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1. Introduction

In our previous work [8], we picked up the elliptic equation

— Δu = λf(u) eu in B = {\ x \ < 1} c R2,

u =0 ondB

with the nonlinearity f(u) > 0 in C . We studied the asymptotics of the family

{Q, u(x))} of classical solutions satisfying

(2) λ 1 0 and ||w||L--> + oo.

Taking the result by Gidas-Ni-Nirenberg [5] into account, we may assume

that the solution is radially symmetric and decreasing in r = | x \ , i.e.,

u = u(\x\) > 0, uτ < 0 (0 < r = \xI < 1).

Furthermore, the coefficient nonlinear term f(u) is supposed to have the polyno-

mial growth. More precisely,

f'{u) > 0 (u > 1),

lim (logfYiu) = 0,

and for some t ^ R ,

(3) 0 < lim inf f(u)u~k+a~ι < limsup/(&)^~ +a~1 < + °°.
U-++00 M-f + oo

First, the global asymptotics is stated as follows.
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PROPOSITION 1 ([8]). Let (u, λ) be a family of solutions of (I) with (2).

1. 7/0 < a < 1, then for any x E β , u(x) —• + °o as λ -> 0.

2. 7/α > 1, Men «(ar) -> 0 /or any x e £ \ {0} as Λ -> 0.

It is well-known that the solutions are expressed explicitly if f(u) Ξ 1 and a

— 1. In this case the singular limit is explicitly determined as

u(x) —* 41og Ί — r as λ I 0.
x

Thus the exponent a — 1 is the borderline of the global asymptotics.

Incidentally, the number of solutions for f(u) = 1 and a = 1 is 0, 1, and 2

according to λ > 2, λ = 2, and 0 < Λ < 2, respectively. The unique solution for

— Au — 2eu in B,

u = 0 on dB

is given as

1 + 1x1

This function plays an important role in microscopic asymptotics in the follow-

ing. Henceforth, we suppose that a > 1.

PROPOSITION 2 ([8]). Passing to a subsequence, it holds that

(4) ua(e~τ/2y) = ua(e~τ/2) + 2 log — - + o(l)

locally uniformly in y G R \ {0}, where r—• + °° is taken appropriately.

The purpose of the present paper is to study the uniformity of (4). When the

exponent is in 1 < a < 2, the following fact has proven in [8] with the aid of

o.d.e. approach by Atkinson-Peletier [2].

PROPOSITION 3 ([8]). In the case of f(u) = 1 and 1 < a < 2, the uniform con-

vergence in (4);

sup
\<eτ>

never holds for any {r}.

u (e y) — u (e ) — 2 log
2

i ι 2

\y\

•0
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In case of a > 2, it is not known whether classical solutions for (1) with (2)

exist or not ([1], [2]). The exponent a — 2 is considered to be a borderline for the

existence. What we want to claim here is that it is also the borderline from the

microscopic asymptotic point of view. We shall give a uniform convergence result

for this borderline case. The following theorem is the main result of the present

paper.

THEOREM 4. If a = 2 and

(5) Eo = lim sup I | Vu \2dx < 6π,
λ-+0 JB

2
then the convergence (4) is locally uniform in y €= R . In other words, the uniform

asymptotics near y = 0 is exactly expressed as in (4).

Concerning the existence of such a family, we have the following theorem.

THEOREM 5. If k > 2 in (3), there exists a family {Q, u(x))} of classical solu-

tions of (1) with a — 2, satisfying (2) and

(β) E= f\Vu\2dχ-*4:π.

In case of a < 2, EΌ < °° implies that

λf(u)eu<X <ΞL1+£(Ω)

for some ε > 0 because of the Trudinger-Moser inequality ([11], [7]) i.e.

(7) s u p ί f ev2dx\\\Vv\\2

2<iπ\ < C\Ω\.
v lJΩ J

Consequently the blow-up (2) does not occur by the standard elliptic estimates. In

this sense, Theorems 4 and 5 are peculiar to the case a — 2.

