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MOBIUS GEOMETRY FOR HYPERSURFACES IN S*

CHANGPING WANG™

§0. Introduction

Our purpose in this paper is to study Mobius geometry for those hypersur-
faces in S* which have different principal curvatures at each point. We will give a
complete local Mobius invariant system for such hypersurface in S* which deter-
mines the hypersurface up to Mobius transformations. And we will classify the
so-called Mobius homogeneous hypersurfaces in St

Our main results are following. Let x : M — S* be an immersed hypersurface
with different principal curvatures A, ¢ and v at each point. A well-known

y—
Mobius invariant is the so-called Mobius curvature W = X_—% Let {¢, t,, t,} be
the unit principal vector fields on M corresponding to 4, ¢ and v respectively. We
denote by {w', @’, ®"} the dual basis for {,, ¢, #,}. It is not difficult to show that
the following 1-forms

(0.1) 0'=(u— o', °=0U—vo’ =0—-wd

are also Mobius invariants. We can prove that

TueoreM 1. {6, 6%, 6°, W} forms a complete Mobius invaviant system which
determines the hypersurface X up to Mobius transformations.

A hypersurface M in S* is said to be Mobius homogeneous if for any two
point p, ¢ in M there exists a Mobius transformation ¢ taking M to M and p to q.
The 1 -parameter-family isoparametric hypersurfaces x,: M — S* with different
principal curvatures are examples of Mobius homogeneous hypersurfaces (the
universal covering of M is SB). Another example of 1-parameter-family Mobius
homogeneous hypersurfaces in S* can be obtained by the following way. Let T, ©
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S® c R* be the 1-parameter-family isoparametric tori. Let C, be the cone in R*
spanned by 0 € R* and T,. Using the stereographic projection 7 from S* to R*
we get 1-parameter-family hypersurfaces x, = n—l(Cw) T, XR— S* One can
show that x,, are Mébius homogeneous. We can show that

THEOREM 2. Let £ :M— S* be a Mobius homogeneous hypersurface with diffe-
rent principal curvatures, then up to a Mobius transformation x(M) is either a part of
some I, or a part of some X,, described above.

In fact, we can prove a stronger theorem (cf. Theorem 4.1), from which we
obtain

THEOREM 3. Let x:M— S* be a Dupin hypersurface with different principal
curvatures. If the Mobius curvature W is constant, then up to a Mobius transformation
(M) is either a part of some X, or a part of some X, described above.

This paper is organized as follows. In Section 1 we study the Mobius in-
variants and the relations among them. In Section 2 we define the adjoint Mobius
frame in R’ for hypersurface in 54, which allow us to write the structure equa-
tions. In Section 3 we prove Theorem 1 and in Section 4 we prove Theorems 2
and 3.

§1. Moébius invariants for hypersurface in S !

The Mobius group G, is the conformal transformation group of the unit
sphere S* in R’ which is generated by the inversions of S*. Since Mobius trans-
formations act nonlinearly on S4, it is more difficult to find local invariant in
Mobius geometry than in other geometry. Fortunately we have the following clas-
sical method to linearize the Mobius group.

Let O(5,1) be the orthogonal group with one negative index defined by

(1.1) 0G,1) = {A € GL(R®) |'ALLA = I},
where I, = <é __01> € GL(R®. For any A = (f Z) € 0(5,1) with w € R

we can define a mapping ¢(4) ; S* — R® by

Bxr+u

(1.2) g(4) (x) = pr—

t 4
x="(2, """, x) €S.
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One can easily verify that a(4) : S*— S* and ¢(A) is a Mébius transformation. In
fact, o : 0(5,1) — G, is a group isomorphism (cf. Wang [11]).

1.1 DernitioN. Two hypersurfaces z:M— S* and z’: N— S* are said
to be Mobius equivalent if there is a diffeomorphism 7:M— N and
A € 0(5,1) such that 2" > 7 = ¢(A) ° x. Such (z, A) (or simply A) is called a
Mobius equivalence. Briefly, x and x’ are Mobius equivalent if their images in St
differ only by a Mébius transformation.

In the rest of the paper we will always assume that x : M — S*is an immer-
sion with different principal curvatures at each point of M and that M is simply
connected.

Let  : M— S* be a hypersurface with principal curvatures A, ¢ and v. Let %
: M— S* be the unit normal for . The mappings @, b and ¢ : M — R’ defined by

Ax+n ur+n v+ n
(1.3) a= A , b= U , = v
1 1 1

are called the curvature spheres for x. Since @ and b are linearly independent, we
can write

(1.4) c=Wa+ 01— Wb, W=;:Z.

