L^{2}-BOUNDEDNESS OF THE CAUCHY TRANSFORM ON SMOOTH NON-LIPSCHITZ CURVES

HYEONBAE KANG* and JIN KEUN SEO*

1. Introduction and statements of results

Let Γ be a curve defined by $y=A(x)$ in \mathbf{R}^{2}. The Cauchy transform \mathscr{C}_{A} on the curve Γ is a singular integral operator defined by the singular integral kernel

$$
\begin{equation*}
K(x, y)=\frac{1+i A^{\prime}(y)}{(x-y)+i(x)-A(y))} . \tag{1.1}
\end{equation*}
$$

If A is a Lipschitz function, i.e., $\left\|A^{\prime}\right\|_{\infty}<\infty$, then \mathscr{C}_{A} makes a very significant example of non-convolution type singular integral operators. The problem of L^{2}-boundedness of the Cauchy transform was raised and solved when $\left\|A^{\prime}\right\|_{\infty}$ is small by A. P. Calderón in relation to the Dirichlet problem on Lipschitz domains [Cal1, Cal2]. Since then, it has been a central problem in the theory of singular integral operators and several significant techniques has been developed to deal with this problem. Among them are the $T(1)$-Theorem of David and Journé, the technique of Coifman, McIntosh, and Meyer, and the technique of Coifman, Jones, and Semmes [D.J, C.M.M, C.J.S]. We refer to [Chi, Mur] for a history of development in the last decades on the theory of the Cauchy transform.

If $\left\|A^{\prime}\right\|_{\infty}=\infty$, then the Cauchy kernel $K(x, y)$ given in (1.1) is not a standard kernel. An integral kernel on the line is called a standard kernel if it satisfies $|K(x, y)| \leq C|x-y|^{-1}$ and $\left|\nabla_{x, y} K(x, y)\right| \leq C|x-y|^{-2}$. If $\left\|A^{\prime}\right\|_{\infty}=\infty$, then the Cauchy kernel does not satisfy both estimates. So, the theory of the singular integral operators may not be applied directly. Nevertheless, the question of L^{2}-boundedness of \mathscr{C}_{A} is still an interesting one. In this paper, we deal with L^{2}-boundedness of \mathscr{C}_{A} when A is smooth and $\left\|A^{\prime}\right\|_{\infty}=\infty$.

Received June 22, 1992.

* Both authors are partially supported by GARC-KOSEF and NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1992.

We first find two examples of curves on which the Cauchy transforms are not L^{2}-bounded. Those are curves defined by $A^{\prime}(x)=x \sin x$ and $A(x)=\exp \left(x^{2}\right)$. In the first example, A^{\prime} has too many zeros while the derivative of the second A grows too fast relatively to A. The fact that both $\log |x \sin x|$ and $\log \exp x^{2}$ are not BMO functions is relevant. We then consider the case when A is a polynomial. If A is a polynomial, then A^{\prime} has only finitely many zeros and $\mid A^{\prime}(x) /$ $A(x) \mid$ behaves like $|1 / x|$ as $x \rightarrow \infty$. In fact, if A is a polynomial, then $\log |A(x)|$ is a BMO function. In this paper, we prove the following theorem.

Main Theorem. Let $A(x)$ be a polynomial of the form

$$
\left\{\begin{array}{l}
A(x) \text { is any polynomial if } d \text { is an odd integer, } \tag{1.2}\\
A(x)=\sum_{i=1}^{n} a_{i} x^{2 i} \text { if } d=2 n \text { is an even integer. }
\end{array}\right.
$$

Then, the Cauchy transform \mathscr{C}_{A} is bounded on L^{p} for any $1<p<\infty$.
Among the polynomial which are not covered in (1.2) is $A(x)=x^{4}-x^{3}$. This polynomial does not satisfy the estimate $|A(x)-A(y)| \approx|x-y||x+y|$ $\left(|x|^{2}+|y|^{2}\right)$ when $|x|+|y|$ is large which is a crucial estimate for our proofs. However, polynomials in (1.2) include a significantly large class of polynomials.

In order to explain ideas of proofs in this paper, let us consider an example. If $A(x)=x^{2}$, the kernel given in (1.1) does not satisfy the standard estimates. But, the kernel can be decomposed as

$$
\begin{equation*}
K(x, y)=\frac{1+2 i y}{(x-y)+i\left(x^{2}-y^{2}\right)}=\frac{1}{x-y}+\frac{-i}{1+(x+y)} . \tag{1.3}
\end{equation*}
$$

The first kernel of the right hand side is the Hilbert kernel while the second one is a kernel of Poisson type. So, if $A(x)=x^{2}$, then \mathscr{C}_{A} is bounded on L^{2}. It turns out this decomposition can be performed for general kernels by using a proper cut-off function. Then, each one of the decomposed kernels is a standard kernel and we can apply the $T(1)$-Theorem to it.

This paper is organized as follows; In section 2, we give a sufficient condition for a function to belong to the BMO. In section 3, we collect some estimates on polynomials which will be used in later sections. In section 4, we decompose the kernel $K(x, y)$ into two standard kernels and show that both of them satisfy all the conditions of $T(1)$-Theorem. In section 5 , we show that if $A^{\prime}(x)=x \sin x$ or $A(x)=\exp \left(x^{2}\right)$, then \mathscr{C}_{A} is not bounded on L^{2}.

Throughout this paper constants C may differ in each occurence and $A \approx B$
means that there are positive constants c and C such that $c \leq A / B \leq C$.

2. Preliminary lemma on BMO

Showing that a function is in BMO is a fairly hard task. One of the reasons is that being a BMO function is not just a size condition. For example, even if $|f| \in$ BMO, f may not be a BMO function. It can also be shown easily that even if $0 \leq f \leq g$ and $g \in \mathrm{BMO}, f$ may not be a BMO function. In particular, that $f(x)=O(\log |x|)$ as $x \rightarrow \infty$ does not imply $f \in$ BMO. In this section we obtain a sufficient condition for a function to belong to BMO which will be used repeatedly in section 4. We show that if $f^{\prime}(x)=O\left(|x|^{-1}\right)$ as $x \rightarrow \infty$, then $f \in$ BMO.

Lemma 2.1. Suppose that there exists a positive number m such that f is bounded on $[-m, m]$ and f is continuously differentiable if $|x| \geq m$. If $\left|f^{\prime}(x)\right|=O\left(|x|^{-1}\right)$ as $x \rightarrow \infty$, then $f \in B M O$.

Proof. By the assumption, there are large constants L and C such that $\left|f^{\prime}(x)\right| \leq C|x|^{-1}$ if $|x|>L$. We write

$$
f=f \chi_{(-\infty,-L)}+f \chi_{1-L, L]}+f \chi_{(L, \infty)}=f_{1}+f_{2}+f_{3} .
$$

It is enough to show that $f_{3} \in$ BMO since f_{2} is bounded and that $f_{1} \in$ BMO can be proved in the same way. For notational simplicity, we put $g=f_{3}$. We need to show that if $0<a<b$, then

$$
\frac{1}{b-a} \int_{a}^{b}|g(x)-g(b)| d x \leq C .
$$

We may assume $L<a<b$. If $b \leq 2 a$, then

$$
\frac{1}{b-a} \int_{a}^{b}|g(x)-g(b)| d x \leq C \int_{a}^{b}\left|g^{\prime}(x)\right| d x \leq C .
$$

Suppose that $b \geq 2 a$. Choose an integer N so that $2^{-N} b \leq a \leq 2^{-N+1} b$. Then,

$$
\frac{1}{b-a} \int_{a}^{b}|g(x)-g(b)| d x \leq \frac{1}{b-a} \sum_{j=1}^{N} \int_{2^{-j} b}^{2_{b}^{-j+1} b}|g(x)-g(b)| d x .
$$

And we have, for each j,

$$
\int_{2^{-j} b}^{2^{-j+1} b}|g(x)-g(b)| d x
$$

$$
\begin{aligned}
& \leq C \int_{2^{-j} b}^{2^{-j+1} b}\left|g(x)-g\left(2^{-j} b\right)\right| d x+2^{-j} b\left|g(b)-g\left(2^{-j} b\right)\right| \\
& \leq C 2^{-j} b \int_{2^{-j} b}^{2^{-j+1} b}\left|g^{\prime}(x)\right| d x+2^{-j} b \sum_{j=1}^{j}\left|g\left(2^{-i+1} b\right)-g\left(2^{-j} b\right)\right| \\
& \leq C 2^{-j} b(\log 2+j) .
\end{aligned}
$$

Therefore we obtain

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b}|g(x)-g(b)| d x & \leq C \frac{1}{b-a} \sum_{j=1}^{N} 2^{-j} b(\log 2+j) \\
& \leq C \frac{b}{b-a} \leq C .
\end{aligned}
$$

This completes the proof

3. Estimates on polynomials

In this section we collect estimates on polynomials which will be used in later sections. Let $A(x)$ be d-th degree polynomial of the form:

$$
\left\{\begin{array}{l}
A(x) \text { is any polynomial if } d \text { is an odd integer } \tag{3.1}\\
A(x)=\sum_{i=1}^{n} a_{i} x^{2 i} \quad \text { if } d=2 n \text { is an even integer. }
\end{array}\right.
$$

For these polynomials we have the following elementary but significant estimates.

