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THE EFIMOV EFFECT OF THREE-BODY SCHRODINGER

OPERATORS: ASYMPTOTICS FOR THE NUMBER

OF NEGATIVE EIGENVALUES

HIDEO TAMURA

Introduction

The Efimov effect is one of the most remarkable results in the spectral theory

for three-body Schrόdinger operators. Roughly speaking, the effect will be ex-

plained as follows: If all three two-body subsystems have no negative eigenvalues

and if at least two of these two-body subsystems have resonance states at zero

energy, then the three-body system under consideration has an infinite number of

negative eigenvalues accumulating at zero. This remarkable spectral property was

first discovered by Efimov [1] and the problem has been discussed in several

physical journals. For related references, see, for example, the book [3]. The

mathematically rigorous proof of the result has been given by the works [4, 8, 9].

The aim of the present work is to study the asymptotic distribution of these negative

eigenvalues below zero (bottom of essential spectrum). Denote by N(E), E > 0,

the number of negative eigenvalues less than — E. Then the main result obtained

here is, somewhat loosely stating, that N(E) behaves like | log E | as E—+0. We

first formulate precisely the main theorem and then make a brief comment on the

recent related result obtained by Sobolev [7].

We consider a system of three particles with masses mi > 0, 1 < j ^ 3,

which move in the three-dimensional space R and interact with each other

through a pair potential V^iη — rk), 1 < j < k < 3, where η e R3 denotes the

position vector of the j-th particle. For such a system, the energy Hamiltonian H

(three-body Schrόdinger operator) takes the form

(0.1) H=H0+V, V= Σ VJk(rj-rk),
l<j<k<3

in the center-of-mass frame, where Ho denotes the free Hamiltonian. Both the
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Hamiltonians HQ and H are regarded as an operator acting on the space

L (R ) and are represented in various forms according to the choice of the Jacobi

coordinates. All the pair potentials Vjk are assumed to satisfy the following condi-

tion:

(V)β VJk(x), x ^ R , is real-valued and has the decay property

I Vjk{x) I < C(l + \x\)~P for some p > 2.

Throughout the whole exposition, the constant p is used with the meaning

ascribed above. This assumption implies that the Hamiltonian H formally defined

above admits a unique self-adjoint realization L (R ). We denote by the same

notation H this self-adjoint realization.

We use letters α, β, j and δ to denote one of three pairs (j, k) with 1 <j

< k < 3. For given pair a = (/, &), we define the reduced mass ma through the

relation \/vna — I/MJ + l/ntk and the two-body subsystem Hamiltonian H as

Ha = -Δ/2ma + Vaf Va{x) = VJk(x), on L2(R3

X).

We further assume that all the two-body subsystem Hamiltonians H have the

following spectral properties:

(H.I) Ha has no negative bound state energies.

(H.2) H has a resonance state at zero energy.

Roughly speaking, assumption (H.2) means that the equation Haφ = 0 has a solu-

tion behaving like φ (x) ~ \ x \ , x ^ R , at infinity. It should be noted that φ is

not an eigenstate at zero energy of H°'. By the HVZ theorem ([5]), it follows from

(H.I) that the three-body Hamiltonian H has its essential spectrum in the interval

[0, °°) and its discrete spectrum in (~ °°, 0). If, in addition, (H.2) is satisfied,

then H has an infinite number of negative eigenvalues accumulating at zero. As

stated above, this spectral property is known as the Efimov effect. The aim here is

to study the asymptotic distribution of such negative eigenvalues accumulating at

zero. The main theorem is formulated as follows.

THEOREM 1. Assume that (V)p, (H.I) and (H.2) are fulfilled. Let N(E), E > 0,

be the number of negative eigenvalues less than — E of H with repetition according to

their multiplicities. Then N(E) obeys the following asymptotic formula:

N(E) = Co I log £ I (1 + 0(1)), E->0,

for some Co > 0.
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Remark 1. We should make some comments on the leading coefficient Co in

the asymptotic formula. This constant Co does not depend on the pair potentials

Vjk and is given as a positive function of only the ratios mj/mk between the mas-

ses. As is seen in the proof of the theorem, it is determined from an eigenvalue

asymptotics for a certain compact integral operator and is in general difficult to

write down in the explicit form. In the special case with identical masses, Co is de-

termined as Co = λ /2ττ with the unique positive root λ > 0 of the equation

χ = 23 3~1/2(sinh πλ /6)/(cosh πλ/2).

Remark 2. (1) The following result can be also obtained in the course of

proof: If at most one of subsystem Hamiltonians has a resonance state at zero

energy, then H has only a finite number of negative eigenvalues; N(E) = 0(1), E

—> 0. This result asserts the finiteness of discrete spectrum below the bottom of

essential spectrum, even if the bottom coincides with a three-cluster threshold

energy. (2) As previously stated, H has in general an infinite number of negative

eigenvalues accumulating at zero except for a certain special case, if only two sub-

system Hamiltonians have a resonance state at zero energy. The theorem above

can be extended to such a case. We will discuss briefly this problem in the last

section.

The asymptotic formula in the theorem has been first established by Sobolev

[7] under the main assumption that pair potentials are non-positive and have the

decay property (V)p with p > 3, and also the above properties of the leading

coefficient Co has been investigated in detail there. In the present work, we im-

prove slightly this result with emphasis on the following cases: (1) pair potentials

are not necessarily assumed to be non-positive; (2) pair potentials have the weak

decay property (V)p with p > 2. The proof of the theorem is, in principle, based

on the same idea developed by [7] but the arguments undergo a slight change in

many aspects, if the non-positivity assumption of pair potentials is not necessarily

assumed. We first reduce the problem under consideration to the study on the

eigenvalue asymptotics for a certain compact integral operator. The reduction is

made by use of the results on the behavior at low energies of two-body resolvents.

After reduction, we apply the results obtained in [7] to calculate the leading coeffi-

cient of asymptotic formula for eigenvalues of such an integral operator.

The method here applies also to the problem on the eigenvalue asymptotics in

the coupling limit. Let H be defined by (0.1). Suppose that H fulfills all the



58 HIDEO TAMURA

assumptions in Theorem 1. We consider the three-body Hamiltonian

(0.2) H(λ) =H- λV=H0+ (1- λ)V on L2(R6)

with a coupling constant λ, 0 < λ <C 1, small enough. The Hamiltonian H(λ) has

only a finite number of negative eigenvalues for λ > 0. The theorem below gives

the asymptotic formula as λ —* 0 for the number of such negative eigenvalues.

THEOREM 2. Suppose that the three-body Hamiltonian H fulfills assumptions

{V)p, (H.I) and (H.2). Let H(λ), 0 < λ < 1, be as above. Denote by N0(λ) the num-

ber of negative eigenvalues of H(λ). Then one has

N0(λ) = 2 Co I log Λ I (l + o( l)) , Λ — 0 ,

with the same positive constant CQ as in Theorem 1.

§1. Low energy analysis for two-body resolvents

In this section we formulate the result on the behavior at low energies of

two-body resolvents, which is used as a basic tool to prove Theorems 1 and 2.

Throughout the section, we work in the space L — L (Rx) and denote by ( , )

the L scalar product in this space.

