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THE EFIMOV EFFECT OF THREE-BODY SCHRODINGER
OPERATORS: ASYMPTOTICS FOR THE NUMBER
OF NEGATIVE EIGENVALUES

HIDEO TAMURA

Introduction

The Efimov effect is one of the most remarkable results in the spectral theory
for three-body Schrodinger operators. Roughly speaking, the effect will be ex-
plained as follows: If all three two-body subsystems have no negative eigenvalues
and if at least two of these two-body subsystems have resonance states at zero
energy, then the three-body system under consideration has an infinite number of
negative eigenvalues accumulating at zero. This remarkable spectral property was
first discovered by Efimov [1] and the problem has been discussed in several
physical journals. For related references, see, for example, the book [3]. The
mathematically rigorous proof of the result has been given by the works [4, 8, 9].
The aim of the present work is to study the asymptotic distribution of these negative
eigenvalues below zero (bottom of essential spectrum). Denote by N(E), E > 0,
the number of negative eigenvalues less than — E. Then the main result obtained
here is, somewhat loosely stating, that N(E) behaves like |log E | as E— 0. We
first formulate precisely the main theorem and then make a brief comment on the
recent related result obtained by Sobolev [7].

We consider a system of three particles with masses m; > 0,1 < j < 3,
which move in the three-dimensional space R? and interact with each other
through a pair potential V, (v, — 7,1 <j < k < 3, where 7, € R? denotes the
position vector of the j-th particle. For such a system, the energy Hamiltonian H
(three-body Schrodinger operator) takes the form

(0.1) H=H,+V, V= 2 V,(r,—r),

1<j<k<3

in the center-of-mass frame, where H, denotes the free Hamiltonian. Both the
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Hamiltonians H, and H are regarded as an operator acting on the space
L*(R®) and are represented in various forms according to the choice of the Jacobi
coordinates. All the pair potentials Vj, are assumed to satisfy the following condi-
tion:

W, V,w,xe< R? is real-valued and has the decay property

|V, (@] < CQA+|z])™ for some p > 2.

Throughout the whole exposition, the constant o is used with the meaning
ascribed above. This assumption implies that the Hamiltonian H formally defined
above admits a unique self-adjoint realization L°(R®). We denote by the same
notation H this self-adjoint realization.

We use letters a, B8, 7 and J to denote one of three pairs (7, k) with 1 <j
< k < 3. For given pair & = (j, k), we define the reduced mass m, through the
relation 1/m, = 1/m; + 1/m, and the two-body subsystem Hamiltonian H" as

H*=—A/2m,+V, V, (&) =V, @, on L*(R).

We further assume that all the two-body subsystem Hamiltonians H® have the
following spectral properties:

(H.1) H” has no negative bound state energies.
(H.2) H® has a resonance state at zero energy.

Roughly speaking, assumption (H.2) means that the equation Hago = 0 has a solu-
tion behaving like (@) ~ |z|™", £ € R®, at infinity. It should be noted that ¢ is
not an eigenstate at zero energy of H”. By the HVZ theorem ([5]), it follows from
(H.1) that the three-body Hamiltonian H has its essential spectrum in the interval
[0, ) and its discrete spectrum in (— °°, 0). If, in addition, (H.2) is satisfied,
then H has an infinite number of negative eigenvalues accumulating at zero. As
stated above, this spectral property is known as the Efimov effect. The aim here is
to study the asymptotic distribution of such negative eigenvalues accumulating at
zero. The main theorem is formulated as follows.

THEOREM 1.  Assume that (V),, (H.1) and (H.2) are fulfilled. Let N(E), E > 0,
be the number of negative eigenvalues less than — E of H with vepetition according to
their multiplicities. Then N(E) obeys the following asymptotic formula:

N(E) = C,|logE|(1 +0(1)), E—0O,

Jor some Cy > 0.
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Remark 1. We should make some comments on the leading coefficient C, in
the asymptotic formula. This constant C, does not depend on the pair potentials
Ve and is given as a positive function of only the ratios m;,/m, between the mas-
ses. As is seen in the proof of the theorem, it is determined from an eigenvalue
asymptotics for a certain compact integral operator and is in general difficult to
write down in the explicit form. In the special case with identical masses, C, is de-
termined as C, = A /27 with the unique positive root 4 > 0 of the equation

2= 2% 3"*(sinh 71 /6)/(cosh 7 /2).

Remark 2. (1) The following result can be also obtained in the course of
proof: If at most one of subsystem Hamiltonians has a resonance state at zero
energy, then H has only a finite number of negative eigenvalues; N(E) = 0(1), E
— (. This result asserts the finiteness of discrete spectrum below the bottom of
essential spectrum, even if the bottom coincides with a three-cluster threshold
energy. (2) As previously stated, H has in general an infinite number of negative
eigenvalues accumulating at zero except for a certain special case, if only two sub-
system Hamiltonians have a resonance state at zero energy. The theorem above
can be extended to such a case. We will discuss briefly this problem in the last
section.

The asymptotic formula in the theorem has been first established by Sobolev
[7] under the main assumption that pair potentials are non-positive and have the
decay property (V)p with o > 3, and also the above properties of the leading
coefficient C, has been investigated in detail there. In the present work, we im-
prove slightly this result with emphasis on the following cases: (1) pair potentials
are not necessarily assumed to be non-positive; (2) pair potentials have the weak
decay property (V)p with o > 2. The proof of the theorem is, in principle, based
on the same idea developed by [7] but the arguments undergo a slight change in
many aspects, if the non-positivity assumption of pair potentials is not necessarily
assumed. We first reduce the problem under consideration to the study on the
eigenvalue asymptotics for a certain compact integral operator. The reduction is
made by use of the results on the behavior at low energies of two-body resolvents.
After reduction, we apply the results obtained in [7] to calculate the leading coeffi-
cient of asymptotic formula for eigenvalues of such an integral operator.

The method here applies also to the problem on the eigenvalue asymptotics in
the coupling limit. Let H be defined by (0.1). Suppose that H fulfills all the
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assumptions in Theorem 1. We consider the three-body Hamiltonian
(0.2) HR =H—AV=H,+ A=AV on LR

with a coupling constant 4, 0 < A € 1, small enough. The Hamiltonian H(A) has
only a finite number of negative eigenvalues for 4 > 0. The theorem below gives
the asymptotic formula as A — O for the number of such negative eigenvalues.

THEOREM 2. Suppose that the three-body Hamiltonian H fulfills assumptions
(V),, (H.1) and (H.2). Let H(), 0 < A K 1, be as above. Denote by Ny(A) the num-
ber of negative eigenvalues of HQQ). Then one has

N,() =2C,llog2| 1 +0(1), 2—0,

with the same positive constant Cy as in Theorem 1.