Lemma. 3.1. Let $A(x)$ be a polynomial of degree d as in (3.1). Then,
(1) If d is odd, then

$$
|A(x)-A(y)| \approx|x-y|\left(|x|^{d-1}+|y|^{d-1}\right) .
$$

Moreover, there exists a positive number M such that
(2) If $|x| \geq M$, then $|A(x)| \approx|x|^{d},\left|A^{\prime}(x)\right| \approx|x|^{d-1}$, and $\left|A^{\prime \prime}(x)\right| \approx|x|^{d-2}$.
(3) If d is even and if either $|x| \geq M$ or $|y| \geq M$, then

$$
|A(x)-A(y)| \approx|x-y||x+y|\left(|x|^{d-2}+|y|^{d-2}\right)
$$

(4) If $|x|<M$ and $|y|>2 M$, then

$$
|A(x)-A(y)| \approx|A(y)| \approx|y|^{d} .
$$

Remark 3.2 We will fix M to be the number as in Lemma 3.1 throughout this paper.

Proof. That $|A(x)-A(y)| \leq C|x-y|\left(|x|^{d-1}+|y|^{d-1}\right)$ is trivial for any polynomial. For (1), note that

$$
\begin{aligned}
\frac{x^{d}-y^{d}}{x-y} & =\sum_{j=0}^{d-1} x^{d-j-1} y^{j} \\
& =\frac{1}{2} x^{d-1}+\frac{1}{2} y^{d-1}+\frac{1}{2}\left(x^{2}+2 x y+y^{2}\right) \sum_{j=1}^{(d-1) / 2} x^{d-(2 j+1)} y^{2(j-1)} \\
& \geq \frac{1}{2}\left(x^{d-1}+y^{d-1}\right)
\end{aligned}
$$

since d is odd. Therefore we have

$$
|A(x)-A(y)| \geq \frac{1}{2}|x-y|\left(|x|^{d-1}+|y|^{d-1}\right)
$$

Let $A(x)=\sum_{j=1}^{d} a_{j} x^{j}$. Assume that $a_{d}=1$ without loss of generality. Then, we have

$$
\begin{aligned}
|A(x)-A(y)| & \geq\left|x^{d}-y^{d}\right|-\sum_{j=1}^{d-1}\left|a_{j}\right|\left|x^{j}-y^{j}\right| \\
& \geq \frac{1}{2}|x-y|\left(|x|^{d-1}+|y|^{d-1}\right)-C|x-y|\left(|x|^{d-2}+|y|^{d-2}\right) \\
& \geq C|x-y|\left(|x|^{d-1}+|y|^{d-1}\right)
\end{aligned}
$$

For (3), we let $A(x)=\sum_{n=1}^{r} a_{n} x^{2 n}$ with $2 r=d$. Observe that

$$
\begin{aligned}
\left|x^{2 n}-y^{2 n}\right| & =|x-y||x+y|\left|x^{2 n-2}+x^{2 n-4} y^{2}+\cdots+x^{2} y^{2 n-4}+y^{2 n-2}\right| \\
& \approx|x-y||x+y|\left(|x|^{2 n-2}+|y|^{2 n-2}\right)
\end{aligned}
$$

by the same reason as before. Therefore, there exist constants C_{1} and C_{2} such that

$$
\begin{aligned}
|A(x)-A(y)| & =\left|\sum_{n=1}^{r} a_{n}\left(x^{2 n}-y^{2 n}\right)\right| \\
& \geq|x-y||x+y|\left[C_{1}\left(|x|^{2 n-2}+|y|^{2 n-2}\right)-C_{2}\left(|x|^{2 n-4}+|y|^{2 n-4}\right)\right] \\
& \geq C|x-y||x+y|\left(|x|^{2 n-2}+|y|^{2 n-2}\right)
\end{aligned}
$$

as long as $|x|+|y|$ is large. It is easy to show that

$$
|A(x)-A(y)| \leq C|x-y||x+y|\left(|x|^{2 n-2}+|y|^{2 n-2}\right)
$$

and hence we obtain (3). (2) and (4) are trivial. This completes the proof.
Remark 3.2. The polynomial $A(x)=x^{4}-x^{3}$ is not included in (3.1). The estimate (3) in Lemma 3.1 is actually false for $A(x)=x^{4}-x^{3}$. It would be interesting to see whether the Cauchy transform on the curve $y=x^{4}-x^{3}$ is L^{2}-bounded or not.

4. L^{2} boundedness

Throughout this paper \mathscr{C}_{A} denotes the Cauchy transform on the curve $y=A(x)$. This section is devoted to the proof of Main Theorem:

Main Theorem. Let $A(x)$ be a polynomial of the form

$$
\left\{\begin{array}{l}
A(x) \text { is any polynomial if } p \text { is an odd integer } \tag{4.1.1}\\
A(x)=\sum_{j=1}^{n} a_{i} x^{2 t} \text { if } p=2 n \text { is an even integer. }
\end{array}\right.
$$

Then, the Cauchy transform \mathscr{C}_{A} is bounded on L^{p} for any $1<p<\infty$.
By the classical theory of singular integral operators, it suffices to prove when $p=2$. Recall that the integral kernel $K(x, y)$ of \mathscr{C}_{A} is given by

$$
\begin{equation*}
K(x, y)=\frac{1+i A^{\prime}(y)}{(x-y)+i(A(x)-A(y))} \tag{4.1.2}
\end{equation*}
$$

The kernel $K(x, y)$ does not satisfy the standard estimates. If $|y|$ is large and if x and y are close, then the estimate $K(x, y) \leq C|x-y|^{-1}$ does not hold. We overcome this obstacle by decomposing the kernel into two standard kernels by introducing an appropriate cut-off function.

Let $\tilde{\phi}$ be a C^{∞} smooth function such that

$$
\left\{\begin{array}{l}
\tilde{\phi}(x)=1 \quad \text { if }|x|<\frac{1}{2} \tag{4.1.3}\\
\tilde{\phi}(x)=0 \quad \text { if }|x| \geq \frac{4}{5} \\
\left\|\tilde{\phi}^{\prime}\right\|_{L^{\infty}} \leq 10
\end{array}\right.
$$

and we let

$$
\begin{equation*}
\phi(x, y)=\tilde{\phi}\left(\frac{x-y}{1+|x|}\right) . \tag{4.1.4}
\end{equation*}
$$

Let $K(x, y)$ be the Cauchy kernel as given in (4.1.1). We define K_{1} and K_{2} by $K_{1}(x, y)=K(x, y) \phi(x, y)$ and $K_{2}(x, y)=K(x, y)(1-\phi(x, y))$. We denote by \mathscr{C}_{1} and \mathscr{C}_{2} the integral operators defined by K_{1} and K_{2} respectively. We show that both \mathscr{C}_{1} and \mathscr{C}_{2} are bounded on L^{2} in the following subsections by using $T(1)$-theorem. Each subsection corresponds to a condition of $T(1)$-Theorem. Since $\mathscr{C}_{A}=\mathscr{C}_{1}+\mathscr{C}_{2}$, Main Theorem follows. We now recall the Weak boundedness property and $T(1)$-Theorem of David and Journé:

T(1)-Theorem (David and Journé). Let T be the integral operator defined by

$$
\langle T f, g\rangle=\int_{\mathbf{R}} \int_{\mathbf{R}} K(x, y) f(x) g(y) d x d y
$$

for any bounded functions with compact supports f and g such that $\operatorname{supp}(f) \cap$ $\operatorname{supp}(g)=\emptyset$. Suppose that an integral kernel $K(x, y)$ satisfies
(1) Standard Estimates:

$$
\begin{array}{r}
|K(x, y)| \leq C \frac{1}{|x-y|} \\
\left|\nabla_{x} K(x, y)\right|+\left|\nabla_{y} K(x, y)\right| \leq C \frac{1}{|x-y|^{2}}
\end{array}
$$

for all $x \neq y \in \mathbf{R}$.
(2) Weak Boundedness Property: there exist constants N and C such that for any pair of functions φ and ψ in $C_{0}^{\infty}(\mathbf{R})$ satisfying $\varphi(x)=\psi(x)=0$ if $|x|>1$ and $\|\varphi\|_{C^{N}} \leq 1$ and $\|\psi\|_{C^{N}} \leq 1$, for any $x \in \mathbf{R}$ and $t>0$,

$$
\left|\left\langle T \varphi^{x, t}, \psi^{x, t}\right\rangle\right| \leq C t
$$

where $\varphi^{x, t}(y)=\varphi\left(\frac{x+y}{t}\right)$.
(3) $T 1 \in B M O$.
(4) $T^{*} 1 \in B M O$.

Then T can be extended as an operator bounded on $L^{2}(\mathbf{R})$.

For notational convenience we put, throughout this paper,

$$
\begin{equation*}
Q(x, y)=\frac{A(x)-A(y)}{x-y} \tag{4.1.5}
\end{equation*}
$$

4.1. Standard estimates

In this subsection we show that the decomposed kernels K_{1} and K_{2} satisfy the standard estimates. We remark that if A is a polynomial of odd degree, there is no need of decomposing the kernel, namely, the Cauchy kernel $K(x, y)$ itself satisfy the standard estimates. However, we decompose the kernel even in this case since we want to deal with all the polynomials one time.

