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EXISTENCE OF DIRICHLET INFINITE HARMONIC

MEASURES ON THE UNIT DISC

MITSURU NAKAI

The primary purpose of this paper is to give an affirmative answer to a prob-

lem posed by Ohtsuka [13] whether there exists a ^-harmonic measure on the unit

disc in the 2-dimensional Euclidean space R with an infinite ^-Dirichlet integral

for the exponent 1 < p < 2.

To clarify the meaning of the problem we start by explaining the background

of the problem. We say that d is a strictly monotone elliptic operator on the

Euclidean space R of dimension d ^ 2 with exponent p ^ (1, d] if d is a map-

ping of R X R to R satisfying the following assumption for some constants

0 <a^β< oo :

the function h^dix, h) is continuous for
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R . The class of all operators d on R satisfying (l)-(5) with exponent p

(1, d\ will be denoted by dp(Rd).
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Using an d ^ dp(R ) we consider a quasilinear elliptic equation

(6) -V d(x,Vu(x)) = 0

on R . A function u on an open subset U of R is a weak solution of (β) if u

loc WΪ(U) and

f d(x,Vu(x))- Vφ(x)dx = 0

for every φ €= C~(f7) where R^(ί7) is the Sobolev space on U consisting of

functions / <Ξ LP(U) - LP(U R) with distributional gradients Vf ^ LP(U) =

Lp(U R ) and dx — dx - -' dx .A weak solution M of (6) (possibly modified on a

set of zero measure dx) is actually continuous. We say that a function u is

d-harmonic on t/ if w is a continuous weak solution of (6) on U. We denote by

Hd(U) the class of all ^-harmonic functions on U. The simplest and the most

typical operotor d in dp(R ) is the ̂ -Laplacian d(x, h) = | h \P~2h so that the

corresponding elliptic equation is the ^-Laplace equation

(7) -V (\Vu(x) \p'2Vu(x)) =0.

In this case we use the term p-harmonic instead of ^-harmonic and the notation

HP(U) in place oίHd(U).

The greatest ^-harmonic minorant u Λ v on U, if it exists, of two

<rf-harmonic functions u and υ on U is the ̂ -harmonic function u A v on U char-

acterized by the following two conditions: (i) u Λ υ < u and u Λ υ < υ on ί/

(ii) if there is an ^-harmonic function h on U such that h < u and h ^ v on Uy

then h ^ u A v on U. A function w is said to be an d- harmonic measure on U in

the sense of Heins [3] if w is ^-harmonic on U and satisfies

(8) w A (1 - w) = 0

on £/. An <rf-harmonic measure always satisfies 0 ^ w ^ 1 on ί/;w; = 0 or

M; = 1 are ̂ -harmonic measures on U when U is a region, an ̂ -harmonic mea-

sure w on U is nonconstant if and only if 0 < w < 1 on U.

Our main concern in this paper is the p-Dirichlet integral

Dp(w) = DΛw ;Bd) = f \V w(x) \Pdx
Jβd

of each ^-harmonic measure w on the unit ball B = {x e R | χ\ < 1} with

d e dp(Rd). We say that w is p-Dirichlet finite {infinite, resp.) if Dp(w) < °°

(Dp(w) = oo, resp.). We have the following result:
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9. THEOREM. // 2 ύ p ^ d, then every noncontsant d-harmonic measure on the

unit ball B is p-Dirichlet infinite for every d in dp (R ).

We say that a subdivision δ0 U <5X of dB gives rise to an electric condenser

(B δ0, δλ) surrounded by two electrodes δ0 and δx if the unit potential differ-

ence can be produced between δ0 and (^ by putting a charge of finite energy on δλ

when δ0 is grounded. The intuitive meaning of the above result is that B cannot

be made to an electric condenser no matter how we decompose the boundary dB

of B into two parts. The above result in its present final form was obtained and

proved in [11]. The result in the special case of p = 2 and the classical Laplace

operator d(x, h) — h was proved in [9] based on a different view point. If p = d

= 2 and d(x, h) = h, then the above result has been known in the frame of the

theory of functions and its proof is found in various sources (cf. e.g. [8], [13], etc.).

If p = 2 and d(x, h) = h, then the above result is the one in the linear potential

theory. From this view point we remark that (6) can be nonlinear for

p = 2 and even for the borderline conformal case p = d = 2 (see Appendix at the

end of this paper).

In contrast with the case 2 ^ p ^ d, we have proved the following result in

the same paper [11] cited above:

10. THEOREM. // 1 < p < 2, then there exist nonconstant p-Dirichlet finite

d-harmonic measures on the unit ball B for every d in dp(J& ).

We turn to the final question in the case 1 < p < 2 whether there are

^-Dirichlet infinite ^-harmonic measures on the unit ball B for every d in

dp(R ), which is the main theme of this paper. For a technical reason we restrict

ourselves to the case of the dimension d = 2 in the remainder of this paper. We

view R also as the complex plane by identifying the point (x , x ) in R with the

complex number x = x + ix (i = yj— 1). For simplicity we denote by Δ the

unit disc in R 2 : Δ = B2 = {x e R 2 : | x \ < 1}.

Take two sequences (an) = (an : 1 ^ n < N + 1) and (bn) = (bn: 1 ^ n

< N + 1) of real numbers an and bn such that

(11) 0 < an < bn < an+1 < bn+1 < π (1 ^ n < N)

so that (an) and (bn) are finite sequences of N terms if 1 ^ N < °° and infinite

sequences if N = °°. With these two sequences (an) and (bn) we associate the

sequence (AJ = (A^Ά ^ n < NΛ-1) oί main arcs A^ in dΔ = {x e R 2 : | χ\ = 1}

given by
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An = {etθ: an < θ < bn) (1 H n < N + 1)

and the sequence (Bn) = (Bn : 1 ^ n < TV + 1) of subsidiary arcs Bn in 94 given

by

Bn = {ew: bn < θ < an+i) (1 ^ n < N).

Finally we consider the open subset A in dΔ associated with sequences (an) and

(bn) given by

A = A((an), (bn)) = U An.
n=l

The function ω(A, Δ; d) on Δ given by

(12) ω(A,Δ;st)(pc) = sup{h(x) :h e C( i ) Π fl^(4), A | i ^ 1, A| (34\i4) ^ 0 }

for x ^ 4 is referred to as the d-harmonic measure of A with respect to Δ for d €=

^ ( R ) with 1 < >̂ ̂  2. In this case of an open set A in dΔ the definition of

ω(A, Δ d) in (12) coincides with the one given by Martio ([4], [2, Chap. 11]). We

will see later in 44 that co(A, Δ d) is actually an ^-harmonic measure on Δ in

the sense of Heins characterized by (8).