We begin by defining precisely the resonance state at zero energy. Let

T — — Δ + VQ be the two-body Schrόdinger operator acting on L . We assume

that the potential V0(x) has the decay property (V)p and that the operator T has

the spectral properties (H.I) and (H.2). We now consider the equation Tφ = 0.

This equation can be put into the integral equation

(1.1) φ(x) = - (l/4τr) f\x-y\~1V0(y)φ(y)dyf

where the integration with no domain attached is taken over the whole space. This

abbreviation is used throughout. Equation (1.1) is considered in the weighted L

s p a c e L2_s = L\Rl <x> ~2s d x ) , <x> = ( 1 + \x \Y\ w i t h s>\/2,s b e i n g

taken close enough to 1/2. If φ ^ L_s solves the equation (1.1), then it is easily

seen that φ behaves like

φ(x) = - (l/4τr)<V0, φ>\xV + 0 ( | x Γ + 1 ) ,
(1.2)

(d/d\x\)φ(x) = ( 1 / 4 J Γ ) < V 0 , φ>\x\~*+ 0(\xD

as I x\ —> oo. We classify the solution to (1.1) into two kinds of solutions accord-
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ing as the scalar product (Vo, φ) vanishes or not. We say that ψ is the resonance

state at zero energy of T, when (Vo, φ) Φ 0 is satisfied. Thus the resonance state

φ behaves like φ(x) ~ \ x | as | x | —• oo and hence φ €= L is not a bound state

at zero energy. On the other hand, if <F0, φ} = 0 is satisfied, then we have

φ(x) = O ( U Γ + 1 ) and hence it follows from (1.1) that φ(x) = O(\ x \~P+l~ε),

ε = p — 2 > 0. We repeat this argument to obtain that φ(x) = O(\ x\~2), so that

φ is in L and becomes a bound state at zero energy of T. Conversely, if φ is a

bound state at zero energy, then we can easily see that φ satisfies the relation

(Vo> φ) — 0 and hence the resonance state at zero energy is non-degenerate. The

following lemma is obtained as an immediate consequence of Theorem XIII.46, [5]

and Theorem A.3.1, [6].

LEMMA 1.1. Suppose that T fulfills (V)p, (H.I) and (H.2). Then T cannot have a

bound state at zero energy, bottom of its spectrum, and hence has only a resonance state.

Assumption (V)p enables us to choose a non-negative potential Uo > 0 satis-

fying (V)p so that

(1.3) WQ(x) = U0(x) - V0(x) > UQ(x)/2 > 0.

If Vo is non-positive, then we can take Uo = 0. Let S be the Schrόdinger operator

with potential Uo

(1.4) 5 = -Δ+ Uo on L2(R3

X)

and denote the resolvent of 5 as R(d 5) = (S + d )~ for d > 0. Since Uo is

non-negative, i?(0 5) can be also defined as a bounded operator from Us into L_s

for any 5 > 1 and the generalized eigenfunction θo(x) at zero energy of S is

obtained as a unique solution to the Lippmann-Schwinger equation. This eigen-

function θ0 is easily seen to obey the following bounds as | x \ —• oo:

(1.5) θo(x) = 1 + o ( l ) , (d/d\x\)θo(x) =o(\x\~1).

We now define the operator A(d) : L —* L by

(1.6) Aid) = Id - W0

1/2 R(d2 S) W0

1/2, d > 0,

Id being the identity operator. It should be noted that this operator can be defined

even for d = 0. Denote by Σ i the kernel of A(0). Since W0

1/2 R(0 S)W0

U2 is a

compact operator, the kernel Σλ is of finite dimension.

We can show that Σ x is a one-dimensional space, if T has a resonance state

at zero energy. To see this, we investigate the relation between the kernels of T
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and A(0). Let φ be a solution to (1.1). Then φ obeys the equation

(1.7) Tφ = Sφ- Woφ = 0

and hence φ ^ L defined as ψ — Wo φ belongs to Σ x . We take the scalar

product of θ0 with (1.7). If we take account of the asymptotic behaviors (1.2) and

(1.5), then we obtain, by the Green formula, the relation

(1.8) <V0, φ> = - <ΘOWO

1/2, ψ>

for φ and φ as above. Conversely, if φ belongs to Σ i , then we see, repeating a

similar argument, that φ defined as

(1.9) φ = R(D S) Wln φ = W;ι/2φ

solves the equation (1.1) and satisfies the same relation as in (1.8). Thus, if T has

a resonance state at zero energy, it follows from Lemma 1.1 that Σ i is a

one-dimensional space. Denote by φx ^ L the normalized function spanning Σ ^

Then φι satisfies

by (1.8) and falls off with order O{\ x\'ι~P/2) by (1.9).

Let Σ 2 be the orthogonal complement of Σ P We decompose the space L =

L (Rx) into the orthogonal sum L — Σ x 0 Σ 2 and denote by P ; , 1 < j < 2, the

orthogonal projections onto Σ ; . Since φλ behaves like φ^x) = O(\ x \~ι~p/2) a t

infinity, we can obtain the following lemma.

LEMMA 1.2. The orthogonal projection Pι can be extended to a bounded operator

from U_s into Us for any 5, 1 /2 < 5 < (p — l ) / 2 .

We study the behavior as d—• 0 of Aid) defined by (1.6). To do this, we here

introduce new notations. A bounded operator T(d), 0 < d < 1, acting on L is

said to be of class OpW^), if its operator norm obeys the bound || T(d) \\ =

O(dv) as d-+0. When the difference 7\(rf) - T2(d) is of class Op(<f) for given

two operators Tλ(d) and T2(d), we denote this relation as Tγ(d) = T2(d) +

LEMMA 1.3. Suppose that T fulfills (V)p, (H.I) and (H.2). The operator

A(d) defined by (1.6) has the follomng properties.

(1) Let ε, 0 < ε < 1, be fixed arbitrarily. Then there exist positive constants cε

and c' such that
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cε Id < A(d) < c'e Id, d > ε,

in the form sense.

(2) Let Pj, 1 ^ j ^ 2, frβ as above and let φγ^ L be the normalized function

spanning the range of Pv the range being of one dimension. Define Ajk(d), 1 ^

j y k < 2, asAjk(d) = PjA(d)Pk. Then:

( i ) A22(d) e Op ( / ) and A>2 W) > c2P2 for some c2 > 0.

(ii) A12(d) e O p ( Λ > r ^ m ^ v > 1/2.

(lii) T / i ^ exists v > 1 SMCΛ that An(d) = σxdPx + Op(ύO

This lemma plays an important role in proving the main theorems. We pro-

ceed with the argument, accepting the lemma as proved. The proof is given in sec-

tion 4 after completing the proof of Theorem 1.

Remark 1.4. An similar argument applies to the Schrόdinger operator

T= — A/2m + Vo with reduced mass m. For such an operator, the constant σλ

in the lemma is given as

σ, = 2 - I / V V I <θ0, WΓ fc> |2,

where θ0 is the generalized eigenfunction at zero energy of 5 = — Δ /2m + Uo,

Uo being chosen to satisfy (1.3), and φγ^ L is the normalized function con-

structed for the operator S. This can be easily verified by a simple scale trans-

formation.