It is known that W is a Mobius invariant. Let <, > be the inner product in R’ de-
fined by

5
(1.5) Sy w) = X uf — us — uly u="(uy, -+, u;) €ER".

i=1
We denote by 0(5,2) the orthogonal group of R’ preserving ¢, Y. Thus we can
A0
01

0(5,2). The following theorems are essentially classical, so we state them here

identify O(5,1) with the subgroup O(5,1) = {A| A = ( ), A <€ 05,1)} of

without giving proofs.

1.2 THEOREM. Let E,, E, and E, be never zero principal vector fields of X corres-
ponding to A, it and v respectively. If x’ is Mobius equivalent by (t, A) to x, then
T+ (E), T4(E,) and t4(E,) are principal vector fields for x’.
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1.3 THEOREM. Two hypersurfaces x and X’ are equivalent by the Mobius equiva-
lence (t, A) if and only if we can arrange the order of the curvature spheves ia’, b,
¢’} of x’ such that
A 0)

(1.6) @ t=Aa, bor=Ab ¢-r=Ac, A=(O X

It is easy to see that E,, E, and E, in Theorem 1.2 are characterized by the
properties that E,(a) | (@ — b), E,(b) | (@ — b) and E,(¢) || (@ — b). By (1.3) we
have

T Ty (E,)
E, o) =E,D |1 |+ Q1—pw 0
0 0

Since z L x,(TM), we have <E,(@), E,(@)) = (A — @)’ | 24(E,) |* > 0. Similarly
CE,(8), E,(8> > 0 and <E,(0), E,(0) > 0.

1.4 DeriniTion.  (E,, E,, E,) are called the Mobius vector fields correspond-
ing to the curvature spheres (a, b, ¢) of x if they are principal vector fields cor-
responding to (4, g, v) and

(1.7) (E,(a), E,(a)> = KE,(b), E,(b)> = <E(c), E\(c)> = 1.
It is clear that (E,, E,, E;) are determined by the hypersurface x up to signs.
By Theorems 1.2 and 1.3 we have immediately

1.5 ProposiTion.  E,, E, and E; are Mébius invariants.

In the rest of this paper we will always assume that (E,, E,, E;) are the
Mobius vector fields, and for simplicity we will denote by f; the partial derivative

E,(f) for f € C”(M). By (1.3) we have

(1.8) {a,®> ={a, b> =<b, b> =0;
(1.9) a,=R@—1"b),b,=S@—0b, c=Ta—0b,
where
A M _ Y
(1.10) R=32 8= T=7204

By Theorem 1.3 and Proposition 1.5 we know that R, S, T and W defined by
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(1.9) and (1.4) are Mobius invariants. Since {E,, E,, E,} is a basis for TM, we
can find Cikj e C"(M),1<14,7, k<3, such that

(111 [E, E)= -3 ClE. CL=—Cy ie f,—f,= z Cifo, YFECTUD.

It is clear that all C,?;- are Mobius invariants. We can define two other Mobius in-

variants by
(1.12) O = {ay, a, T= Q10 — M¥ey, ¢

By (1.11) we know that C,’; are determined by the Mobius vector fields (E,, E,,
E.,). In the rest of this section we show that the Mébius invariants R, S and T are
determined by (E,, E,, E;, W).

By (1.4) and (1.9) we obtain

1.13)  b=—0—W RW+W)a—b+ 10— M¢;
(1.14) ¢, = (W,+ S— SW)(a— b) + Wa,;

(115) a, =W NT—W)la—b — WA — Wb,

Thus by (1.4), (1.7) and (1.8) we have

(1.16) <by, by = A — W72, Lep, ¢ = WP, <ay, ap = WA — W2,

It follows from (1.13), (1.14) and (1.15) that

1.6 ProposITION. Forany k, k' € {a, b, ¢} we have

(1.17) Sk, K> =0,i=123;

1.7 ProrosiTiON.  We have the product table

<0 a b a,

>
w

S
-

a 0o 0 0 0 0
b o 0 0 0 0
(1.18) a, 0 0 1 0 0
b, o 0 o0 1 0
¢ o 0 o0 o0 1

Proof. We have to prove that <a,, by = <b;, ¢;7 = ¢, a,> = 0. By (1.11)
we have by = by, + Cy,b, + Cob, + Cob, thus <{ay, by = — <a, by =
—<a, by = — <a, S;(a — b) + S(a;, — by))> =0 (cf. (1.9)). Similarly we have
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by, ¢ = £y, @ = 0. QE.D.

1.8 CoroLLARY. Foramy k, k¥ € {a, b, ¢} we have

(1.19) ki, kK =0,1#5,1<14,;<3.

1.9 ProposITION. Let F = C,,, then we have

Co=0—-WTW,+S, Ch=A-W"T, CL=F;
(1.20) =R, C,=—-W"F, Ch=W7'W,—-D;
Co=0-MF, Ci=w'aA-W W, +WR), Ci=-Wws.

