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THE MINIMUM AND THE PRIMITIVE REPRESENTATION
OF POSITIVE DEFINITE QUADRATIC FORMS 11

YOSHIYUKI KITAOKA

We are concerned with representation of positive definite quadratic forms by
a positive definite quadratic form. Let us consider the following assertion

A, ,: Let M, N be positive definite quadratic lattices over Z with rank (M) = m
and rank(N) = n respectively. We assume that the localization M, is represented by
N, for every prime p, that is there is an isometry from M, to N,. Then there exists a
constant ¢(N) dependent only on N so that M is represented by N if min(M) > c¢(N),
where min(M) denotes the least positive number represented by M.

We know that the assertion A,,, is true if # = 2m + 3. A suceeding natural
problem is whether it is the best or not. It is known that this is the best if m = 1,
that is A, , is false. But in the case of m = 2, what we know at present, is that
there is an example N so that A,,, is false if # —m = 3. We do not know such
examples when # — m = 4. Anyway, analyzing the counter-example, we come to
the following two assertions APW,, , and R, ,,.

APW,,, . There exists a constant ¢'(N) dependent only on N so that M is repre-
sented by N if min(M) > ¢'(N) and M, is primitively represented by N, for every
prime p.

R,.n: There is a lattice M” containing M such that M is primitively represented
by N, for every prime p and min(M") is still large if min(M) is large.

If the assertion R,,, is true, then the assertion A, , is reduced to the
apparently weaker assertion APW,, .. If the assertion R,,,, is false, then it becomes
possible to make a counter-example to the assertion A,,,. As a matter of fact,
APW, , is true but R, is false in general, and it yields examples of N such that
A, , is false.

We proved that the assertion R, ,,,.1 (resp. R,, 5,,40) is true if m = 3 (resp. m
= 2), respectively. The aim of this paper is study the case of # = 2m for m = 4.
In Section 1, we study min >;_, [b7,/N]°q, where g, is a positive number, 7,, N
are integers, b runs over integers Z O0mod N and [z] (— 0.5 < [z] < 0.5)
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denotes the decimal part of x. In Section 2, we study the distribution of isotropic
vectors on a quadratic space over a finite field. In Section 3 the transformation
matrix of two specified basis {v,, ..., v,}, {w, ..., w,} of a positive definite
quadratic forms over Z is studied, where (B(v,», v]-)) is reduced in the sense of
Minkowski and (B(w;, w;)) gives a Jordan splitting at a prime p. In Section 4, we
show the assertion R, ,,,(m = 6) is true.

We denote by Z, Q, Z, and Q, the ring of integers, the field of rational numbers
and their p-adic completions.

Terminology and notation on quadratic forms are those from [3]. We denote a
quadratic form and the associated bilinear form by @ and B (B(x, x) =
Q(x)) respectively. For a lattice on M on a quadratic space V over Q, the scale
s(M) denotes {B(x, y) |z, y € M} and the norm (M) denotes a Z-module
spanned by {Q(x) |z € M}. Even for the localization M, they are similarly de-
fined. dM, dM, denote the discriminant of M, M, respectively. A positive lattice
means a lattice on a positive definite quadratic space over Q. For a real number
x, [x] denotes the largest integer which does not exceed .

1. Minimum

DEFINITION.  For a real number x, we define the decimal part [x] by the con-
ditions

—1/2<[x]<1/2and z— [x] € Z.

Note that [x]z = [— x]z for every real number x.

DEFINITION.  For positive numbers a, b, we write
a<,b

if there is a positive number ¢ dependent only on # such that a/b < c. If both a
<, band b €, a hold, then we write

a=,b.
If m is an absolute constant, then we omit .
DerINITION.  For positive numbers ¢;, ¢,, we say that a positive definite mat-

rix S = (s;,) is (¢, ¢,)-diagonal if we have

¢, diag(s,y, "y Spm) < S < c,diag(s,, "+, Sy
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If S is reduced in the sense of Minkowski or in a Siegel domain &, then S is (c,,
¢,) -diagonal for some positive numbers ¢, ¢, (see Ch. 2 in [3]).