A similar observation also yields for the case a — 2, that

limiminf j | Vu \2dx > 4π,
λ-*0 JB

for the solution of (1) with (2). We shall give a more specified estimate (Lemma 8)

for the Dirichlet integral for the solution by using the scaling parameter which

will be a key estimate to show Theorem 4.

The special case



3 6 TAKAYOSHI OGAWA AND TAKASHI SUZUKI

- Δ u = λueu\ u > 0 in B = {\x \ < 1} c R 2

with

u = 0 on dB

is closely related to the Trudinger-Moser inequality and also Carleson-Chang's

theorem ([4], see also [6], [10]). However, this case of k = 2 is not treated in

Theorem 5. We shall pick up such a kind of equations in a forthcoming paper.

For the proof of Theorem 4, we invoke the following uniform estimate by

Brezis-Merle [3]. Assume that Ω ci R is a bounded domain. Consider a family of

solutions to

ί~Δun= Vne
Un infl,

un = 0 on dΩ,

where {Vn} is a given family of functions on Ω.

LEMMA 6 ([3]). Let {Vn} be given functions with

for some 1 < p ^ °° and un be a solution of (8) in the sense of distribution. Suppose

that

f\Vn\ e n
(9) f\Vn\ endx

J

then the solution un is bounded independent of n, i.e.,

\\vn\\Γ<C(β, γ,Ω,p).

The smallness assumption (5) in Theorem 4 comes from the assumption (9).

The proof of Theorem 4 is based on that of Proposition 2. In §2 we shall re-

view the latter to perform the former in §3. The proof of Theorem 5 is indepen-

dent and shall be given in §4.

2. Summary of the Proof of Proposition 2

We take the case a = 2 for simplicity. Namely, we consider the smooth solu-

tion u of

in 5 ,

=0 on dB,
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where f(u) > 0 is a C function satisfying (3).

The solution u becomes radially symmetric and has the property that

ur<0(0< r= \x\ < 1 ) .

We put the scaling solution v(r) as

(11) v(r) = u\γr) - u\γ)

for some scaling constant 7—* 0. This function v is subject to

- Δ v = k(r)ev - p(r). in B,
v>0 in B,
v = 0 ondB,

v<0 onBr-ΛB,

(12)

where we set

(13)

and Bγ-\ = ί r ^ R , | .r | < 7 }.

Writing both equations (10) and (12) into the ODE form, we introduce the

transformation r — e~ι 2, U(t) = u(r) and V(f) = υ(r) to get

ik(r) =2λu(rr)f(u(γr))eu(r)r2,

\p(r) =2γ2\Vu(rr)\2

(14)

and

(15)

ί/>oα>o>,
ϋ > o (t> o),
ί/^ —* 0 ( f - ^ • 0 0 )

F + i ™-'- 2&T(t) = 0,

V>0(t>0),

V>0(t>0),

Ve'/2-+0 (t-+- 00) ;

where τ = - 2 log γ, Uτ(ί) = £/(ί + r) and Kit) = 2λUj(Uτ)emτ)2~τ = k(r).

The equation (15) has a representation of the integral equation as

(s - t) (s-ί) U2

τ(s)ds.
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In the proof of Proposition 1 (cf. [8]), the asymptotics

(17) η = max | rur | —• 0
0<r<l

is proven. Since

it holds that

(18) l|f>Λ"(-τ,~)^0.

This relation deduces that

(19) K(t) —* constant, locally uniformly in ί G R.

Two cases should be distinguished for the parameter r—* + °° to be speci-

fied. Let

(20) m= max 2λu(r)f(u(r))euHr)r2

0<r<l

= sup2λU(t)f(U(t))eu*it)-t.
teR

Case 1: m~> + °°

In this case we can take r—> + °° as

(21) ϋΓ(O) = 2.

The asymptotics (18) and (19) imply that

(22) P-+0, /c -> 2 locally uniformly in R2 \ {0}.