§2. Three-body system

From now on, we always assume that (V)p, (H.I) and (H.2) are fulfilled. In

this section we introduce several basic notations used throughout the proof of the

main theorems.

Let a = 0 , k) be given pair and let /, / Φ j , k, be the index by which the

third particle is labelled. Then the Jacobi coordinates associated with a are de-

fined as

(2.1) xa = η - rk, ya = rt - (m ;r ; + mkrk)/(mj + mk).

We denote by (pa, qa) ^ R the coordinates dual to (xa, ya). In this coordinate

system, the symbol H0(pa, qa) of the three-body free Hamiltonian Ho is described

as
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H0(Pa> 9a) = \Pa |2/2iwa + | qa Γ /2wα,

where mα again denotes the reduced mass associated with a and n α is defined

through the relation \/na — \/mx + l / (m ; + mk). Let β Φ a be another pair.

Then a simple calculation yields

/<-» <~»\ L **« , aβ , βa i ββ

(2.2) />α = it #α + /c fy, ^ = /c #α + K qβ,

where the coefficients κaa', /cβa, tcaβ and /cββ are explicitly expressed in terms of the

masses mJf 1 < j < 3, and, in particular, /c a and Λ:" satisfy | tc$a | = | /fα 1 = 1.

We sometimes denote by H0(qa, qβ) the symbol representation for i/0 in the coor-

dinate system (qa, qβ). We further define the cluster Hamiltonian Ha as

Ha = H0+ Va, Va = Vik on L2(i?6).

The base space L (R ) is decomposed as the tensor product

L2(i?6) = L\R3 dxa) Θ Z 2(i? 3 rf»β)

and hence the Hamiltonian Ha is represented as

Ha = Ha®ld + Id®Ta on L2(R3 dxa) ® L2(R3 dya),

where i^ α again denotes the two-body subsystem Hamiltonian associated with a

and Ta is given as

(2.3) Ta=-Δ/2na on L2(R3;dya).

We now choose a non-negative potential ί/α = Ua(xa) ^ 0 to satisfy a rela-

tion similar to (1.3)

Wa(xa) = Ua(xa) - Va(xa) > Ua(xa) /2 > 0

and define the Hamiltonians Ka and ifα as

ίΓα = - Δ /2ma + Ua on L 2(i? 3 d^ α ),
(2.4)

Zς = # * Θ l d + Id(g):Γα on L2(R3;dxa)®L2(R3;dya).

In a similar way to (1.6), we also define A(d Ka) : L2(R3 dxa)-+L?(R3 dya)

as

(2.5) A(d;Ka) = Id- W«/2 (Ka+ d2y1Wa

1/2, d>0,

and denote by Pf, 1 < < 2, the orthogonal projections associated with

A(0 i f"), which are constructed in the same way as Pj in section 1. We further

denote by θ" = #"Crα) the generalized eigenfunction at zero energy of Ka and by
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Φι ^ L (R dxa) the normalized function spanning the range of Pf. The operator

A(d K ) defined above preserves the same properties as in Lemma 1.3 (see also

Remark 1.4) and , in particular, we have

for some v > 1, where σa > 0 is given as

(2.6) σa = 2-ι/2π~ιnζ2\(θlWι

a

/\ φ«>\2.

§3. Proof of Theorem 1

We keep the same notations as in the previous section. The proof of the

theorem is long and is divided into several steps.

(1) We consider only E, 0 < E < 1, small enough. For given self-adjoint

operator A, we denote by n(λ A) the number of eigenvalues greater than λ of A.

Let U = Σ α Ua and W = Σ α Wa, where the summation Σ α is taken over all

three pairs a. Define the Hamiltonian K by

K=H0+U=H+W on L2(R6)

and the bounded operator M(E) : L2(R6) -> L2(i?6) by

M(£) = (# + £ Γ 1 / 2 ^ ( # + £Γ 1 / 2 = Σ Ma(E)*Ma(E)
a

with

(3.i) Ma(E) = wς1/2(/i: + £)" 1 / 2.

Then the quantity Λ^C )̂ in question coincides with n(l M(E)) by the Birman-

Schwinger principle.

The next lemma is due to Sobolev [7]. For completeness, we here repeat the

proof given there.

LEMMA 3.1 Let

= Σ Θ I 2 ( i ? 6 ) , three summands.

Define the operator M(E) : £2 -> £2 as

lMa(E)Ma(E)* Ma(E)Mβ(E)*

ίa(E)* Mβ(E)Ms(E)* Ms(E)Mr(E)* ],

\Mr(E)Ma{E)* Mr(E)M8(E)* Mr{E)Mr(EΫ
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where a, β and y denote different three pairs. Then one has

N(E) =n(l;M(E)).

Proof. Let ί£ (E) :£2-*ίe2 be defined as

<Ma{E) Ma(E) Ma(E)

vt"'
Me(E) Mg(E)

Mr(E) Mr(E) Mr(E)

)Then a simple calculation yields M(E) = £(E)£(E) and also we can easily see

that the positive eigenvalues of M(E) just coincide with those of £(E) £(E).

Hence the lemma follows at once. •

(2) We denote by Dia{J5α, Bβ, Br} the 3 x 3 diagonal matrix with operators

Ba1 Bβ and Br as diagonal entries. Let M(E) be as in Lemma 3.1. The off-

diagonal entries of M{E) are all compact operators on I (if ) but the diagonal

ones are not necessarily compact operators. Thus we look more carefully at the

operator

Ma{E)Ma(E)* = Wι

a

/2 (K+EYιWι

a

/2

in the diagonal entries of Jl(E).

Let Ka be defined by (2.4). We decompose the above operator into the sum

M α (£)M α (£)* = MOa(E) + Lα(£), where MOa(E) = WxJ\Ka + EYxWλJ2 and

(3.2) La{E) = Wι

a

n UK + EV1 - (Ka + EV1) W]ϊ\

so that M{E) is represented as M{E) = M0(E) + Mλ(E) with

M0(E) = Dia{MOα(£), Moβ(E), MOr(E)}.

We note that M^E) : £ —• £ is a compact operator.

We now introduce a positive smooth function ω(s), s > 0, such that

(3.3) ω(s) = s for 0 < s < 1, ω(s) = 2 for s > 2.

Let Ta be defined by (2.3) as an operator on L (R dya). We define

(3.4) ωa(E) ι/2

This is considered as an operator acting on L (R ) as well as on L (R dya). We

further define AΛE) : L2(R6) -+L2(R6) as

Aa(E) = Id - M t o ( £ ) = Id - W* (Ka + E) W..
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By Lemma 1.3 (see also Remark 1.4), we can find strictly positive smooth bounded

functions/(s) and g(s), 0 < c < f(s) < g(s), behaving like

(3.5) /(s) = 1 + o(sv), g(s) = 1 + o(sv), s^O,

for some v > 0 such that

(3.6) Aa{E) >fa{E)ωa{E)Pΐ + c2P
a

2,

(3.7) Aa(E) < ga(E)ωa(E)P? + c'2P"

for some positive constants c2 and c2, 0 < c2 < c2, where

(3.8) fa(E) = σJ((Ta + E)1/2), ga(E) = σag((Ta + E)1/2)

with σa > 0 given by (2.6), and the inequality relation is understood in the form

sense. Denote by Fa(E) and Ga(E) the operators on the right side of (3.6) and

(3.7), respectively, and define

&0(E) = Όia{Fa(E), Fβ(E), Fr(E)},

%(E) = Όia{Ga(E), Gβ(E), Gr(E)}.