Proposition 4.1.1. $K_{1}(x, y)$ satisfies the standard estimates: there exists a positive constant C such that

$$
\begin{equation*}
\left|K_{1}(x, y)\right| \leq C \frac{1}{|x-y|} \tag{4.1.6}
\end{equation*}
$$

$$
\begin{equation*}
\left|\nabla_{x} K_{1}(x, y)\right|+\left|\nabla_{y} K_{1}(x, y)\right| \leq C \frac{1}{|x-y|^{2}} \tag{4.1.7}
\end{equation*}
$$

Proof. Note that $K_{1}(x, y)=0$ if $|x-y|>\frac{4}{5}(1+|x|)$. Note also that $\nabla_{x, y} \phi(x, y) \neq 0$ only if $\frac{1}{2}(1+|x|) \leq|x-y| \leq \frac{4}{5}(1+|x|)$. Hence

$$
\begin{equation*}
\left|\nabla_{x, y} \phi(x, y)\right| \leq C \frac{1}{|x-y|} \tag{4.1.8}
\end{equation*}
$$

Let M be the number in Lemma 3.1. If $|x|>5 M$ and if $|x-y| \leq \frac{4}{5}(1+|x|)$, then $|y|>M, x$ and y have the same signs, and $|x| \approx|y|$. It then follows from Lemma 3.1 that

$$
|Q(x, y)| \approx|x|^{d-1} \approx\left|A^{\prime}(y)\right|
$$

and

$$
\left|\nabla_{x, y} Q(x, y)\right| \leq \frac{\left(\left|A^{\prime}(x)\right|+\left|A^{\prime}(y)\right|\right)|x-y|+|A(x)-A(y)|}{|x-y|^{2}} \leq C \frac{|y|^{d-1}}{|x-y|}
$$

Therefore,

$$
\begin{aligned}
\left|\nabla_{x, y}\left(\frac{1+i A^{\prime}(y)}{1+i Q(x, y)}\right)\right| \leq \frac{\left|A^{\prime \prime}(y)\right|\left(1+|Q(x, y)|^{2}\right)^{1 / 2}}{1} & +|Q(x, y)|^{2}
\end{aligned}+\frac{\left(1+\left|A^{\prime}(y)\right|^{2}\right)^{1 / 2}\left|\nabla_{x, y}(Q(x, y))\right|}{1+|Q(x, y)|^{2}}
$$

$$
\leq C \frac{1}{|x-y|}
$$

Combining all these estimates we have

$$
K_{1}(x, y)\left|=\left|\frac{1}{|x-y|} \frac{1+i A^{\prime}(y)}{1+i Q(x, y)} \phi(x, y)\right| \leq C \frac{1}{|x-y|}\right.
$$

and

$$
\left|\nabla_{x, y} K_{1}(x, y)\right|=\left|\nabla_{x, y}\left(\frac{1}{|x-y|} \frac{1+i A^{\prime}(y)}{1+i Q(x, y)} \phi(x, y)\right)\right| \leq C \frac{1}{|x-y|^{2}}
$$

provided that $|x|>5 M$.
On the other hand, if $|x| \leq 5 M$ and $|x-y| \leq \frac{4}{5}(1+|x|)$, then $|y| \leq 10 M$ and hence $\left|A^{\prime}(y)\right|$ is bounded. So, it is easy to derive the estimates (4.1.6) and (4.1.7) by using (4.1.8). This completes the proof.

Proposition 4.1.2. $\quad K_{2}(x, y)$ satisfies the following estimates: there exists a constant C such that

$$
\begin{array}{r}
\left|K_{2}(x, y)\right| \leq C \frac{1}{|x+y|} \\
\left|\nabla_{x} K_{2}(x, y)\right|+\left|\nabla_{y} K_{2}(x, y)\right| \leq C \frac{1}{|x+y|^{2}} \tag{4.1.10}
\end{array}
$$

Moreover, if either $|x| \leq M$ or $|y| \leq M$ where M is the number in Lemma 3.1, then $\left|K_{2}(x, y)\right|+\left|\nabla_{x, y} K_{2}(x, y)\right|$ is bounded.

Remark 3.5. We note that (4.1.9) and (4.1.10) are not standard estimates. But $K_{2}(x,-y)$ satisfies the standard estimates and we can apply $T(1)$-Theorem to $K_{2}(x,-y)$.

Proof. Since $K_{2}(x, y)=0$ if $|x-y| \leq 1 / 2(|x|+1)$, we assume that $|x-y|>1 / 2(|x|+1)$. Then, by the triangular inequality, we have

$$
\begin{equation*}
1+|x|+|y| \leq 4|x-y| \tag{4.1.11}
\end{equation*}
$$

Let M be the number in Lemma 3.1. We first deal with the easier case. Let A be a polynomial of odd degree. If either $|x|>M$ or $|y|>M$, then by Lemma 3.1 (1) and (4.1.8),

$$
\begin{align*}
\left|K_{2}(x, y)\right| & \leq\left|\frac{1+i A^{\prime}(y)}{A(x)-A(y)}\right| \tag{4.1.12}\\
& \leq C \frac{|y|^{d-1}+1}{|x-y|\left(|x|^{d-1}+|y|^{d-1}\right)} \\
& \leq C \frac{1}{|x-y|} \leq C \frac{1}{|x+y|+1} .
\end{align*}
$$

If $|x| \leq M$ and $|y| \leq M$, then it is easy to get $\left|K_{2}(x, y)\right| \leq C$. (4.1.10) can be proved in the same way.

We now suppose that $A(x)=\sum_{k=1}^{n} a_{k} x^{2 k}$. Recall that $|x-y|>1 / 2(1+$ $|x|)$. If $|y|>M$, then by Lemma 3.1 (2) and (3) and (4.1.11),

$$
\begin{align*}
\left|K_{2}(x, y)\right| & \leq\left|\frac{1+i A^{\prime}(y)}{A(x)-A(y)}\right| \tag{4.1.13}\\
& \leq C \frac{|y|^{d-1}+1}{|x-y||x+y|\left(|x|^{d-2}+|y|^{d-2}\right)} \leq C \frac{1}{|x+y|} .
\end{align*}
$$

If $|y|<M$, then since $|x-y|>1 / 2(1+|x|)$, we have

$$
\begin{align*}
\left|K_{2}(x, y)\right| & \leq\left|\frac{1+i A^{\prime}(y)}{(x-y)+i(A(x)-A(y))}\right| \tag{4.1.14}\\
& \leq C \frac{M^{d-1}}{|x-y|} \leq C \frac{1}{|x+y|+1}
\end{align*}
$$

In order to derive (4.1.10), we first observe as in the proof of Proposition 4.1.1 that $\nabla_{x, y} \phi(x, y) \neq 0$ only if $1 / 2(1+|x|) \leq|x-y| \leq 4 / 5(1+|x|)$ and hence

$$
\left|\nabla_{x, y} \phi(x, y)\right| \leq C \frac{1}{1+|x|} \leq C \frac{1}{|x+y|+1}
$$

If $|y|>M$, then by Lemma 3.1 and (4.1.11)

$$
\begin{align*}
& \left|\nabla_{x, y}\left(\frac{1+i A^{\prime}(y)}{(x-y)+i(A(x)-A(y))}\right)\right| \tag{4.1.15}\\
& \leq C \frac{(1+|A(x)|)|y|^{d-1}+|y|^{2 d-2}}{|x-y|^{2}|x+y|^{2}\left(|x|^{d-2}+|y|^{d-2}\right)^{2}} \leq C \frac{1}{|x+y|^{2}}
\end{align*}
$$

Hence

$$
\begin{equation*}
\left|\nabla_{x, y} K_{2}(x, y)\right|=\left|\nabla_{x, y}\left(\frac{1+i A^{\prime}(y)}{(x-y)+i(A(x)-A(y))}(1-\phi(x, y))\right)\right| \tag{4.1.16}
\end{equation*}
$$

$$
\leq C \frac{1}{|x+y|^{2}}
$$

If $|y| \leq M,\left|A^{\prime}(y)\right|$ is bounded and it is easy to derive

$$
\begin{equation*}
\left|\nabla_{x, y} K_{2}(x, y)\right| \leq C \frac{1}{|x-y|^{2}+1} \leq C \frac{1}{|x+y|^{2}} \tag{4.1.17}
\end{equation*}
$$

Combining estimates (4.1.12)-(4.1.16), we can derive (4.1.9) and (4.1.10). One also can see that if either $|x| \leq M$ or $|y| \leq M$, then $\left|K_{2}(x, y)\right|+\left|\nabla_{x, y} K_{2}(x, y)\right|$ is bounded. This completes the proof.

4.2. Weak boundedness

We now show that the operators \mathscr{C}_{1} and \mathscr{C}_{2} satisfy the weak boundedness property. We first show that \mathscr{C}_{A} itself is weakly bounded and then show how the weak boundedness of \mathscr{C}_{1} and \mathscr{C}_{2} follows.