Proof. By (1.11), (1.9) and (1.17)~(1.19) we have
(a, a), = 24a,, ap = 2¢a,; + Cja, ay = 2<{R(a, — b)), ay +2C,<a, a,).

Since <a@,, b,y =0 and <as, by = — W' QA — W) (cf.(1.15)), we obtain C’, =
R and C, = W' — W)™"(W, + WR). Similarly, by calculating (<b,, b,)), for
i=1,3 and ({c;, ¢); for i=1,2 we obtain Cj,= (1 — W)W, + S, C, =
- WS, ClL,=Q—W'T, C., = W (W, — T). Furthermore, by (1.11),
(1.9) and (1.16)~(1.19) we have

0132 = by, = byyy by = Kby, by = — by, by = — by, byy — Czl3b1>
= Cy<by, by = 1 — W)°F;

Cps = oy €0 = — by, €10 = — £¢,, € + Chiey = — WCL,. QE.D.

1.10 CorOLLARY. The Mobius invariants R, S and T are determined by (E,, E,,
E, W).

§2. Adjoint Mébius frame in R’ for hypersurface in S '

In order to write the structure equations and establish the fundamental
theorem for the hypersurface x : M — S* under the Mobius group we need an ad-
joint frame U: M— GL(R") along z which is invariant under the “Mobius group”
0(5,1) in R".

To construct the adjoint frame U we know from (1.18) that at each point of
M {a, b, a,, b, c,} is a subbasis for R". Since <@, @ = — 1, <ay, b> =0 and
by, b = — (1 — W72, we know that {a, b, a,, b,, ¢,, ay,, by} forms a Mobius
invariant moving frame in R’ along M. In order to simplify the products among
them we modify @,, and b, to d, e: M— R’
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(2.1) d=a, + Aa+ Ayc,
(2.2) e=(1— Wy, + Ba+ B,b+ B,b,,

where A,, B; € C”(M) are to be determined. Our goal is to choose A,, B; in
(2.1) and (2.2) such that we have the product table

G0 a b a, b, ¢ d e

0
0
(2.3) a, 0
0
0

=N ool
SO O O O - OO
O O O - O O O
S O = O O O O
S O O O O O

2.1 PROPOSITION. We have

(24) a,=I[R,—2RS— QA — W 'W,R— WA — W) (T — W)Fl(a — b
+ wQ — W) 'Fb,;

(2.5) @y =1[—W'W,+S—SW),—2W (W, +S—SW(T—W,)
+ WT,— W + WSTI(a — b)
+ WAW,+ S — SWb, + W'Fc,;

(2.6) by =WA—WIWN(T—W),+ WA —-mW'A+ W)
(T— W) (RW+ W) —R,+ (1 — W 'RTl(a — b)
- WA =W Fa,— QA — WHT — W)c,;

(2.7) by =[S, +2W N(T—W)S+ QA — W (RW+ W)Fl(a — b)
-1 - W)_chl;

2.8) ¢, =[0— WS, + @2 —3WRS— W,S+ (RW+ W),l(a — b)
+ (RW+ W)a, + Q@ — W) 'Fb,;

(29 ¢, =W A-WM'A+WRW+ W)T— W *(W,+S— SWF
+ T, + RT1(a — b) — W 'Fa,,

Proof. The idea is to use (1.9), (1.13), (1.14) and (1.15) to reduce the order
of derivatives. We calculate here only a, and a,; By (1.11), (1.20), (1.9) and
(1.15) we have
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Ay = A1y — Cllzal - Clzzaz_ szas
= [R@—b),— [0 —W'W,+ SIR(@— b) — Ra,— 1 — W) ’Fa,

=[R,—2RS— (1 —W'W,R—W'Q — W) (T— W)Fl(a — b
+ w1 — W) Fb,.

By (1.14) we have
€= W, +S—SW,(a—b) + W,+ S — SW)(a, — b)) + W,a, + Wa,,.
On the other hand we get from (1.11), (1.9) and (1.20) that
s = €3 + Cpyty + Chity+ Clicy
=T,(a—b) + T(a,— b)) + Fe, + W' (W, — D¢, — W 'ST(a — b).

From these two formulas, (1.14) and (1.15) we get (2.5). Q.E.D.

2.2 PROPOSITION.  We have
(2.10) Layy, ¢ = — (R,W+2RW, + Wy, + R*W) + 2W ™' — W) °F?;

(2.11) L@y by = — [W2HW,+ S — S, + WS(W, + S — SW)
—2wW7' @ - W) F

(212) Lby, e = [A — W HT— W1, — A — W°T(T — W)
+ 2w — W)'F2

Proof. We calculate here only <a,, ¢,,>. By (2.4) we have {a,, ¢, =
— {a,,;, ¢y = 0. Using (2.4), (2.8) and (2.9) we obtain

@y, €1 = — K@y, €117 = — @y, €15 + CIIZCII + 0122012 + C132013>
= — ({ay, c0); + $ay, ¢ — Chla,, ¢;p — Chlay, ¢
= — (R,W+ 2RW, + W, + R*W) + 2w ™'Q — W) ’F2. QED.

