.

Proof. The assumption C = 0 means (Vxh)(U,V) = - τ(X)h(U,V). Hence,

(VxVyh)(U,V) =X{(Vyh)(U, V)} -Vγh(VxU, V) - (Vγh)(U,VxV) .

= X{- τ(Y)h(U,V)) + τ(Y)h(VxU,V) + τ(Y)h(U,VxV)

= - X(τ(Y))h(U,V) - τ(Y){(Vxh)(U,V)}

= {τ(X)τ(Y) - X(τ(Y))}h(U,V).

Similarly,

(VγVxh)(U, V) = {rOOr(F) - Y(τ(X))}h(U,V),

(V^nh)(U,V) = -τ([X,Yl)h(U,V).

Therefore, we get

(R(X,Y)h)(U,V) = iY{τ(X)) - X(τ(Y)) + τ([X,Y]))h(U,V)

= - dτ(X,Y)h(U,V).

Then the identity (R(X,Y)h)(U,V) + h(R(X,Y) U,V) + h(U,R(X,Y)V)

— 0 implies

{h(X,SY) - h(Y,SX)}h(U,V)

= h{Y,U)h(SX,V) - h(X,U)h(SY,V) + T(X,U)h(Y,V) - T(Y,U)h(X,V)

+ h(Y,V)h(SX,U) ~ h(X,V)h{SY,U) + T(X,V)h(Y,U) ~ ΠY,V)h(X,U).

Lei {Xy, . . . ,Xr, Xr+ι,. . . ,Xn) be a basis as in Lemma 6.1. For any 1 < i < r,

1 < j < n, iΦ j , by letting X = X,, and Y= U = V= Xit we get

h(Xjt SXt) - h(X{, SX,) = 2{h(SXi, X) + T(Xjt X,)}.

Assuming further \ < j < r and interchanging i and j , we have

hiXu SX,) - hOC,, SX) = 2{h(SX{, Xj) + T(X{, X)).

Since T is symmetric, the difference implies

(6.5) h(Xj, SX,) - h(Xit SXj) = 0

for 1 < i, j ^ r.

Now for r + 1 < i < n, 1 <. j < n, i Φ j , take 1 < k < r, k Φ j . By letting

X — Xj, Y — Xj, U — V = Xk, we obtain

h(Xif SX) - h(X,, SX,) = 0.
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This proves (6.5) generally; hence dτ = 0 by (1.8).

COROLLARY 6.5. Assume the cubic form C vanishes and rank h > 2. Then the

image lies on a quadratic cone.

Proof. If C = 0, then τ(X)h(Y,Z) = τ(Y)h(X,Z) by (1.5). Lemma 1.2 im-

plies τ — 0 and, then, Vh — 0. Theorem 6.3 proves the result.

COROLLARY 6.6. Assume the immersion M'—• R — {0} satisfies the condition

h I C, namely

CUC,Y,Z) =h(X,Y)h(Z,U) + h(Y,Z)h(X,U) + h(Z ,X)h(Y",£/).

Then the image lies on a quadratic cone.

Proof. Proposition 1.7 implies that we can assume C = 0 by a rechoice of a

transversal field ξ.

§7. Immersions with VT = 0

In this section we prove a result (Theorem 7.3) which is an analogue of

Theorem 6.3.

LEMMA 7.1. Assume rank h > 2. 77i<?n ίfoe condition R(X,Y)T = 0 is equiva-

lent to the condition T(SX ,Y) = kh(X ,Y) for some scalar function k.

Proof The condition R(X,Y) T = 0 implies

T(JR(X,Y)U,V) + TW,RUC,Y)V) = 0.

Hence, by (1.3) and by the symmetry of T, we have

A:=h(Y,U)T(SX,V) -h(X,U)T(SY,V)

+ h(Y,V)T(SX,U) ~ h(X,V)T(SY,U) = 0.

Let {Xlf... ,Xr, Xr+ι,. . . ,Xn) be a basis as before. Suppose j Φ k and at least one

of them is in {r + 1 , . . . ,w}. Choose 1 < i < r, i Φ j , k. By letting X = JΓy, Y =

ί/ = Z f , 7 = XΛ, we obtain Γ(SX y , Z A ) = 0. Suppose jΦk and both in {1, . . . ,

r). By letting X - Xj9 Y = U = V = Xk, we obtain T(SXj9 Xk) = 0.

Next, assuming j Φ k, let X = V = Xk, Y — U = Xj, we get
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h(XJf Xj)T(SXk, Xk) - h(Xk, Xk)T(SXj, X,) = 0.

Hence we see T(SX,Y) = kh(X,Y). The converse can be seen by showing

A = 0 under this condition.

LEMMA 7.2. Assume VT = 0, T(SX,Y) = kh(X,Y), and rank h>2. Then

d\ogk = 2 τ .

Proof. By differentiating T(SX ,Y) = kh(X,Y), we get

T(X,(VZS)Y) = Z(k)h(X,Y) + k(Vzh)(X,Y).

By interchanging Y and Z and by taking the difference, we get

T(X,(VZS)Y- (VYS)Z)

= Z{k)h{X,Y) - Y(k)h(X,Z) + ki(Vzh)(X,Y) - (Vγh)(X,Z)}.

Then equations (1.5) and (1.6) imply

{Zk-2kτ(Z))h(X,Y) = {Yk - 2kτ(Y)}h(X, Z).

This implies the formula by Lemma 1.2.

THEOREM 7.3. Assume the immersion Λf-^R — {0} satisfies that rank

h > 2, VT — 0, and n > 2. Then the image lies on a quadratic hypersurface or on an

affine hyperplane.

Proof. By the assumption we have from Lemmas 7.1 and 7.2

(1) p = 0, (2) T(X,SY) = kh{X,Y), and (3) dlogk = 2τ.

The first one follows from (1.4). We define a quadratic form qx on each tangent

space Tfix)R as follows:

(4) qx(η, η) = 1 (5) qx(f*X, η) = 0 (6) qx(ξ, η) = 0

(7) <zx(£,/**) = 0 (8) qx(ξf ξ) = - k (9) qx(f*X,f*Y) = ~ T ( Z , F ) .

If we can see that q is D-parallel, then the proof is complete because the equation

(4) represents a quadratic hypersurface or an affine hyperplane. The fact Dx q — 0

is seen by simple computation. For example,

= - q(Dx(UY, UZ) - q(UY,DxUZ) - X(T(Y,Z)) by (9)
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= -q(T(X,Y)η+f*VxY+h(X,Y)ξ,f*Z)

- q(UY,T(X,Z)η + UVXZ + h(X,Z)ξ)

- {(VXT)(Y,Z) + ΠVXY,Z) + T(Y,VXZ)}

= 0 by (2), (5), (7) and (9).

Remark. If T = 0 in Theorem 7.3, then also k = 0; hence the quadratic form

q is of rank 1 and the hypersurface q — 1 is an affine hyperplane. See Proposition

1.3. In general, at a point where k Φ 0 and h is nondegenerate, the quadratic form

T is nondegenerate; hence the quadratic hypersurface is also nondegenerate.

The meaning of Theorem 7.3 may become clearer if we start with a quadratic

form q and assume that a centroaffine immersion / : M —• Rn — {0} is contained

in the quadratic hypersurface q(r], η) = 1, i.e. (4). Then (5) holds. By choosing £

satisfying (6), (7) and (8), we can see that these conditions imply (9) and thus lead

to VT—0. Namely, f(M) contained in the quadratic hypersurface (4) satisfies

VT= 0.
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