Proposition 4.2.1 (Weak Boundedness). Let $A(x)$ be a polynomial of the form (4.1.1). There exists a constant $C>0$ such that

$$
\left|\left\langle\mathscr{C}_{A} \psi_{1}^{u, t}, \phi_{2}^{u, t}\right\rangle\right| \leq C t
$$

for any $u \in \mathbf{R}$, for any $t>0$, and for any $\psi_{i} \in C_{0}^{\infty}$ supported in $\{x \in \mathbf{R}$: $|x| \leq 1\}$ and $\left\|\psi_{i}\right\|_{C^{1}} \leq 1$. Here $\phi^{u, t}(x)=\phi\left(\frac{x+u}{t}\right)$.

Proof. Let $u=t v$ and let $\psi^{v}(x)=\phi(x+v)$. By a change of variables, we have

$$
\begin{aligned}
\left\langle\mathscr{C}_{A} \phi_{1}^{u, t}, \phi_{2}^{u, t}\right\rangle & =\lim _{\varepsilon \rightarrow 0} \iint_{|x-y|>\varepsilon} K(x, y) \phi_{1}^{u, t}(x) \phi_{2}^{u, t}(y) d x d y \\
& =t \lim _{\varepsilon \rightarrow 0} \iint_{|x-y|>\varepsilon} \frac{1}{x-y}\left(\frac{1+i A^{\prime}(t y)}{1+i Q(t x, t y)}\right) \phi_{1}^{v}(x) \phi_{2}^{v}(y) d x d y .
\end{aligned}
$$

We then write

$$
\begin{align*}
\left\langle\mathscr{C}_{A} \phi_{1}^{u, t}, \phi_{2}^{u, t}\right\rangle & =t \lim _{\varepsilon \rightarrow 0} \iint_{|x-y|>\varepsilon} \frac{1}{x-y} \phi_{1}^{v}(x) \phi_{2}^{v}(y) d x d y \tag{4.2.1}\\
& -i t \lim _{\varepsilon \rightarrow 0} \iint_{|x-y|>\varepsilon} \frac{t P(t x, t y)}{1+i Q(t x, t y)} \phi_{1}^{v}(x) \phi_{2}^{v}(y) d x d y \\
& :=t\left(\mathrm{I}_{1}(v)-i \mathrm{I}_{2}(v, t)\right)
\end{align*}
$$

where we put

$$
\begin{equation*}
P(x, y)=\frac{A^{\prime}(y)-Q(x, y)}{y-x} \tag{4.2.2}
\end{equation*}
$$

Hence it suffices to show that I_{1} and I_{2} are bounded uniformly in v and t. Note that $\mathrm{I}_{1}(v)=\left\langle H \psi_{1}^{v}, \phi_{2}^{v}\right\rangle$ where H is the Hilbert transform and hence I_{1} is bounded. So, it remains to show that I_{2} is bounded. By using the polar coordinates, we have

$$
\begin{equation*}
\mathrm{I}_{2}(v, t)=\int_{0}^{\infty} \int_{-\pi}^{\pi} \frac{\operatorname{tr} P(\operatorname{tr}, \theta)}{1+i Q(\operatorname{tr}, \theta)} \psi(v, r, \theta) d \theta d r \tag{4.2.3}
\end{equation*}
$$

where

$$
\begin{aligned}
Q(r, \theta) & =Q(r \cos \theta, r \sin \theta) \\
P(r, \theta) & =P(r \cos \theta, r \sin \theta) \\
\psi(v, r, \theta) & =\psi_{1}^{v}(r \cos \theta) \psi_{2}^{v}(r \sin \theta)
\end{aligned}
$$

Note that $\psi_{1}^{v}(x) \phi_{2}^{v}(y) \neq 0$ only if $|x+v| \leq 1$ and $|y+v| \leq 1$. Therefore, the set $\{r \in[0, \infty): \psi(v, r, \theta) \neq 0\}$ is included in the interval $[|v|-2,|v|+2]$. In particular, $|\{r \in[0, \infty): \phi(v, r, \theta) \neq 0\}| \leq 4$. Therefore, in order to prove that I_{2} is bounded, it suffices to show that

$$
\begin{equation*}
F(v, s, r):=\int_{-\pi}^{\pi} \frac{s P(s, \theta)}{1+i Q(s, \theta)} \psi(v, r, \theta) d \theta \tag{4.2.4}
\end{equation*}
$$

is bounded.
Let $A(x)=\sum_{j=1}^{d} a_{j} x^{j}$ be a polynomial of the form (4.1.1). If we put

$$
Q_{j}(x, y)=\frac{x^{j}-y^{j}}{x-y}=\sum_{k=1}^{j} x^{j-k} y^{k-1} \quad \text { for } j \geq 1
$$

then

$$
Q(x, y)=\frac{A(x)-A(y)}{x-y}=\sum_{j=1}^{d} a_{j} Q_{j}(x, y)
$$

Since

$$
P(x, y)=\frac{A^{\prime}(y)-Q(x, y)}{y-x}=\sum_{j=2}^{d} a_{j}\left(\sum_{k=1}^{j=1} y^{k-1} Q_{j-k}(x, y)\right),
$$

one can see that

$$
\begin{equation*}
|P(s, \theta)| \leq C s^{d-2} \text { and }\left|\frac{\partial P(s, \theta)}{\partial \theta}\right| \leq C s^{d-2} \tag{4.2.5}
\end{equation*}
$$

Let $Q_{j}(\theta)=Q_{j}(\cos \theta, \sin \theta)$. Then, by the homogeneity, we have

$$
\begin{equation*}
F(v, s, r)=\int_{-\pi}^{\pi} \frac{s P(s, \theta)}{1+i \sum_{j=1}^{d} s^{j-1} a_{j} Q_{j}(\theta)} \psi(v, r, \theta) d \theta \tag{4.2.6}
\end{equation*}
$$

Now suppose that d is an odd integer. Then,

$$
Q_{d}(x, y)=2^{-1}\left[x^{d-1}+x^{d-3}(x+y)^{2}+\cdots+y^{d-3}(x+y)^{2}+y^{d-1}\right]
$$

and hence we have

$$
\begin{equation*}
Q_{d}(\theta) \geq 2^{-1}\left[(\cos \theta)^{d-1}+(\sin \theta)^{d-1}\right] \geq 2^{-d} . \tag{4.2.7}
\end{equation*}
$$

Since $\left|s^{d-1} Q_{d}(\theta)\right| \geq 1 / 2\left|\sum_{j=1}^{d-1} s^{j-1} a_{j} Q_{j}(\theta)\right|$ for all large s by (4.2.7), it follows from (4.2.5) that

$$
\left|\frac{s P(s, \theta)}{1+i \sum_{j=1}^{d} s^{j-1} a_{j} Q_{j}(\theta)}\right| \leq C
$$

It also follows that $F(v, s, r)$ is bounded.
We now deal with the case when d is even. Let $2 n=d$ and $A(x)=$ $\sum_{j=1}^{n} a_{j} x^{2 j}$. Then, we have

$$
\begin{equation*}
F(v, s, r)=\int_{-\pi}^{\pi} \frac{s P(s, \theta)}{1+i \sum_{j=1}^{n} s^{2 j-1} a_{j} Q_{2 j}(\theta)} \psi(v, r, \theta) d \theta \tag{4.2.8}
\end{equation*}
$$

Using the identity $\sin \theta+\cos \theta=\sqrt{2} \sin \left(\theta+\frac{\pi}{4}\right)$, we can write $Q_{2 j}$ as

$$
\begin{equation*}
Q_{2 j}(\theta)=\sqrt{2} \sin \left(\theta+\frac{\pi}{4}\right) \sum_{l=1}^{j}(\cos \theta)^{2(j-l)}(\sin \theta)^{2(l-1)} \tag{4.2.9}
\end{equation*}
$$

Let us put

$$
\begin{equation*}
q_{j}(\theta)=\sum_{l=1}^{j}(\cos \theta)^{2(j-l)}(\sin \theta)^{2(l-1)} \text { for } j=1,2, \cdots, n \tag{4.2.10}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
q_{j}\left(-\theta-\frac{\pi}{4}\right)=q_{j}\left(\theta-\frac{\pi}{4}\right) \quad \text { and } \quad q_{j}(\theta) \geq 2^{-\jmath} \tag{4.2.11}
\end{equation*}
$$

We now begin to estimate F in (4.2.8). We split the integral in (4.2.8) as

$$
\begin{gathered}
F(v, s, r)=\int_{-\pi}^{\pi} \frac{s P(s, \theta)}{1+i\left(\sqrt{2} \sin \left(\theta+\frac{\pi}{4}\right) \sum_{j=1}^{n} s^{2 j-1} a_{j} q_{j}(\theta)\right)} \psi(v, r, \theta) d \theta \\
=\int_{-\pi}^{-\frac{\pi}{2}}+\int_{-\frac{\pi}{2}}^{0}+\int_{0}^{\frac{\pi}{2}}+\int_{\frac{\pi}{2}}^{\pi} \cdots d \theta=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}+\mathrm{I}_{4}
\end{gathered}
$$