Then it follows from (3.6) and (3.7) that

P0(E) < Id-M0(E), <%(E)

and hence we obtain from Lemma 3.1 that

(3.9) nil Άe{E)) < N(E) < nil Άf{E)),

where

(3) We study the behavior as £—•() of Hilbert-Schmidt norm of the entry

operators in 2 (E) and Qg(E). To do this, we here introduce the new notations.

Let B(E), 0 < E < 1, be a compact operator on L2(R6). We say that B(E) is of

class (HS)ε, if for any ε > 0 small enough, B(E) has a decomposition B(E) =

B^E ε) + B2(E ε) such that: (i) the Hilbert-Schmidt norm of Bλ(E ε) obeys

the bound \BX(E ε) \HS < Cε for some Cε independent of E (ii) the operator

norm of B2(E ε) obeys the bound || B2(E ε) || < ε. If the difference between two

operators Bλ(E) and B2(E) is of class (HS)ε, we denote this relation as B^E) ~

B2(E).
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Let Ka be defined by (2.4) as an operator acting on L2(R3 dxa). We denote

by R(d2;Ka) the resolvent of Ka R(d2 Ka) = (Ka + d2)'\ d > 0, and

regard this as an operator acting on L (R ) as well as on L (R dxa) in the dis-

cussion below. We further define DOa as

(3.10) A** = Id - R(0 Ka) Ua.

LEMMA 3.2. Let Ma(E), La(E) and Fa(E) be defined above. Then:

(1) P"Ma(E)Mβ(E)*Pl e (ffS)Λ9 aΦ β.

(2) PΪωa(Eyι/2Ma{E)Mβ(E)*P*2 e (HS)ε, aΦβ.

(3) Fa(Ey1/2La(E)Fa(EΓ1/2(Ξ (HS)ε.

We proceed with the argument, accepting this lemma as proved. We now de-

note by Qa0(E) the entry operators of Άf(E). By Lemma 3.2, the diagonal entry

operators Qaa(E) are all of class (HS)ε and the off-diagonal ones Qaβ(E), a Φ β,

take the form

Qf

ae(E) ~ Pa

ιW
ι

a

/2{fa{E)ωa{E)Y1/\K+Er1(fB{E)ω,{E)yU2W1/2Pl

A similar relation holds for the entry operators Q^Θ(E) of Ά8(E) with fa(E)

replaced by ga(E). We further continue to analyse the operator on the right side

of the relation above.

LEMMA 3.3 Let DOa be defined by (3.10). Define Taβ(E) : L2(R6) -+ L2(R6) by

Taβ(E) = (σaσβΓ
1/2P?Wy2D0aΓaβ(E)DΪβWβ

1/2PΪ,

where oa is given by (2.6) and

Γaβ(E) = ωa(EΓ1/2(H0 + EYιωB{Er1/2.

Then one has

Qf

aβ(E) ~ Taβ(E), aΦβ.

A similar relation holds for the entry operators Qg

aβ(E) of2f{E).

The two lemmas above are proved in section 5.

(4) Let Ψa : L2(R3 dya) —• L2(R3 dqa) be the Fourier transformation in ya.

We define
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Λaβ(E) = ΨaTaβ(E) Ψ* : L2(R6 dxβ dqβ) - L2(R6 dxa dqa)

for Taβ(E) in Lemma 3.3. The aim in this step is to study the integral kernel of

Λae(E).

We begin by recalling the following notations: θ" = #"Crα) is the generalized

eigenfunction at zero energy of Ka ψ" ^ L (R dxa) is the normalized function

spanning the range of P1 (one-dimensional space). Let DOa be defined by (3.10).

Then the generalized eigenfunction θ" is given as

and satisfies

<θ0, Wa 0 !> = <1, DOaWa φt> Φ 0,

where < , ) denotes the scalar product in L (R dxa). We may assume that this

quantity is positive, so that it is represented as

/ aa ττ7-1/2 ra\ o 1 / 4 1 / 2 ~ 3 / 4 1 / 2

<^o, Wa ψo> =2 π ma σa

for σa defined by (2.6). We denote by Φa: L2(R3 dxa) ^ L2(R3 dpa) the

Fourier transformation in xa and define the function φ^(pa) ^ L (R d/)α) as

^ = (ΦΛ>α

1/Vr)(^);

φΊ{pa) = ( 2 7 r ) - 3 / 2 / e x p ( - φ α xa){DtWι

a

/2φa

1){xa) dxa.

Since 0" ^ Range P" satisfies the relation

Φl=Wι

a

/2R(0;Ka)Wι

a

nψa

ι

and since 0 < Ua W~1/2 < </2U*/2 by (1.3), it follows from Lemma 1.2 that

/ \V ΓΛ* ττrl/2 ,« / \V /TXT 1/2 T Γ T T 7 - l/2\ ,α

is integrable for v, 0 < v < p — 2, and hence we have that (^ (/>α) behaves like

(3.11) ψ1{pa) = 2"5/47Γ-1 ml3/i σ'J2 + O(\ p a D , I Pa I - 0,

for y > 0 as above.

We now return to the operator Λaβ(E) : L2(R6 dxβdqβ) —• L2(i? 6

dxadqa) defined above. As is easily seen, this operator has an integral kernel of

the form

(σaσeΓ
1/2ψΐ(xa)(pΐ(pa)G(<ia, qB E)ψB

1{pB)φ{(xB)
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where pa and pβ are represented as in (2.2) in terms of the coordinates

(tfα> Qβ) and G(qa, qβ : E) is defined by

ω((| qa \2/2na + £)1 / 2)"1 / 2(//0(^, qβ) + £ ) ' W ( | qβ ΐ/2nβ + £) 1 / 2 ) ' 1 / 2

with the symbol representation H0(qa, qβ) for the free Hamiltonian Ho in the

coordinate system (qa, qβ).

(5) Let χ(x), x ^ R , be the characteristic function of the unit ball B1 in i?3.

We set

and denote by ϊlaβ(E) : L (R d ^ d ^ ) —* L (R dxα ^ α ) t cι Φ β, the integral

operator with the kernel ψ"(Xa)Jaβ(Qa> Qβ m> E)φ1(xβ), where Jaβ(qa, qβ E) is

defined by

(312) / ^ ( ? α , ^ £) = τaβζa(qa £ ) θΓ 0 ( ? β > qβ)

with

We further define Saβ(E) : L2(R*)-+L2(R6) by SαβCB) = Ψ*UaS(E)ΨB, a Φ β,

and the self-adjoint operator ώ(E) : £2 —* ϋ?2, i?2 being as in Lemma 3.1, by

/ 0 SaB(E) Sar(E)\

s3(E) = Sea(E) 0 Ser(E) , S ί β(£) - Saβ(E)*.