If 1 < p < 2, d{x, h) = I h \P~2h, and ΛΓ < °°f i.e. ,4 is the union of a finite

number of mutually disjoint open arcs in dΔ, then we know that the />-harmonic

measure ω(A, Δ d) of A with respect to Δ is ^-Dirichlet finite (Ohtsuka [13],

[10]; also see Theorem 14 below). In view of this fact one might feel that every

^-harmonic measure on Δ is />-Dirichlet finite for every 1 < p < 2. Thus we are

naturally led to ask the following question originally raised by Ohtsuka [13, Chap.

VIII] in terms of extremal distances in an equivalent to but superfacially different

from our present setting:

13. OHTSUKA'S PROBLEM. Does there exist a p-Dirichlet infinite p- harmonic mea-

sure on Δ for each 1 < p < 2? Or more generally, does there exist a p-Dirichlet infi-

nite d-harmonic measure on Δ for every d ^ dp(R) with each 1 < p < 2?

The purpose of this paper is to give an affirmative answer to the above prob-

lem of Ohtsuka by proving the following result.

14. MAIN THEOREM. If N < °° or if N = °° and either the sequence (| An \ : 1

^ n < °°) or (| Bn I : 1 ^ n < °°) converges to zero so rapidly as to satisfy the con-

dition
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(15) min

where \ An \ denotes the length of An, then the d-harmonic measure ϋ)(A, Δ d) is

p-Dirichlet finite for every d in dp(R ) with 1 < p < 2. // the sequences (| An | :

1 ^ n < °°) and (\ Bn\ : 1 lί n < °°) converge to zero so slowly as to satisfy the con-

dition

(16) Σmin(lΛ,Γ', |β»Γ*) = °°,
n=l

then the d-harmonic measure α>04, Δ d) is p-Dirichlet infinite for every d in

dp(R2) with each 1 < p < 2.

The proof of this theorem will be given later in 51 after a series of prepara-

tions starting from 22. The latter half of the above result takes the following more

applicable form.

17. COROLLARY. // the sequences (| An | : 1 ^ n < °o) and (| Bn | : 1 ^ ^

< °°) satisfy the condition

(18) lim inf | Bn\ /\An \ > 0 (lim inf \An\ /\ Bn\ > 0, m / ϋ

and also the condition

(19) ΣlA,

then the d-harmonic measure O)(A, Δ d) is p-Dirichlet infinite for every d in

dp(R2) with each 1 < p < 2.

Proof Condition (18) assures the existence of a constant C > 0 such that

\Bn\^C\An\ ( U J ̂  C I β j , resp.) (« = 1,2, ).

Then we see that

mind A, I2"', I A, I2"') ^ mind A I2"', C2~p \ An D

(mind An Γ", I Bn Γ )

C2"*)|BJ2"*, resp.).
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Hence (19) implies (16) and thus Theorem 14 yields the above conclusion. D

We are now able to give an affirmative answer to Problem 13 as an applica-

ton of Corollary 17 by giving the following example.

20. EXAMPLE. Choose sequences (an : 1 ^ n < °o) and (bn: 1 ^ n < oo) So as

to satisfy the condition

(21) an+1 - bn = bn- an = n~1/i2~p)

for sufficiently large n. Then the d-harmonic measure ω(A, Δ d) is p-Dirichlet in-

finite for every d in dp(Ji ) with each 1 < p < 2.

Proof. Since 0 < 2 — p < 1, the series Σ w έ l n < oo a n ( j therefore we

can choose sequences (an) and (bn) satisfying conditions (11) and (21). Then \An |

= I Bn I = n for sufficiently large n and hence (18) and (19) are trivially

satisfied. Thus Corollary 17 assures that the corresponding ^-harmonic measure

ω(A, Δ d) is />-Dirichlet infinite for every d in ^ ( R ) with each 1 < p < 2. EH

22. Trace

For simplicity we denote by Γ — dΔ the unit circle {x e R : | χ\ — 1}. The

Sobolev space Wp (G) (1 < p ^ 2) is a Banach space equipped with the norm

11/ WP{G) || = | | / LP(G) \\ + \\ V f LP{G) ||,

where G is an open set in R . The Sobolev null space Wpo(G) is the closure of

Co (G) in Wp (G) with respect to the above norm.

There exists a unique continuous linear operator γ of Wp (Δ) into LP(Γ) such

that 7 / = / | Γ for every / in C(Δ) Π W/Cd). The function 7/defined a.e. on Γ

and belonging to LP{Γ) is referred to as the trace on Γ of / in R^ (G). It is seen

that the expression

(23) ( r/)(ζ) =l im/(rζ)
rU

holds for a.e. ζ in Γ(cf. e.g. [6, p.47]).

Concerning the kernel Ker γ = γ~ (0) and the image Im γ — γ(Wp (Δ)) of 7

we have the following fundamental results. First, Ker γ characterizes the Sobolev

null space (cf. e.g. [7, p.187]):

(24) WP>O(Δ) - Ker γ= { /e Wp

ι{Δ) : γf= 0}.
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Second, we denote Im γ = γ(Wp (Δ)) by ΛP(Γ). It is seen that the space

ΛP(Γ) forms a Banach space under the norm

(25) φ p φ p f ,

where ds is the line element on Γ. The theorem of Gagliardo [1] assures the exist-

ence of a constant C ^ 1 such that

(26) C ' 1 1 | φ Λt(Γ) II ^ inf || / Wι

p{Δ) \ \ < C \ \ ψ ; At{Γ) |

for every <p in ΛP(Γ). The quantity || φ ΛP(Γ) || will be referred to as the Gagliar-

do norm of φ in this paper.

Hereafter we sometimes use the same letter C to denote positive constants

which may differ from each other from line to line and even in the same line.

27. Dirichlet problem

Let G be a bounded region in R . We will mainly consider the case G = Δ

but G is supposed to be a general bounded region for a while. For any / in

Wp (G) there exists a unique u in the space Hd(G) Π Wp (G) such that u — /be-

longs to WPQ(G) (cf. Maz'ya [5]). This fact can be reformulated as the Maz'ya de-

composition of Wp (G):

(28) Wp(G) = (HJG) Π Wp{G)) Θ WP\O(G),

i.e. any / in Wp (G) can be expressed as the sum of the ^-harmonic part u in

Hd(G) Π Wp(G) and the "potential part" g in Wpt0(G) : / = u + g. We denote by

7Γ̂  the projection operator of H^ (G) to Hd(G) Π Ŵ  (G) determined by πdf —

u. We say that G is d-regular if

(29) lim (jc%f){x) = f(y)
xeG,x->y

for any / in C(G) Π Wp (G) and for every y in 9G. If G is bounded by a finite

number of mutually disjoint smooth Jordan curves, then G is ^-regular (cf. [5]).

The disc Δ is the most typical example of ^-regular regions.