Since $\left|\sqrt{2} \sin \left(\theta+\frac{\pi}{4}\right) q_{n}(\theta)\right| \geq 2^{-p}$ if $-\pi \leq \theta \leq-\pi / 2$ or $0 \leq \theta \leq \pi / 2, \mathrm{I}_{1}$ and I_{3} are bounded by the same reason as above. We now estimate I_{2}. By translating by $\frac{\pi}{4}$, we have

$$
\begin{equation*}
\mathrm{I}_{2}=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{s P\left(s, \theta-\frac{\pi}{4}\right)}{1+i \sqrt{2} \sin \theta \sum_{j=1}^{n} s^{2 j-1} a_{j} q_{j}\left(\theta-\frac{\pi}{4}\right)} \psi\left(v, r, \theta-\frac{\pi}{4}\right) d \theta \tag{4.2.12}
\end{equation*}
$$

Let I and II be the real part and the imaginary part of I_{2} respectively. Since $q_{j}\left(-\theta-\frac{\pi}{4}\right)=q_{j}\left(\theta-\frac{\pi}{4}\right)$ for any j, we have

$$
\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sqrt{2} \sin \theta \sum_{j=1}^{n} s^{2 j-1} a_{j} q_{j}\left(\theta-\frac{\pi}{4}\right)}{1+\left(\sqrt{2} \sin \theta \sum_{j=1}^{n} s^{2 j-1} a_{j} q_{j}\left(\theta-\frac{\pi}{4}\right)\right)^{2}} d \theta=0 .
$$

Therefore, by (4.2.5) and (4.2.9), we have

$$
\begin{gathered}
|\mathrm{II}|=\left\lvert\, \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sqrt{2} \sin \theta \sum_{j=1}^{d} s^{2 j-1} a_{j} q_{j}\left(\theta-\frac{\pi}{4}\right)}{1+\left(\sqrt{2} \sin \theta \sum_{j=1}^{n} s^{2 j-1} a_{j} q_{j}\left(\theta-\frac{\pi}{4}\right)\right)^{2}}\right. \\
\left.\times\left(P\left(s, \theta-\frac{\pi}{4}\right) \phi\left(v, r, \theta-\frac{\pi}{4}\right)-P\left(-\frac{\pi}{4}\right) \phi\left(v, r,-\frac{\pi}{4}\right)\right) d \theta \right\rvert\, \\
\leq C \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\left|\sqrt{2} s \sin \theta \sum_{j=1}^{n} s^{2 j-1} a_{j} q_{j}\left(\theta-\frac{\pi}{4}\right)\right|}{1+\left(\sqrt{2} \sin \theta \sum_{j=1}^{d} s^{2 j-1} a_{j} q_{j}\left(\theta-\frac{\pi}{4}\right)\right)^{2} s^{d-2}|\theta| d \theta .} .
\end{gathered}
$$

Since $q_{n}(\theta) \geq 2^{-n}$, we have

$$
|\mathrm{II}| \leq C \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{s^{2 d-2}|\theta \sin \theta|}{1+\left[s^{d-1} \sin \theta\right]^{2}} d \theta \leq C
$$

Finally, for $\mathrm{I}=\Re \mathrm{I}_{2}$, we use the fact $d(\theta)>2^{-p}$ to have

$$
\begin{aligned}
& |\mathrm{I}|=\left\lvert\, \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1+\left(\sqrt{2} \sin \theta \sum_{j=1}^{n} s^{2 j-1} a_{j} q_{j}\left(\theta-\frac{\pi}{4}\right)\right)^{2}}\right. \\
& \left.\quad \times P\left(s, \theta-\frac{\pi}{4}\right) \psi\left(v, r, \theta-\frac{\pi}{4}\right) d \theta \right\rvert\, \\
& \leq C \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{s^{2 d-1}}{1+\left[s^{d-1} \sin (\theta)\right]^{2}} d \theta \leq C .
\end{aligned}
$$

This proves that I_{2} is bounded. I_{2} can be proved to be bounded in a similar way.

Proposition 4.2.2. \mathscr{C}_{1} and \mathscr{C}_{2} satisfy the weak boundedness property.

Proof. Proofs are similar to the proof of Proposition 4.2.1. As in (4.2.1), we have

$$
\begin{aligned}
\left\langle\mathscr{C}_{1} \phi_{1}^{u, t}, \phi_{2}^{u, t}\right\rangle= & t \lim _{\varepsilon \rightarrow 0} \iint_{|x-y|>\varepsilon} \frac{1}{x-y} \phi(t x, t y) \phi_{1}^{v}(x) \phi_{2}^{v}(y) d x d y \\
& -i t \lim _{\varepsilon \rightarrow 0} \iint_{|x-y|>\varepsilon} \frac{t P(t x, t y)}{1+i Q(t x, t y)} \phi(t x, t y) \phi_{1}^{v}(x) \phi_{2}^{v}(y) d x d y \\
:= & t\left(\mathrm{I}_{1}(t, v)-i \mathrm{I}_{2}(t, v)\right) .
\end{aligned}
$$

Here ϕ is the cut-off function defined in (4.1.4). For I_{2}, (4.2.2) can be changed as

$$
\mathrm{I}_{2}=\int_{0}^{\infty} \int_{-\pi}^{\pi} \frac{t r P(t r, \theta)}{1+i Q\left(t_{r}, \theta\right)} \phi(t, v, r, \theta) d \theta d r
$$

where

$$
\phi(t, r, \theta, v)=\phi(\operatorname{tr} \cos \theta, \operatorname{tr} \sin \theta) \phi_{1}^{v}(r \cos \theta, r \sin \theta) \phi_{1}^{v}(r \cos \theta, r \sin \theta)
$$

Again since the set $\{r \in[0, \infty): \phi(t, v, r, \theta) \neq 0\}$ is included in the interval $[|v|-2,|v|+2]$, it suffices to show that

$$
F(t, r, s):=\int_{-\pi}^{\pi} \frac{\operatorname{tr} P(\operatorname{tr}, \theta)}{1+i Q(\operatorname{tr}, \theta)} \psi(t, v, r, \theta) d \theta
$$

is bounded. Now we can repeat the same argument as in Proposition 4.2.1 to show that I_{2} is bounded.
I_{1} looks almost like a truncated Hilbert transform. However, unlike the usual truncation, the size of truncation in I_{1} varies depending on x. So, we include the proof of the boundedness of I_{1} even if it follows a standard argument. Note that, since $\phi(t x, t y)=1$ if $|x-y| \leq 1 / 2\left(t^{-1}+|x|\right)$ and $\phi_{1}^{v}(x) \phi_{2}^{v}(y)=0$ if $|x-y|$
$\geq 2, \phi(t x, t y) \phi_{1}^{v}(x) \phi_{2}^{v}(y)=\phi_{1}^{v}(x) \phi_{2}^{v}(y)$ if either $|x|>4$ or $t \leq \frac{1}{4}$. Note also that, if $|v|>8$, then $\phi_{1}^{v}(x) \neq 0$ only if $|x| \geq 7$. Hence if either $|v|>8$ or $t \leq$ $1 / 4$, then $\phi(t x, t y) \phi_{1}^{v}(x) \phi_{2}^{v}(y)=\phi_{1}^{v}(x) \phi_{2}^{v}(y)$ and hence $\mathrm{I}_{1}(t, v)=\left\langle H \phi_{1}^{v}, \phi_{2}^{v}\right\rangle$ where H is Hilbert transform. Therefore, I_{1} is bounded.

Suppose now that $|v| \leq 8$ and $t \geq 1 / 4$. Then

$$
\begin{aligned}
\mathrm{I}_{1}(t, v) & =\frac{1}{2} \iint \frac{1}{x-y}\left(\phi(t x, t y) \phi_{1}^{v}(x) \phi_{2}^{v}(y)-\phi(t y, t x) \phi_{1}^{v}(y) \phi_{2}^{v}(x)\right) d x d y \\
& =\frac{1}{2} \iint \frac{1}{x-y}(\phi(t x, t y)-\phi(t y, t x)) \psi_{1}^{v}(x) \phi_{2}^{v}(y) d x d y \\
& +\frac{1}{2} \iint \frac{1}{x-y} \phi(t x, t y)\left(\phi_{1}^{v}(x) \phi_{2}^{v}(y)-\phi_{1}^{v}(y) \phi_{2}^{v}(x)\right) d x d y
\end{aligned}
$$

But from (4.1.3) and (4.1.4), we obtain

$$
|\phi(t x, t y)-\phi(t y, t x)| \leq 10|x-y|(h(t, x, y)+h(t, y, x))
$$

where

$$
h(t, x, y)=\left\{\begin{array}{l}
\frac{1}{\frac{1}{t}+|x|} \text { for } \frac{1}{2}\left(\frac{1}{t}+|x|\right) \leq|x-y| \leq \frac{4}{5}\left(\frac{1}{t}+|x|\right) \\
0 \quad \text { otherwise. }
\end{array}\right.
$$

Since $\psi_{1}^{v}(x) \psi_{2}^{v}(y)=0=\phi_{1}^{v}(y) \psi_{2}^{v}(x)$ for $|x|+|y|>20$,

$$
\begin{aligned}
\left|\mathrm{I}_{1}(t, v)\right| \leq & C \iint_{|x|+|y| \leq 20}(h(t, x, y)+h(t, y, x)) d x d y \\
& +\iint_{|x|+|y| \leq 20} \phi(t y, t x)\left(\left\|\phi_{1}^{v}\right\|_{C^{1}}+\left\|\phi_{2}^{v}\right\|_{C^{1}}\right) d x d y \\
\leq & C .
\end{aligned}
$$

This completes the proof.