Lemvma 1. Let M = Zlv,,. .., v,] be a positive lattice and assume that (B(v,,
v) is (¢;, ¢,)-diagonal. For a primitive element w = X 7w, in M and for a natu-
ral number N, we have

min(M + Z[w/NI) =, .. min(min(M), min % [bri/N]zQ(vi)>.

bEZ,N4b i=1
Proof. Since there are positive constants ¢, ¢, so that

¢ i”: xizQ(Ui) < Q(ﬁ xi”f) <e %xzzQ(U,),

i=1

putting
(£ am) = Eafow),
i=1 i=1
we have
ming (M + Zlw/ND=, . miny, (M + Z[w/N])
= min(2 (b, + b,/ N*QW)),
i=1

where integers b, b; (1 = 1,..., m) should satisfy b, + br;/N # 0 for some i. By

noting that under the restriction N| b, the minimum is equal to ming, (M), and that
the condition N X b yields b, + br;/N # 0 for some ¢ because of the primitivity
of win M, the above is equal to

min(min(M), min %[br/N]@(v,-)). |

beEZ,NLb 1=1

Remark. Let M and M’ be positive lattices of rank M = rank M’. Then the
condition M’ D M implies min(M’) < min(M) < [M’: M]* min(M’).

LEMMA 2. Suppose that Min,eq v, 2rey [67,/ N1*Q(v,) in Lemma 1 is attained
at b = B and then putting N’ = (B, N), we have
min(M + Zlw/ND =, , min(M + Zlw/(N/N)1)
=, ., min (min(M), min 3 [b7, /(N/N’)]ZQ(U,)>.

beZ i=1
(,N/N")=1
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Proof. By virtue of

min (2 [5r,/N1'Qw)) = min (% [br,/N1Q())

beZ,Nyb ‘i=1 (b,N)=N" Mi=1

= min (S 1n/N/NQW)) = min (& or,AN/NITHQW)),
(b,N/N")=1 “Mi=1 beZ,(N/N ) Jb “i=1

we have

min(M + Zlw/ND <, min (min@D, min 3 [br,/NI'Qw))

beZ,NXb 1=1

= min <min(M), min .%'_. [b7, /(N/N’)]ZQ(v,-)>

(6,N/N")=1 i=1

> min (min(), _min 5 [or,/AN/N) Q)

beZ,(N/N") b i=1

e, min(M + Zlw/(N/N")1)
> min(M + Zlw/N)),

because of M + Zlw/N] D M + Z{w/(N/N"]. ]

LEMMA 3. Let a; be positive numbers with ot; < 1/2 fori=1,...,t and N a
natural number. Put

/Nl < a 1 =1,..., tand
X(al,...,a,;N):zl(rl,...,r,)modN”M‘ T <a ford an}

for some integer ¥ with (r, N) = 1

Then we have

t
| X(a, ..., ,; N) | < 3'N II max(e,N, 1).
i=1

Proof. Suppose that (7, ..., #) is an element in X(ay, ..., a@,; N) and
| [77;/N1| < a, for some integer # relatively prime to N. We can choose integer
b, so that b, = r7,mod N and | b,/N| < a,. Then we have 7, = Rb, mod N for an
integer R with #R = 1 mod N, and hence

| X| < N|{(b...,0) mod N||b,/N|<e,G=1,...,D}]|

t t
<N Q2la,N] + 1) < 3'N I max(e,N, 1). 0
i=1 1=1

ProposiTioN 1. Let qy,. .., ¢, € be positive numbers with ¢/q; < 1/4 for i =
1,...,t, and N and N’ a natural number and a divisor of N, respectively. Let S be a
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subset of (Z/NZ)" such that for every element (r,..., ) €S

min (Zt: [ b7, /N]Zq,.>

beZNNb Vil
is giwen at b with N’ = (b, N). If
| Smod N/N’| > 3'(N/N’) Imax(/c/q,*N/N’, 1),

then there exists an element (r,. .., 7,) € S such that

min (ﬁ: [bri/N]Zqi> > c.

beZNXb ‘i=1
Proof. Suppose that the assertion is false; then for every (#,...,7) € S
t
min (Z [br,./N]zq,) <eg,
beZ,NLb ‘i=1
where the minimum is given at b with N” = (b, N). This yields

min (3 [67,/NV',) = min (3 [br,/NT'q)

beZN Kb Vi=1 BN =N’ \i=
t

= min ( [br,-/(N/N')]ZKIi> <c
(b,N/N")=1 V‘i=1

and hence (7, ...,7)mod (N/N") € X(Jc/q,,...,Vc/q,; N/N’). Lemma 3

implies
|Smod N/N'| <|X(Jc/q,,...,Jc/q,; N/N') |
< 3"(N/N") M max(/c/q,"N/N’, 1),

which contradicts, the assumption. ]

THEOREM. Let q,. .., q, be positive numbers, 1y, ..., ¥, non-zero integers with r,
=1, and N a natural number. Then we have

K = min <i fbr,-/N]ij>

bEZNKb ‘ji=1
7. 2
> min((—l) 4. .. <
2,/ 1

Proof. Suppose that

t

7,
2

2 ot
) g0 N7 > r'q,)-

-1
r[
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(1) KS( :"

2 j+1

2
> giforj=1,...,t—1.