We also use the following extremal property of πd : the quasi Dirichlet prin-

ciple is valid in the sense that πdf quasiminimizes the ^-Dirichlet integral:

(30) ΓI V (πGJ) (x) Γ dx ^ (β/a)p f | Vf(x) \Pdx.
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In fact, since u = πdf is a weak solution of (6) and u — f belongs to Wp Q(G) in

which C~(G) is ||•; Wp (G) ||-dense, we have

dix, Vu(x)) V(u - f)(x)dx = 0.

By (2), (3) and the Holder inequality we have

a f I Vuix) \pdx ^ f dix, Vuix)) Vuix)dx = (dix, Vuix)) • Vfix)dx
j G j G j G

a \ ip—l)/p I Γ \ ^^

\dix, Vuix)) \pnp-ι)dx) • (j I Vfix) \pdx)
/ /* \ip-l)/p / r \l/p

<β(JG\Vuix))\Pdx) \jG\Vfix)\Pdx) ,

by which we can conclude the inequality (30).

We now restrict ourselves to the case G = Δ. We use the abbreviation π =

πd = πd. We say that an / in Wp (G) has an essential limit a dX ζ m Γ — dΔ,

a = ess lim fix)

in notation, if

lim | | / - a LjΔiξ, ε) Π Δ) \\ = 0
ε JO

where Δiξ, ε) is the disc of radius ε > 0 centered at ξ. As a localized version of

(29) we have

lim iπf) ix) = ess lim fix)

at a point ξ in Γ for every / in L^iΔ) Π Wp iΔ) for which the right hand side of

the above exists at a ξ in Γ (cf. [12]). Although the operator π — πd = πd is

homogeneous but not linear, we see that π is monotone (cf. [11]), i.e. f ^ /2 a.e. on

Δ for any fγ and /2 in Wp iΔ), then πf ^ πf2 on Δ.

In view of the relation (24) and the uniqueness of the Maz'ya decomposition

(28) we can define the operator

τ = π ° γ'1: ΛpiΓ) — HdiΔ) Π WP\Δ).

Clearly the operator τ = τd — τd is bijective. Moreover we have the following re-

sult.
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31. PROPOSITION. The operator τ is monotone, i.e. if φγ ^ φ2 a.e. on Γ for any φλ

and φ2 in ΛP(Γ), then τφx ί̂  τφ2 everywhere on Δ.

Proof Choose an arbitrary gt in Wp

l(Δ) with jg{ = φt (i = 1,2). We denote

by F U G the function given by (F U G) Or) = max OF Or), GOr)) for any two

functions F and G. Then (gλ — g2) U 0 belongs to Wp (Δ) by the lattice property

of WP\Δ). By (23) we see that

r((ft ~ ft) u o) = (r(& - ft)) u o - ( ^ - f t ) u o = ft-

If we set/2 = ft and Λ = ft + (ft — ft) U 0, then ?-/2 = γg2 = φ2 and

rΛ = rg2 + r((ft - ft) u o) = φ2 + (φ, - g2) = ̂ .

Then r^ ! = 7r/x, τφ2 = πf2 and ̂  ^ f2 on Δ imply that r ^ ^ τφ2 on J by the

monotoneity of 7Γ. Π

Beside the defining boundary behavior γ(τφ) — φ of rφ, we have the follow-

ing more precise boundary behavior of τφ if an additional condition is imposed

upon φ:

32. LEMMA. If φ ^ L^iΓ) Π ΛP(Γ) is continuous at a point ξ ^ Γ in the sense

that ess \ϊmv^Γr]^φ(η) = φ(ξ), then τφ has a boundary value φ(ξ) at ξ.

Proof We only have to show that limXG^>x_ξ(τφ) (x) = φ(ξ). Since τ(φ —

φ(ξ)) — Tφ — φ(ξ), we may suppose φ(ξ) = ess \imηeΓjj_tξφ(η) — 0 to show the

above identity. Let | φ \ ^ K a.e. on Γ for a positive constant K and p(x) = \ x — ξ \

on R . Clearly p belongs to the class C(Δ) Π Wp (G) and τ(p | Γ) = rep, or rough-

ly τp = πp. Hence by (29) we have

lim (τp)(x) = 0.

For any ε > 0 there is a δ > 0 such that | φ(η) | < ε for a.e. η in Δ(ξ, δ) Π Γ.

Since (K/δ)p ^ i ί for every 77 in Γ\Δ(ξ, δ), we see that

a.e. on i"1. By Proposition 31, we have

- ε ̂  ( r ^ ) ω ^ ^ (ηo)te) + ε Or



150 MITSURU NAKAI

On letting x in Δ tend to ξ, we see by (τp) (x) —> 0 that

— ε ^ lim inf (τφ) (x) ^ lim sup (τφ) (x) ^ ε.

Since ε > 0 is arbitrary, we finally conclude the required identity

) = 0. D

33. Estimate of Gagliardo norms

For two measurable subsets X and Y in Γ and mostly for open or closed sub-

arcs X and Y in Γ we consider the set function

(34) SiX, Y) = f f I ξ - η \'Pdsξdsv
j jXxY

where ds is the arc element on Γ. The following elementary properties of S are

easily checked and will be used without making any further mention of them: S is

symmetric, i.e. S(X, Y) = S(Y, X) S is rotationally invariant, i.e. S(e X,

eiθY) = S U , Y) where etθX= {etθξ:ξ^X};S is additive, i.e. X= U;

W

=1X; is

a finite disjoint union, then

S( U X,, Y) = Σ S(X,, Y)

S is increasing, i.e. i f l c Γ and Y c Y\ then S(X, Y) ^ S(X\ Yf).

We denote by Γ the upper half circle {e : 0 ^ θ ^ π). For a measurable

subset X and mostly for open or closed subarc X in Γ we set

XA = {x GΞ [0, 2τr) : e1* e Z}

which is a measurable subset of the real line and actually the interval [0,2ττ). We

consider the auxiliary set function

(35) TiX, Y)= f f \x-v\~* dxdy
J JχΛ χ γA

which is comparable to (34) for X and F i n Γ :

(36) TiX, Y) ^ S(X, Y) ^ {π/2ΫnX, Y) (Z, F c Γ+).

To see this relation we observe that

S(X, Y)= f f I ξ - η Γ dsξdsη = f f \eιx - ev \~P dxdy.
J Jχχγ J JχΛχyΛ
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Replacing | ex — ew | in the above by | x — y | or (2/τr) | x — y | based on the fol-

lowing inequalities

(2/τr) \χ-y\^\eix-eiy\^\χ-y\ (x, y e [0, TΓ]),

we deduce the required inequalities (36).

We choose arbitrary open or closed arcs / and J in Γ such that (int 7) Π

(int/) = 0 where int / is the interior of / considered in Γ. We denote by | l\ the

length of the arc /. Let p = p(I, J) be the distance between / and / considered in

the Riemannian metric in Γ. We then deduce the following fundamental relation:

37. IDENTITY. The auxiliary set function T(I, J) is given by

T(I, J) = Cp{(\ I\ + P r p + ( I / I + p)2~p - (I I\ + I / I + pΫ~p - p2~p)

(1 < p < 2) where Cp = 1 /(p - 1) (2 - p).