§1. Low energy analysis for two-body resolvents

In this section we formulate the result on the behavior at low energies of
two-body resolvents, which is used as a basic tool to prove Theorems 1 and 2.
Throughout the section, we work in the space I’= LZ(Ri) and denote by <, >
the L” scalar product in this space.

We begin by defining precisely the resonance state at zero energy. Let
T= — A+ V, be the two-body Schrodinger operator acting on L’. We assume
that the potential V,(x) has the decay property (V), and that the operator T has
the spectral properties (H.1) and (H.2). We now consider the equation T¢ = 0.
This equation can be put into the integral equation

(1.1) o) = — (1/4m f|x~ yI7 Vi e W) dy,

where the integration with no domain attached is taken over the whole space. This
abbreviation is used throughout. Equation (1.1) is considered in the weighted L
space L, =L'R}; < dr), <@ =QQ+]z»" with s>1/2, s being
taken close enough to 1/2. If ¢ € Lz_s solves the equation (1.1), then it is easily

seen that ¢ behaves like

@ =— Q/4n)<V,, lz|™ + 0 x|,
(1.2)

@/0] zD)o@ = A/4n)<V,, o>l 2|2+ 0 2™

as |x|——> oo. We classify the solution to (1.1) into two kinds of solutions accord-
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ing as the scalar product {V,, ¢> vanishes or not. We say that ¢ is the resonance
state at zero energy of T, when <V, ¢> # 0 is satisfied. Thus the resonance state
¢ behaves like ¢(x) ~ | z|™" as | £| — oo and hence ¢ & L* is not a bound state
at zero energy. On the other hand, if <V0, (p) = ( is satisfied, then we have
e@ = 0(z|™"" and hence it follows from (1.1) that ¢(@) = 0( x|,
€ = p — 2 > 0. We repeat this argument to obtain that ¢(z) = 0( z|™), so that
@ is in L? and becomes a bound state at zero energy of T. Conversely, if ¢ is a
bound state at zero energy, then we can easily see that ¢ satisfies the relation
(VO, ¢> = 0 and hence the resonance state at zero energy is non-degenerate. The
following lemma is obtained as an immediate consequence of Theorem XIII.46, [5]
and Theorem A.3.1, [6].

LemMa 1.1, Suppose that T fulfills (V) ,, (H.1) and (H.2). Then T cannot have a
bound state at zevo energy, bottom of its spectrum, and hence has only a resonance state.

Assumption (V), enables us to choose a non-negative potential U, = 0 satis-
fying (V), so that

(1.3) W, (x) = Uy(x) — V,(x) = Uy(x)/2 2 0.

If V, is non-positive, then we can take U, = 0. Let S be the Schrodinger operator
with potential U,

(1.4) S=—A4+ U, onL*R)

and denote the resolvent of S as R(d*; S) = (S+ d ™" for d > 0. Since U, is
non-negative, R(0; S) can be also defined as a bounded operator from L% into L*
for any s > 1 and the generalized eigenfunction 6,(x) at zero energy of S is
obtained as a unique solution to the Lippmann-Schwinger equation. This eigen-
function 6, is easily seen to obey the following bounds as | 2| — oo

(1.5) O,(x) =1+ 0QQ), @/0|z])6,@ =o(z|™.
We now define the operator A(d) : L*— L* by
(1.6) AWd) =1d — W,*R@*; SSW,”*, d=>0,

Id being the identity operator. It should be noted that this operator can be defined
even for d = 0. Denote by >, the kernel of A(0). Since W,* R(0; )W, "% is a
compact operator, the kernel }:1 is of finite dimension.

We can show that Zl is a one-dimensional space, if T has a resonance state
at zero energy. To see this, we investigate the relation between the kernels of T
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and A(0). Let ¢ be a solution to (1.1). Then ¢ obeys the equation
(1.7) To=S¢o—Wep=0

and hence ¢ € L* defined as ¢ = W01/2<p belongs to 2.,. We take the scalar
product of &, with (1.7). If we take account of the asymptotic behaviors (1.2) and
(1.5), then we obtain, by the Green formula, the relation

(1.8) KV, 0> = — <O W%, ¢

for ¢ and ¢ as above. Conversely, if ¢ belongs to 20,, then we see, repeating a
similar argument, that ¢ defined as

(1.9) Q= R(O, S) W01/2¢ — W0—1/2¢)

solves the equation (1.1) and satisfies the same relation as in (1.8). Thus, if T has
a resonance state at zero energy, it follows from Lemma 1.1 that 2, is a
one-dimensional space. Denote by ¢, € L? the normalized function spanning ;.
Then ¢, satisfies

(O, Wy ¢ # 0

by (1.8) and falls off with order O( 2|7 by (1.9).

Let 22, be the orthogonal complement of 25, We decompose the space L=
L*(R)) into the orthogonal sum L* = 3, @ X, and denote by P;, 1 <j < 2, the
orthogonal projections onto 2, Since ¢, behaves like ¢, (x) = o z|™% at
infinity, we can obtain the following lemma.

LEmMMA 1.2.  The orthogonal projection P, can be extended to a bounded operator
from L into L% forany s, 1/2 < s < (o — 1)/2.

We study the behavior as d — 0 of A(d) defined by (1.6). To do this, we here
introduce new notations. A bounded operator 7(d), 0 < d € 1, acting on L’ is
said to be of class Op(d”), if its operator norm obeys the bound | T(d) | =
0(d”) as d— 0. When the difference T;(d) — T,(d) is of class Op(d”) for given
two operators T,(d) and T,(d), we denote this relation as T,(d) = T,(d) +
Op(d).

LemvMa 1.3. Suppose that T fulfills (V),, (H.1) and (H.2). The operator
A(d) defined by (1.6) has the following properties.

(1) Let e, 0 < e K1, be fixed arbitrarily. Then there exist positive constants c,
and ¢, such that
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. ld< AW <cld, d>e,

n the form sense.

(2) Let P;, 1 <j <2, be as above and let ¢, € L? be the normalized Sfunction
spanning the range of P,, the range being of one dimension. Define A;(d), 1 <
7, k <2, as Ay (d) = P,A(A)Py. Then:

(1) A,,(d) € Op(d®) and A, (d) = c,P, for some ¢, > 0.
(i) A,,(d) € Op(d”) for some v > 1/2.
(iii) There exists v > 1 such that A,,(d) = a,d P, + Op(d”") with

o, =<6, W, 9> |’ 747 > 0.

This lemma plays an important role in proving the main theorems. We pro-
ceed with the argument, accepting the lemma as proved. The proof is given in sec-
tion 4 after completing the proof of Theorem 1.

