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MOBIUS GEOMETRY FOR HYPERSURFACES IN

CHANGPING WANG*

§0. Introduction

Our purpose in this paper is to study Mόbius geometry for those hypersur-

faces in 5 which have different principal curvatures at each point. We will give a

complete local Mόbius invariant system for such hypersurface in S which deter-

mines the hypersurface up to Mόbius transformations. And we will classify the

so-called Mόbius homogeneous hypersurfaces in S .

Our main results are following. Let x : M —* S 4 be an immersed hypersurface

with different principal curvatures λ, μ and v at each point. A well-known

Mόbius invariant is the so-called Mόbius curvature W — ~γ^z— Let {tv t2, t3) be

the unit principal vector fields on M corresponding to λ, μ and v respectively. We

denote by {ω\ ω , ω3} the dual basis for (tv t2, t3}. It is not difficult to show that

the following 1-forms

(0.1) θι = (μ-v)ω\ Θ2=(λ-v)ω2, θ3 = (λ - μ)ω3

are also Mόbius invariants. We can prove that

THEOREM 1. {θ , θ , θ , W) forms a complete M'όbius invariant system which

determines the hypersurface x up to M'όbius transformations.

A hypersurface M in S is said to be Mόbius homogeneous if for any two

point py q in M there exists a Mόbius transformation σ taking M to M and p to q.

The 1 -parameter-family isoparametric hypersurfaces xθ:M~^S with different

principal curvatures are examples of Mόbius homogeneous hypersurfaces (the

universal covering of M is S ). Another example of 1-parameter-family Mόbius

homogeneous hypersurfaces in 5 can be obtained by the following way. Let Tw c
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5 c R 4 b e the 1-parameter-family isoparametric tori. Let Cw be the cone in R

spanned by 0 ^ R and Tw. Using the stereographic projection π from 5 to R

we get 1-parameter-family hypersurfaces xw = π (Cw) ζ x R - ^ S . One can

show that xw are Mobius homogeneous. We can show that

THEOREM 2. Let x : M-+ S be a Mobius homogeneous hypersurface with diffe-

rent principal curvatures, then up to a Mobius transformation x(M) is either a part of

some xθ or a part of some xw described above.

In fact, we can prove a stronger theorem (cf. Theorem 4.1), from which we

obtain

THEOREM 3. Let x:M~^S be a Dupin hypersurface with different principal

curvatures. If the Mobius curvature W is constant, then up to a Mobius transformation

x(M) is either a part of some xθ or a part of some xw described above.

This paper is organized as follows. In Section 1 we study the Mobius in-

variants and the relations among them. In Section 2 we define the adjoint Mobius

frame in R for hypersurface in 5 , which allow us to write the structure equa-

tions. In Section 3 we prove Theorem 1 and in Section 4 we prove Theorems 2

and 3.

§1. Mobius invariants for hypersurface in 5

The Mobius group G4 is the conformal transformation group of the unit

sphere S in R , which is generated by the inversions of S . Since Mobius trans-

formations act nonlinearly on S , it is more difficult to find local invariant in

Mobius geometry than in other geometry. Fortunately we have the following clas-

sical method to linearize the Mobius group.

Let 0(5,1) be the orthogonal group with one negative index defined by

(1.1) 0(5,1) = (A e GL(R6) | 'AIXA = IJ,

where I, = f f M e GL(R6). For any A = (B U ) e 0(5,1) with w e R

we can define a mapping σ(A) S —»R by

(1.2) σ(A)(x) = ~ ^ , x = '(xu x2, - , x5) e S 4 .
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One can easily verify that σ(A) : S4 —> S4 and σ(A) is a Mόbius transformation. In

fact, σ : 0(5,1) ""> G4 is a group isomorphism (cf. Wang [11]).

1.1 DEFINITION. TWO hypersurfaces x:M—>S4 and x':N~+S4 are said

to be Mόbius equivalent if there is a diffeomorphism r : M—> N and

A e 0(5,1) such that x' ° τ = σ(A) ° x. Such (r, A) (or simply Λ) is called a

Mόbius equivalence. Briefly, x and .r' are Mόbius equivalent if their images in 5

differ only by a Mόbius transformation.

In the rest of the paper we will always assume that x : M-+ S is an immer-

sion with different principal curvatures at each point of M and that M is simply

connected.

Let x : M—» 5 be a hypersurface with principal curvatures λ, μ and v. Let n

:M—*S be the unit normal for x. The mappings α, b and c : M —• R defined by

(1.3) a=

are called the curvature spheres for x. Since a and b are linearly independent, we

can write

(1.4) c=Wa+(l-W)b, W = } ^ J J

A μ

It is known that W is a Mόbius invariant. Let < , ) be the inner product in R de-

fined by

)(1.5) <M, u> = Σ u) — u\ — u2

Ίy u = f(ulf u2,-\ u7) G R7.
ί = l

We denote by 0(5,2) the orthogonal group of R preserving < , ) . Thus we can

identify 0(5,1) with the subgroup 0(5,1) = {A I A = ( °A, A G 0(5,1)} of

0(5,2). The following theorems are essentially classical, so we state them here

without giving proofs.