Proof. Let the closures of intervals / and / be [a, b] and [c, d], respec-

tively. Since Γ(7 , J) = T(J, I), we may assume that 0^a<b^c<d^π.

Then

T(I, J) = f f \x-y\~* dxdy = f ( Γ (y - xΓP dy)dx

= (p- I)" 1 Γ ί(c ~ ^'P ~ W - xγ-*)dx

= {(p-l)(2-p)rl'{(c- aΫ~p - (c-b)2~p+ (d- bΫ~P - (d-a)2-p).

S i n c e c - a = 11\ + p , d - b = | / | + p , d - a = 11\ 4- | / | + /o a n d c~b = p ,

w e d e d u c e t h e i d e n t i t y 3 7 . Γ~1

i I

For an arbitrary open or closed arc / in Γ we denote by 1° the complement of

/ with respect to Γ so that 1° — Γ\ I. Then we have the following relation:

38. ESTIMATE. S(7, f) ^ {2P~ι + 3>*~ιCp)π* I / | 2 "* (1 < p < 2).

/ Let I— U ; = 1 / ; be the decomposition of / into β arcs /; such that

(int Ij) Π (int Ik) = 0 and | 7; | = | Ik\ for , /c = 1,2, , 6 with # Λ. Take

the arc J in Γ such that the midpoint of / is i = (0, 1) and | /1 — | 7; | — | 71 /6

for j = 1,2, * * , 6. We denote by /x and /2 the two arcs which are components of

Γ+ \J and set / 3 = Γ~ = {e<<?: TΓ ^ 6> ̂  2ττ}. We estimate S(7, 7C) as follows:
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sd, ϊ) = s(u ijt n = i sd,, n ^ Σ sa,, φ
; = 1 ; = l ; = l

= 6S(J, Jc) = 65(7, U /,) = 6 Σ S(J, /,).

By (36) and (37) we see that

S(J,J}) ^ (π/2ΫT(J,fi)

+1/, r - (i/i + \J, \rp)

p\j\2-p O'=l,2)

because p(/, / ; ) = 0. Since / Λ c [π /3, 27τ/3] and J3 = Γ~, we see that | e'

eiv I ^ 1 for eix e / and eiv e /3. Therefore

S ( J , J 3 ) = f f I <?'x - e" Γ*ώ?rf» ^ Γ f

in view of | /1 ^ τr/3. Hence we have

, 7e) ^ 6{2(τr/2)'Cj/Γ ί + (πp/3"'1) |/Γ*}

= 6 (2 C^ + 3 ) 7Γ /1 — (2 -t- 3 C^; TΓ | /1 LJ

For any set E in Γ we denote by 1£ the characteristic function oί E on Γ so

that l£(ξ) = 1 for £ e £ and l^(f) = 0 for ξ e Γ \ £ . We then have

39. PROPOSITION. For any exponent p ^ (1,2) there exists a positive constant C

depending only on p such that

(40) ιu,;Λ,(n ιι £ | / Γ + c u r * ' "

for every open or closed subarc I of Γ.

Proof Recall that
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By the estimate 38 we see that

II l,;Ap{Γ) || ^ I l\υp + { 2 ( 2 ^ + •f-ιCt)v>Ϋ"> \ I\(2~p)/P.

Hence it suffices to choose C = {2(2 ί"1 + 3,*~ιCt)Ϋ"π. D

41. si-harmonic measures of boundary sets

In this section we assume that 1 <p < 2 and study the sί-harmonic measure

ω(A, Δ; d) of the boundary set

A = A«an), (bj) = U An

where An = {eiθ \an< θ <bn) (1 ̂  n < N + 1 TV ̂  oo) i s introduced in (12).

Since 0 is a competing function in the definition (12), we see that ω(A, Δ d) ^ 0

on Δ. Since any competing function A in (12) satisfies A ̂  1 on Δ, we see that

ω(A, Δ d) ^ 1 on A. Thus we have

(42) 0 ύω(A,Δ;d)(x) ύl Ore A).

As for the boundary behavior of ω(A, Δ d) we have the following relation:

lim ω(A, Δ;d)(x) = 1
(43)

lim ω(A, Δ;d)(x) = 0

In fact, suppose first that ξ ^ A. There is a function φ ̂  Cζ(R ) such that

0 ^ φ ̂  1 on R , φ(ξ) = 1 and φ = 0 on Γ \ A Since φ belongs to C(Δ) Π

Ŵ  (^), A = Tΐ^φ is a competing function in (12) and we have

h(χ) ^ ω(A, Δ d) (x) ^ 1 fre^),

Thus h(x) —> 1 (x ̂  4, x—• f) implies the first relation in (43). Next we assume

ξ e Γ \ A. There is a function φ in C0°°(R
2) such that 0 ^ 0 ^ 1 on R2, 0 ( 0 = 1

and 0 = 0 on A Then ψ = 1 — 0 belongs to CCd) Π Ŵ  (4) and £ = πdφ is in

C ( i ) Π Hd(Δ) such that O ^ ^ ^ l o n i , ^(f) = 0 and g = 1 on A. Let A be

any competing function in (12). Since h ̂  g on Γ, the comparison principle (cf. e.g.

[2, p. 183]) implies that h ^ g on Δ. Thus

0 ^ ω(A, Δ d) (x) ^ gCr) Cr ^ 4 ) .

That ^te) -^ 0 (x ̂  Δ, χ-+ ξ) implies the second relation in (43).

We are now ready to prove the following result announced in the introduc-

tory part. Only here we assume that 1 < p ^ 2.



154 MITSURU NAKAI

44. PROPOSITION. The function ω(A, Δ d) is an d~harmonic measure in the

sense of Heins.

Proof We denote by K the closure of the set consisting of points e n and e n

(1 ^n<N+l;N^ °°). We can find a sequence (Km)lύm<oo of unions Km of a

finite number of mutually disjoint closed discs such that

and

n κm = κ.
m=l

Choose an R e (1, oo) such that Kλ c G : = 4(0, i?). We can find an / w in

C(G) Π W/(G) such that fm \ Km = 1 and / w | dG = 0 for each m = 1,2, .

Moreover, by the lattice property of C(G) Π {^(G), we can assume that 0

^ fm+1 ύ fm ^ 1 on G (m = 1,2, •). Since G\Km is ^-regular, the function wm

defined by

for each m = 1,2, belongs to C(G) Π Hd(G\Kj Π ^ / ( G ) , and satisfies

wm I i ί m = 1 and wm \ dG = 0. The sequence (wm)1^m<oo is decreasing along with

(fn)i*m«» β y t h e Harnack principle (cf. e.g. [2, p. 113]), w = \imm^oowm is

^-harmonic on G\K. Clearly w G C(G\K) and ^ | 9G = 0.