\Sra(E) Srβ(E) 0 /

Then it follows from (3.11) that the Hilbert-Schmidt norm of the difference

Taβ(E) - Saβ(E) = Ψ*(Λaβ(E) - nae(E))Ψ,

is bounded uniformly in E and hence we have

Qf

aβ(E) ~ Saβ(E) and Qg

aβ(E) ~ Saβ(E), aΦβ,

by Lemma 3.3. This, together with (3.9), yields

ε) sS(E)) ~ Cε < N(E) < »((1 - ε)

for any ε > 0 small enough, where Cε > 0 is independent of E. This relation is

obtained by use of the Weyl inequality

nUi + λ2 Aλ + A2) < n(λγ AJ + n(λ2 A2)
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for the sum of compact operators Aλ and A2.

(6) The proof of the theorem is completed in this step. Let

£2(BX) =ΣΦL2(B1; dqa), three summands.
a

We denote by Jaβ(E) : L2(B1 dqβ) —• L2(BX dqa) the integral operator with the

kernel Jaβ(qa, qβ E) defined by (3.12), and define the operator βo(E) : £ (B^ —+

as

0 Jaβ{E) Jar{E)

0 Jβr(E)

Jre(E) 0

Then it is easily seen that n(μ sS(E)) = n(μ ;βo(E)) for sS(E) defined above

and hence we have

(3.13) «((1 + ε) /„(£)) - Cε < M£) ^ n((l - ε) /0(£)) + Cε.

The eigenvalue asymptotics for the integral operator βo(E) has been in detail stu-

died in Sobolev [7] by employing an argument used in the calculation of the cano-

nical distribution of Toeplitz operators. We here summarize the results obtained

there.

LEMMA 3.4. Let n(μ βo(E)) be as above. Then:

(1) There exists a limit

Θ0(μ) = lim n(μ fo(E))/\ log E \
£-0

as a continuous function of μ > 0.

(2) The constant Co — Θ0(l) depends only on the ratios between the masses of

three particles under consideration and obeys the lower bound

Co > \og2/2π2 > 0.

(3) In the special case with identical masses, Co is explicitly calculated as Co —

λ /2π with the unique positive root λ > 0 of the equation

λ = 23 3~1/2(sinh πλ /6)/(cosh πλ /2) .

This lemma, together with relation (3.13), completes the proof of the theorem.

D
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§4. Proof of Lemma 1.3

The three lemmas (Lemmas 1.3, 3.2 and 3.3) remain unproved. We prove

Lemma 1.3 in the present section and Lemma 3.2 and 3.3 in the next one.

We keep the same notations as in section 1 and prove successively a series of

lemmas below, which completes the proof of Lemma 1.3.

LEMMA 4.1. cε Id < A(d) < c'εId for d > ε > 0.

LEMMA 4.2. A22(d) ^ Op(d°) and A22(d) > c2 P2 for some c2 > 0.

LEMMA 4.3. A12(d) e O p ( d P ) for some v>\/2.

LEMMA 4.4. An(d) = σγ dPx + Op(dy) for some v > 1.

Proof of Lemma 4.1. The upper bound is obvious. The lower bound is proved

by contradiction. Assume that such a positive constant cε does not exist. Then the

compact operator Wo R(d S)WQ has an eigenvalue greater than one or equal

to one for some d > ε. This implies that T has a negative eigenvalue and contra-

dicts the assumption (H.I). Hence the lemma is proved. O

4.1. To prove Lemmas 4.2 — 4.4, we use the low energy expansion of

two-body resolvents. We here make a brief review on this result, following the

idea due to [2].

Let To = — Δ be the free Hamiltonian on L (Rx). We denote by R0(d ) =

R(d2; To), d> 0, the resolvent of To; R0(d2) = (To +d2)~\ The operator

R0(d ) is an integral operator with the kernel

R0(d2) : (l/4π)exp(-d\χ-y\)/\χ-y\

and admits the formal expansion

R0(d2) = Σ ( - l)Jd'GJt

where

- 0 Γ \ > = 0, 1, 2

We denote by $l(s sθ the class of bounded operators from the weighted L space
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Ls = LS(RX) into Ls,. The operators R0(d ), Go and Gγ can be easily proved to

have the following properties.

LEMMA 4.5. (1) R0(d2) e $ ( 5 - s') /or 5, s' > 1 /2, 5 + 5' > 2, and the

operator norm in $8(s — s') is bounded uniformly in d ^ 0.

(2) Go ^ 81 (s sθ /or £/ι# same pair (s, s') as above.

(3) Gλ e « ( 5 , - 5) /or 5 > 3 / 2 .

Let 5 = — Δ + Uo be defined by (1.4). Since £/0 in non-negative, the resol-

vent R(d 5), d > 0, has the same property as R0(d ).

LEMMA 4.6. R(d2 S) e ®( 5 - sθ /or 5, s' > 1/2, s + s' > 2, and ί^

operator norm in 81 (s — s') i5 bounded uniformly in d > 0.

We define Z(rf) as

(4.1) ZW) = i?0W
2) - Go

and Z)o as

(4.2) Z)o = (Id + Got/oΓ1 = Id - /?(0 S) ί/0.

Then /?(rf 5) is represented as

i?(d2 5) = (Id + i?0W
2) U0Y

ιR0(d2) = (Id + D0Z(d) UaY
ι D0R0(d2)-

As the Neumann series, the inverse above is expanded as

J=0

Since

(Id + D0Z(d) UoΓ'Do = (Id + R0(d2) UoV1 = Id - i?(d2 S) ί/0,

we obtain that R(d 5) is expanded as

S) = S (~ lY(D0Z(d) Uoy D0R0(d2)
(4.3) i=0

+ ( - l)M(Id - Rid2 5) t/0) (Z(d)

This expansion formula with 1 ^ w ^ 2 is used in the proof of Lemmas 4.2 — 4.4.
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4.2. We here prove Lemmas 4.2 and 4.3. In the discussion below, Xs denote

the multiplication by (xY. The following three lemmas are obtained as an immedi-

ate consequence of Lemmas 4.5 and 4.6.

LEMMA 4.7. Let Do be defined by (4.2). Then Do e $ ( — s — s) for any s.

1/2 < s < p - 1/2.

LEMMA 4.8.

P2W0

1/2 (Id - R(d2 5) U0)Xp/2 e= OpW°)

and, in particular, P2W0

1/2 Do e $ ( - p/2 0).

LEMMA 4.9.

Xβ/2U0D0R0(d2)W0

1/2P2β/2U0D0R0(d)W0P2

Let Z(d) be defined by (4.1). The kernel ZCr, y d) oί Z(d) obeys the bound

I ZCr, y d) I < Cad \χ- y\

for any σ, 0 < σ < 1. Hence we can easily prove the following

LEMMA 4.10. Let σ be such that 0 < σ < 1. 77ι<? operator Z(d) has the follow-

ing properties:

(1) ZW) G S ( s ; - s ) / 0 f 5 > l + σ/2 and X_sZ(d)X_s e OpWσ).

(2) Z(d) e « ( 5 ; - sθ /or 5 > 1/2 + σ, s' > 3/2 or /or s > 3 / 2 , 5Λ > 1/2

+ σ, and X_s,Z(d)X_s e Op(dσ).