1.2 THEOREM. Let Elf E2 and E3 be never zero principal vector fields of x corres-

ponding to λ, μ and v respectively. If x' is Mόbius equivalent by (τ, A) to x, then

T^iE^y T*(E2) and τ*(E3) are principal vector fields for x'.
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1.3 THEOREM. TWO hypersurfaces x and xf are equivalent by the Mόbius equiva-

lence (r, A) if and only if we can arrange the order of the curvature spheres {a\ b',

c'} of x' such that

(1.6) af ° τ — Aa, V ° τ = Ab, c' ° τ = Ac, A = ( j .

It is easy to see that Ev E2 and E3 in Theorem 1.2 are characterized by the

properties that Eγ{a) || (a - b), E2(b) \\ (a ~ b) and E3(c) \\ (a ~ b). By (1.3) we

have

( x

\\+(λ-μ)\ 0

0/ \ 0

Since x _L x*(TM), we have (E2(a)y E2(a)) = (λ — μ) \ x*(E2) \ > 0. Similarly

<E3(b), E3(b)> > 0 and <Ex{c)$ E.ic)} > 0.

1.4 DEFINITION. (Elt E2, E3) are called the Mόbius vector fields correspond-

ing to the curvature spheres (α, b, c) of x if they are principal vector fields cor-

responding to U, μ, v) and

(1.7) <£ 2 (α), E2(a)> = <E3(b), E3(b)> = iE^c), E^c)} = 1.

It is clear that (Elf E2, E3) are determined by the hypersurface x up to signs.

By Theorems 1.2 and 1.3 we have immediately

1.5 PROPOSITION. Elf E2 and E3 are Mόbius invariants.

In the rest of this paper we will always assume that {Ev E2, E3) are the

Mόbius vector fields, and for simplicity we will denote by f{ the partial derivative

£,(/) f o r / e C~(M). By (1.3) we have

(1.8) <a, a ) = { a , b> = <b, b> = 0 ;

(1.9) ax = R(a - b), b2 = S(a ~ b), c3 = T(a - b),

where

(1.10) R = - r ^ - , S = ^ - , T = T ^ ^ .v / λ — μ1 λ — μf λ — μ

By Theorem 1.3 and Proposition 1.5 we know that R, S, T and W defined by
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(1.9) and (1.4) are Mόbius invariants. Since {Elf E2> E3} is a basis for TM, we

can find C* e C°°(M), 1 < i, , k < 3, such that

(1.11) [£„ £,] = - Σ C,*Efc> C* = ~ Ck

φ i.e.,/,, - / „ - Σ C*Λ, V / e C°°(M).

It is clear that all C f ; are Mόbius invariants. We can define two other Mόbius in-

variants by

(1.12) Φ = <a22y a22>, W= (1 - W)2<cllf cn>.

By (1.11) we know that Cυ are determined by the Mόbius vector fields (Eίf E2,

E3). In the rest of this section we show that the Mόbius invariants i?, 5 and T are

determined by (Ev E2, E3, W).

By (1.4) and (1.9) we obtain

~\RW+ WJiab) + (1 W)~(1.13) b,= - (1 - W) (RW+ WJia-b) + (1 - W) c,;

(1.14) c2={W2 + S-SW)(.a-b) + Wa2;

(1.15) «3 = W'^Γ - Wς) (β - ft) - W'\\ - W)b3.

Thus by (1.4), (1.7) and (1.8) we have

(1.16) <bv δ,> = (1 - W)~\ <c2, c2> = Ψ 2 , <β3, a3> = W~2(l -

It follows from (1.13), (1.14) and (1.15) that

1.6 PROPOSITION. For any k, k' e {a, b, c) we have

(1.17) <kt, k'> = 0, i= 1,2,3;

1.7 PROPOSITION. We have the product table

<, > a b a2 b3 ct

(1.18)

Proof. We have to prove that <α2, b3) = (b3, c^ = (clf a2) = 0. By (1.11)

we have b32 = b23 + C32bλ + C32b2 + C32b3, thus (a2, b3} = — (a> b32) =

- <fl, b23> = - <a, S3(a - b) + S(a3 - b3)) = 0 (cf. (1.9)). Similarly we have

a
b

a2

h
c

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0
0

0

1

0

0
0

0

0

1
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<b3, c,> = <cu a2> = 0. Q.E.D.

1.8 COROLLARY. For any k, kf ^ {α, b> c} we have

(1.19) </ct , kp =0,iΦj,l<i,j<3.

1.9 PROPOSITION. Lέtf F = C 2 3, ί/ww w have

Cl2= (I-]¥)'%+S, C1

l3=(l-W)~1T, Ci = F;

(1.20) C2

12=R, C2

13=-W~2F, C2

O=W~\W3-Ί);

* - (1 W)~2F C3 = ^ " ' ( l WO"1 ( ^ + IW?) C = W'C* - (1 ~ W)~2F, C3

13 = ^ " ' ( l - WO"1 ( ^ + IW?), Co = - W'S.

Proof. By (1.11), (1.9) and (1.17)—(1.19) we have

«ai9 at»1 = 2<ailt a) = 2<au + C\xa{, at> = 2<R(at - bj, a{> + 2C/1<α<, a).