Remark 1.4. An similar argument applies to the Schrodinger operator
T=—A4/2m + V, with reduced mass m. For such an operator, the constant g,
in the lemma is given as

 o-l/2_-1 32 1/2 2
0,=2 "t 'm |<00,W0 ¢1>|,

where 6, is the generalized eigenfunction at zero energy of S= — A4/2m + U,
U, being chosen to satisfy (1.3), and ¢, € L’ is the normalized function con-
structed for the operator S. This can be easily verified by a simple scale trans-
formation.

§2. Three-body system

From now on, we always assume that (V),, (H.1) and (H.2) are fulfilled. In
this section we introduce several basic notations used throughout the proof of the
main theorems.

Let & = (4, k) be given pair and let [, [ # §, k, be the index by which the
third particle is labelled. Then the Jacobi coordinates associated with a are de-
fined as

(2.1) Ty =1,— 1 Yo =1, — (mr, + mr)/(m; +m,).
We denote by (9, ¢,) € R** the coordinates dual to (z,, ¥,). In this coordinate
system, the symbol H,(p,, q,) of the three-body free Hamiltonian H, is described

as
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Hy o 42) = | o I°/2my + 1, | /20,

where m, again denotes the reduced mass associated with a and #, is defined
through the relation 1/n, = 1/m, + 1/(m; + m,). Let B # a be another pair.
Then a simple calculation yields

(2.2) Po = K%, + k%, Dy = £"q, + £,

where the coefficients ™, lc'ga, £ and £* are explicitly expressed in terms of the
masses m,;, 1 <j <3, and, in particular, % and £ satisfy |/cﬂa| =| /caB| =1
We sometimes denote by Hy(q,, g;) the symbol representation for H, in the coor-
dinate system (g,, ¢g). We further define the cluster Hamiltonian H, as

H,=H,+V, V,=V, onLR".
The base space LY(R®) is decomposed as the tensor product
L'(R") = L'(R’; dz,) ® L'(R; dy,)
and hence the Hamiltonian H, is represented as
H,=H°QId+Id®T, on L*R®;dr,) Q L*(R’;dy,),

where H® again denotes the two-body subsystem Hamiltonian associated with a
and T, is given as

(2.3) T,=—A/2n, on L*R’;dy,).

We now choose a non-negative potential U, = U,(x,) = 0 to satisfy a rela-
tion similar to (1.3)
W (x,) = Uyx,) — V,(x,) 2 U,(x,) /220
and define the Hamiltonians K* and K, as
K*=—A/2m,+ U, on L*(R’;dz,),
&4 K,=K°QId+1d® T, on L(R’;dr) ® L*(R’;dy,).

In a similar way to (1.6), we also define A(d; K% : L*(R’;dx) — L*(R®; dy,)
as

(2.5) Ad; KO =1d— W, (K*+dH'W}* d=>o,

and denote by Pf, 1 <5 <2 the orthogonal projections associated with
A0 ; K%, which are constructed in the same way as P; in section 1. We further
denote by 6y = 6 (x,) the generalized eigenfunction at zero energy of K” and by
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= LY(R®; dx,) the normalized function spanning the range of P;. The operator
A(d ; K%) defined above preserves the same properties as in Lemma 1.3 (see also
Remark 1.4) and , in particular, we have

Pl AW ; KYP! = g,d P+ Opd), d—0,
for some v > 1, where ¢, > 0 is given as

(2.6) o, =27 myt <6y, W, o [

§3. Proof of Theorem 1

We keep the same notations as in the previous section. The proof of the
theorem is long and is divided into several steps.

(1) We consider only E, 0 < E <1, small enough. For given self-adjoint
operator A, we denote by #(A; A) the number of eigenvalues greater than A of A.
Let U= 2,U, and W= 2, W, where the summation 2., is taken over all
three pairs a. Define the Hamiltonian K by

K=H,+U=H+W on L*R°
and the bounded operator M(E) : L*(R®) — L*(R®) by
M(E) = (K+ E)"*WE + E)™* = X M (E)*M,(E)
a
with
(3.1) M E) = W) (K+ B
Then the quantity N(E) in question coincides with #(1; M(E)) by the Birman-
Schwinger principle.

The next lemma is due to Sobolev [7]. For completeness, we here repeat the
proof given there.

Lemma 3.1 Let
=3 DLNR®), three summands.

Define the operator M(E) : > — €* as
M, (EYM,(E)* M, (E)M,(E)* M,(E)M,(E)*
ME) = | My(EYM,(E)* M,(E)M,(E)* M, E)M/E)* |,
MJ(E)M,(E)* M. (E)YM,(E)* M,(E)M(E)*
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where &, 3 and 1 denote different three pairs. Then one has
NE) = n1; M(E)).
Proof. Let L(E) : £ — ¥ be defined as

M (E) M,(E) M,(E)
My(E) My(E) M,(E)
M/(E) MJE) M,(E)

¥(E) = 73

Then a simple calculation yields J(E) = L(E)¥L(E)* and also we can easily see
that the positive eigenvalues of M(E) just coincide with those of L(E)*?(E).
Hence the lemma follows at once. N

(2) We denote by Dia{B,, B;, B,} the 3 X 3 diagonal matrix with operators
B,, B; and B, as diagonal entries. Let #{(E) be as in Lemma 3.1. The off-
diagonal entries of J((E) are all compact operators on L’(R®) but the diagonal
ones are not necessarily compact operators. Thus we look more carefully at the
operator

M (EYM,(E)* = W}? (K + E)”'W)*

in the diagonal entries of M(E).

Let K, be defined by (2.4). We decompose the above operator into the sum
M (EYM,(E)* = M, (E) + L,(E), where M,,(E) = W)*(K, + E)'W,’* and

(3.2) LE) =W)*(K+ E)™" — (K, + E)"hw,)”,
so that ML(E) is represented as M (E) = M,(E) + M,(E) with
Mo(E) = Dia{M,,(E), My, (E), M, (E)}.

We note that J(,(E) : ¥*— &’ is a compact operator.
We now introduce a positive smooth function w(s), s > 0, such that

(3.3) w(s) =sfor0<s<1, w(s)=2fors>2.
Let T, be defined by (2.3) as an operator on L’(R®; dy,). We define
(3.4) W (E) = 0 (T, + B)'?).

This is considered as an operator acting on L*(R®) as well as on L*(R*; dy,). We
further define A,(E) : L>(R®) — L*(R®) as

AE) =1d — M, (E) =1d — W, (K, + E)"'W,”.
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By Lemma 1.3 (see also Remark 1.4), we can find strictly positive smooth bounded
functions f(s) and g(s), 0 < ¢ < f(s) < g(s), behaving like

(3.5) f(9) =1+ 0(s"), g(s) =1+ 0(s"), s—0,

for some v > 0 such that

(3.6) A (E) = f(B)w,(E)P + ¢,P;,

(3.7) ALE) £ g (B)w (E)P] + c;,P;

for some positive constants ¢, and ¢, 0 < ¢, < ¢;, where

(3.8) fo(B) = 0 f (T, + B)'?), g,(E) = 0,g((T, + B

with o, > 0 given by (2.6), and the inequality relation is understood in the form
sense. Denote by F,(E) and G,(E) the operators on the right side of (3.6) and
(3.7), respectively, and define

%,(E) = Dia{F,(E), F,(E), F,(E)},
9,(E) = Dia{G,(E), G4(E), G,(E)}.
Then it follows from (3.6) and (3.7) that
Fo(E) <1Id — M(E), < Y,(E)
and hence we obtain from Lemma 3.1 that'
(3.9) n(1; 2°(E)) < N(E) < «(1; 2/(E)),
where
2(E) = F,(B) VM, (E)Fo(E) ™,
2X(E) = 4,(E) ™M (E)9,(E)™"".