Now we come to determine A,, By in (2.1) and (2.2). By (1.18) and (2.1) we

have {d,a> = —1,4d, b> = — <a,, by =0 (cf. (1.9)) and {d, a,y» = 0. By
(2.7) we have <d, by = {a,,, by = — a,, by> = 0. In order that {d, ¢;» =0
we need

(2.13) A, = — {ay, ¢ = <a, ) = RW+ W, (cf. (2.8))

In order that {d, d> = 0 we choose
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(2.14) A= @— 4D =3[0~ W, + WR,

where @ is defined by (1.12). By (1.18) and (2.2) we have <e, @> = 0 and
{e, b = — 1. By (2.4) we have e, ayy = (1 — W<¢y, apy = — 1 — W <ey,
@, = 0. In order that <e, by = 0 we need

(215) B,=— (1 — W<y, by = A — M, by =— A — W (T — W,).
By (2.2) we have <e, ¢;> = 0. In order that <e, ¢ = 0 we need

1 — M¥ey, ¢ + B+ 20 — WBKey, b +2(0 — W)BLey,, by = 0.
Since ¢y, b = — (1 — M7, ey, by = — ¢y, by = 0, we get

(216)  By=5 @ B)=5W~ 1~ WT— W,

where ¥ is defined by (1.12). Finally we choose B, such that {d, &> = 0, that is,
1 — W)<ay,, ¢,y — B, + By{a,, by = 0.
By (2.7) we have <@y, by = — <a,, by,> = 0, so by (2.10) we obtain
(2.17) B, =1 — W<ay, ¢,
=—1—WQRW+2RW,+ W, + R*W) + 2w ™'Q — W) 'F~.

Thus we obtain a Mébius invariant moving frame {a, b, a,, b, ¢,, d,e} in R’
along M with the product matrix J given by (2.3). We denote by 0*(5,2) the sub-
set of GL(R"),

I 0 0.
(218) 0%*G,2)={Ae€GLR)H|'ALA=J]},,={0 —1 0
0o 0 -1

Then we have U= (a, b, a,, b,, ¢,, d,e) : M— 0%(5,2). We call it the adjoint
Mobius frame in R’ for .
In the rest of this section we show that

2.3 PROPOSITION. The Mobius invariants @ and ¥ are determined by (E,, E,,
E, W).
We define

/1 1 1 1
V= (ﬁ (a — a), _ﬁ(b_ e), a,, by, ¢y, —E(a-f- d), ‘Tg‘(b“}' e)>.
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By (2.3) we know that V : M— 0(5,2). We denote by p: R’ — R the projection
(2.19) Doy, uy e, u) =,

Then by (1.3), (2.1) and (2.2) we have

(2.20) 7 := (p(@), p(), p(ay), p(by, plcy), p(d), p(e)) = (1,1,0,0,0,4;, B, + B,),

which is the last column of U. Thus the last column r* of Vis given by

s (L g4y Lg_p— 1 1
"= (G 0-A), 5B~ B),000, = (+4), 7 1A+B+B))
Since V : M— 0(5,2), we have <'7*, ‘7™ = —1, ie, 24, + 2B, + 2B, = 1. It

follows from (2.14), (2.16) and (2.17) that

(221) O+ T=W,+WR*+0A—WT—W)*
+ 21— WR,W + 2RW, + Wy, + R°W) — 4w ' — W 'F* + 1.

On the other hand we get from (2.3) and (1.15) that
(2.22) byy = — by, d>a — by, &b — by, aya, — <b, cye,— W (1 — Wd+e.
Since p(bs) = 0, (2.20) and (2.22) imply
(2.23) 0= — by, &> — $byy, & — W1 — WA, + B, + B, = 0.
By (2.1), (2.2) and Proposition 2.1 we have

(2.24) by, d> = {byy, a,y + W' (1 — WA,
by, € = (1 — W)<byy, ¢,;,p + WA — W)B, — B,.
Thus Proposition 2.2 and (2.23) imply

(225) — Wl A—We+ T
=1 -=WIA =W T—Wyl,— [W (W, + S— SW],
+4W A - WA - 2WE + WA - W)W, — )
+ WA — WMICW— 1) (R, + 2RW, + W, + R°W) — (W, + WR)"]
+ WS(W,+ S — SW).