The relations (12) is reduced to

with

for any R > 1. Hence {v) never blows-up on {| y \ > 1}.

On the other hand, by (22), the boundedness of the equation (12) near dB fol-

lows and this implies

\vr\\L-(dB)< C.
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Therefore, for any ε > 0,

f {k(r)e - p(r)}dx

= / ( - Aυ)dx
JB/Bε/2

< ~ω2vra) < C.

While by (22),

f {k{r)e - p{r))dx

\hυ~τ\dx

:/2

> π I v(r)rdr

< Cε2v(ε).

Hence we obtain an apriori estimate for υ on R \ {0}. Together with the equation

(12), we may obtain the limit function vQ as

υ(r) —> υo(r) locally uniformly on R 2 \ {0}

by the Ascori-Arzela theorem.
2

Finally, the singular limit υo(y) = 2 log is specified through

and

vo> 0 on I z/1 < 1.

Case 2:m= 0 ( 1 )

In this case, we choose r—» + °° by

(23) U2(+ oo) = U\τ) + 2 log 2.

The condition m ~ 0(1) implies that

(24) lltflL-ί-Γ,-)=

and hence by passing to a subsequence,

K(0) — 2μ
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for some μ > 0.

From (19), it follows the convergence

K{t) —• 2μ locally uniformly in t e ( - oo, + oo)f

while

IML-(ii,ι<β«*> = 2 log 2

holds by (23). Utilizing the elliptic estimate, we see that a subsequence of

(v) converges locally uniformly in R \ {0}. The limiting function vo(y) satisfies

- Δv0 = 2μev° in R 2 ,

v0 = 0 on I y I = 1

and

lklli- = iΌ(0) < 2 log 2.

2
The conclusion #0(z/) = 2 log •—- follows from μ = 1 or equivalently

l + \y\

vo(O) — 2 log 2. However, the right-hand side of (16) is non-negative and

F ( + °°) = 2 log 2. Therefore, the dominated convergence theorem implies that

0 < V0(t) + f (s - *) § ev°ω'sds - 2 log 2

= F 0 ( + C X ) ) ~ 2 1 o g 2

for V0(t) = υo(r), or equivalently,

t;0(0) > 2 log 2.

This completes the proof. Q

We note that the relation

i / — τ/2\ rί f —τ/2\\ u2(e~τ/2)~τ -, , /Λ \

λu(e )f(u(e ))e = 1 + o(l)

follows from the proof.

3. Proof of Theorem 4

We have to prepare a few lemmas.
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LEMMA 7. The function k(\ y |) defined by (13) satisfies that

(25) I U I L M , I < 1 ) = 0(1) forl<p<°o.

Proof In the case of m = 0(1), the uniform estimate (24) holds. Therefore,

we have only to consider the case m—• + °°.

Then, τ—* + °° is determined through (21), i.e.,

2 = #(0) = / 2 < r t

Hence

(26) κ(t) =
Uτ(ί)f(Uτ(f)) (Uτ(t)γ

Z U(τ)f(U(τ)) ~ \U(τ)J

by (3).

Writing

U(τ) ~ L '

we reach

(27) 0 < -&4r- < C(l + t) it > 0)

by (18). The conclusion (25) follows from (26), (27), and

kir) = Kit) for r = e~l/2.

D

LEMMA 8. For any fixed R > 0, we have

Γ I 12

(28) 47Γ<liminfJ \Vu\dx.

Proof. As is described in the previous section,

V(t) —• V0(f) locally uniformly in f e ( - oo, + oo)

for

K o ω = 2 log ^-—.
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Making use of the elliptic estimate in (15), this implies that

V(t) -> V0(t) locally uniformly in t e ( - oo, + 0 0 ) .