Since <α2, ft2> = 0 and <a3, b3> = - W~ι{\ - W) (cf.(1.15)), we obtain C\2 =

R and C3

13 = W~\l - W)~\Wι + WR). Similarly, by calculating «bif bi»2 for

i = 1,3 and «ci9 ci})3 for i = 1,2 we obtain C\2 = (1 - W)~ιW2 + 5, C2

3

3 =

- W~ιS, C\3 = (1 - RO"1!1, C2

2

3 = ^ " ' ( ^ 3 - 7). Furthermore, by (1.11),

(1.9) and (1.16)^(1.19) we have

C12 = ^ 1 2 " " 2̂1» ^3> = ^12» ^3> — ~ <Λ> ^32^ = "~ ^ l f &23 ~ Cgs^i)

- Ci<6 1, b,} = ( 1 - W " 2 F ;

C i = <c23, î> = - <c2, c13> = - <c2, % + Cί3c2> = - W2C2

13. Q.E.D.

1.10 COROLLARY. T ^ Mobius invariants R, S and T are determined by (Elf E2,

E3,W).

§2. Adjoint Mobius frame in R for hypersurface in 5

In order to write the structure equations and establish the fundamental

theorem for the hypersurface x : M-* S under the Mόbius group we need an ad-

joint frame U : M~• GL(R ) along x which is invariant under the "Mόbius group"

To construct the adjoint frame U we know from (1.18) that at each point of

M {a, by a2, b3, c j is a subbasis for R . Since <#22,
 a^ = ~ 1> ^22* b} = 0 and

<&!!, b) = — (1 ~ W) , we know that ia> b, a2, ί>3, clf a22, bn} forms a Mόbius

invariant moving frame in R along M. In order to simplify the products among

them we modify a22 and bn to d, e : M —• R ,
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(2.1) d = a22 + A^ + A2cv

(2.2) e= (1- W)cn + Bxa + B2b + B3b3,

where Aa, Bβ e C°°(M) are to be determined. Our goal is to choose Aa, Bβ in

(2.1) and (2.2) such that we have the product table

<, > a b a2 bo cx d e

(2.3)

e 0 - 1 0

2.1 PROPOSITION. We have

a
b

a2

d

0

0

0

0

0

- 1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

- 1

0

0

0

0

0

0

- 1

0

0

0

0

(2.4) aΆ = [R2 - 2RS - (1 - W)~'W2R - W~'(X - W)~\T- W3)F\(a - b)

(2.5) a23 = [- W~\W2 + S - SW)3 - 2W~2(W2 + S-SWHT- W3)

+ W~ιT2 - W~\l + W)ST\(a - b)

+ W~2(W2 + S - SW)b3 + W~lFcx

(2.6) ftsl = W(X - W)~ι[iW'\T- W3))1 + W~2(l - WO " ' ( I + WO

(T - W3) (RW+ W,) - R3 + (1 - W)~XRT\ {a - b)

- W~\\ - W)~ιFa2 - (1 - W 0 " 2 ( T - W3)Cl;

(2.7) b32 = [S3 + 2W~\T- W3)S + (1 - W)~\RW + W1)F](a - b)

- ( 1 - W)~ιFc,;

(2.8) c12 = [(1 - WOSj + (2 - 3W)RS - Wβ + (RW + WJJia - b)

+ (RW+ WJai + (1 - WO" 1 ^;

(2.9) ca= [W~\l - W0"1(l + W){RW+ W,)T- W~2(W2 + S- SW)F

+ T1 + RT\(a-b) - W~ιFa2.

Proof. The idea is to use (1.9), (1.13), (1.14) and (1.15) to reduce the order

of derivatives. We calculate here only a2ί and an. By (1.11), (1.20), (1.9) and

(1.15) we have
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#21 ~ #12 ~~ ^\ia\ ~~ Q 2 # 2 ~ Cyβ3

= (R(a - b))2 - [(1 - W)'ιW2 + S]R(a - b) - Ra2 - (1 - WO"2Fα3

= [R2 ~ 2RS - (1 - WO^Wy? - W~\l - W)~\T- W3)F](a - b)

+ W~\\ - W)'ιFb3.

By (1.14) we have

c23 = (W2 + S- SW)3(a -b) + (W2 + S- SW)(a3 - b3) + W3a2 + Wa23.

On the other hand we get from (1.11), (1.9) and (1.20) that

^23 ^32 ' ^23^1 ' ^23^2 ~*~ ^23^3

= T2(a - b) + T(a2 - b2) + Fc, + W~\W3 - T)c2- W~ιST(a - b).

From these two formulas, (1.14) and (1.15) we get (2.5). Q.E.D.

2.2 PROPOSITION. We have

(2.10) (a22, cn> = - (R1W+2RW1 + Wn + R2W) + 2W~ι(l - W)~2F2

(2.11) <α22, b33> = - [W~2(W2 + 5 - SW)]2 + W~3S(W2 + 5 - SW)

-2W~\l - W)~ιF2\

(2.12) <b33, cn> = [(1 - W)~2(T- W3)]3 - (1 - W)~3ΠT- W3)

+ 2W~2(l - W)~ιF2.