Proo/ 0/ Lemma 4.2. By the expansion formula (4.3) with w = 1, A22W) is

represented as the sum of two operators J0(d) and Jx(d), where

hid) = P2(Id - WΓD0R0(d2)Wt/2)P2,

hid) = P X / 2 (Id - i?W2 S) U0)Zid) U0D0R0id
2) WlnP2.

We apply Lemma 4.10 to the operator Z(d) in Jι(d), considering this as an oper-

ator of class ffl(p/2; — p/2), p/2 > 1. Then it follows from Lemmas 4.8 and

4.9 that Jyid) e Op(rfP) for some v > 0. We write D0R0(d2) as

Then the same argument as above shows that J0(d) = P2A(ff)P2 + Op(dv) for
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some v > 0, so that we have

A22(d) =P2A(0)P2 + Op(dv).

By assumption (H.I), P2A(0)P2 ^ c2P2 for some c2 > 0. This proves the lemma. O

Next we prove Lemma 4.3. Since P1 e $ ( — 5 5) for 5, 1/2 < 5 <

(p — l)/2, by Lemma 1.2, the following lemma can be easily verified.

LEMMA 4.11.

PγwΓ (Id - R(d2 S) UO)XS e OpW°)

/or any 5, 1 /2 < 5 < p - 1 /2, and, in particular, PXWQ/2 DO e $ ( - 5 0).

Proof of Lemma 4.3. We again use the expansion formula (4.3) with « = 1. If

we make use of the orthogonal property of projections P1 and P2, A12(d) is repre-

sented as the sum of two operators J0(d) and Jx(d), where

ΛW) = - Λ W0

1/2 D0R0(d2)W0

1/2P2,

JM) = PιWQ

1/2 (Id - Rid2 5) C/0)Z(d) U0D0R0(d2) W"2 P2.

We apply Lemma 4.10 to the operator Z(d) in Jλ(d). To do this, we take s as 3/2

< s < p — 1/2 and consider this as an operator of class SS(p/2 — s), so that

Z(d) obeys the bound O(d ) for some v > 1 /2 in this operator class. Hence we

obtain from Lemmas 4.9 and 4.11 that/iW) ^ Op(dv). Similarly we have

ΛGO = - ΛWΌ172 /?(0 5) Wln P2 + Op(d").

However, the operator on the right side vanishes by the orthogonality of Px and

P2. This proves the lemma. •

4.3. We end this section by proving Lemma 4.4. The next lemma is easy to

verify. In fact, it follows from Lemmas 1.2 and 4.7 at once.

LEMMA 4.12.

XsUQD0RQ{d2)W«/2Pλ e OpW°)

for any 5, 3/2 < 5 < p - 1/2.

Let Gx be as in 4.1. Recall that this is the integral operator with kernel 1/Aπ
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and acts as

(4.4) Gλu= (l/4τr)<«,

as an operator from Ls into L_s for 5 > 3/2. We define Zλ(d), 0 < d < 1, as

Z,U) = Ro(d2) - Go + dGx = ZU) + dGx.

The kernel Zx{xy y d) of Z^d) obeys the bound

\Zι{x,y\d)\ ^CXU-z/Γ" 1

for any σ with 1 < σ < 2. Thus we can easily prove the following

LEMMA 4.13. Let σ be such that 1 < σ < 2. Then Z^d) e 9 ( s ; - s) /or

s > 1/2 + σ, and X_JZx{d)X^ e OpWσ).

Proo/ o/ Lemma 4.4. We use the expansion formula (4.3) with w = 2. Then

the operator An(d) is decomposed into the sum of three operators Jj(d),

0 < j < 2, where

/ 0 (Λ = Λ (Id - W0

1/2D0R0(d*)W0

ι/2)P1,

Λ W) = Λ ^ 0

1 / 2 DoZCΛ U0D0R0(d2) W0

1/2 Pl9

J2(d) = - Λ^ 0

1 / 2 (Id - #W 2 S) C/o) (Z(d) U0D0)
2R0(d2) W0

U2 Pv

We first consider the operator J2(d). This has two operators Z(d). We apply Lem-

ma 4.10 to control these operators. To this end, we take 5 as 3/2 < 5 < p — 1/2

and consider Z{d) on the left side as an operator of class $(p/2; — s) and

Z(d) on the right side as an operator of class S(s — p/2), so that both the oper-

ators obey the bound O(dv ) for some v > 1 in the classes under consideration.

Since U0D0 ̂  $(— p/2 p/2) by Lemma 4.7, it follows from Lemmas 4.11 and

4.12 that/2W) e Op(<f). To evaluate J^d), we rewrite it as

hid) = PxWln D0{-dGx + Zλ(d)) U0D0R0(d2) W0

1/2 Px

and apply Lemma 4.13 to Zx(d). We again take s as 3/2 < s < p — 1/2 and

consider Zλ{d) as an operator of class $(s ~ s). Then we have by Lemmas 4.11

-4.13 that

JM) = - d PJV"2 DQGXUJ)O{GO + Z(d))W0

U2 Pι + Op WO

for some v > 1. We further apply Lemma 4.10 to Z(d) above, considering this as

an operator of class $(s — (p ~ s)). Since U0D0 ̂  3)(— (p — s); s) and
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Gλ e SB(s — 5), we have

ΛW) = - dPyW™ D&U^GtW™ Pγ + Op OH.

If we take account of the relation

Λ(Id - Wo

mDoGoWo^P, = Λ^(0)Λ = 0,

we can similarly show that/0(d) is represented in the form

J0(d) = dPxWlnΌ,GιWlnPι + Op(dv)

with another v > 1.

We now use the relation

C/ô oGo = ί/0(Id + GoUJ-'Go = (Id + ί/ 0G 0)- 1t/ 0G 0

to obtain that

D o d ί l d - ί/0A,G0) = ZJoG^Id + C/oGo)"1 = ^oG^o*.

so that

Au(d) = dP1Wo/2DoG1D*W^/2P1 + Op (<n.

The generalized eigenfunction θ0 at zero energy of S is given as

ΘO = DO1 = 1-R(O;S)UO1

and satisfies <#0, fF0 0X> Φ 0 for the normalized function ψx ^ L spanning

Σ x — Range Pίf Σ i being of one dimension. Thus, by (4.4), we have

P Wι/2 D Ω D*Wι/2 P = π P

for σ1 as in Lemma 1.3. This completes the proof. D

§5. Proof of Lemmas 3.2 and 3.3

In this section we prove Lemmas 3.2 and 3.3. Throughout the section, we use

the following notations: Xs denotes the multiplication operator by Crα)

OpCE0) denotes the class of bounded operators on L2(R&) uniformly in Ey 0 < E

C 1, small enough and various operators of class OpCE ) are denoted by the same

symbol ro(E).

5.1. The first half of this section is devoted to preparing a series of auxili-

ary lemmas which are required to prove the lemmas above.
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LEMMA 5.1. Let 0 < v < 3/2. Assume that aΦ β. Then

Xβ_sωa(E)~v e Op(£°) for any s > v.

Remark. As an immediate consequence of the lemma, it follows that

ωa(E)~vXUs ^ OpCE°). Throughout the discussion below, such simple consequ-

ences are used without further references.