Proposition 2.3 follows from (2.21), (2.25) and Corollary 1.10.

§3. Fundamental theorem for hypersurfaces in S*

In this section we will show that (E,, E,, E;, W) is a complete Mobius in-
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variant system for z : M— S*.

Let U = (a, b, a,, by, ¢, d,e) : M— 0%(5,2) be the adjoint Mobius frame in
R’ for z. We have the mappings X, Y, Z:M— 0%(5,2) (= Lie algebra of
0%(5,2)) defined by

(3.1) E, (U) = UX, E,(U) =UY, E,(U) = UZ.

3.1 PROPOSITION.  All elements of the 7 X 7 matrices X, Y and Z are Mobius in-
variants determined by (E,, E,, E,, W).

Proof. By (2.3) we have for any mapping  : M — R’ the formula

3.2) u=—Lu,da—<u,e>b+ {u, aya, + {u, byb, + {u, cpc,
—u, @>d — {u, be.

We denote by R(M) the set of all mappings # : M— R’ such that all coefficients
of u in (3.2) with respect to {a, b, a,, b,, ¢,, d,e} are Mobius invariants deter-
mined by (E,, E,, E;, W). To prove Propposition 3.1 it suffices to show that the
partial derivatives of a, b, a,, b,, ¢,, d, e in the directions of E,, E,, E; are ele-
ments in R(M). We prove this fact in several steps.

Step I. E\(a), E,(a), Es(a), E,(b), E,(b), E;(b) € R(M).

It follows immediately from (1.9), (1.13) and (1.15).
Step I. E\(ay), Es(ay), E\(by, E,(b3), E,(c)), Es(c,) € R(M).

It follows immediately from Proposition 2.1.
Step W. E,(a,), Es(by, E (c;) € R(M).

It follows immediately from (2.1), (2.2), (2.22), (2.24) and Proposition 2.2.
Step V. E\(d), E;(d), E,(e), E,(e) € R(M).

By (2.1), (2.2), Steps I,II and I it suffices to show that @y, @y €115 €113 €
R(M). Since A,, A,, B,, B,, B, defined by (2.13)-(2.17) and their partial deriva-
tives in the directions of E,, E,, E, are Mobius invariants determined by (E,, E,,

E,, W), by (1.11) we need only to show that @y, @, €151 €151 € RWM), which
follows from Proposition 2.1, Steps I,II and II.
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Step V. E,(d), E,(e) € R(M).

By (3.2) and (2.3) we have
E,(d) ={d,epb—<d, ayya,— <d, by b, — <d, c;,c, + {d, apyd + <d, bye.

Since ¢,, @y, by, €15, @y, b, €E R(M), we obtain E,(d) € R(M). Similarly we can
prove that E,(e) € R(M). QE.D.

Now we can prove the following fundamental theorems for hypersurfaces in
St

3.2 TueoreM. (E,, E,, E;, W) forms a complete Mobius invariant system for
hypersurfaces in S* with different principal curvaturves, which determines the hypersur-
face up to Mobius transformations.

Proof. We have to show that if (E/, E,, E;/, W’) is the Mobius invariant
system for another hypersurface x’: N— S* and there exists a diffemorphism
7: M— N such that

(3.3) E'=¢tE,e,=x1,:1=123;, W= W',

then there is A € 0(5,1) such that (z, A) is a Mobius equivalence for x and x’.
By taking (&,E,, €,E,, €;E;) as the Mobius vector fields we may assume that
in (3.3) ¢, = 1. Take a point ¢ € M we have U,:=Ul(g) € 0%(5,2) and U,/ =
U - 7(g) € 0°(5,2). We define A=1U, U, By (2.18) we know that
A € 0(5,2). By (2.20) and (3.3) we have 7,:= 7(¢) = 7’° 7(g). Since AU, = U,/
and 7(q) (resp. 7’ ° 7(q)) is the last column of U, (resp. U,)), if we write
A= (13 Z)) for w € R and U, = (f) then we have 7, = vB + wy, ie,

0

(v, w — 1)U, = 0. Since det(U,) # 0, we get v=0 and w =1 Thus A €
A0
01
that X=X’'e7, Y=Y erand Z= Z’° 7. Thus both AU and U’ ° 7 are solu-
tions for the linear PDE system (3.1) with the same initial value AU, = U,”. By
the uniqueness theorem we obtain AU = U’ 7 on M. In particular, Aa=a'°
and Ab=b"°7, and by (1.4) and (3.3) Ac = ¢’° 7. Thus Theorem 1.2 implies
that (r, A) is a Mobius equivalence for x and x’. Q.E.D.