Proof. We calculate here only (a22, cn). By (2.4) we have <#2, ^n) =

- <a21, cx} = 0. Using (2.4), (2.8) and (2.9) we obtain

\#22> ^11/ ~" \#2> ^112^ = ^#2> ^121 ' ^12^11 ' ^12^12 ' ^ 1 2 ^ 1 3 '

= — ((a2, cl2y)x + <α21, cl2> — Cl2(a2, c12> — Cl2(a2, c13>

= ~ (R1W+2RW1 + Wn + R2W) + 2W~\l - W)~2F2. Q.E.D.

Now we come to determine Aa, Bβ in (2.1) and (2.2). By (1.18) and (2.1) we

have <d, a) = - 1, <d, b> = - <a2, b2> = 0 (cf. (1.9)) and <d, a2> = 0. By

(2.7) we have <rf, b3> = <α 2 2, b3> = - <fl2, 632> = 0. In order that <d, q> = 0

we need

(2.13) A2 = - <α22, q> = <α2, cl2> = i?PT+ Ŵ  (cf. (2.8))

In order that <rf, d) = 0 we choose
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(2.14) A1 = l(Φ- A2) =i[Φ-(W1 + WR)2],
Lt Cι

where Φ is defined by (1.12). By (1.18) and (2.2) we have <e, d> = 0 and

<e, b> = - 1. By (2.4) we have <e, a2> = (1 - W0<cn, a2> = - (1 - W)<clf

a21) = 0. In order that <£, b3} = 0 we need

(2.15) B3 = - (1 - W0<cu, b3> = (1 - W0<clf &31> = - (1 - W O " 1 ^ - W 3̂).

By (2.2) we have (e, c^} = 0. In order that (e, e) = 0 we need

(1 - W02<cn, cn> + B2 + 2(1 - W)B2<cιv b> + 2(1 - W)B3<cnt b3> = 0.

Since (cn> b} — — (1 — W0~ , <cn, ύ3> = — (clt b3ί) = 0, we get

1 2 1 - 2 2

(2.16) β2 = j ( ψ - B3) =^[Ψ- (1 - W) (T- W3)],

where ?P* is defined by (1.12). Finally we choose Bx such that (rf, >̂ = 0, that is,

(1 — W0<α22, cn> ~ -δi + B3(a22, b3) = 0.

By (2.7) we have <α22, 63> = - <a2, b32> = 0, so by (2.10) we obtain

(2.17) B1 = (1 - W0<α22, cn>

Thus we obtain a Mόbius invariant moving frame {a, b, a2, b3, cv d,e} in R

along M with the product matrix / given by (2.3). We denote by O (5,2) the sub-

set of GL(R7),

/ / 0 0 \

(2.18) O*(5,2) = M 6 G L ( R 7 ) Γ A / 2 A = / } , / 2 = 0 - 1 0 .

\0 0 - 1 /

Then we have U — (α, b, a2, b3y clt d,e) : M—• O (5,2). We call it the adjoint

Mόbius frame in R for x.

In the rest of this section we show that

2.3 PROPOSITION. The M'όbius invariants Φ and Ψ are determined by (Ev E2,

E3, W).
We define
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By (2.3) we know that V : M-* 0(5,2). We denote by p : R 7 ^ R the projection

(2.19) Pot(uv u2,-',u7) = u7.

Then by (1.3), (2.1) and (2.2) we have

(2.20)r:= (picd.pW.p^.pibJ.pίcJ.pW.pie)) = (l,l,0,0,0A, B1 + B2),

which is the last column of U. Thus the last column γ of V is given by

r* = ( ^ (1 - A,), -j= (1 - B, - B2), 0,0,0, j ^ (1 + A,), j ^ (1 + B1 + B2)).

Since V : M^ 0(5,2), we have <!γ*, V*> = - 1, i.e., 2AX + 2BX + 2B2 = 1. It

follows from (2.14), (2.16) and (2.17) that

(2.21) Φ+W=(W1+ WRΫ+ (1 - W)~\T- W3Ϋ

+ 2(1 - W)(R1W+ 2RW, + Wn + R2W) - ±W~\\ - W)~ιF2 + 1.

On the other hand we get from (2.3) and (1.15) that

(2.22) 633 = - <b33, d>a - <b33, e>b- <b3, a23>a2 - <b3, cι3>cx - W~\\ - W)d + e.

Since p(b33) = 0, (2.20) and (2.22) imply

(2.23) 0 = - <b33, d> - <b33, e> - W~\l - W)A, + B^ + B2 = 0.

By (2.1), (2.2) and Proposition 2.1 we have

(2.24) <b33, d> = <b33, a22> + W~\\ - W)AU

<b33, e> = (l-W) <b33, cn> + W'il - W)BX - B2.

Thus Proposition 2.2 and (2.23) imply

(2.25) - W ' d - W)Φ+ Ψ

= a - w)ίa-w)~\τ- fr3)]3- [w-\w2 + s-sw)]2

+ 4FΓ~2(1 - W)~\l - 2W)F2 + W3(l - W)~\W3 - T)

+ W~\l - W)U2W- 1)(Λ, + 2RW, + Wn + R2W) - (Wt + WR)2]

+ W~3S(W2 + S-SW).
Proposition 2.3 follows from (2.21), (2.25) and Corollary 1.10.