Proof. Let θ be the characteristic function of the interval [0, 1]. To prove the

lemma, it suffices to show that θ(Ta)ωa(E) v has the property above. By the

assumption a Φ β, the coordinates xβ are described as xβ = ζβaxa + KpaVa with

κβa Φ 0. We consider X_s θ(Ta)ωa(E)~v as an operator acting on L2(R3 dya), xa

e R being regarded as parameters. Take v < 3/2 and 5 > 3/2 arbitrarily but

close enough to 3/2. Then the operator in question is of Hilbert-Schmidt class on

L (R3 dya) and its norm is bounded uniformly in xa and E. Hence it is also

bounded uniformly in E as an operator on L (R ). Thus, by interpolation, the lem-

ma follows at once. CH

LEMMA 5.2. Let 0 < σ < 3/2. Then

X"S(HO + EYσn e Op(£°) for any s > σ.

Proof. Recall that the coordinates dual to (xa, ya) are denoted as (paf qa)
-»3x2

R . If we use the Fourier transformation in ya, then the operator in the lemma is

represented as the direct integral

) X"s(Ta + I qa \
2/2na + EY°n dqa

with T = — Δ /2ma. We can prove in the same way as in the proof of Lemma

5.1 that the operator in the integrand is bounded uniformly in qa and E as an

operator on L (R dxa). This completes the proof. D

LEMMA 5.3 Let K = Ho+ U be as in section 3. Then

XLS(K + E)~ιXδ_s, e Op(£°)

for any s, s' > 1/2 with s + sr > 2. The operator Ka defined by (2.4) also has the

same property as above.
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Proof Let 0 < σ < 3/2. We shall show that

(5.1)

for any s > σ, from which the lemma follows at once. Since U is non-negative, the

integral kernel of (K + E)~° is non-negative and does not exceed that of (Ho +

E) σ . Hence Lemma 5.2 implies (5.1) and the proof is complete. D

LEMMA 5.4. Assume that a Φ β. Let σ, v and vf be non-negative numbers with

σ + v + i/ < 3. Suppose that σ has a decomposition σ = μ Λ- μ', μ, μ' > 0, such

that v + μ < 3/2 and i/ + μ! < 3/2. Then

X"sωa(EΓv(H0 + EΓσ/2ωβ(EVvr Xβ_s, e (HS)ε

for 5, sr such that s > vr + μ' and sr > v + μ.

Proof Denote by A(E) the operator in the lemma. We first show that

(5.2) A(E) e Op(E°).

To see this, we write A(E) as

according to the decomposition for σ. The operator in the brackets is obviously of

class OpCE ) and hence (5.2) follows from Lemma 5.1.

Let θ again denote the characteristic function of the interval [0,1]. L e t / ^

C0(i?3) be of compact support. Denote by fa and f0 the multiplication operators

by f(xa) and f(xβ), respectively. To complete the proof, it suffices by (5.2) to

show that

B(E) = faωa(Eyvθ(H0) (Ho + EΓσ/2ωβ(EΓv'fβ

is bounded uniformly in E as an operator of Hilbert-Schmidt class on L2(R6). To

prove this, we consider the operator

Am = ΨaB(E) Ψ* : L2(Re dxB dqβ) — L2{R* dxa dqa).

As is easily seen, Λ(E) has an integral kernel of the form

3 * > α xa)θ(qa, qβ)G(qa, qβ 2 ? ) e x p ( - ipβ ocβ)f{xβ)

with θ — θ(H0(qa, qβ)), where pa and pβ are represented as in (2.2) in terms of

(qa, qβ) and G(qa, qβ E) is defined as
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ω(\ qa \2/2na + EΫΎ*'(H0(qa, qβ) + EΓσ/2ω«\ qβ \2/2nB + E)1/2yv'.

By assumption, it follows that the Hilbert-Schmidt norm of Λ(E) is bounded uni-

formly in E and hence the proof is complete. •

LEMMA 5.5. Assume that a Φ β. Then:

(1) X"p/2(Ka + EYιXβ_p/2 <Ξ (HS)ε.

(2) Xa_p/2ωa{EYι/\Ka + EYιX"_p/2 e (HS)ε, s > 3/2.

Proof. We prove only (2) for s, 3/2 < s < p — 1/2. A similar argument

applies to (1). We denote by B(E) the operator under consideration. By use of the

resolvent equation, (Ka + E)~ is represented as

(5.3) (Ka + EYι = (Ho + E)~ι - (Ka + EYιUa(H, + EY\

Write Ua as Ua = X"{p_s)r0(E)X"s. Since ωa(E) and Ka are commutative with

each other, we see from Lemma 5.3 that B(E) takes the form

B(E) = ro(E)X"sωa(Ey1/2(Ho + E)'1 Xtp/2.

This, together with Lemma 5.4, proves (2). •

5.2. We now prove Lemma 3.2.

Proof of Lemma 3.2. (1) By the resolvent equation, we have

(5.4) (K+EY1 = (Ka + EY1 - Σ (Ka + EYιUr(K + EY\

where ΣrΦa denotes the summation over two pairs except for a. Hence, by Lemma

5.3, the operator under consideration takes the form

Σ ro(E)X?p/2(Ka + EYιXΎ_p/2r«{E).
γφa

This, together with Lemma 5.5, proves (1).

(2) (2) is proved in almost the same way as in the proof of (1). We first note

that P?W*/2X? is bounded for any s, 3/2 < s < p - 1/2, by Lemma 1.2. By

use of (5.4) again, we can represent the operator under consideration in the form

Σ r»{E)Xa_sωa{EYU2{Ka + EΓ1 Xr_p/2r0(E)
γφa

for s as above. Hence (2) again follows from Lemma 5.5.
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(3) We can write (K + E)~ι as

(K + EVι = (κa + E)'1 - Σ (κa + εyιur(κa + £Γ\
(5.5) '*«

Σ Σ (Ka + E)~ιUγ{K+ EΓιUδ(Ka + E)
δγφa δφa

by repeated use of (5.4). Hence (3) follows immediately from Lemmas 5.3 and 5.5.

D

5.3. We here prove Lemma 3.3. The proof requires the two auxiliary lem-

mas below.

LEMMA 5.6. Let Γaβ(E), a Φ β, be as in Lemma 3.3. Define Da(E) : L2(R6) —•

L2(i?6) by

Da(E) = I d - (Ka + E)~ιUa.

Then one has

Qf

aB(E) ~ P«WH2 Da(E) fa(EΓ1/2ΓaB(E)fB(EΓ1/2 DB(E)*WB

W2Pf.

Proof. We write (K + E)'1 as in (5.5);

(K+EV1 = B0(E) + B^E) + B2(E),

where

Bϋ(E) = {κa + Ey\iά - uβ(κB + εy1),

B,(E) = -(κa + εyιu7(κB + εy\ TΦa,β,

B2(E) - Σ Σ (κa + εy1ur(κ+ εy'uδ{κB + εy\

γφa δΦβ

We can further rewrite B0(E) as

B0(E) = Da(E)(H0 + E)-ιD,(E)*

by making use of the relation (Ka + E)~ = Da(E)(Ho + E)~ , which follows

from the resolvent equation at once. Hence the lemma is obtained as an immediate

consequence of Lemmas 5.3 and 5.5. D

LEMMA 5.7. Let s be such that 3/2 < s < p — 1/2 and let DOa and Da(E) be

as in Lemmas 3.3 and 5.6, respectively. Then there exists ι> > 0 such that
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X"s(Da(E) - DJX?ωa{EYv e Op(£°).