Consider the ^-capacity capp(Km, G) of the condenser (Km, G) given by

capp(Km, G) = inf Γ I Γ^te) \pdx

where the infimum is taken with respect to ψ in Co (G) with ψ ^ 1 on ί ί w . The

^-capacity cap^ίiί, G) is similarly defined. It is a fundamental property of the

^-capacity (cf. e.g. [2, Chap. 2, in particular, p. 28]) that

l i m c a p ^ ^ , G) = cap,GK\ G)

since ifm and K are compact and i ί m I K. Note that
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where X consists of only one point lim^^g'** = lim^^tf* n if N = °° and X = 0

if N < °°. By the subadditivity of the ̂ -capacity and the vanishingness of the

^-capacity for one point we see that

capp(K, G) < Σ {cap,({^flw}, G) + cap,({^M, G)} + cap,(X, G) = 0

and therefore we conclude that

lim capp(Km, G) = 0.

For any competing function φ ^ C™(G) with φ ^ 1 on iί m for the /?-capacity

iίm, G) we set φm = max(min(^, 1), 0). Clearly

By (30) we see that

Γ I Vwm(x) \pdx = f I Vwm(x)
JG JG\Km

Pdx

JG\Km \a/ JG\Km

Hence we have

JΓ I Vwjx) \pdx ίk (^)* c a p , ^ , G) — 0 (w — c»)

and therefore we can conclude that iVwm} lύm<oo converges to zero strongly in

Lp(G, R ) and hence converges to zero weakly in Lp(G, R ). As the locally uni-

form limit of the decreasing sequence iwm} with 0 ^ wm ^ 1, the function w is

bounded and continuous on G\K. Hence we may view that w ^ Lp(G, R). Thus,

by wm I w a.e. on G, we have

f Vw(x)-Φ(x)dx = - f w(x) V - Φ{x)dx
JG JG

= - lim Γ wm(x) V Φ(x)dx = lim Γ Fwm(x) Φ(x)dx = 0
m—oo *^G m—oo *^G

for every C°° vector field Φ on G with compact support. This means that

Vw(x) = 0 on G and thus w is a constant on G. Hence w \ dG = 0 implies that

(45) lim wm(x) = 0 (x e= G \ i O .
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It is clear that ω(A, Δ d) ^ 0 and 1 - ω(A, Δ d) ^ 0 on 4. Take any

^-harmonic function h on Δ such that ω(A, Δ d) ^ h and 1 — ω(A, Δ d) ^ h

on Δ. By (43) we see that

lim sup Ate) ^ 0 (77 e Γ \ i O .

It is clear that /z ^ 1 and ww ^ 0 on Δ. Hence we see that

lim sup h(x) ^ limsup wm(x) — lim wm(x)
x<=Δ\Km,x-^η xeΔ\Km,x->η xeΔ\Km,x->v

for every η in d(Δ\Km). By the comparison principle (cf. e.g. [2, p.183]) we have

h ^ wm on Δ \Km. On letting m ΐ °°, (45) yields /z ^ 0 on Δ. This proves the ex-

istence of the greatest ^-harmonic minorant ω(A, Δ d) A (1 — ω(A, Δ <rf)) of

ω(A, Δ «rf) and 1 — ω(A, Δ d) on 4 and therefore we have

ω(A, 4 ; r f ) Λ ( l - ω(A, 4;^/)) = 0

which is the defining property of ^-harmonic measure on Δ in the sense of Heins.

•
We next study the jί-harmonic measure ω(A, Δ d) when N < °° so that A

is the union of a finite number N of open arcs An:A= Ό n=1An (N < °°). Let

X = il n=1Xn and F = UW = 1FW where Xw and Yn are open arcs in Γ such that

Z κ c An c An c Fκ c Ϋn c Γ + (« = 1,2, , Λ0 and Ϋn Π Ϋm = 0 (» # m).

Such an X will be referred to as being admissible for A. In view of Proposition 39

we see that

N N

I11 A (Γ\ II < v IM /i m II < v (\ Y \ι/p + r I y ι(2"ί)7ί^
«=1 n=l

so that we have

(46) \\1X;ΛP(Γ) || ^CN and similarly Uly y l/Λ II, \\lA;Λp(Γ) \\ ^ CN

where CN = N(πVP + Cπ 2~/> 7/>) is a constant depending only on N (and p).

Therefore we can define wx = τlx and wγ — τlγ. By Lemma 32, (43) and the

comparison principle, we deduce

(47) wx(x) ^ ω(A, Δ d) (x) ^ wγ(x) (x G 4).

By the comparison principle and the Harnack principle

ί̂ 4 = lim wx and ^ = lim wγ

X]A Y[A
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are well defined and ^-harmonic on Δ. Similarly, (46) assures the possibility of

defining wA = τ\A. We will show that

(48) u^ix) = wA(x) = wA(x) (x e A).

This with (47) implies that ω(A, Δ d) = wA on Δ. Thus we can conclude the fol-

lowing result.

49. PROPOSITION. If N < °° and 1 < p < 2, then 1A e ΛP(Γ), the d-harmonic

measure ω(A> Δ; d) is p-Dirichlet finite on Δ, and the trace γ(ω(A, Δ d)) = 1A

on Γ.

Proof We only have to show the relation (48). By (26) and (46) we see that

inf || Vf LP(Δ) || ^ inf || / Wp

ι(Δ) \\ ̂  C \\ lx ΛP(Γ) || ^ CCN.

rf=ιx rf=ix

By the quasi Dirichlet principle (30),

\\Vwx;Lp(Δ)\\^(β/a)\\Vf;Lp(Δ)\\

for any / with γf = lx since πf — wx. Hence we see that

\\Vwx;Lp(Δ)\\^C

where we denote by C the constant (β/a)CCN. Any bounded set in the reflexive

Banach space Lp{Δ) = LP(Δ K) is weakly sequentially compact. Terefore we

can find a countable sequence (X(m))1^m<oo in the set {X} of admissible X such

thatX(m) aχ(m + 1),

lim wxim) = Wj,

locally uniformly on Δ, and (Vwx(m)) 1^m < o o is weakly convergent in LP(Δ). Since 0

< Wj^ ̂  1 on Δ, WA belongs to LP(Δ) and

ί u^ix) V Φ(x)dx = lim ί wx(m)(x) V Φ(x)dx

= — lim I VιvXim)(x)'Φ(x)dx = — I (weak lim Vwx{m)Or)) -Φ(x)dx
m-+°o ^Δ ^Δ m-+oo

for every C°° vector field Φ with compact support in Δ. This means that the dis-

tributional gradient Vu^ = weak\imm^ooVwX(m) e LP(Δ) and therefore u^ e

W^(4). By (47), ^ ^ uu ̂  ω(A, 4 d) on 4 for any admissible X. By (43) we

see that
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a.e. on Γ for any admissible X. A fortiori we can conclude that γw^ = 1A in

Lp(Γ). Hence yWj^ — ywA = 1A implies that u^ — wA — τlA. Similarly we can

show that wA = wA = τlA. The proof of (48) and hence that of Proposition 49 is

thus complete. D

We turn to the study of the ^-harmonic measure co(A, Δ d) when N = °°

so that A = Όζ=1An. We will base our reasoning upon the fact that ly* ^ always

belongs to ΛP(Γ) for every k < °° as was shown in Proposition 49. However

1A = lu~ A m a y o r m a Y n ° t belong to ΛP(Γ) in general.