We will show that K is attained at & = 1. Suppose that an integer b gives the
minimum K and | 5| £ N/2. The condition N X b implies b # 0. First, we claim

(2) lbr,| < N/2forj=1,...,t.

When j = 1, it is true because of 7, = 1. Suppose that (2) is true for j = ¢ (X ¢ —
1) ; then we have | b7,| < N/2 and hence K > [br,/N1’q, = (br,/N)’q, which
yields || < VK/q,-N/|7;|. Now using (1), we have | b7, | < VK/q,-N/|r,|:
7 | <17 1/@ 17 DN/l 7|l 7o | = N/2. Thus (2) has been shown induc-
tively.

The condition (2) implies [b7;/N1* = (br;/N)* and then

t t t
K= 3 (br;/N)’q; = b*/N* X #lq; > N> X r/g,,
j=1 j=1 i=1
where the equality occurs for b = £ 1. This completes the proof. ]
CoroLLARY 1. Let gq;, #;, N, K be those in Theorem, and put

—(— 7;
,:ZA(]I)/thk, 7],-:: |/l

r=1 K<i N(J'—l)/tA;/Z

A:: qu) A

forj=1,..., t. Then we have
A\t
(i) 4{— K
()

2

t .
> min ((nl/nz)z,..., /0% = n,z-(A/Nz)l_m( 11 qk)_l)
j=1

i<k<t
> min((n,/1,)%. .., 4, /0)% 1D
(i) n; =1,
(iii) if g, 2 g, = "+ 2 q,, thenwe have A, 2 1 forj=1,..., t.

Proof. 1, =1 is trivial. We have for j < {,

~G-1)/t
A

< 7 >2 _ Uwa—D/tHkq"Ik'
;=

2 Ap2i/t —irt
/FIRYA N V Y/

_ <n7zil>z<;A2—>1/t,

g;

Vit1
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and hence

7 2 n; 2/ A -5/t
(2 o aa=(P) 5)
and then by putting 7 = 1

2

NIZ q: = 77f(A /NHY
Therefore we have

I qk)—l.

J<k<t

<%>qu = (4 /Nz)l_(j_l)/t(

The inequality in (i) follows trivially from the above.
Suppose ¢, = q, = -+ + = q,; then we have

Aj — H qk'A-(j—l)/t — I—I qllc—(j—l)/t_ I-I qk—(j—l)/t

k<j k<j k=j

ZgU=G=D/0 | Zys,=G-D/t _
2 g q; =1 O

COROLLARY 2. Suppose t = 2 in Theorem. Then we have

K> /g, /N if v, <q,/¢,N or if both (r,, N) = 1 and y/q, /¢, N < 1.

Proof. 1t follows from Theorem that

6B\ oo (VLN 7 1
4(N2> K*mm( 7’22 ’ Vq1/42N+ V‘I2/‘I1N).

Hence the first assertion is clear. Next we assume (#,, N) = 1 and take an integer
R, such that », = R,7z,mod N and 0 < R, < N, and we note that B := b7, runs
over the same set mod N as b. Interchanging the suffices 1 and 2, we have

4<qlqz)“”2 K> min (Mz/qlN R, 1 )

N? R: "Va./aN - Vg, /q,N/’

The second assertion follows from yq,/¢, N Ry > > (Jq,/ ¢, N) ™' > 1. U
CoroLLARY 3. Let ¢qy,. .., g, be positive numbers and N (> 2) a natural num-

ber. Let xy,. .., X;, X be integers and suppose that one of 2xy,. .., 2x,, 2x is not con-

gruent to 0 mod N. Then there are integers 1, . . ., ¥, such that 2;_, 7,x; # x mod N

and
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min (2[: [b7, /N]Zq,) > (N - iIiII qi)m.

beZ,NAb ‘i=1
Proof. We may suppose ¢; = ¢, = *** 2 ¢, For integers , = £ 1,7, ...,
7, let 4, 4;, n; be those in Corollary 1. By virtue of 4, = 1, we can choose #; so
that 1, ><1 for ¢ > 1. We note that this property also holds for 7, + 1 instead of

7, because of 4, = 1. If Xi_, ., & x mod N, then Corollary 1 implies the asser-
tion. Suppose

t
2Rz;=xzmodNforR,=x1,R,=7,r,+13G>1).
i=1

Substituting R; = 7;, #; + 1, we have x; = 0 mod N for j§ > 1. Hence we have x;
= — z, = x mod N, and then 2x = 2x, = 0 mod N. This is the contradiction. []

PropPOSITION 2. Let q,,. .., q, be posilive numbers, 1,,. .., ¥, integers, and N a
natural number with (r,,. .., r,, N) = 1. Put

t t
A=Tg, K:= min <Z [br,/N1'g,).
i=1 beZ,NXDb ‘i=1

Then we have

K > minlq, ..., ¢} or K<, (4/NH"".