Proof. Let 5 be as above. Then we can prove in the same way as in the proof

of Lemma 4.2 that

\\X*s(R(d2 Ka) - R(β Ka))X\_s) || = O(dv), d^ 0,

for some v > 0 as an operator acting on L (R dxa). This proves the lemma. D

Proof of Lemma 3.3. Recall the definition (3.8) of fa(E). Since/(s) behaves

as in (3.5), the lemma is obtained by combining Lemmas 1.2, 5.4, 5.6 and 5.7. D

§6. Proof of Theorem 2

Theorem 2 can be verified in almost the same way as in the proof of Theorem

1, so we give only a sketch for the proof.

(1) We follow the same notations used in the proof of Theorem 1. Let H(λ),

0 < λ < 1, be defined by (0.2). Recall that N0(λ) denotes the number of negative

eigenvalues of H(λ). It is convenient to rewrite H(λ) as

H(λ) =H-λV= (1 - λ)(H+ κHQ)

with K = λ/(l — λ). We denote by NE(tc), 0 < E < 1, the number of negative

eigenvalues less than — E of H + K HO and write, in particular, N0(tc) for N0(λ).

We apply the Birman-Schwinger principle to H+fcH0 = K+fcHQ— W. Then

we obtain NE(K) = n(l; M(fc, E)), where M(/c, £ ) ) : L2(R6) -+ L2(R6) is defined

by M(κ, E) = Σ α M α (/r, £)*M a (ic, £ ) with

M α ( £ , ic) = Wι

a

/2 (K + κHQ + EYl/2.

(2) We again write T" for - Δ/2rna, so that Ho= Ta + Ta. The second

step is to study the behavior as d—> 0 of the operator

AW i Π = Id - W^/2(Ka + κTa + d2)~ιW^/2

f d>0.

To do this, we write the inverse (Ka + κTa + d)~ as

i?W K ) (Id + £i?W if ) Γ i?W K ) ) i?W if )

with i?W2; ϋία) = Of" + d 2 ) ' 1 . Since both the operators R(d2 # « ) 1 / 2 ( 7 « ) 1 / 2

and i?((ί i fα) Wa are bounded uniformly in d as an operator on L (R fiίrα),

the Neumann series expansion yields
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Aκ(d Ka) = Aid Ka) + tcWι

a

/2 R(d2 Ka) Ta R(d2 Ka) Wι

a

/2 + OpOc2),

where i4(d Ka) is defined by (2.5) and Op(/r ) denotes a bounded operator with

its operator norm of order O(κ ) as /c—• 0 uniformly in rf. Note that

rα > UJ"2/4 > c^α

for some c > 0 in the form sense. Hence we obtain from Lemma 1.3 that for d > 0

small enough,

Ax(d iT) > σa(df(d) +
(6.1)

AKU # α ) < σa(dg(d) +

with positive constants c±y c2 and cr

2, where f(d) and g(d) are strictly positive

functions having the same property as in (3.5). We here note that the argument be-

low does not require the explicit values of constants c±.

(3) Relation (6.1) enables us to repeat the same argument as in the proof of

Theorem 1 and we have

(6.2) n((l + ε) βΛic, E)) ~ Cε < NE(/c) < w((l - ε) β+(κ, E)) + Cε

for any ε > 0 small enough, where /±(/c, JB) : ^2{Bλ) ~* <e2{BJ is the 3 x 3

matrix with Jaβ(ιc, E), a Φ β, as the off-diagonal entries and Jaa(E) = 0 as the

diagonal ones. The integral kernel Jaβ(qa, qβ', tc, E) of the operator Jaβ(tc, E) :

L2(Bι dqβ) -+ L2(Bλ Dqa) takes the form

^ C « (ί« ιc, E) ((1 + ιc)H0(qa, qβ) + EΓ'ζ^q, ;κ,E),

where τaβ is as in (3.12) and ζ α (qa κy E) is defined by

£{qa ;κ,E)= χ(qa)(\ qa ΐ/2na + E + c2jYv\

Let Jaβ(E) : U{BX dqβ) —> L 2 ^ (ί^α) be as in the proof of Theorem 1. Recall

the representation (3.12) for its integral kernel. As is easily seen, the

Hilbert-Schmidt norm of the difference between /^(/c, 0) and Jaβ(c±tc ) is bound-

ed uniformly in K. Hence we let E—> 0 in (6.2) to obtain that

ε) βo(c2_fc2)) ~Cε< N0U) < n((l - ε) Λ(c2κ2)) + Ce

with another Cε independent of K. This, together with Lemma 3.4, proves the

theorem. D
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§7. Concluding remark

As previously stated, the three-body Hamiltonian H has in general an infinite

number of negative eigenvalues accumulating at zero except for a certain special

case, if only two subsystem Hamiltonians have a resonance state at zero energy. In

such a case also, we can derive the asymptotic formula for N(E) or N0(λ) with

another leading coefficient Co. In the present section, we shall discuss this prob-

lem briefly.

For notational brevity, we fix the three pairs α, β and y as a = (1,2),

β — (1,3) and γ = (2,3), respectively, and assume that the two-body subsystem

Hamiltonians Ha and H have a resonance state at zero energy. We further

assume that the mass mλ is finite; mι < °°. Under these assumptions, we can show

that H has an infinite number of negative eigenvalues. However, if mί is infinite,

then the Efimov effect is not in general expected to occur. In fact, if the pair

potential Vr = V23 is non-negative, then it follows from assumption (H.I) that

H > 0 and hence H cannot have any negative eigenvalue.

We consider only the problem on the asymptotics for N(E). A similar argu-

ment applies to N0(λ). By repeating the same argument as in the proof of Theorem

1, we can reduce the problem under consideration to study on the eigenvalue

asymptotics for the integral operator

0 Jaβ(E) θ\
0 0 : UiBd — L\B,)

\ 0 0 0/

with entry Jaβ(E) : L {Bx dqe) —> L (Bί dqa) whose integral kernel is given by

(3.12). As a result, we obtain

n((l + ε) Λ(£)) - Cε < N(E) < «((1 - ε) / ,(£)) + C,.

According to the results in [7] again, we know that the limit

Θ.iμ) = lim n(μ : A ( £ ) ) / | log E \

exists as a continuous function of μ > 0 and that the constant Cx = Θ^l) is

evaluated from below as

Cλ > 8"1 TΓ"1 log μaβ, μaβ = (na /ma) (nβ/mβ).

It should be noted that μaβ > 1 under the finiteness assumption of mass m1 and

hence Cι > 0. Thus we can derive the asymptotic formula
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N(E) = C j log £ | (1 + o(Ό), E->0.

In the special case with identical masses, the constant Cλ is explicitly determined

as Cj = λ/2π with the unique positive root λ > 0 of the equation

χ = 2

2 3~1/2(sinh πλ /6)/(cosh πλ /2).
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