4.3. Estimates for $\mathscr{C}_{1} 1$

We now show that $\mathscr{C}_{1} 1, \mathscr{C}_{1}^{*} 1 \in \mathrm{BMO}$.
Proposition 4.3.1. $\mathscr{C}_{1} 1 \in B M O$.
Proof. Since $\phi(x, y)=0$ if $|x-y|>\frac{4}{5}(|x|+1)$ and 1 if $|x-y|$
$<\frac{1}{2}(|x|+1)$, we can divide $\mathscr{C}_{1} 1(x)$ as follows;

$$
\begin{aligned}
\mathscr{C}_{1} 1(x)= & \text { p.v. } \int_{-\infty}^{\infty} K_{1}(x, y) d y \\
= & \text { p.v. } \int_{|x-y| \leq \frac{1}{2}} \frac{1}{x-y}\left(\frac{1+i A^{\prime}(y)}{1+i Q(x, y)}-1\right) \\
& +\int_{\frac{1}{2} \leq|x-y| \leq \frac{1}{2}(|x|+1)} \frac{1}{x-y} \frac{1+i A^{\prime}(y)}{1+i Q(x, y)} d y \\
& +\int_{\frac{1}{2}(|x|+1) \leq(|x-y|) \leq \frac{4}{5}(|x|+1)} \frac{1}{x-y} \frac{1+i A^{\prime}(y)}{1+i Q(x, y)} \phi(x, y) d y \\
:= & \mathrm{I}_{1}(x)+\mathrm{I}_{2}(x)+\mathrm{I}_{3}(x) .
\end{aligned}
$$

Let

$$
\Psi(x, y)=\frac{1+i A^{\prime}(y)}{1+i Q(x, y)}-1=\frac{1+i A^{\prime}(y)}{1+i Q(x, y)}-\frac{1+i A^{\prime}(y)}{1+i A^{\prime}(y)} .
$$

Then, by the mean value theorem and Lemma 3.1 (1) and (3), we have

$$
|\Psi(x, y)| \leq|x-y| \sup _{|x-y|<1}\left|\frac{\partial \Psi}{\partial y}(x, y)\right| \leq C|x-y| .
$$

Therefore, $\mathrm{I}_{1}(x)$ is bounded. Let M be the large number given in Lemma 3.1. If $|x| \leq M$ and if $|x-y| \leq \frac{4}{5}(|x|+1)$, then, $|y| \leq 2 M$. Hence, I_{2} and I_{3} are bounded if $|x| \leq M$.

We now handle the case when $|x|>M$. Assume that $x>M$ without loss of generality. If $\frac{1}{2}(x+1) \leq|x-y| \leq \frac{4}{5}(1+x)$ and if $|x| \geq M$, then by Lemma 3.1

$$
\left|\frac{1}{x-y}\left(\frac{1+i A^{\prime}(y)}{1+i Q(x, y)}\right)\right| \leq C|x|^{-1}
$$

and therefore I_{3} is bounded for $x>M$. Hence we only need to show $\mathrm{I}_{2} \in$ BMO. We decompose I_{2} as

$$
\begin{align*}
\mathrm{I}_{2}(x)= & \int_{1 \leq|x-y| \leq \frac{1}{2}(x+1)} \frac{1}{x-y}\left(\frac{1+i A^{\prime}(y)}{1+i Q(x, y)}-\frac{A^{\prime}(y)}{Q(x, y)}\right) d y \tag{4.3.1}\\
& +\int_{1 \leq|x-y| \leq \frac{1}{2}(x+1)} \frac{A^{\prime}(y)}{A(x)-A(y)} d y
\end{align*}
$$

$$
:=F(x)+G(x) .
$$

If $d=1$, clearly $\mathrm{I}_{2} \in$ BMO. Assume that $d>1$. Then, by Lemma 3.1, we have

$$
\left|\frac{1+i A^{\prime}(y)}{1+i Q(x, y)}-\frac{A^{\prime}(y)}{Q(x, y)}\right| \leq C \frac{\left|Q(x, y)-A^{\prime}(y)\right|}{|Q(x, y)|^{2}} \leq C x^{-d+1}
$$

if $x>M$ and $1 \leq|x-y| \leq \frac{1}{2}(x+1)$. Hence $F(x)$ is bounded for $x \geq M$. So, in order to prove that $I_{2} \in$ BMO, it suffices to show

$$
\begin{equation*}
\left|G^{\prime}(x)\right|<C x^{-1} \quad \text { for sufficiently large } x \tag{4.3.2}
\end{equation*}
$$

by Lemma 2.1. To prove (4.3.2), note that

$$
\begin{aligned}
G^{\prime}(x) & =\int_{1 \leq|x-y| \leq \frac{1}{2}(x+1)}\left(\frac{\partial}{\partial y}+\frac{\partial}{\partial x}\right)\left(\frac{A^{\prime}(y)}{A(x)-A(y)}\right) d y+J(x) \\
& =\int_{1 \leq|x-y| \leq \frac{1}{2}(x+1)} \frac{A^{\prime \prime}(y)[A(x)-A(y)]-A^{\prime}(y)\left[A^{\prime}(x)-A^{\prime}(y)\right]}{[A(x)-A(y)]^{2}} d y+J(x)
\end{aligned}
$$

where

$$
J(x)=\frac{1}{2} \frac{A^{\prime}\left(\frac{1}{2} x-\frac{1}{2}\right)}{A(x)-A\left(\frac{1}{2} x-\frac{1}{2}\right)}+\frac{1}{2} \frac{A^{\prime}\left(\frac{3}{2} x+\frac{1}{2}\right)}{A(x)-A\left(\frac{3}{2} x+\frac{1}{2}\right)} .
$$

Clearly $J(x)$ is bounded for $x>M$. If $1 \leq|x-y| \leq \frac{1}{2}(x+1)$ and $x \geq M$, then

$$
\begin{aligned}
|A(x)-A(y)| & \geq C|x|^{d-1}|y-x| \\
A^{\prime \prime}(y)[A(x)-A(y)] & =A^{\prime \prime}(y)\left[A^{\prime}(y)(x-y)+(x-y)^{2} O\left(|x|^{d-2}\right)\right] \\
A^{\prime}(y)\left[A^{\prime}(x)-A^{\prime}(y)\right] & =A^{\prime}(y)\left[A^{\prime \prime}(y)(x-y)+(x-y)^{2} O\left(|x|^{d-2}\right)\right]
\end{aligned}
$$

and therefore

$$
\left|A^{\prime \prime}(y)[A(x)-A(y)]-A^{\prime}(y)\left[A^{\prime}(x)-A^{\prime}(y)\right]\right| \leq C|x-y|^{2}|x|^{d-2} .
$$

Hence for $x>M$,

$$
\left|G^{\prime}(x)\right| \leq C \int_{1 \leq|x-y| \leq \frac{1}{2} x} \frac{x^{2 d-4}}{x^{2 d-2}} d y \leq C x^{-1}
$$

This completes the proof.

Proposition 4.3.2. $\mathscr{C}_{1}^{*} 1 \in B M O$.

Proof. Proposition 4.3.2 can be proved in the same way as Proposition 4.3.1. We include a sketch of the proof for reader's sake. As in the proof of Proposition 4.3.1, we divide $\mathscr{C}_{1}^{*} 1$ as follows;

$$
\begin{aligned}
\mathscr{C}_{1}^{*} 1(x)= & \text { p.v. } \int_{-\infty}^{\infty} K_{1}(y, x) d y \\
= & \text { p.v. } \int_{|x-y|<\frac{1}{2}} \frac{1}{x-y}\left(\frac{1+i A^{\prime}(x)}{1+i Q(x, y)}-1\right) \\
& +\int_{\frac{1}{2} \leq|x-y| \leq \frac{1}{2}(|y|+1)} \frac{1}{x-y}\left(\frac{1+i A^{\prime}(x)}{1+i Q(x, y)}\right) d y \\
& +\int_{\frac{1}{2}(|y|+1) \leq|x-y| \leq \frac{4}{5}(|y|+1)} \frac{1}{x-y}\left(\frac{1+i A^{\prime}(x)}{1+i Q(x, y)}\right) \phi(y, x) d y \\
:= & \mathrm{I}_{1}(x)+\mathrm{I}_{2}(x)+\mathrm{I}_{3}(x) .
\end{aligned}
$$

Then, by the same reasons as in the proof of Proposition 4.3.1, I_{1} is bounded and I_{2} and I_{3} are bounded if $|x| \leq M$.