50. PROPOSITION. Suppose N = °° and 1 < p < 2. The d-harmonic measure

ω(A, Δ d) is p-Dirichlet finite on Δ if and only if 1A ^ ΛP(Γ) and in this case the

trace γ(ω(A, Δ d)) = 1A on Γ.

Proof. Suppose ω(A, Δ d) is ^-Dirichlet finite so that ω(Λ, Δ d) belongs

to Wp(Δ). Then by (43) and (23) we see that γ(ω(A, Δ si)) = 1A on Γ except

for the boundary of Όζ=1(An U Bn) relative to Γ and hence a.e. on Γ. Therefore

1A belongs to ΛP(Γ).

Convsersely assume that 1A ^ ΛP{Γ). Then we can define wA — τ\A so that

Dp(wA) = \\VwA LP(Δ) f < °°. Let a = \imkίooak which belongs to (0, π]. Set

rA = I e — £ I (Λ = 1,2, •)

and choose a function χ^ on zK#* , 3) = Δ(e ,3) such that χk is continuous on

i ( Λ 3), j^-harmonic on 4 ( Λ 3 ) \ i ( Λ rΛ), χ λ | i ( ^ ' α , rΛ) = 0 and χ, | dΔ(eia, 3)

= 1. Choose an arbitrary φ in C™(Δ(e , 3)) with ^ ^ 1 on i ( ^ , rk) and set

ψ — max(min(<p, 1), 0). Observe that

-, Δ(eia,3)\Δ(eia,rk) .

l - χ k = πp

 kφ

on Δ(eιa\ 3)\Δ(em,rk) where πp = πd with d(x, h) = \ h\P~2h. The quasi

Dirichlet principle (30) is nothing but the Dirichlet principle in this case of a = β

= 1 f o r ^ C r , h) = \h\P~2h:

II7(1 - χk) ;Lp(Δ(eia, 3)\Meia,rk)) \\ ̂  \\Vφ: Lp(Δ(eta, 3)\Δ(eta,rk) \\

£\\V<p; Lp(Δ(eia, 3)\Δ(eia,rk)) I

Since capp(Δ(eia,rk)), Δ(eιa, 3)) is the infimum of \\Vφ Lp(Δ(eia, 3)) \\P for ev-

ery φ e C™(Δ(ete, 3)) with φ ^ 1 on 4(^ ί e , rfc), we see that
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lVχk;Lt(Δ(e", 3)) f Si c a P ί ( i ( Λ rk), Δ(eιa,3))

(and actually we can replace ^ by = in the above). Note that Δ{e , rk) and

{eιa} are compact and Δ(em, rk) 1 {eιa} as A;—• °°. This assures that

c a p , ( i ( Λ rk), Δ(ea,3)) ϊ c a p , ( { Λ , Δ(eia, 3)) (k ΐ oo).

Since cap,({e lβ}, Δ(eta, 3)) = 0 (cf. e.g. [2, p. 35]), we see that

lim Γ | F χ A ( x ) | * ώ : = 0.
/c|oo ~W α ,3)

By the comparison principle and the Harnack principle, we see that (%fc)î /c<oo

is increasing and converges to a ^-harmonic function χ locally uniformly on

Δ{e\ 3)\{Λ. Here O ^ ^ l j G C ( i ( Λ 3)\{eia}) and χ | 34 ( Λ 3) = 1,

and in particular χ ^ Lp(Δ(e , 3)). Hence

Γ χte) F φ(x) = lim Γ χk{x) V Φ(i)ώ

= - lim Γ FχΛ(j:) * Φ(x)dx = 0
A-̂ oo ^Δ(eta,3)

for every C°° vector field Φ with compact support in Δ(em, 3). This proves that

Fχ = 0 on Δ(em, 3). Thus χ is a constant, which must be 1. Therefore we see in

particular that χk ΐ 1 (k ΐ °°) locally uniformly on Δ\{em} and Dp(χk) =

\\Vχk;Lp(Δ)\\Pϊ 0 (Λ ΐ oo).

Next we consider the sequence (XkwA)\^k«χ> i n ^ Clearly we see that

XkwA ϊ wA(k ] °°) locally uniformly on Δ. We also have that Dp(χkwA — wA)

- ^ 0 (/c ΐ oo). in fact,

£/>(XA - wA)
1/P

I χk(x) -1\"\ VwA(x) \"dx) + ( J I u.te) Γ I Vχk{x) \"dx

I χk(x) - 1 fdμixή + (JΛ I Γχ t(x) \pdx

where dμ.(x) — \VwA(x) \ dx is a finite measure on 4. The second term of the

rightmost side of the above is Dp(χk} I 0 (k ΐ °°). The first term of the right-

most side of the above tends to zero as k ΐ °° by the Lebesgue dominated con-

vergence theorem since χk ΐ 1 on Δ as k ΐ °°.

We now set

^ ( ) ΔJ()lA) ^ wA
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on Δ. The last inequality comes from the monotoneity of τcd and τd. By the same

reason, (uk)lύk<0O is increasing on Δ. By the Harnack principle there exists an

^-harmonic function u on Δ such that uk ΐ u ύ wA (k ΐ °°) on Δ. By the quasi

Dirichlet principle

Dp(uk) ^ (β/a)pDp(χkwA)-> (β/a)pDp(wA) (A T oo).

Hence (Vuk)lύk<0O is a bounded sequence in LP(Δ) and we can extract a weakly

convergent subsequence (Vur). Then

fu(x)V Φ(x)dx = lim [uk,(x)V Φ(x)dx

= - lim L Vuk,(x)-Φ(x)dx = — \ (weak lim Vuk,(x)) -Φ(x)dx

for every C°° vector field Φ with compact support in 4, which proves that the dis-

tributional F ^ = weak lim r | «, l7^^' belongs to LP(Δ). Hence ^ ( w ) < °° and

u ^ Wp (Δ). Therefore γuk ^ γu ^ 7*M;A or (7%Λ)1A ^ 7^ ^ 1A a.e. on Γ. Since

χfc ΐ 1 (A; ΐ °°) locally uniformly on Δ\ {eιa} and thus γχk ί 1 (A: ΐ °°) a.e. on

Γy we see that γu = 1A so that u — wA, i.e. lim^ j ŵ̂ . = M;Λ on 4.