0(5,2) implies u = 0, ie, A= < > By (3.3) and Proposition 3.1 we know
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3.3 Remark. Let {tl, t,, t3} be the unit principal vector fields for x corres-
ponding to A, g and v respectively. Let {@', @’, @’} be its dual basis. Then we
have

t t,

_ 1 _ _ L R
_Z—v’Ez—ﬂ—l’E’*—v— W=

(3.4) E, w i—u

The dual basis for {E,, E,, Ej} is {1 — o', (@ — D’, (v — W w’}. Thus the
Mobius invariant system (8', 6°, 8°, W) in Theorem 1 is equivalent to (E,, E,,

E, W).

§4. Mobius homogeneous hypersurfaces in S ¢

Our goal in this section is to prove the following theorem:

4.1 THeoREM. Let £:M— S* be a hypersurface with constant Mobius n-
variants R, S, T defined by (1.10) and constant Mobius curvature W, then up to a

Mbobius transformation X is either a part of some X, or a part of some x,, described in

§0.

Since for any Mobius homogeneous hypersurface the Mobius invariants R, S,
T and W are constant, we have Theorem 2 as a consequence of Theorem 4.1. As
for Dupin hypersurfaces we have R = S = T = 0 (cf. (1.9) and Pinkall [10]), we
get also Theorem 3.

The proof of Theorem 4.1 bases on the relations among the Mobius in-
variants. Let £ : M — S* be hypersurface with constant R, S, T and W. By (1.11)
and (1.20) we have

[E, E))=—SE,— RE,— (1 — W °FE,;
(4.1) (E,, E]=— (1 — W)'TE, + W’FE, — (1 — W)"'RE;;

[E,, E]] = — FE, + W'TE, + W 'SE,.
The Jacobi identity [[E,, E,l, E,] + [[E,, E,], E,] + [LE,, E,], E,] = 0 implies
that

(4.2) F=—Q—-W0—-W W 'ST+ RPF;
(4.3) F,=Q0+WWQ — W) 'RT+ W'SF);
(4.4) F,=—QW—-1DW™[Q—WRS— 1 — W) 'TFI].
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4.2 ProPOSITION.  The Mobius invariants F, @ and W are also constant.
Proof. By (4.3) and (4.4) we have Fpy= — (1 + W)W 'SF, and F,, =
1 —2WMW™Q — W'TF,. Using (4.1)~(4.4) we get

0=F,,— F,, + FF, — W 'TF, — W 'SF,
=—2=W(QA — W) 'RF?+ lower terms in F.

Similarly we have the quadratic equations of F' with constant coefficients:
(1 + W)SF? + lower terms in F = 0; (1 — 2W) TF? + lower terms in F = 0.

If one of {(2— WR, 1+ W)S, (1 — 2W) T} is nonzero, we get F = constant.

But if all of them are zero, we get from (4.2)~(4.4) that F, = F, = F, = 0. Thus

F is constant. It follows from (2.21) and (2.25) that @, ¥ are constant. Q.E.D.
4.3 COROLLARY. It follows from (2.21), (2.25), (2.1) and (2.2) that

(45 O=W+ WR*+ W1 —WT— w*Q — WS> — aw™'F?;

(46) T=1—W+WaA—-MR*+ A —-W'T*+w?a - ms*
—4(1 — W'F?;
1
47) d=ay+5(0- W2R%a + RWe, ;
(48) e= Q10— We, +2W7Q - W'F*—R'W1 — Wla
1 _ _
+5 = A=W T 16— 0~ M Tb,
Since three curvature spheres @, b and ¢ are colinear in R7, we can arrange
the order such that ¢ lies between @ and b. Thus by (1.4) we have 0 < W< 1.
1
Since W is assumed to be constant, we can arrange @, b such that 0 < W < 7
Moreover, by changing E; to — E, if necessary we may assume that R = 0,
S=0and T =0 (cf. (1.9)).

4.4 PrOPOSITION.  We have only the following 6 possibilities:

) W=%,T=—‘F=O; (In) W:%,R=23,T=—F¢O; o< W<%,

1

R=S=F=0; IV) 0< WL ,R=T=F=0;(V)O<W<l,S=T

oo

=F=0;, (V) R=S=T=0.
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Proof. Since F is constant, we get from (4.2), (4.3) and (4.4) that
(4.9) ST=—WRF; RT=— W70 —WSF; GW—1D[RS— 0 — W) ’TF =0.
It follows that
@W— DFIWR® + W (1 — W)S* + 2(1 — W) °*T"
= 2W —1)(— RST — RST + 2RST) = 0.

Thus either (i) W=-;—; or (ii) W#—l—and F=0;o0r(iii) R=S=T=0. From

2
(i) and (4.9) we get the cases (I) and (II ). From (ii) and (4.9) we get the cases
(I, (IV) and (V). (VI) follows from (iii). QE.D.