Assume that $|x| \geq M$ and that $x>0$. Then, by Lemma 3.1, we have

$$
\begin{aligned}
\left|I_{3}(x)\right| & \leq \int_{\frac{1}{2}(|y|+1) \leq|x-y| \leq \frac{4}{5}(|y|+1)} \frac{1}{|x-y|}\left|\frac{1+i A^{\prime}(x)}{1+i Q(x, y)}\right| d y \\
& \leq C x^{d-1} \int_{\frac{1}{2} x \leq|y|} \frac{1}{|y|^{d}} d y \leq C .
\end{aligned}
$$

In order to prove that $\mathrm{I}_{2} \in$ BMO, it suffices to show that

$$
G_{*}(x)=\int_{\frac{1}{2} \leq|x-y| \leq \frac{1}{2}(x+1)}\left(\frac{A^{\prime}(x)}{A(x)-A(y)}\right) d y
$$

satisfies the estimates $\left|G_{*}^{\prime}(x)\right|<C x^{-1}$ for $x \geq M$ as in the proof of Proposition 4.3.1. We then note that

$$
G_{*}^{\prime}(x)=\int_{1 \leq|x-y| \leq \frac{1}{4} x}\left(\frac{\partial}{\partial y}+\frac{\partial}{\partial x}\right)\left(\frac{A^{\prime}(x)}{A(x)-A(y)}\right) d y+J_{*}(x)
$$

where

$$
J_{*}(x)=\frac{2}{3} \frac{A^{\prime}(x)}{A(x)-A\left(\frac{2}{3} x-\frac{1}{3}\right)}+\frac{A^{\prime}(x)}{A(x)-A(2 x+1)}
$$

One can see as in the proof of Proposition 4.3.1 that if $1 \leq|x-y| \leq \frac{1}{2}(|y|+1)$ and $x \geq M$, then

$$
\left|\left(\frac{\partial}{\partial y}+\frac{\partial}{\partial x}\right)\left(\frac{A^{\prime}(x)}{A(x)-A(y)}\right)\right| \leq C x^{-2}
$$

and therefore $G_{*}^{\prime}(x)=O\left(x^{-1}\right)$ for $x>M$. This completes the proof.

4.4 Estimates for $\mathscr{C}_{2} 1$

In this subsection, we finally show that $\mathscr{C}_{2} 1, \mathscr{C}_{2}^{*} 1 \in$ BMO.

Proposition 4.4.1 $\quad \mathscr{C}_{2} 1 \in B M O$.

Proof. For given x, we let $Q=[-2|x|, 2|x|]$. Then, $\mathscr{C}_{2} \chi_{Q}(0)$ is finite. So, $\mathscr{C}_{2} 1(x)$ is understood to be

$$
\mathscr{C}_{2} 1(x)=\mathscr{C}_{2} \chi_{Q}(x)-\mathscr{C}_{2} \chi_{Q}(0)+\int_{Q^{c}}\left[K_{2}(x, y)-K_{2}(0, y)\right] d y
$$

where χ_{Q} is the characteristic function for Q. Then, by Proposition 4.1.2

$$
\begin{aligned}
\int_{Q^{c}}\left[K_{2}(x, y)-K_{2}(0, y)\right] d y & \leq \int_{|y|>2|x|} \sup _{|\xi| \leq|x|}\left|\nabla_{x} K_{2}(\xi, y)\right||x| d y \\
& \leq C|x| \int_{|y|>2|x|} \frac{1}{|y|^{2}} d y \leq C .
\end{aligned}
$$

So, it remains to show that $\mathscr{C}_{2} \chi_{Q}(x)$ and $\mathscr{C}_{2} \chi_{Q}(0)$ belong to BMO. If $|x|<2 M$, then both $\mathscr{C}_{2} \chi_{Q}(x)$ and $\mathscr{C}_{2} \chi_{Q}(0)$ are bounded. Suppose that $|x| \geq 2 M$. Then,

$$
\mathscr{C}_{2} \chi_{Q}(0)=\int_{1 / 2<|y|<4 / 5} K_{2}(0, y) d y+\int_{4 / 5 \leq|y| \leq 2|x|} \frac{1+i A^{\prime}(y)}{y+i A(y)} d y .
$$

The first integral in the right hand side is bounded and the second one is $\log (2|x|$ $+i A(|x|))+C$ which belongs to BMO by Lemma 2.1 . Finally we show that $\mathscr{C}_{2} \chi_{Q}(x) \in$ BMO.

$$
\begin{aligned}
\mathscr{C}_{2} \chi_{Q}(x) & =\int_{\substack{|y| \leq 2|x| \\
1 / 2(1+|x| \ll x-y \mid<4 / 5(1+|x|)}} K_{2}(x, y) d y+\int_{\substack{|y| \leq 2|x| \\
4 / 5(1+|x|)<|x-y|}} K_{2}(x, y) d y \\
& =\mathrm{I}_{1}(x)+\mathrm{I}_{2}(x) .
\end{aligned}
$$

If $|y| \leq 2|x|$ and $1 / 2(1+|x|)<|x-y|<4 / 5(1+|x|)$, then $\left|K_{2}(x, y)\right|$
$\leq C|x+y|^{-1} \leq C|x|^{-1}$ and hence

$$
\left|\mathrm{I}_{1}(x)\right| \leq C \int_{1 / 2|x| \leq|y| \leq 9 / 5|x|}\left|K_{2}(x, y)\right| d y \leq C
$$

If $4 / 5(1+|x|) \leq|x-y|$, then $\phi(x, y)=0$ and hence

$$
\begin{aligned}
\mathrm{I}_{2}(x)= & \int_{-2|x|}^{1 / 5|x|-4 / 5}+\int_{9 / 5|x|+4 / 5}^{2|x|} \frac{1+i A^{\prime}(y)}{(x-y)+i(A(x)-A(y))} d y \\
= & \log ((x+2|x|)+i(A(x)-A(-2|x|))) \\
& -\log ((x-1 / 5|x|+4 / 5)+i(A(x)-A(1 / 5|x|-4 / 5))) \\
& -\log ((x-2|x|)+i(A(x)-A(2|x|))) \\
& +\log ((x-9 / 5|x|-4 / 5)+i(A(x)-A(9 / 5|x|-4 / 5))) \in \text { ВМО. }
\end{aligned}
$$

This completes the proof.
Proposition 4.4.2. $\mathscr{C}_{2}^{*} 1 \in B M O$.

Proof. We may assume $d=\operatorname{deg} A \geq 2$. Recall that

$$
\mathscr{C}_{2}^{*} 1(x)=\int_{-\infty}^{\infty} \frac{1+i A^{\prime}(y)}{(x-y)+i(A(x)-A(y))}(1-\phi(y, x)) d y .
$$

If $|x|<2 M$, then

$$
\begin{aligned}
\left|\mathscr{C}_{2}^{*} 1(x)\right| & \leq C \int_{|x-y|>\frac{1}{2}} \sqrt{|x-y|+|A(x)-A(y)|} d y \\
& \leq C \int_{-\infty}^{\infty} \frac{1}{1+|y|^{d}} d y<C
\end{aligned}
$$

We now suppose that $|x| \geq 2 M$ and assume that $x>0$ without loss of generality. We then split $\mathscr{C}_{2}^{*} 1$ as

$$
\begin{aligned}
\mathscr{C}_{2}^{*} 1(x) & =\int_{|y|>2 x}+\int_{-2 x \leq y \leq-M}+\int_{-M<y \leq 2 x} \overline{K_{2}(y, x)} d y \\
& =\mathrm{I}_{1}(x)+\mathrm{I}_{2}(x)+\mathrm{I}_{3}(x) .
\end{aligned}
$$

Estimates of I_{1} and I_{3} are easier parts. In fact, by Lemma 3.1,

$$
\left|\mathrm{I}_{1}(x)\right| \leq C\left|A^{\prime}(x)\right| \int_{|y|>2 x} \frac{1}{|y|^{d-1}} d y<C,
$$

and

$$
\begin{aligned}
\left|\mathrm{I}_{3}(x)\right| \leq & C \int_{\substack{-M \leq y \leq M \\
1 / 2(1+|y||<|x-y|}} \frac{\left|A^{\prime}(x)\right|}{|A(x)|} d y \\
& +C \int_{\substack{M \leq y \leq 2 x \\
1 / 2(1+|y|)<|x-y|}} \frac{\left|A^{\prime}(x)\right|}{|x-y|\left[1+|x+y|\left(x^{d-2}+|y|^{d-2}\right)\right]} d y \\
\leq & \frac{C^{-1}}{x}+C x^{d-1} \int_{\frac{1}{10} x}^{2 x} \frac{1}{y^{d}} d y \leq C .
\end{aligned}
$$

For $\mathrm{I}_{2}(x)$, we let

$$
f(x)=A^{\prime}(x) \int_{-2 x}^{-M} \frac{1}{(x-y)+i(A(x)-A(y))}(1-\phi(y, x)) d y .
$$

Note that if $-2 x \leq y \leq-M$ and $x>2 M$, then $4 / 5(1+|y|)<|x-y|$ and hence $\phi(y, x)=0$. If $A(x)$ is of odd degree, then it is easy to see that $f(x)$ is bounded. Therefore, we assume that A is of even degree. We use Lemma 2.1. Note that

$$
\begin{aligned}
f^{\prime}(x)= & A^{\prime \prime}(x) \int_{-2 x}^{-M} \frac{1}{(x-y)+i(A(x)-A(y))} d y \\
& +A^{\prime}(x) \int_{-2 x}^{-M}\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right)\left(\frac{1}{(x-y)+i(A(x)-A(y))}\right) d y+E(x)
\end{aligned}
$$

where

$$
E(x)=\frac{A^{\prime}(x)}{(x-M)-i(A(x)-A(M))}-\frac{A^{\prime}(x)}{3 x-i(A(x)-A(-2 x))} .
$$