Observe that

so that we have uk ^ wu%mlAn = wA on Δ.By Proposition 49 we have

ω(U An, Δ\d) = wu!c=iAn

on Δ. Hence we have

k

uk ^ ω( U An> Δ d) = wA
n=l

on Δ and by letting k ΐ °° we conclude that

lim ω(U Λw, 2l jί) = wΛ

on Δ. Since OΛ = Un=1An is open in F , Ok c O^+j and

is again open, we can show (cf. e.g. [2, p. 29]) that
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k

lim ω( U An, Δ d) = lim ω(Ok, Δ d) = ω(O, Δ d) = ωG4, zl ^ ) .
A; t °° n=s\ k ΐ oo

Thus ω ( Λ Zl ^ ) = wA = τ\A is ^-Dirichlet finite and γ(ω(A, Δ d)) = 1A e

51. Proof of Main theorem

If iV< oo, then, by Proposition 49, ω(A, Δ d) is ^-Dirichlet finite on 4.

Hence, hereafter in this proof, we assume that N = °° so that A = A((an),

(6,))= i C A Let

Bo = Γ\ U (An U Bn)

and set B =- U n={βn.

We now start the essential part of this proof by showing that (15) implies the

^-Dirίchlet finiteness of ω(A, A d) on A. Suppose first that Σ~= 11 Bn \2~P < °°.

Observe that

|| 1A ΛP{Γ) || = || 1A L,CO II + (/jΓ χ Γ ' ̂ f I ^ ' ̂ e ^ Γ *

= | i 4 Γ + (2S(A c , i l )) 1 / ί .

By the estimate 38, SCBW, JB*) ^ C | 5W |2~^ where C is a constant independent of

n = 1,2, * *. Therefore we have

SG4 C , A ) = S«A)C, A) = S ( Ό Bn, A) = Σ S(Bn, A)
n=0 n=0

< Σ S ( B n , Bc

n) <CΣ\Bn \2~p < o o .

Hence we see that 1A ^ ΛP(Γ). Next suppose that Σ ^ = 1 \ An\ < °°. In the same

fasion as above simply replacing the role of A and (An)™ by B and (5 M ) 0 , we see

that 1B & ΛP(Γ). Clearly

1A = 1 - lAc = 1 - 1 5 = 1 - 1B

a.e. on Γ and thus 1A ^ Λ^(/). Hence in any case the condition (15) implies that

1A ^ Λp(Γ). By Proposition 50 we can conclude that ω(A, A d) is /)-Dirichlet

finite.

We close this proof by showing that (16) implies that ω(A, A d) is

^-Dirichlet infinite. We prove this by contradiction. Suppose, contrary to the
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assertion, that ω(A, Δ\d) is ^-Dirichlet finite. By Proposition 50 we must have

1A ^ΛP(Γ). Since An and Bn (n ^ 1) are in Γ + , (36) implies that

T(An, Bn) ^ S(An, Bn) (n = 1,2, •).

Therefore we deduce that, for any fixed positive integer k,

Σ T(An, Bn) < Σ S(An, Bn)^Σ(Σ S(An, BJ

= S(UAn, U BJ U2S(U An, LJ BJ = 2S(A, (AY)

ds(dsv^\\lA;Λp(Γ)\\P.

On letting

(52)

2S(A, Ac)

k ΐ oo, W e obtain

oo

Σ
« = 1

1 -*•

T(An,

(B

Bn

n=

£ —
VII

1

^A

V

IM

m=0

ί \ P

(Γ)

ds7

\\p.

By the identity 37 we have

T(A R λ — C (\ A \2~p 4- I R \2~p — (\ A \ -\- R \Ϋ~pλί \J±n1 nn) — Ksp\\ Λn I -r \ nn\ \\ J\n\ ~r πn\) ) .

Here we used the fact that the Riemannian distance p = p(An, Bn) = 0 considered

in Γ since An n Bn = {eibn} Φ 0 .

We pause here to observe the validity of the following simple and elementary

inequality for 1 < p < 2:

(53) x2-" + y2'" -(x + y)2-p > a2~p + b2'p ~{a + bf'P (0 < a ^ x, 0 ^ b< y).

In fact, consider fy(x) = x + y — (x + y) as a function of x ^ 0 for an

arbitrary fixed y ^ 0. Since

-fafyte) = (2 - / > ) { # w - (x + z/)1"^ ^ 0 Or > 0),

we see that/^Cr) is increasing and hence fy(x) = fy(ά) (0 ^ a ^ J:) . By the sym-

metry /„(#) = fa(y) we also see that/α(z/) ^ fa(b) or fy(a) ^ fb(a). Thus /yCr) ^

/ft(«) (0^a^xf0^b^y) which proves (53).

On setting x = \ An |, y = \ Bn |, and a = b = min(| Λw |, | JBM |) in (53), we

obtain

^ 2 (mind 4 l . | β , I))2"* - (2min(| Aκ |, | Bn \))2~p.
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Since the left hand side of the above is Cp T(An, Bn), we have

C,C min(| An \2~p, \ Bn Γ*) < T{An, Bn)

where C = 2 - 22~" e (0, 1). Hence by (52) and (16)

°o = CPC Σ min(| A, Γ", I Bn \2'p) a || lA Λp(Γ)\\ < « ,

which is clearly a contradiction. O

54. Appendix: Nonlinearity of d2QR )

The ^-Laplace operator d(x, h) = \ h\ fc is a typical example of d ^

£^(R ) which makes the equation (6) nonlinear if p Φ 2. However it is important

to recognize that d2(R ) contains an d which produces a genuinely nonlinear

equation (6) as was pointed out e.g. by Martio in [4]. Even in the borderline con-

formal case p = d — 2, the .rf-harmonicity in general belongs in essence to the

category of nonlinearity. In this appendix we will exhibit such an d €= d2(R ) for

every dimension d ^ 2. The author owes a lot to Professor Masaru Hara in con-

structing this example.

As a required d ^ d2(R ) we only have to take the one of the form d(xy h)

— A(h) independent of x ^ R such that A = Ad : R —• Rd (d ^ 2) is nonlinear.

Consider a closed surface Σ in R (d ^ 2) which is star-shaped and sym-

metric with respect to the origin 0 of R belonging to the region bounded by Σ. In

terms of the polar coordinate expression x = rω of x ^ R \ {0} with r — \ x \

and ω = x/\ x \ in dB , since 21 is star-shaped with respect to 0, we have the po-

lar coordinate expression of Σ as follows:

Σ :r= g(ω) (ω e dBd).