Here,

7(ί) = 2ί/(f + τ)U(t+ τ)

and

Therefore, writing R = e , we obtain

(29)

The equation (10)

Re τ/2u

deduces

/ n -r/2\

(Re )ur

that

(Re~τ/2)
1

2R2

+ R2

(30) J 2 \Vu\2dx= -

+ I λuf(u)e2dx.
JRe~τ/2<\x\<l

Therefore, combining (29) and (30), we see for R > R

AπR2

1 + R2

< liminf J \Vu \2dx

(31) 4πR^9 < lim inf Γ (| Vu \2 - λuf(u)eu)dx
1 4" R ^0 JlRe-«2<\x\<l)

2<\x\<l)

< lim inf /
λ-^0 J{Re~τ/2

I Vu \2dx.
^<|x|<l}

By taking R arbitrarily large, we obtain (28). D

LEMMA 9. Under the assumption of

(32) lim sup [\Vu\2dx<6π,

we have

(33) II fll-(i,ι<*> = 0(1)

for any R > 0. Here, the function v(\ y |) is defined by (11).
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Proof. We prove this lemma by the aid of Lemma 6 in Section 1.

The estimates (28) and (32) imply that

lim sup I I Vu \2dx < 2π for any R > 0.
λ^0 J{\χ\<Re-τ/2)

Hence the function p(\ y |) introduced in (13) satisfies that

(34) limsupll/oll^iyKD = 47Γ I | Vu{r) \2dr < 4π.

We may suppose that 0 < R C 1 in showing (33). Let us take the functions

hγ and h2 as

— Δhι = 0 in I y \ < R, hγ = υ on | y \ = R

and

— Δh2 = — p in I y \ < R, h2 — 0 on | y \ = R.

We have already proven that

IML-α,ι=*) = ou)

so that

(35) II Ai IL-(i,κi, = 0(1)

holds by the maximum principle. On the other hand, p i> 0 and hence

(36) h2 < O i n I y\ < R.

This implies the estimate

(37) lleΊU,,<*> = O(l)

for

/* = *! + h2.

Because of (12), the function w = υ — h solves that

(38) - Δw = - Δv + Δh = - Δv + p

— ke = ke e in | y \ < R

and

(39) w = 0 on I y\ = R.
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Here, Lemma 7 and (37) are utilized to deduce

l|fceΊUι,ι<*> = 0 ( 1 ) f o r l < ί < o o ,

On the other hand we have

(40) || kehew \\LιM<R) = II ke \\Li{{y{<R)

= WP\\LH\V\<R) + f (- Δυ)dx

by (12) and k, p ̂  0. By Proposition 2, we have

υr(R) = vOr(R) + o ( l ) .

Therefore, from (40) and (29) we obtain

II kehew \\LH\y\<R) = II P \\LH\UKR) ~ 2πRυr{R)

for 0 < R < 1.

Here, we take R > 0 sufficiently small to deduce that

by (34).

Now, we can apply Lemma 6 for (38) with (29). Then it follows that

However, we have from (36),

(41) 0 < v = w + hγ + h2 < w - • hx in | y \ < R.

Consequently (33) follows from (35) and (41). •

We are in position to complete the proof of Theorem 4.

Proof of Theorem 4. As we have shown,

v—> v0 locally uniformly in R2 \ {0}

so that
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(42) Vo(+ oo) = 2 log 2 < liminf Vi + oo).

Furthermore,

(43) Kit) -> 2, Vit) -> Voit) locally uniformly in ( - oo, + oo)

and also

(44) l l t i U , , - , = O i l ) for a n y ^ G R

by Lemma 9. Finally, we have

(45) \Kit) I < C(l + ί) w for ί » 1

from (26) and (27).

Here, the dominated convergence theorem is utilized to take the limit in (16).

We obtain

0 < lim inf Γ 2 ( 5 . - t) U2

τis)ds < lim sup f 2is - t) U2

τis)ds

£ V0(t) + Γ i(s- t)ev°is)~sds - lim inf V(+ oo)

= Vo(+ oo) - lim inf V(+ oo) < o

by (42). Therefore,

(46) f 2(s- t)U2

τ(s)ds-^0 ( ίeΛ).