It then follows that

$$
\begin{aligned}
f^{\prime}(x)= & \int_{-2 x}^{-M} \frac{A^{\prime \prime}(x)(x-y)-2 A^{\prime}(x)}{[(x-y)+i(A(x)-A(y))]^{2}} d y \\
& +i \int_{-2 x}^{-M} \frac{A^{\prime \prime}(x)(A(y)-A(x))+A^{\prime}(x)\left(A^{\prime}(y)+A^{\prime}(x)\right)}{[(x-y)+i(A(x)-A(y))]^{2}} d y+E(x) \\
= & J_{1}(x)+i J_{2}(x)+E(x) .
\end{aligned}
$$

Since $\left|A^{\prime \prime}(x)(x-y)-2 A^{\prime}(x)\right| \leq C\left(x^{d-2}|x-y|+x^{d-1}\right)$ by Lemma 3.1 (2) and $|x-y| \approx|x|$ if $-2 x<y<-M$, we have

$$
\begin{aligned}
\left|J_{1}(x)\right| & \leq C \int_{-2 x}^{-M} \frac{x^{d-2}|x-y|+x^{d-1}}{|x-y|^{2}\left[1+|x+y|\left(x^{d-2}+|y|^{d-2}\right)\right]^{2}} d y \\
& \leq C x^{d-3} \int_{-2 x}^{-M} \frac{1}{1+|x+y|^{2} x^{2(d-2)}} d y \leq C x^{-1} .
\end{aligned}
$$

We now estimate $J_{2}(x)$. Since A is even, we have

$$
\begin{aligned}
A^{\prime \prime}(x) & (A(y)-A(x))+A^{\prime}(x)\left(A^{\prime}(y)+A^{\prime}(x)\right) \\
& =A^{\prime \prime}(-x)(A(y)-A(-x))-A^{\prime}(-x)\left(A^{\prime}(y)-A^{\prime}(-x)\right) \\
& =(x+y)^{2} \sum_{j=2}^{d} \frac{1}{j!}\left[A^{\prime \prime}(-x) A^{(j)}(-x)-A^{\prime}(-x) A^{(j+1)}(-x)\right](x+y)^{j-2}
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \left|A^{\prime \prime}(x)[A(y)-A(x)]+A^{\prime}(x)\left[A^{\prime}(y)+A^{\prime}(x)\right]\right| \\
& \quad \leq C|x+y|^{2}\left[|x+y|^{d-2}+x^{2(d-2)}\right] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left|J_{2}(x)\right| & \leq C \int_{-2 x}^{-M} \frac{|x+y|^{2}\left(|x+y|^{d-2}+x^{2(d-2)}\right)}{|x|^{2}\left[1+|x+y|\left(|x|^{d-2}+|y|^{d-2}\right)\right]^{2}} d y \\
& \leq \frac{C}{x^{2}} \int_{-x}^{-M+x} \frac{t^{2}\left(t^{d-2}+|x|^{2(d-2)}\right)}{\left(1+|t||x|^{d-2}\right)^{2}} d t \leq x^{-1}
\end{aligned}
$$

It is easy to see that $|E(x)| \leq C|x|^{-1}$. In conclusion, we have $\left|f^{\prime}(x)\right| \leq$ $C|x|^{-1}$ if $|x| \geq 2 M$. By Lemma 2.1, $f \in$ BMO. It follows that $\mathrm{I}_{2} \in$ BMO. This completes the proof.

5. Non- L^{2}-boundedness

In this section, we give two examples of A for which \mathscr{C}_{A} are not L^{2}-bounded. The first example of A has two many zeros while the derivative of the second A grows too fast relatively to A itself.

Theorem 5.1. Let $A^{\prime}(x)=x \sin x$. Then, \mathscr{C}_{A} is not bounded on L^{2}.

Proof. For each positive integer n, we let f_{n} be the characteristic function on $[2 n \pi+\pi / 4,2 n \pi+3 \pi / 4]$. Then, $\left\|f_{n}\right\|_{2}=\pi / 2$ for each n. Note that
$|A(x)-A(y)|=|-x \cos x+y \cos y+\sin x-\sin y| \leq 2(|x-y|+|y|+1)$.
If $n \geq 2, j \geq 2$, and if $2 n \pi+\pi / 4 \leq y \leq 2 n \pi+3 \pi / 4$ and $2(n+j) \pi \leq x$ $\leq 2(n+j+1) \pi$, then

$$
|A(x)-A(y)| \leq 2(|x-y|+|y|+1) \leq \frac{1}{2} y \sin y(x-y)
$$

It then follows that

$$
\begin{aligned}
\left|\mathscr{C}_{A} f_{n}(x)\right| & \geq\left|\mathfrak{F} \mathscr{C}_{A} f_{n}(x)\right| \\
& =\left|\int_{2 n \pi+\pi / 4}^{2 n \pi+3 \pi / 4} \frac{y \sin y(x-y)+(A(x)-A(y))}{(x-y)^{2}+(A(x)-A(y))^{2}} d y\right| \\
& \geq \int_{2 n \pi+\pi / 4}^{2 n \pi+3 \pi / 4} \frac{y \sin y|x-y|-|A(x)-A(y)|}{(x-y)^{2}+(A(x)-A(y))^{2}} d y \\
& \geq \frac{1}{10} \int_{2 n \pi+\pi / 4}^{2 n \pi+3 \pi / 4} \frac{y \sin y|x-y|}{(|x-y|+|y|+1)^{2}} d y \geq C \frac{n j}{(n+j)^{2}}
\end{aligned}
$$

for some constant C. Therefore,

$$
\left\|\mathscr{C}_{A} f_{n}\right\|_{2}^{2} \geq \sum_{j=2}^{\infty} \int_{2(n+j) \pi}^{2(n+j+1) \pi}\left|\mathscr{C}_{A} f_{n}(x)\right|^{2} d x \geq C \sum_{j=2}^{\infty} \frac{n^{2} j^{2}}{(n+j)^{4}}
$$

Since

$$
\sum_{j=2}^{\infty} \frac{j^{2}}{(n+j)^{4}} \geq \frac{C}{n},
$$

we have $\left\|\mathscr{C}_{A} f_{n}\right\|_{2} \geq C \sqrt{n}\left\|f_{n}\right\|_{2}$ for each $n \geq 2$. This completes the proof.
Theorem 5.2. Let $A(x)=\exp \left(x^{2}\right)$. Then, \mathscr{C}_{A} is not bounded on L^{2}.

Proof. For each positive integer n, we let f_{n} be the characteristic function on $[n, n+1]$. Then, $\left\|f_{n}\right\|_{2}=1$ for each n. If $x \in[0,1]$, we have

$$
\left|\mathscr{C}_{A} f_{n}(x)\right| \geq C \int_{n}^{n+1} \frac{y \exp \left(y^{2}\right)|A(x)-A(y)|}{(x-y)^{2}+(A(x)-A(y))^{2}} d y \geq C
$$

for some constant C independent of n. So $\left\|\mathscr{C}_{A} f_{n}\right\|_{2} \geq C n\left\|f_{n}\right\|_{2}$ for each n. This completes the proof.

REFERENCES

[Cal1] A. P. Calderón, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci. USA, 74 (1977), 1324-1327.
[Cal2] - Commutators, Singular integrals on Lipschitz curves and applications, Proceedings of ICM (Helsinki, 1978), Acad. Sci. Fennica, Helsinki (1980), 85-96.
[Chr] M. Chris, Lectures on Singular Integral Operators, CBMS 77, Amer. Math. Soc., 1990.
[C.D.M] R. R. Coifman, G. David, Y. Meyer, La solution des conjectures de Calderón, Advances in Math., 48 (1983), 144-148.
[C.J.S] R. R. Coifman, P. Jones, and S. Semmes, Two elementary proofs of the L^{2}-boundedness of Cauchy integrals on Lipschiz curves, J. Amer. Math. Soc., 2 (1989), 553-564.
[C.M.M] R. R. Coifman, A. McIntosh, Y. Meyer, L'intégrale de Cauchy definit un opérateur bornée sur L^{2} pour courbes lipschitziennes, Ann. of Math., 116 (1982), 361-387.
[C.M] R. R. Coifman and Y. Meyer, Au dela des opérateurs pseudo-differentielss, Asterique 57, Societe Mathematique de France, 1978.
[D.J] G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math., 120 (1984), 371-397.
[Jou] J.-L. Journé, Calderón-Zygmund operators, pseudo-differential operators, and the Cauchy integral of Calderón, Lecture Notes in Math., 994, Springer Verlag, New York, 1983.
[Mur] T. Murai, A real variable method for the Cauchy transform, and analytic capacity, Lecture Note in Math., 1307, Springer-Verlag, New York, 1988.
[St1] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.
[St2] - Beijing Lectures in harmonic analysis, Princeton Univ. Press Princeton, 1986.
[Tor] A. Torchinsky, Real-variable methods in Harmonic Analysis, Academic Press, 1986.
H. Kang

Department of Mathematics
Soong Sil University,
Sangdo-Dong, Dongjak-Gu
Seoul, 156-743
Korea

J. K. Seo	Current address of J. K. Seo
GARC	Department of Mathematics
Seoul National University	POSTECH
Shinlim-Dong, Kwanak-Gu	Pohang, Korea
Seoul, 135-110	
Korea	