(3) We study the behavior as E— 0 of Hilbert-Schmidt norm of the entry
operators in 2(E) and 2°(E). To do this, we here introduce the new notations.
Let B(E), 0 < E < 1, be a compact operator on L*(R®). We say that B(E) is of
class (HS),, if for any € > 0 small enough, B(E) has a decomposition B(E) =
B,(E ;¢) + B,(E ; ¢) such that: (i) the Hilbert-Schmidt norm of B,(E ;¢) obeys
the bound || B,(E ;¢) [lyzs < C. for some C. independent of E : (ii) the operator
norm of B,(E ; €) obeys the bound || B,(E ;&) | < e. If the difference between two
operators B,(E) and B,(E) is of class (HS),, we denote this relation as B,(E) ~
B,(E).
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Let K* be defined by (2.4) as an operator acting on L’ (R®; dz,). We denote
by R(d®; K% the resolvent of K RW@:;KY=K*"+d>™",d>0, and
regard this as an operator acting on L*(R°) as well as on L’(R’; dx,) in the dis-
cussion below. We further define D,, as

(3.10) D,, =1d — R(0; K*)U,.

LemMa 3.2, Let M, (E), L, (E) and F,(E) be defined above. Then:

(1) PiM(EYM,(E)*P € (HS),, a+ 8.
(2) Plw,(E)""*M(E)M,(E)*P; € (HS),, a# 8.
(3) F(E) "’ L (E)F,(E)™* € (HS)..

We proceed with the argument, accepting this lemma as proved. We now de-
note by QiE(E) the entry operators of 2" (E). By Lemma 3.2, the diagonal entry
operators Q. (E) are all of class (HS), and the off-diagonal ones Q:,B(E), a#+ B
take the form

QL (E) ~ PEW, " (f(B) wa (E)) (K + E) " (f,(E) awy (E))™"*W,”* PL.
A similar relation holds for the entry operators Qs,(E) of 2°(E) with f,(E)
replaced by g,(E). We further continue to analyse the operator on the right side
of the relation above.

LemMa 3.3 Let Dy, be defined by (3.10). Define Toe(E) : L*(R®) — L*(R®) by

T (E) = (0,0, *PEW,) D I, (E)DEW,)”* PP,
where 0, is given by (2.6) and
[Ly(E) = w,(B) ™ (H, + E) 0, (E) ™,
Then one has
w6(E) ~ Tu(E), a# .

A similar velation holds for the entry operators Qsz(E) of 2°(E).
The two lemmas above are proved in section 5.

(4) Let ¥, : L*(R®; dy,) — L*(R’; dq,) be the Fourier transformation in y,.
We define
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Ag(E) = U, T, (E) ¥, : *(R®; dx; dg,) — L*(R®; dx, dq,)

for T,5(E) in Lemma 3.3. The aim in this step is to study the integral kernel of
Ao ().

We begin by recalling the following notations: 6, = 6, (x,) is the generalized
eigenfunction at zero energy of K“; ¢ € L*(R®; dz,) is the normalized function
spanning the range of Pf( (one-dimensional space). Let D,, be defined by (3.10).
Then the generalized eigenfunction 6: is given as

6y =D,1=1—RO;K)U,1
and satisfies
O, WY =<, Deaw) o #0,

where <, > denotes the scalar product in LZ(R3 ; dxa). We may assume that this
quantity is positive, so that it is represented as

a 172 ,a\ __ ol/4 _1/2 —3/4 _1/2
by, W, ¢y =27 m,”" o,

for o, defined by (2.6). We denote by ®@,:L*(R®;dx,)— L*(R®;dp,) the
Fourier transformation in x, and define the function ¢%(p,) € L*(R®; dp,) as

o = @DLW 6 0,
610 = @n " [ exp(— ip, - 2) DEW ) @) da,

Since ¢; € Range P) satisfies the relation
¢ = W" RO; KYW," ¢
and since 0 < U, W, * < \/EU;/Z by (1.3), it follows from Lemma 1.2 that
x> Doe Wy g = <z, >” (W — U W, "™ ¢y
is integrable for v, 0 < v < p — 2, and hence we have that ¢j (p,) behaves like
(3.11) 0r () =271 'm0 + 00 p, 1), 1pa|—0,

for v > 0 as above.

We now return to the operator Ag(E) : L*(R®; dxydg,) — L*(R®;
dz,dq,) defined above. As is easily seen, this operator has an integral kernel of
the form

(O-ao-ﬁ) _l/ng;t (xa) (5? (pa) G(qw QB ; E) (/)‘19 (pﬁ) (pf (‘rﬁ)
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where p, and p; are represented as in (2.2) in terms of the coordinates
(@ar gp) and G(q,, gs: E) is defined by

w((l 4 |2/2na + E)1/2)—1/2(H0(qw QB) + E)—1a)((| % ]Z/Znﬂ + E)1/z)-1/2

with the symbol representation Hy(q,, g;) for the free Hamiltonian H, in the
coordinate system (¢, g5).

(5) Let x(x), £ € R’ be the characteristic function of the unit ball B, in R>.
We set

(g B) = x(g)q. /20, + BT

and denote by II,(E) : L*(R®; dx, dq) — L’(R®; dx, dq,), a # B, the integral
operator with the kernel ¢f(x)]as(qn, q,g;E)gbf(xB), where J,5(qq, g5; E) is
defined by

(3.12) JasCar @55 E) = T05Ca(qa; E) (Hy(qa 49 + E) (g, E)
with

—3/4

—-5/2 -2
T =2 1 (mymg) .

We further define Sy,(E) : L’(R®) = L*(R®) by Su(E) = U T, (E)¥,, a # B,
and the self-adjoint operator S(E) : ¥*— ¥, ¢’ being as in Lemma 3.1, by

0 S,E) S,(BE
BE) =SB 0 S E) |, S;(B) =SB
S,e(E) S(E) 0

Then it follows from (3.11) that the Hilbert-Schmidt norm of the difference
Ty (E) — Syp(E) = ) (A, (E) — I, (ENT,
is bounded uniformly in E and hence we have
26(E) ~ Sup(E) and Q%,(E) ~ Sue(E), a+# B,
by Lemma 3.3. This, together with (3.9), yields
n(@A+e);SE) —C,ENE) <u(1—2¢e;J8E) +C,

for any & > 0 small enough, where C, > 0 is independent of E. This relation is
obtained by use of the Weyl inequality

nA, + A,; A, +A) <n(A;A) +nQ4,; A)
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for the sum of compact operators A, and A,.