§3. Fundamental theorem for hypersurfaces in 5

In this section we will show that (Eu E2, E3, W) is a complete MObius in-
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variant system for x : M—• S4.

Let U = {a, b, a2i bv cv d,e) : M—• O*(5,2) be the adjoint Mόbius frame in

R for x. We have the mappings X, Y,Z:M—>o (5,2) ( = Lie algebra of

O*(5,2)) defined by

(3.1) £X(U) = UZ, £2(U) - VY, E3(V) = UZ.

3.1 PROPOSITION. A// elements of the 7 X 7 matrices X, Y and Z are Mόbius in-

variants determined by (Elt E2, E3, W).

Proof. By (2.3) we have for any mapping u : M—> R the formula

(3.2) u = — <w, rf>α — <w, g>6 + <w, a2

s>a2 + <w, ί>3)&3 + <w, c ^ q

We denote by 9t(M) the set of all mappings u : M—• R 7 such that all coefficients

of u in (3.2) with respect to {a, b, a2, b3, clf d,e} are Mόbius invariants deter-

mined by (Ev E2> E39 W). To prove Propposition 3.1 it suffices to show that the

partial derivatives of a, b, a2i b3, cv d, e in the directions of Ev E2, E3 are ele-

ments in 9ΐ(M). We prove this fact in several steps.

Step I . EM), E2(a)9 E3(a), Ex(b), E2(b)f E3(b)

It follows immediately from (1.9), (1.13) and (1.15).

Step Π. Ex(a2), E3(a2), Ex(b3), E2(b3), E2(cj, E3(cj e 5R(Af).

It follows immediately from Proposition 2.1.

Step W. E2(a2)y E3(b3), E^cJ e 91 (Af).

It follows immediately from (2.1), (2.2), (2.22), (2.24) and Proposition 2.2.

Step IV. E^d), E3(d), E2(e), E3(e)

By (2.1), (2.2), Steps I ,Π and ΠI it suffices to show that a22V a223i c112 cll3 ^

9Ϊ(M). Since Al9 A2i Bx, B2, B3 defined by (2.13)-(2.17) and their partial deriva-

tives in the directions of Elt E2, E3 are Mόbius invariants determined by (Elf E2,

E3, WO, by (1.11) we need only to show that al21, a232y c121 c131 ^ 9Ϊ(M), which

follows from Proposition 2.1, Steps I ,Π and ΠI.
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StepV. E2(d), E,(e) e SR(Λί).

By (3.2) and (2.3) we have

E2(d) = (d, e2}b — {d, # 2 2 ) # 2 — (rf, b32}b3 — (d, c12yc1 + {d, # 2 )d + (dy 62)#.

Since £2, α2 2, b32, c12, a2, b2 €= 9ΐ(M), we obtain E2(d) £= 9ΐ(M). Similarly we can

prove that Eλ(e) e 31 (Af). Q.E.D.

Now we can prove the following fundamental theorems for hypersurfaces in

S 4 :

3.2 THEOREM. (Elt E2, E3, W) forms a complete Mόbius invariant system for

hypersurfaces in S 4 with different principal curvatures, which determines the hypersur-

face up to Mobius transformations.

Proof We have to show that if CE/, E2', E3, Wf) is the Mόbius invariant

system for another hypersurface xf: N—+ S and there exists a diffemorphism

τ : Λf —• JV such that

(3.3) E; = e^Ei, ε, = ± 1, i = 1,2,3 ;W= W'° τ,

then there is A ^ 0(5,1) such that (τ, A) is a Mόbius equivalence for x and xf.

By taking {εγE^ ε2E2, ε3E3) as the Mόbius vector fields we may assume that

in (3.3) ε, = 1. Take a point q e M we have Uo : = V(q) e O*(5,2) and U/: =

U' ° τ(ί) e O*(5,2). We define A = U/ ° U,"1. By (2.18) we know that

A G 0(5,2). By (2.20) and (3.3) we have γ0 : = r(^) = 7'° τ(?). Since AU 0 = U/

and 7(^) (resp. γf ° τ(q)) is the last column of Uo (resp. U/), if we write

A = ( ) for w ^ R and Uo = ( ), then we have γ0 = vB + wγω i.e.,

(v, w - 1)UO = 0. Since det(U0) Φ 0, we get v = 0 and w = 1. Thus A e

0(5,2) implies u = 0, i.e., A = ί ). By (3.3) and Proposition 3.1 we know

that X= X'° r, Y= Γ ° r a n d Z = Z ' o r . Thus both AU and 17° τ are solu-

tions for the linear PDE system (3.1) with the same initial value AU 0 = U/. By

the uniqueness theorem we obtain A U = 17 ° τ on M. In particular, A α = a! ° τ

and Kb = b' ° r, and by (1.4) and (3.3) Ac= c' ° τ. Thus Theorem 1.2 implies

that (r, A) is a Mόbius equivalence for x and x\ Q.E.D.
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3.3 Remark. Let {tlf t2, t3} be the unit principal vector fields for x corres-

ponding to λy μ and v respectively. Let {co , ω , ω } be its dual basis. Then we

have

( 3 4 ) E> = T = T ' E* = J=~λ> E* = T=~]i> w = Ύ^μ'

The dual basis for {Elf E2, E3) is {(λ — v)ω , (μ — λ)af, (v — μ)ω }. Thus the

Mόbius invariant system (θ , θ , θ , W) in Theorem 1 is equivalent to (Elf E2,

E3, W).