By the symmetry of Σ with respect to 0 we see that g(~ ω) = g(ω) for every

O) ^ dB . Since the origin 0 is contained in the interior region bounded by Σ, we

have

cΣ : = inf{g(ω) : ω e d£ d } > 0.

We then set

. /lg(ω) - g(ώ) 1 _ d

•= sup 1 =π a), ω ^ oB , ω =F ω
*\ I ω — ω I '

which lies in (0, °°] at the moment. As a candidate of the required A we now set
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_ \g(h/\h\)h (hΦO),
~[0 <A = 0 ) .

Then we have the following

55. FACT. // the condition CΣ < y/2 cΣ is satisfied, then A belongs to sέ2(R )

(d 2̂  2) and moreover A is not linear if and only if Σ is not a sphere with center 0.

Proof. The continuity of A(h) a t l ? e R d \ {0} follows from that of g. Since

I A(h) I ̂  (supdBag) I h I and A(0) = 0, A(h) is continuous at h = 0. Thus A

satisfies (1). Observe that

|)A A ^ c Γ | A | 2 (A # 0)

which shows the validity of (2) for p = 2 by taking α = c .̂ Similarly

I A(h) I = I g(h/\ ft I) I I ft I ̂  ( s u p a ^ ) I h I2"1 (h Φ 0)

which assures (3) for p = 2 by taking /3 = sup^g". In passing we observe that

0 < a ^ β < °°. Next we ascertain that (5) is valid for p = 2. If Λ > 0, then

AUA) = ̂ Uft/^ I ft |)^ft = M(ft) (h Φ 0).

If Λ < 0, then, by λ = — \ λ \ and g{— ω) = ^(ω), we see that

A U h ) = A ( \ λ \ ( ~ h ) ) = \ λ \ A ( - h ) =\λ\g(-h/\ - f t I) ( - f t )

= - \ λ \ g ( h / \ h \ ) h = λ A ( h ) ( h Φ O ) .

Therefore the proof of (4) only is nontrivial. We need to show that

(56) (A(h) - A(h))-(h- h) > 0 ( A * ft).

When one of h and h is 0, the other is nonzero and a fortiori (2) and A(Q) — 0

trivially imply (56). Thus we assume that both of h and h are not 0. We can

moreover assume that | ft | = 1 so that we may set h = rω (r = | h |, ω ^ dB ),

h = ω (ω ̂  9 5 ) and

ω ώ = cos θ (θ e [0, TΓ]).

Then h Φ h is equivalent to either rΦ\ or ω ^ ω (or θ Φ 0). Hence (56) is

equivalent to

— g(ώ) ώ) (rω — ώ) > 0 (r Φ 1 or ω =£ ώ),

which can be restated as
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(57) Q := g(ω)r2 - {(g(ω) + g(ώ))cos θ}r+ g(ώ) > 0 (r Φ 1 or θ Φ 0).

We thus have to prove (57). If θ = 0, then ω = ώ and r Φ 1 so that

- I ) 2 > 0

and (57) is certainly true. If θ ^ [7r/2, π], then cos 0 = — | cos θ\ and hence

we have

Q = g(ω)r2 + {(g(ω) + g(ώ)) | cos θ \}r + g(ώ) > 0

so that (57) is also true in this case. To prove (57) we thus only have to treat the

case θ ^ (0, 7r/2). Viewing Q as the quadratic form of r, it is sufficient to show

that the discriminant of Q is negative:

(g(ω) + g(ώ))2cos2θ - Ag(ω)g(ώ)

= (g(ω) ~ g(ώ)Ϋ - (g(ω) + £(ώ))2sin2# < 0.

Since \ ω — ώ\ = 4sin (θ/2) > 0, the above inequality is equivalent to

(58) £ > : = ^ ^ ^f^-- (^(ω)+^(ώ))2cos2(0/2) < 0 (0 < θ<π/2).

I ω — a) I
By virtue of C^ < A/2"^ we see that

D ^ CΣ — icΣcos (7r/4) — CΣ — 2cΣ < 0,

i.e. (58) is valid. Therefore we have shown that A ^ d2(R ) if CΣ < V ^ ^

Clearly Λ is l inear if g is constant on dB or equivalently 2 1 is a sphere with

center 0. Conversely assume that A is linear. Fix an arb i t ra ry ω 0 ^ 9i? and take

any ω ^ dB different from ± ω0. Then A(ω) + A(ω0) = A(ω + ω0) or

g{ω)ω + g(ωQ)ω0 = g((ω + ω 0 ) / | ω + ω 0 1) (ω + ω 0 )

and the linear independence of {ω, ω0} implies g(ω) = g(ω0) = g((ω + ω0) /

I ω + ω01) so that ^ Ξ g(ω0) on 9 β ,, i.e. JΓ is a sphere with center 0. CU

59. EXAMPLE. Let Σ be a hyperellipsoid

y ^x ' — i (Q <̂  a

ι < a

2 < . . . < β

r f\
z = 1 (a)

If a, ~ a is positive but enough close to zero, e.g. if

(60) a <a < y/d/(d- Da1,
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then Σ induces a nonlinear A ^ d2(R ) (d ^ 2) as in the proof of Fact 55. On the

contrary, if a —a is sufficiently large, e.g. if a > 6a1, then A $ s$2(R ) (d ^ 2).

Proof. Assume (60). We express Σ as r = g(ω) (ω ^ dB ) by the polar

coordinate (r, ω) :

/rf-l \-l/2

g(ω) = Σ ((αV2 - (aT2) (ωf + (aY2) (ω = (ω1, , ωd)).

Then clearly we have

cΣ = inί{g(ω) : ω e 95 d } = α 1 > 0.

We see that

I dg/dω I - ( ( « r 2 - { a y 2 ) I co 1 1 g ( ω ) 3 l ί { ( a ) ' 2 - ( a ) ~ 2 ) { a Ϋ

(i — 1, , d — 1). Therefore we deduce

CΣ ^ Jd^ϊday2 - (aY2)(adΫ = yfid=ϊ«aάΫ - {aΫ)a(a)'2

= (y/d/(d Σ

by which Fact 55 implies the first assertion.

We proceed to the proof of the second part. Observe that A ^ d2(H ) implies

(58). Set ω = (1/4,0, , 0, vT5/4) and

ώ = (1/4 + ε, 0, ,0, vT5/4 - (vTF/2 - V15/4 - 4ε(l/2 + ε))/2)

for sufficiently small ε > 0 in (58). On letting ώ —* ω or equivalently ε I 0 or

0—• 0 in (58) with the above choice of ω and ώ we deduce

| | 1 2 2 ι Ϋ Ϋ 2 ^ 0.

Since 1 < vT5 - 2 and vΊδ + 30 < 36, we have (aY2 < 36(adY2 or a < 6a\

Hence we must have A $ s$2(Rd) if ad > 6a1. D
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