(6) The proof of the theorem is completed in this step. Let

$*(B) => D L*(B,; dq,), three summands.

We denote by J,z(E) : L*(B,; dgy) — L*(B,; dg,) the integral operator with the
kernel J,5(q,, g5; E) defined by (3.12), and define the operator £,(E) : fé’z(Bl) —
$*(B) as

0 Jup(E) Jor (B
Fo(B) = | JsB) O Jy(E)
JraE) Ts(E) 0

Then it is easily seen that #(y ; S(E)) = n(u ; £,(E)) for S(E) defined above
and hence we have

(313) n((Q1+e); 4, (E) —C.<NE) <n(1—¢;f,E)+C.

The eigenvalue asymptotics for the integral operator #,(E) has been in detail stu-
died in Sobolev [7] by employing an argument used in the calculation of the cano-
nical distribution of Toeplitz operators. We here summarize the results obtained
there.

Lemma 3.4. Let n(u; $,(E)) be as above. Then:
(1) There exists a limit

O,() = gm n(w; $,(E))/|log E |

as a continuous function of ¢t > 0.
(2) The constant C, = Oy(1) depends only on the ratios between the masses of
three particles under consideration and obeys the lower bound

C,>log2/27" > 0.

(3) In the special case with identical masses, C, is explicitly calculated as C, =
A/ 2T with the uwique positive root A > 0 of the equation

1/2

1 =2%37"*(sinh #A/6)/(cosh 71 /2).

This lemma, together with relation (3.13), completes the proof of the theorem.

O
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§4. Proof of Lemma 1.3

The three lemmas (Lemmas 1.3, 3.2 and 3.3) remain unproved. We prove
Lemma 1.3 in the present section and Lemma 3.2 and 3.3 in the next one.

We keep the same notations as in section 1 and prove successively a series of
lemmas below, which completes the proof of Lemma 1.3.

Lemma 4.1, ¢, Id < A(d) < ¢/1d ford = ¢ > 0.

LEMMA 4.2. A, (d) € Op(d®) and A, (d) = ¢, P, for some ¢, > 0.
Lemma 4.3. A,(d) € Op(d”) for some v > 1/2.

Lemma 4.4. A, (d) = 0, dP, + Op(d") for some v > 1.

Proof of Lemma 4.1. The upper bound is obvious. The lower bound is proved
by contradiction. Assume that such a positive constant ¢, does not exist. Then the
compact operator WOU2 R(dz; S) Wol/Z has an eigenvalue greater than one or equal
to one for some d = ¢. This implies that T has a negative eigenvalue and contra-
dicts the assumption (H.1). Hence the lemma is proved. O

4.1. To prove Lemmas 4.2 ~ 4.4, we use the low energy expansion of
two-body resolvents. We here make a brief review on this result, following the
idea due to [2].

Let T, = — A be the free Hamiltonian on L°(R}). We denote by R,(d*) =
Rd*; T),d =0, the resolvent of T; Ro(dz) = (T, + d)™'. The operator
Ro(dz) is an integral operator with the kernel

Ry(d*) : 1 /4mexp(—d|x—y)/|z— y]

and admits the formal expansion

R = X (- Va6,
i=0
where
G,: A/4miD |z —yl™", j=0,1,2,....

We denote by B(s; s’) the class of bounded operators from the weighted L® space
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L: = L%(RY) into L’. The operators Ry(d”), G, and G, can be easily proved to
have the following properties.

Lemva 4.5. (1) R(d®) € B(s; —s) for 5,8 >1/2, s+ s > 2, and the
operator norm in B(s; — ') is bounded uniformly in d = 0.

(2) G, € B(s;s") for the same pair (s, s”) as above.
(3) G, € B(s, —s) fors > 3/2.
Let S= — A4 + U, be defined by (1.4). Since U, in non-negative, the resol-

vent R(d*; S), d > 0, has the same property as R,(d”).

Lemma 4.6, R(d*; S) € B(s; —s) for 5,8 >1/2, 5+ 5 > 2, and the
operator norm in B(s; — §’) is bounded uniformly in d > 0.

We define Z(d) as

(4.1) Z(d) = R,(d") — G,
and D, as
(4.2) D,=(dd+ G,U)™'=1d — R(; S)U,.

Then R(d”; S) is represented as
R@*;S) = (Id + R,(d)H U)'R,(d>) = (d + D,Z(d) U) ™" D,R,(d?.

As the Neumann series, the inverse above is expanded as
n—1 .
> (= V' (DZ@UY + (— 1)"(1d + DZ(d) Uy~ (D,Z(d) Up".
j=0

Since
(Id + D,Z(@)U)'D, = (d + R,d)U) ' =1d — R(d*; S U,,

we obtain that R(d” ; S) is expanded as

R@;9 =S (— 1 DZ@ Uy DR

(4.3)
+ (= 1D"UId — RWd*; O U)(Z@ U,D)"R,(d”).

This expansion formula with 1 < % < 2 is used in the proof of Lemmas 4.2~4.4.
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4.2. We here prove Lemmas 4.2 and 4.3. In the discussion below, X, denote
the multiplication by {x>°. The following three lemmas are obtained as an immedi-
ate consequence of Lemmas 4.5 and 4.6.

LEMMa 4.7. Let D, be defined by (4.2). Then D, € B(— s; — s) for any s.
1/2<s<p—1/2.
LEMMA 4.8.
PW,” (Id — R(d*; S U)X,,, € Op(d")

1/2

and, in particular, P,W,” D, € B(— 0/2;0).

LEMMA 4.9.
X,,UD,R, (@) W, P, € Op(d").
Let Z(d) be defined by (4.1). The kernel Z(x, y ; d) of Z(d) obeys the bound
| Zz, y; )| < Cd |z =yl
for any ¢, 0 < ¢ < 1. Hence we can easily prove the following
LEmMA 4.10. Let 0 be such that 0 < o < 1. The operator Z(d) has the follow-
mg properties:
(1) Zd) € B(s; —3) fors > 1+ 0/2 and X_Z@X_, € Op(d”).

(2) Z(d) € B(s; —5) fors>1/2+ 0,5 >3/20rfors>3/2,5 >1/2
+ 0, and X_ Z(dX_, € Op(d").