4.5 PropoSITION. (i) R=S=T=0implies T=0; (i) R=T=F=0 im-
plies S = 0; (iii) S= T = F = 0 implies R = 0.

Proof. We assume that R = S = F = 0. By (4.1), (4.7) and (2.5) we have
1 _
d= a,, +§q)a; [E,, E)) = WT'TE,; a,, = 0.

Using (2.3) and (1.15) we have

1

0= {d,, d> = <ay, + 1 Bay, > =ty & — 5 woT

2
_ 1 _ _
= Layy — W' Tay, d) — s W'eT=—woT.
By (4.5) we have @ = W+ W(1 — W) T > 0, thus T = 0. Similarly, if R = T
= F =0, we calculate 0 = <e,, ¢) and get S=0; if S=T = F =0, we calcu-
late 0 = {d,, d> and get R = 0. Q.ED.
4.6 ProposiTION. If W = —;—, T=F=0,then R=S=0.

1
Proof. We assume that W= o T=F=0. By (4.7), (4.8), (4.1) and (2.4)

we have

1 — %Rza + % Ub;
— 2RS(a — b).

d=a,+5 (0~ FR)a+3Re,; =
[E,, E;] = — SE, — RE,; ax

I No|
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It follows from (2.3) that

0=<dy & = {ap+5 (0~} R)R@~ b + 5 Ry, dY

<am,d>—~R( ;1()+R<e+ R’a — zIfb,d}

1 1
= {ay, — Sa, — Ra,,, &> — <<D ~ —R ) ZR3

1 1
— {2RS(a, — b)), &> — Say, d> — R(@ - ZR2> - ZR3
= — R4S’ + ),
where the relation {b,, d> = — S follows from (1.9) and (2.3). From (4.5) we
get @ = 1 + R —285% thus R=0. Since R=T=F=0, we get from

Proposition 4.5 that S = 0. QE.D.

1
4.7 PRrOPOSITION. The case that W= 5 R=2S and T=—F#0 s

impossible.

1
Proof. We assume that W= oE R=2Sand T= — F+ 0. By (4.7), (4.8)

and (4.1) we have

1
e= %cn + 8T - SHa +5 (W—4T"b—2Th,;

[E,, E)] = — 2TE, — ATE, — 4SE,; [E,, E;] = TE, + 2TE, + 2SE,.

1
(410) d=ay+5(0— SHa+ Sc;;

By Proposition 2.1, (1.13) and (1.15) we have
ay = (— 48"+ 8T% (a— b) — 4Tb;; a,, = — 10ST(a — b) + 2Sb, — 2T, ;
b, = 16ST(a — b) +4Ta,— 4Tc;; b, =2ST(a—b) +2T¢,;

¢, = S*a—b) + Sa, — 27Tb,; ¢ = 10ST(a — b) + 27Ta,;
a,=2T(a—b) — b,; by=—2S@—b) + 2,

(4.11)

One can easily verify that 0 = {d,, & = T(— 44S° + 8T% — 20). By (4.5) we

have @ = % —6T% thus T# 0 implies

(4.12) 448* - 20T +1 = 0.
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On the other hand we have by (4.10) that
(4.13) Aypy — Ayy = — 2Ta, — 4Ta,, — 45a,,.
We can easily get from (4.10) and (4.11) that
{apy, € = — 8S*T — 2TW + 8T°;
{— 2Ta, — 4Ta,, — 4Sa,,, e> = 48S8°T — 16T".
Using (4.10), (4.11), (2.12) and (2.24) we obtain
(Uyyy, € = (— A4S + 8T <a,, &) — 4T<b,, ¢) = — 4S’T — 40T° + 2TV .
Thus we get from (4.13) that 52S°T — 647> + 4T¥ =0. Since T# 0 and
= % + 35" — 6T (cf. (4.6)) we obtain

(4.14) 328° —44T* +1 =0,

which contradicts to (4.12). Q.E.D.
It follows from Propositions 4.4, 4.5, 4.6 and 4.7 that

4.8 ProrosITION. R=S=T=0.
wa-—-w

21— W+ w?

Proof. Since R =S = T = 0, we get from Propositions 2.1, (4.5), (4.6), (4.7)
and (4.8) that

4.9 ProposiTioN. F=Qor F= £

[E,, E)) = W*FE,; a,, = W'l — W)'Fb,; a,,= W 'Fc, ;
O=W—4W'F*, v=1—W—-41 — W) 'F?;

1 _
<a22! e> = 0, <611, e> = '2‘ - 2(1 - W) 2F2.

By (2.12),(2.16) and (2.17) we have
by, @ = — % a-—w +20—W'F*+ 4w F?