Furthermore,

0 = lim Γ 2 ( s - t)U2

τis)ds

= V0(ί) + f" i (s - rt/0<s)"srfs - lim

oo) - l i m V U - °°)

Hence

(47)

Going back to (16), we have

< Γ (s- 02ϋ2

τ(s)ds +1 v(+ oo) - vo(+
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f(s-t) K(s) Vis) 1 V0(s)
e sds

so that

v{t) - V0(t) I ̂  Γ (s - φϋlisids + I V(+ oo) - Vo(+ oo) I

, Γ - , o UΓ(s) V ( ί ) 1 v*> - ^
—)— I ( C — / ) p — P P ft ^

where t1 ^ ^ί.

The first two terms converges to zero by (46) and (47). For the last term, we

utilize (43)-(45) and the dominated convergence theorem. Thus we obtain

which means that

the desired convergence.

v—» v0 locally uniformly in R ,

4. Proof of Theorem 5

The Trudinger-Moser inequality mentioned in Section 1 is expressed as

(48) sup {J eZdx 11| Vv \ζ <4τr} < C \ Ω \.

The constant 4π in (48) is shown to be best possibly by [7]. The following prop-

osition is a slight refinement.

PROPOSITION 10. For any continuous function k(u) > 0 with

lim k(u) = + 00,
u->+°°

there exists a family {w) C HQ (B) satisfying

and

w > 0, / I Vw I dx < 4ττ

J k{w)( +
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This fact is combined with the following lemma proven by Shaw via the Lag-

range multiplier principle.

LEMMA 11 ([9]). Suppose the existence of a non-negative function w G

HQ(JB) such that

I I Vw fdx = γ < 4π.
JB

Then, there exists a solution (λ, u(x)) for (10) such that

f G(u)dx= f G{w)dx
JB JB

and

f\Vu\2dx< γ,

where

X u 2

f(u)eu du.
The condition (3) with k > 2 implies that

lim f(u)/u = + °°.
U-*+o°

If

G(u) =k{u)eu\

this means that

lim k(u) = + oo.

Hence Proposition 10 and Lemma 11 are applicable.

We get a family {Q, u(x))} of solutions for (10) satisfying

(49) lim sup I | Vu \2dx < 4τr
-o JB

and

(50) f G(u)dχ-> 4- oo.
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The asymptotics (50) holds only when

IUII L --* + oo.

Furthermore, ff(u) > 0 for u ^ 1 so that there exists a constant C > 0 such that

G ( w ) = Γf(u)eu2du < Cuf(u)eu2 (u>0).

Therefore,

λ f G(u)dx<C f λuf(u)eu2dx

= C f\Vu\2dx= 0(1)

by (49) and hence

λ 1 o

by (50).

In this way Theorem 5 has been reduced to Proposition 10. For the sake of

completeness we show the proof, although it is quite similar to [7].

Proof of Proposition 10. The family is constructed from W(t) = w(r) for

Γ W2dt = ~ f\Vw\2dx

C k{W)ew2-ιdt = - fk(w)ew2dx.

Therefore, the desired relations are reduced to

(51) {W) c ^ C [ 0 , oo), W(0) = 0 , W>0,

e . We have

and

(52) Γ W2dt<\

and
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where AC denotes the set of absolutely continuous functions.

Taking ε sufficiently small, we put

ηε(s) = min(s, 1 — ε)

and

For this function, the requirement (51) is obvious. The inequality (52) is examined

as

Γ W2dt = f η'ε(s)2ds = (1 - ε)2 < 1.

Finally, we conclude that

Γ k(W)ew2-'dt = Γ t( ί - ' / !

ϊ e(i ) ) ί l V ' 'Vώ

7 / -1/2/^ \\ Γ (l-ε-5)ε"1 -1

k(η (1 - ε)) I e ε c

= k(ε~ (1 - ε)) -^ + oo as ε I 0.

Thus the proof has been completed. Π
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