Proof of Lemma 4.2. By the expansion formula (4.3) with #n = 1, A,,(d) is
represented as the sum of two operators J,(d) and J,(d), where

J,(d) = P,dd — W,”* D,R,(d) W, > P,,
L@ = P,W,"” (1d — R("; S) UpZ(d) UD,R(d") W, P,.

We apply Lemma 4.10 to the operator Z(d) in J,(d), considering this as an oper-
ator of class B(0/2; ~0p/2), p/2 > 1. Then it follows from Lemmas 4.8 and
4.9 that J,(d) € Op(d”) for some v > 0. We write DR,(d”) as

D,R,(d®) = D,(G, + Z(d)) = R(0; S) + D, Z(d).

Then the same argument as above shows that J,(d) = P,A(0)P, + Op(d") for
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some Y > 0, so that we have
A, (d) = P,A(O)P, + Op(d”).

By assumption (H.1), P,A(0)P, = c,P, for some ¢, > 0. This proves the lemma. []

Next we prove Lemma 4.3. Since P, € B(—s;s) for s5,1/2<s<
(0 — 1)/2, by Lemma 1.2, the following lemma can be easily verified.

LEmma 4.11.

P,W,*(1d — R(d’; S) U)X, € Op(d")

forany s, 1/2 < s < p — 1/2, and, in particular, P,W,* D, € B(— s; 0).

Proof of Lemma 4.3. We again use the expansion formula (4.3) with n = 1. If

we make use of the orthogonal property of projections P, and P,, A,,(d) is repre-
sented as the sum of two operators J,(d) and J,(d), where

Jo(d) = — P, W,”” D,R,(d>) W,*P,,
Ji(d) = PW,” (1d — R’ ; $) Uy Z(d) U,DoR, (") W, P,

We apply Lemma 4.10 to the operator Z(d) in J,(d). To do this, we take s as 3/2
< s < p —1/2 and consider this as an operator of class B(0/2; — s), so that
Z(d) obeys the bound O(d") for some v > 1/2 in this operator class. Hence we
obtain from Lemmas 4.9 and 4.11 that J,(d) € Op(d”). Similarly we have

J @ =—PW  RO; )W, P, + Op(d”).
However, the operator on the right side vanishes by the orthogonality of P, and

P,. This proves the lemma. ]

4.3. We end this section by proving Lemma 4.4. The next lemma is easy to
verify. In fact, it follows from Lemmas 1.2 and 4.7 at once.

LeEMMA 4.12.
X,U,D,R,(d)W,”* P, € Op(d")
foranys, 3/2<s<p—1/2.

Let G, be as in 4.1. Recall that this is the integral operator with kernel 1/4x



74 HIDEO TAMURA

and acts as
(4.4) Gu= 1/4m)<u, 11
as an operator from L’ into L” for s > 3/2. We define Z,(d), 0 < d € 1, as
Z,(d) = R,(dy) — G, + dG, = Z(d) + dG,.
The kernel Z,(z, y ; d) of Z,(d) obeys the bound
|z, y; | < Cd’lz—y|™
for any ¢ with 1 < ¢ < 2. Thus we can easily prove the following

LEMMA 4.13. Let ¢ be such that 1 <0 <2 Then Z,(d) € B(s; — ) for
s>1/2+ 0, and X_Z,(d)X_, € Op(d°).

Proof of Lemma 4.4. We use the expansion formula (4.3) with # = 2. Then
the operator A,,(d) is decomposed into the sum of three operators J;(d),
0 <5< 2, where

]O(d) =P, (Id — Wol/zDoRo(dz) WOI/Z)PI,
Ji(@ = P,W,"”* D,Z(d) U,D,R(d) W, * P,
J,d) = — PIWOI/Z (Id — R(*; S) U) (Z(d) UODO)ZRO(dZ) Wol/z P,

We first consider the operator J,(d). This has two operators Z(d). We apply Lem-
ma 4.10 to control these operators. To this end, we take s as 3/2 <s<p—1/2
and consider Z(d) on the left side as an operator of class B(0/2; — s) and
Z(d) on the right side as an operator of class 8(s; — 0/2), so that both the oper-
ators obey the bound 0(d”®) for some v > 1 in the classes under consideration.
Since U,D, € B(— p/2;0/2) by Lemma 4.7, it follows from Lemmas 4.11 and

4.12 that J,(d) € Op(d”). To evaluate J,(d), we rewrite it as
Jid =P, ['Vol/2 Dy(—=dG, + Z,(d)) UoDoRo(dz) [/Vol/2 P,

and apply Lemma 4.13 to Z,(d). We again take s as 3/2<s<p—1/2 and
consider Z,(d) as an operator of class B(s; — s). Then we have by Lemmas 4.11
~4.13 that

Ji(d) = — dP,W,” D,G,UD,(G, + Z(@)W,”” P, + Op(d”)

for some v > 1. We further apply Lemma 4.10 to Z(d) above, considering this as
an operator of class B(s; — (0 —s)). Since U, D, € B(— (0 — s); s) and
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G, € B(s; — s), we have
J(d = — d P,W,” D,G,U,D,G,W,”* P, + Op(d").
If we take account of the relation
P,(d — W, D,G,W,")P, = P,A(O)P, = 0,
we can similarly show that J,(d) is represented in the form
J(d) = d P,W,”” D,G, W, P, + Op(d”)

with another v > 1.
We now use the relation

U,D,G, = U,(1d + G,U) G, = (Id + U,G,) ' U,G,
to obtain that
D,G,(d — U,D,G,) = D,G,(d + U,G,) " = D,G,D;,
so that
A, (d) = dP,W,” D,G,DIW,* P, + Op(d”).
The generalized eigenfunction 6, at zero energy of S is given as
6,=D,1=1—R(0;S)U,1

and satisfies <6, W(,l/2 ¢ # 0 for the normalized function ¢, € L? spanning
2., = Range P,, 2., being of one dimension. Thus, by (4.4), we have

P,W,” D,G,Dy W, P, = 0, P,

for g, as in Lemma 1.3. This completes the proof. L]

§5. Proof of Lemmas 3.2 and 3.3

In this section we prove Lemmas 3.2 and 3.3. Throughout the section, we use
the following notations: Xsa denotes the multiplication operator by <xa>s;
Op(E,) denotes the class of bounded operators on L*(R®) uniformly in E, 0 < E
< 1, small enough and various operators of class Op(EO) are denoted by the same
symbol 7,(E).

5.1. The first half of this section is devoted to preparing a series of auxili-
ary lemmas which are required to prove the lemmas above.
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LEMMA 5.1. Let 0 £ v < 3/2. Assume that o + 8. Then

X% w, (E)™ € Op(E®) for any s > v.

Remark. As an immediate consequence of the lemma, it follows that
a)a(E)_vaS S Op(EO). Throughout the discussion below, such simple consequ-
ences are used without further references.