§4. Mδbius homogeneous hypersurfaces in 5

Our goal in this section is to prove the following theorem:

4.1 THEOREM. Let X'.M^S be a hypersurface with constant Mobius in-

variants R, S, T defined by (1.10) and constant Mobius curvature W, then up to a

Mobius transformation x is either a part of some xθ or a part of some xw described in

§0.

Since for any Mόbius homogeneous hypersurface the Mόbius invariants R, S,

T and W are constant, we have Theorem 2 as a consequence of Theorem 4.1. As

for Dupin hypersurfaces we have R = S — T = 0 (cf. (1.9) and Pinkall [10]), we

get also Theorem 3.

The proof of Theorem 4.1 bases on the relations among the Mόbius in-

variants. Let x : M—• 5 be hypersurface with constant R, 5, T and W. By (1.11)

and (1.20) we have

[E19 E2] = - S E 1 - RE2 - (1 - W)~2FEZ

(4.1) [Elf E3] = - (1 - W)~ιTEι + W~2FE2 - (1 - W)~ιREz\

[E2f E3] = -FE, + WιTE2 + W~ιSE3.

The Jacobi identity [[Ev £ 2 ] , E3] + [[E2, E3], EJ + [[E3, £ J , E2] = 0 implies

that

(4.2) Fλ = - (2 - W0(l - W)~1(W~1ST + RF)

2

(4.4) F3= - (2W- DW'ίil - W)RS- (1 - W)~ιTF\.

(4.3) F2 = (1 + W)(W(1 - W)~ιRT+ W~ιSF)
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4.2 PROPOSITION. The M'όbius invariants F, Φ and Ψ are also constant.

Proof. By (4.3) and (4.4) we have F23 = - (1 + W)W~lSF3 and F32 =

(1 - 2W0tΓ"1(l ~ W0"1TF2. Using (4.1)~(4.4) we get

0 = F23 - F32 + FF, - W~ιTF2 - W~ιSF3

= - (2 - W) (1 - W)~lRF2 + lower terms in F.

Similarly we have the quadratic equations of F with constant coefficients:

(1 + W)SF2 + lower terms in F = 0 (1 - 2 W) TF2 + lower terms in F = 0.

If one of {(2 - W0#, (1 + W)Sy (1 - 2 WO T) is nonzero, we get F = constant.

But if all of them are zero, we get from (4.2)~(4.4) that Fλ = F2 = F3 = 0. Thus

F is constant. It follows from (2.21) and (2.25) that Φ, ?P*are constant. Q.E.D.

4.3 COROLLARY. It follows from (2.21), (2.25), (2.1) and (2.2) that

( 4 . 5 ) Φ = W + W R 2 + W ( l - W ) ~ 2 T 2 - W ~ 2 ( l - W)S2 - ι 2

(4.6) Ψ= 1 - W+ W(X - W)R2 + (1 - W)'ιT2 + W'\\ - W)S2

- 4 ( 1 - W)'λF2;

(4.7) d = a22 + ^(Φ- W2R2)a + RWc,;

(4.8) e = (1 - W0cn + [2W~\\ - W)~ιF2 - R2W(1 - W)]a

+ \W- ( 1 - W)~2T2]b- ( 1 - W)~ιTb3.

Since three curvature spheres a> b and c are colinear in R , we can arrange

the order such that c lies between a and b. Thus by (1.4) we have 0 < W < 1.

Since FT is assumed to be constant, we can arrange a, b such that 0 < W < ~κ.

Moreover, by changing Et to — Et if necessary we may assume that R > 0,

5 > 0 and T> 0 (cf. (1.9)).

4.4 PROPOSITION. We have only the following 6 possibilities:

(I) fF=^- , Γ = F = 0; (II) W=-^ ,R = 2S, T=-FΦ0; (III) 0 < f f < | ,

R = S = F = 0 (IV) 0<W<^,R=T=F=0; (V)0<W<^,S=T

= F = 0 (VI) # = S = T = 0.
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Proof Since F is constant, we get from (4.2), (4.3) and (4.4) that

(4.9) ST= - WRF RT= - W~2{\ - W)SF (2W- ί)[RS- (1 - W)~2TF\ = 0.

It follows that

(2W- 1)F[WR2 + W'2(l - W)S2 + 2(1 - W)~2T2]

= (2W- 1){-RST-RST+2RST) = 0.

Thus either (i) W = -^ or (ii) W Φ j and F = 0 or (iii) i? = 5 = 7 = 0. From

(i) and (4.9) we get the cases ( I ) and ( Π ). From (ii) and (4.9) we get the cases

(ΠI), (IV) and (V). (VI) follows from (iii). Q.E.D.