. -2
Since ay; — a5, = — W "Fa,,, we get

WA — W' Fby, e — W Fcy, & = — W Fa,, ¢,
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1 —
which implies that F = Qor F = * w( m ~. QE.D.
21— W+ W

To summary we have

4.10 COROLLARY. Let :M— S* be a hypersurface with Mobius invariant
system (E,, E,, E;, W). If the Mobius invariants R, S, T and W are constant, then
R=S=T=0. Moreover, ecither (i) [E,E]1=0,1<1,7<3; or (i)
[E,, E,) = — (1 — W°FE,; [E,, E)) = W°FE,; [E,, E,) = — FE,;  where
Fe+ wa-—-w

Co1—w+w?

In order to prove Theorem 4.1 we need the following lemma, which is a direct
consequence of Theorem 2.34 in Warner [12], p. 77:

411 LeMMA. Let M and N be two simply connected 3-manifolds. Let (E,,
E,, E) (resp. (E/, E), E{)) be a basis for TM (resp. TN). If [E;, E,] =
— X, CLE, and [E’, E’]l = — X, CLE’, with the same constant cofficients C,’;,
then there exists a diffeomorphism T; M— t(M) C N such that 7,(E) = E/,
1=1,2,3.

To complete the proof of Theorem 4.1 we look for examples of hypersurfaces
in S* whose Mobius invariants (E/, E;, E;, W) satisfy (i) or (i) in Corollary
4.10. Then Lemma 4.11 and Theorem 3.2 will imply that x is Mobius equivalent
to one of those examples.

4.12 EXAMPLE. Let ;v,,,:R3——>S4 be the 1-parameter-family hypersurfaces
given by '
1 .
(4.15) z,(¢, T, 0 = m'(\/l — Wecos¢, V1 — Wsing,

VW cos ¢, YW sin¢, sh ), 0 < WS%.

It is the orbit of the subgroup G of O(5,1) through the point p = ‘WI—=TW, 0,
VW, 0,0) € S* by the action (1.2), where
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cos¢ —sing 0 0 0 0

sin ¢ cosgp O 0 0 0

. 0 0 cos¢ —sing O 0

(4.16) G= 0 0 sin ¢ cos¢ O 0
0 0 0 0 chf shé
0 0 0 0 shf ché

Thus x,, are Mobius homogeneous. Using the stereographic projection 7 from S* to
R* which takes ‘(0,0,0,0,1) to '(0,0,0,0) we get the hypersurfaces £,/ = T ° I, :
R3 - R4

(4.17) z,=e¢ "' (JT— Wcos¢, VI — W singp, VW cos ¢, VW sin ).

They are cones spanned by the isoparametric tori T,, C S*c R* and 0 € R*. One
can easily verify that the Mébius invariant system (E/, E,, E/, W’) for x, is
given by

1 0 0 1-W o
W18 B ==y o BT Weae BOZ T ap WS W

Thus (EY, E,, E;, W) satisfies (i) in Colollary 4.10.

4.13 ExampLE. Let x,: N— S* be the 1-parameter-family isoparametric
2
hypersurfaces with three principal curvatures 1 = ctgf, 4 = ctg(ﬁ + 3 n) and
1
y= ctg<0 + 3 7r> (cf. Cartan [3], Miinzner [8]). Cartan pointed out in [3] that x,

are the orbits of some orthogonal subgroup G of O(5). Since O(5) is naturally a
subgroup of the Mobius group on S4, we have G as a subgroup of Mobius group
acting transitively on x,(N). Thus x, are Mobius homogeneous. Let W be constant

2‘[—3——14;[/ Let (E/, E), E,/, W’) be the

L . . . , VYV —
Mobius invariant system for x, One can easily verify that W’ = 7—__—% =W.

1
with O<W£§, we put 8 = arctg

Since A, ¢ and v are constant, we know from (1.9) that R” = S = T = 0. Thus
by (4.1) we have

(4.19) [E/,E/1=—Q —WF'E/; |[E/,E;1 = WF'E;; |[E/, E/1= — FE/.

wQa —
By Proposition 4.9 we know that either F' = 0 or F' = & ( W If

T hi—wewE

F’ =0, the Riemannian metric g on N such that g(E/, E/) =0, is flat
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(cf. (4.19). Thus there is a covering 7 : R’ — N, which is impossible because the
wa —w)
universal covering of N is S® Therefore F/ = + ( —. Here the sign
2/ 1—W+ W
T is not essential. E” will change sign if we change E, to — E,’. Thus (E/, E,,

E.’, W) satisfies (ii) in Corollary 4.10. In order that we can use Lemma 4.11 we
consider the universal covering 7 :S°— N and the immersion z,° 7 :S°— S*
with 2, * 7(S%) = 2,(N).

Thus Theorem 4.1 follows from Examples 12, 13, Lemma 4.11 and Theorem
3.2.
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