Proof. Let 6 be the characteristic function of the interval [0, 1]. To prove the
lemma, it suffices to show that 8(T,)w,(E)™" has the property above. By the
assumption & # 3, the coordinates x, are described as x; = (goZ, T Kl With
ks # 0. We consider X* 0(T,) w,(E)™ as an operator acting on L*(R*; dy,), x,
€ R® being regarded as parameters. Take v < 3/2 and s > 3/2 arbitrarily but
close enough to 3/2. Then the operator in question is of Hilbert-Schmidt class on
L*(R®; dy,) and its norm is bounded uniformly in x, and E. Hence it is also
bounded uniformly in E as an operator on L’(R®). Thus, by interpolation, the lem-
ma follows at once. ]

LEmMMA 5.2. Let 0 < 0 < 3/2. Then
X (H,+ E)°? € Op(EY) forany s> 0.
Proof. Recall that the coordinates dual to (z,, y,) are denoted as (p,, q,) €

R¥? 1 we use the Fourier transformation in Y then the operator in the lemma is
represented as the direct integral

[ ® X+ 4, 2m, + B dg,

with T = — A/2m,. We can prove in the same way as in the proof of Lemma
5.1 that the operator in the integrand is bounded uniformly in g, and E as an
operator on L*(R®; dz,). This completes the proof. O
LemMMA 5.3 Let K= H, + U be as in section 3. Then
X' (K+E™X’, € OpE®

for any s, 8" > 1/2 with s + 8" > 2. The operator K, defined by (2.4) also has the

same property as above.
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Proof. Let 0 < 0 < 3/2. We shall show that
(5.1) X°(K+ E)"? € Op(E")

for any s > 0, from which the lemma follows at once. Since U is non-negative, the
integral kernel of (K + E)™%is non-negative and does not exceed that of (H, +
E)™"% Hence Lemma 5.2 implies (5.1) and the proof is complete. ]

LEMMA 5.4. Assume that @ #F 8. Let 0, v and V' be non-negative numbers with
o+ v+ v <3. Suppose that ¢ has a decomposition 0 =y + ¢/, ¢, ¢ =0, such
thaty + 4 < 3/2 and V' + p' < 3/2. Then

X w (E)”(H, + E) "w,(E)™ X*, € (HS),

fors, s such thats > v + y and s" > v + p.

Proof. Denote by A(E) the operator in the lemma. We first show that
(5.2) A(E) € Op(E").
To see this, we write A(E) as

A(E) = X% w,(E) " {w,(E)" (H, + E) ""w,(E)*}w,(E)” """ X",

according to the decomposition for g. The operator in the brackets is obviously of
class Op(E®) and hence (5.2) follows from Lemma 5.1.

Let 6 again denote the characteristic function of the interval [0,1]. Let f €
Co(Rz) be of compact support. Denote by £ and f‘B the multiplication operators
by f(x,) and f(x,), respectively. To complete the proof, it suffices by (5.2) to
show that

B(E) = f®w (E)”0(H,) (Hy + E) "w,(E)™ f*

is bounded uniformly in E as an operator of Hilbert-Schmidt class on LZ(RG). To
prove this, we consider the operator

AE) = U,B(E)¥,": L(R®; dx, dg,) — L*(R®; dx, dq,,).
As is easily seen, A(E) has an integral kernel of the form
@2m) *f(x)exp(ip, * 2,) 0(q,, 45)G 4y, g5; E)exp(— ip, * x,) f(x,)

with 6 = 60(H,(q,, qz)). where p, and p, are represented as in (2.2) in terms of
(g, q5) and G(q,, g5; E) is defined as
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o(l g, /20, + B (Hy(q, q») + E)w((| g, 1”720, + B))7.
By assumption, it follows that the Hilbert-Schmidt norm of A(E) is bounded uni-
formly in E and hence the proof is complete. O
LEMMA 5.5. Assume that o F B. Then:
1 x° (K, + E)'X?,, € (HS)..
(2) X° 0. (B) (K, + B)"'X? , € (HS),, s>3/2.
Proof. We prove only (2) for s,3/2<s<p—1/2. A similar argument

applies to (1). We denote by B(E) the operator under consideration. By use of the
resolvent equation, (K, + E) ™" is represented as

(5.3) K, +E)'=@H,+E'— K, +EUMH,+ B

Write U, as U, = X°,_,7(E) X’ Since w,(E) and K, are commutative with
each other, we see from Lemma 5.3 that B(E) takes the form

B(E) = r,(E) X" w,(E) " *(H,+ E) " X°,.

This, together with Lemma 5.4, proves (2). |
5.2. We now prove Lemma 3.2.

Proof of Lemma 3.2. (1) By the resolvent equation, we have

(5.4) K+EB'=K,+E7'~- 3 K, +E UK+ E™,
T¥a
where Z#a denotes the summation over two pairs except for a. Hence, by Lemma

5.3, the operator under consideration takes the form

2 r(BE)X (K, + E) X7, 7, (E).

r¥a

This, together with Lemma 5.5, proves (1).

(2) (2) is proved in almost the same way as in the proof of (1). We first note
that P{W,"? X% is bounded for any s, 3/2 <s < p — 1/2, by Lemma 1.2. By
use of (5.4) again, we can represent the operator under consideration in the form

3 r(E) X% w,(E) (K, + E) ' X, ,r,(E)

r¥EQ

for s as above. Hence (2) again follows from Lemma 5.5.
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(3) We can write (K + E) ™" as

K+E '=K,+E"'— % (K, + BUK,+ E),
(5.5) rHa
+ X 32K, +EUK+ E UK, + E)™
T¥a 0+a
by repeated use of (5.4). Hence (3) follows immediately from Lemmas 5.3 and 5.5.

O

5.3. We here prove Lemma 3.3. The proof requires the two auxiliary lem-
mas below.

LemMa 5.6, Let Iz(E), a # B, be as in Lemma 3.3. Define D,(E) : L*(R®) —
L(R®) by
D,(E)=1d — (K, + E)"'U,.
Then one has

QL (E) ~ PYW,)” D(E) £,(E) VI, (E) f,(E)™ D(E)*W,” P}.