4.5 PROPOSITION, (i) R = S = 7 = 0 implies 7 = 0 ; (ii) R = 7 = F = 0 im-

plies S = 0; (iii) S = 7 = F = 0 implies R = 0.

Proof We assume that R= S = F = 0. By (4.1), (4.7) and (2.5) we have

d = Λ22 + 2" Φfl [F 2 , F 3 ] = W~1TE2 a23 = 0.

Using (2.3) and (1.15) we have

0 = <d3, d> = <a223 + \ Φa3y d> = <a223, d> - \ W~ιΦT

= <«232 - W~ιTa22i d> - -w W~ιΦT = - W'ιΦT.

By (4.5) we have Φ = W + W(l - W)'2T2 > 0, thus 7 = 0 . Similarly, if R = 7

= F = 0, we calculate 0 = O 2, 0> and get S = 0 if 5 = 7 = F = 0, we calcu-

late 0 = <dlf d> and get R = 0. Q.E.D.

4.6 PROPOSITION. IfW=-r>, 7 = F = 0, ffcen i? = S = 0.

Proof We assume that W = j , T = F = 0. By (4.7), (4.8), (4.1) and (2.4)

we have

+ ^RCl; e = \clx-\R2a +

[Elt E2] = - SEι- RE2 aΆ = - 2RS(a - b).
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It follows from (2.3) that

0 = <dlt d> = {α221 + \{Φ -\R2)R(a - b) +\RCU, d)

= <a221, d) - \R{Φ - jR2) + R(e + \R2U - \ Ψb, d)

= <«212 - Sa21 - Ra22, d> ~\

= - <2RS(a2 - b2), d> - S<aΆ, d> -

where the relation (b2, d) — — S follows from (1.9) and (2.3). From (4.5) we

get Φ = Y + -ξ R2 ~ 2S2, thus R = 0. Since R = T = F = 0, we get from

Proposition 4.5 that 5 = 0 . Q.E.D.

4.7 PROPOSITION. The case that W = j , R — 2S and T = — F Φ 0 is

impossible.

Proof. We assume that W= TΓ, R = 2S and T= - F Φ 0. By (4.7), (4.8)

and (4.1) we have

(4.10) d = β22 + \ (Φ - S2)a + Sd e = \cn + (8Γ2 - S2)a + \ (Ψ- 4T2)b- 2Tb3;

[Eu E3] = - 2TE1 - ATE2 - 4SE3 [E2, E3] = TEι + 2TE2 + 2SE3.

By Proposition 2.1, (1.13) and (1.15) we have

aΆ = ( - 4S2 + 8Γ2) (a - b) - 4Tb3 α23 = - lQSTia - b) + 2Sb3 - 2Tc,

b31 = 16SΓ(f l-b)+4Ta t - ATc, b32 = 2ST(a- b) + 2Tq

cu = S2(a-b) + Sa2-2Tb3; ci3=10ST(a~ b)+2Ta2;

a3 = 2T(a-b)-b3; ^=-2S(Ά-b)+2cv

One can easily verify that 0 = (d3, d> = T(- US2 + 8Γ 2 - 2Φ). By (4.5) we

have Φ = y — 6T , thus T Φ 0 implies

(4.12) 445 2 - 20T 2 + 1 = 0.



MOBIUS GEOMETRY FOR HYPERSURFACES IN S 4 1 7

On the other hand we have by (4.10) that

(4.13) a23l - a213 = - 2Ta21 - 4Ta22 - 4 5 α 2 3 .

We can easily get from (4.10) and (4.11) that

<am, e> = - 8S2T - 2TΨ + 8T 3

< - 2Ta21 - ATa22 - 4Sα23, e> = 48S 2Γ - 16Γ3.

Using (4.10), (4.11), (2.12) and (2.24) we obtain

<a23V e) = ( - 4S 2 + 8Γ2)<β3, e) - 4T<b33, e> = - 4 5 2 Γ - 40Γ 3 + 2TΨ.

Thus we get from (4.13) that 52S2Γ - 64Γ 3 + ATΨ = 0. Since TΦO and

W= \ + 35 2 - 6T2 (cf. (4.6)) we obtain

(4.14) 3 2 S 2 - 4 4 Γ 2 + 1 = 0,

which contradicts to (4.12). Q.E.D.

It follows from Propositions 4.4, 4.5, 4.6 and 4.7 that

4.8 PROPOSITION. R = 5 = T = 0.

4.9 PROPOSITION. F = 0 or F = ± — τ = ^ =

Proo/. Since i? = S = T = 0, we get from Propositions 2.1, (4.5), (4.6), (4.7)

and (4.8) that

[El9 E3] = Pf " 2 F £ 2 α21 = W'\l ~ W)~ιFb3 a23 = W~ιFCl

Φ=W-4W~1F2; Ψ=l- W-4(l- W)~lF2;

<a22, e> = 0 <cn, β> = -^ - 2(1 - W0"2F2.

By (2.12),.(2.16) and (2.17) we have

<ύ33, e> = - \ (1 - W) + 2(1 - W0~\F2 2 2

Since <22i3 ~ 2̂31 = ~ W~ Fa22, we get

W~\\ - W)~ιF<b33J e) - W~ιF<cn, e> = -
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W(l — W)
which implies that F = 0 or F = ± , = = . Q.E.D.

2V1 - W+ W2

To summary we have

4.10 COROLLARY. Let x : M—* S be a hypersurface with M'όbius invariant

system (Elf E2, E3, W). If the M'όbius invariants R, S, T and W are constant, then

R= S= T= 0. Moreover, either (i) [Ei9 Ej] = 0, 1 < t, < 3 or (ϋ)

[Elf £ 2 ] = - (1 - W)~2FE3 [Ev E3] = W~2FE2 [E29 E3] = - FEX\ where

F = +
2Λ/I - W+ W2'

In order to prove Theorem 4.1 we need the following lemma, which is a direct

consequence of Theorem 2.34 in Warner [12], p. 77:

4.11 LEMMA. Let M and N be two simply connected 3-manifolds. Let (Elt

E2, E3) (resp. ( £ / , E2\ E3)) be a basis for TM (resp. TN). If [Ei9 Ej] =

~~ Σk CijEk and [E'if E'j] — — Σk CijE\ with the same constant cofficients Cιjf

then there exists a diffeomorphism τ M-^τ(M) c N such that τ*(E) = E{>

f = 1,2,3.

To complete the proof of Theorem 4.1 we look for examples of hypersurfaces

in S whose Mόbius invariants (E{,.E2', E3i W) satisfy (i) or (ii) in Corollary

4.10. Then Lemma 4.11 and Theorem 3.2 will imply that x is Mόbius equivalent

to one of those examples.

4.12 EXAMPLE. Let xw:Jl —>S be the 1-parameter-family hypersurfaces

given by

(4.15) xw(φ, Ψ, θ) =-^0tWl ~ Wcosφ,y/1 - Wsinφ,

/ F c o s 0 , /Wsmψf sh0), 0 < W <j.

It is the orbit of the subgroup G of 0(5,1) through the point p = (\/l — W', 0,

W, 0,0) e S4 by the action (1.2), where
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(416) fΛ

/ cos φ - sin φ 0 0 0 0

' sin0 cos0 0 0 0 0

0 0 cos φ — sin ψ 0 0

0 0 sin φ cos 0 0 0

0 0 0 0 ch<9 sh<9

0 0 0 0 sh θ ch θ

Thus xw are Mόbius homogeneous. Using the stereographic projection TΓ from 5 to

R which takes '(0,0,0,0,1) to '(0,0,0,0) we get the hypersurfaces xw' = π ° xw :

R 3 ->R 4 ,

(4.17) xw'= e~θtWl - Wcosφ, yl - Wsinφ, y/Wcosφ, y/Wsinφ).

They are cones spanned by the isoparametric tori Tw c S cz R and 0 ^ R . One

can easily verify that the Mόbius invariant system (2?/, E2', E3, W) for xw is

given by

(4.18) £ / = /. TTT'^ΓT, E9 — vW'-^rrf Eo = / — Ϊ T T — - ~ z , W = W.
-1 y l — FF 90 aφ 3 V ^ ασ

Thus (F/, £ / , E3\ W) satisfies (i) in Colollary 4.10.

4.13 EXAMPLE. Let xθ:N—*S be the 1-parameter-family isoparametric

hypersurfaces with three principal curvatures λ — ctg#, μ = ctgiθ + ~n π) and

v = ctgiθ + -o-7r) (cf. Cartan [3], Mϋnzner [8]). Cartan pointed out in [3] that xθ

are the orbits of some orthogonal subgroup G of 0(5). Since 0(5) is naturally a

subgroup of the Mόbius group on 5 , we have G a s a subgroup of Mόbius group

acting transitively on xθ(N). Thus xθ are Mόbius homogeneous. Let W be constant

be the1 \ί^W
with 0 < W < Y , we put θ = arctg 2 - jp L e t (Ei> E2> Ez> w

v —Mόbius invariant system for xθ. One can easily verify that W — ~^~z— = Ŵ
/ μ

Since λ, μ and v are constant, we know from (1.9) that Rr = S' — T' — 0. Thus

by (4.1) we have

(4.19) [£/, £/] = - (1 - W)"FΈ3' [£/, E31 = W'FΈJ LB/, E{\ = -

By Proposition 4.9 we know that either F' = 0 or F ' = ±
- W)

If
2V1 - W +

r = 0, the Riemannian metric g on N such that #CE/, £/) = <5ί7 is flat
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(cf. (4.19). Thus there is a covering TΓ : R —+ N, which is impossible because the

universal covering of N is S . Therefore F' = ± — , Here the sign
2

± is not essential. Ef will change sign if we change E{ to — 2?/. Thus (2?/, E2\

E3\ W) satisfies (ii) in Corollary 4.10. In order that we can use Lemma 4.11 we

consider the universal covering π : S —* N and the immersion xθ ° TΓ : S —* S

withxθ°π(S3) =xθ(N).

Thus Theorem 4.1 follows from Examples 12, 13, Lemma 4.11 and Theorem

3.2.
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