Proof. We write (K + E) " as in (5.5);
(K+ E)™' = B,(E) + B,(E) + B,(E),
where
B,(E) = (K, + B)"'(Id — U,(K, + E)™,
B(E) = — (K, + B 'UK, + B)', r+a,B,
B,(E) =X X (K, + E)'U(K+ E)'U,(K, + ).

r#a 0#8
We can further rewrite By(E) as
B,(E) = D,(E)(H,+ E) 'D,(E)*

by making use of the relation (K, + E)™ = D_(E)(H,+ E)”', which follows
from the resolvent equation at once. Hence the lemma is obtained as an immediate
consequence of Lemmas 5.3 and 5.5. ]

LEMMA 5.7. Let s be such that 3/2 < s < p — 1/2 and let Dy, and D,(E) be
as in Lemmas 3.3 and 5.6, respectively. Then theve exists v > 0 such that
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X% (DE) — Dpp) X w,(E)™” € Op(EY).
Proof. Let s be as above. Then we can prove in the same way as in the proof
of Lemma 4.2 that
I X% (R@*; K — R(O; K*NX%, o= 0, d—0,
for some v > 0 as an operator acting on LZ(R3; dz,). This proves the lemma. [

Proof of Lemma 3.3. Recall the definition (3.8) of f,(E). Since f(s) behaves
as in (3.5), the lemma is obtained by combining Lemmas 1.2, 5.4, 5.6 and 5.7. [

§6. Proof of Theorem 2

Theorem 2 can be verified in almost the same way as in the proof of Theorem
1, so we give only a sketch for the proof.

(1) We follow the same notations used in the proof of Theorem 1. Let H(A),
0 < 2 <1, be defined by (0.2). Recall that N,(1) denotes the number of negative
eigenvalues of H(A). It is convenient to rewrite H(1) as

HQA) =H—-AV=Q—-AH+cH)

with £ = 2/(1 — ). We denote by N(x), 0 < E € 1, the number of negative
eigenvalues less than — E of H + k H, and write, in particular, N,(k) for N,(4).
We apply the Birman-Schwinger principle to H + k Hy= K+ k Hy— W. Then
we obtain Ny(k) = n(1; M(k, E)), where M(k, E)) : LA(R®% — I*(R®) is defined
by M(x, E) = 3, M, (k, E)*M,(x, E) with

ME, k) = W)” (K+ «H,+ E)™".

(2) We again write T% for — A/2m,, so that Hy = T + T,. The second
step is to study the behavior as d — 0 of the operator

Ad; K% =1d — WYAK*+ cT*+ d>™'W)?, d=>0.
To do this, we write the inverse (K* + ¢T* + d*) " as
R(dZ;Ka)l/Z(Id + ICR(dZ; Ka)l/ZTaR(dZ; Ka)l/Z)—lR(dZ ;Ka)l/z

with R(d*; K*) = (K* + d®)™. Since both the operators R(d”; K)*(T™HY*
and R(d*; K")WW;/2 are bounded uniformly in d as an operator on L’(R®; dz,),
the Neumann series expansion yields
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Ad; K% = Ad; K + kW,*R(d*; K*YT* R(d*; K*)W,)”” + Op(x?),

where A(d ; K% is defined by (2.5) and Op(k®) denotes a bounded operator with
its operator norm of order O(k®) as k— 0 uniformly in d. Note that

T > |z, /4 > cW,

for some ¢ > 0 in the form sense. Hence we obtain from Lemma 1.3 that for d > 0
small enough,

Ad;K*) > 0,df(d) + c,0)P] + c,P;,
6.1)

Ad;K*) < o0,(dg(d + c_O)P] + ¢;P;
with positive constants ¢,, ¢, and ¢;, where f(d) and g(d) are strictly positive
functions having the same property as in (3.5). We here note that the argument be-
low does not require the explicit values of constants c,.

(3) Relation (6.1) enables us to repeat the same argument as in the proof of
Theorem 1 and we have

6.2) n((1+e;f (k,E) —C.<N;(w) <n((1—0);4,(&, E) +C,

for any & > 0 small enough, where £,(k, E): £*(B,) — ¢°(B,) is the 3 X 3
matrix with ]:ﬁ(/c, E), a # B, as the off-diagonal entries and J,(E) = 0 as the
diagonal ones. The integral kernel ];;(qa, gs; k, E) of the operator ]:B(Ic, E):
L’(B,; dg;) — L (B, ; Dq,) takes the form

TaBC:(qa;’C, E)((1 + k) Hy(qy, g5 + E)_ICBi(qB;/c, B,
where 7,4 is as in (3.12) and (g, ; k, E) is defined by
C:(qa;lf, E) = X(qa)(l ds IZ/Z”a +E+ CiICZ)_IM.

Let J,5(E) : L’ (B, ; dgs) — L*(B, ; dq,) be as in the proof of Theorem 1. Recall
the representation (3.12) for its integral kernel. As is easily seen, the
Hilbert-Schmidt norm of the difference between J 5k, 0) and J,,(ci£®) is bound-
ed uniformly in k. Hence we let E— 0 in (6.2) to obtain that

n(@+e); 8,(’kD)) — C. < N,(w) <n(Q—e); $ kD) + C,

with another C, independent of k. This, together with Lemma 3.4, proves the
theorem. ]
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§7. Concluding remark

As previously stated, the three-body Hamiltonian H has in general an infinite
number of negative eigenvalues accumulating at zero except for a certain special
case, if only two subsystem Hamiltonians have a resonance state at zero energy. In
such a case also, we can derive the asymptotic formula for N(E) or N,(2) with
another leading coefficient C,. In the present section, we shall discuss this prob-
lem briefly.

For notational brevity, we fix the three pairs a, 8 and 7 as a = (1,2),
B = (1,3) and v = (2,3), respectively, and assume that the two-body subsystem
Hamiltonians H® and H? have a resonance state at zero energy. We further
assume that the mass #, is finite; m; < ©0. Under these assumptions, we can show
that H has an infinite number of negative eigenvalues. However, if m, is infinite,
then the Efimov effect is not in general expected to occur. In fact, if the pair
potential V, = V,; is non-negative, then it follows from assumption (H.1) that
H = 0 and hence H cannot have any negative eigenvalue.

We consider only the problem on the asymptotics for N(E). A similar argu-
ment applies to N,(1). By repeating the same argument as in the proof of Theorem
1, we can reduce the problem under consideration to study on the eigenvalue
asymptotics for the integral operator

0 JuE 0
FE) =B 0 0]:L*B)—L(B)
0 0 0

with entry J,;(E) :LZ(B1 ; dag) —>L2(Bl; dq,) whose integral kernel is given by
(3.12). As a result, we obtain

n(@ +e); £(E) —C,<NE) <n(l—e¢); f(E) +C.
According to the results in [7] again, we know that the limit
6, = lim n(y: J(E))/|log E |

exists as a continuous function of g > 0 and that the constant C, = 6,(1) is
evaluated from below as

C, =8 1108 ttasy Mo = (g/my) (ny/my).

It should be noted that p,5 > 1 under the finiteness assumption of mass #, and
hence C; > 0. Thus we can derive the asymptotic formula
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N(E) = C,|logE| 1 + 0(1)), E—0O.

In the special case with identical masses, the constant C, is explicitly determined

as C, = A/2x with the unique positive root 4 > 0 of the equation

(1]
(2]
[31
[4]
[5]
(6]
(7]
[8]

[9]

A= 2>+ 37"*(sinh 71 /6)/(cosh A /2).
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