Proof. Define a positive lattice M := Zlv,,. .., v,] by (B(v,, v,)) = diag(q,,
..., q) and put M’ := M+ Z[(2 r,v)/NI. Then we have [M’':M] = N and
hence dM = N®dM’. The general theory of positive definite quadratic forms im-
plies min(M") <, (dM")" = (A/N»"". On the other hand, Lemma 1 implies
min(M") =, min(min(M), K), and hence if K < min(M) = minlq,,..., ¢}, we
have K<, min(M") <, dM")"' = (4/N>"" O

ExampLE. In Proposition 2, put t=2,7,=7=1,¢, =1, ¢, = N> (e >
0). Then we have
K=N"+N° (A/N»"" = N*".
Hence K €, (4/N*)"" is false in this case.

ProposiTiON 3. Let t, q;, 7;, N, A, K be those in Proposition 2. Then there is a
positive number 8, dependent on t such that
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K<, (A/NHY if (A/N*Y < 8, minlg,, ..., q,}.

Proof. We use induction on . The assertion is clearly true for £ = 1, since K
= A/N> We may suppose ¢; <+ < g, without loss of generality. Put M =
(7, ..

., 7;, N). First, suppose M # 1; then for b:= N/M (% Omod N), b»,/N
is not an integer and therefore we have

t
K < X [br,/Nl’q, = [br,/N’q, < ¢,/4,
i=1
which implies K <, (4 /NHY by virtue of Proposition 2.

Hereafter we suppose M = 1. We choose a sufficiently small constant d,. By
the assumption, we have A/N®< diq <
<8, <84

= 5:(11(1;1 and hence ¢, " ¢, /N?
if ; < 8,7;. Then the induction hypothesis implies

. ! 2 2\ 1/(t-1)
min 2> [bri/N] q; <c¢_,(q, - q/N")
bEZN Kb i=2

for some constant ¢,_;. Therefore, for the integer b which gives the minimum of the
left-hand side in the above inequality, we have

t
K< 3 [br,/Nq < q,/4 + (g, qt/NZ)l/(t—l).
i=1
Here we have

(qz . qt/NZ)l/(t—l) — ql—l/(t—l)(A /NZ)I/(t-—D < 1—1/({—1)(5tql)t/(t—1) — 5;/(t—1)q1
and hence K< (1/4 + ¢,_,6,“ g, < q, if 1/4 + ¢,_, 6//“"" < 1. Proposition
2 implies K £, (4 /N which completes the proof.

O
ProrosiTiON 4. Let ¢, q;, 7;, N, K be those in Proposition 2. If N >, 1, then
we have

K <,N maxgq,.
i

Proof. 1f N >, 1, then miny,, =i Tbr,/N1* €, N follows from Proposi-

tion 3. Thus there is an integer b ¥ 0 mod N such that >;_, [br,/ N1? <<,N_Z/'
and hence we have K < 3!_, [br,/N1’q, <, N™*" max, g..

O
PROPOSITION b.  Let t be a natural number, p a prime number and r; = Rp% inte-
gers with (b, R) =1 for i = 1,2,..., t. We assume that ¢, = 0 < ¢, < ¢; <



10 YOSHIYUKI KITAOKA

< e, and define a sequence of integers vy =1 < v, <, < -+ <y, <y, =t+
1 by

=" =,
<e1)1: et :ey2—1
<
< e”k == e”kﬂ'l'

For a natural number e,,, (= e,) and positive numbers q,, @y, . . ., q,, we put

t
K := min (Z [br,./N]Zq,) where N 1= p*

beZNKb Yi=1

K= min (2 [6R,/p"Vap™ ") jorj=1,..., k+1

beZ.0Fikb Vi<v;

where E; = e, — e, . Then we have K 2 min{K,, ..., K, }.

Proof. Putting v := v, e ‘= e,, s = ¢,,,, we claim that

1) K= min{Kl, min <Z [br, /0 Vgp™ + = [ br,p‘e/ps“’lzqi)].

beZ, b5 Cxb Vi<v i>v

Let us show the claim. For an integer ¢, we put
t
K(©) :=min X [br,/p° g,
b =1
where b runs over the set of integers satisfying & = ¢ mod »°~° and b # 0 mod p°.

It is easy to see

K©0) = min X [Br,/pVq, = K,.

BeZ,p°¥B i<v

Next, for an integer ¢ (# 0 mod»*°) we assume K(c) is attained at b (= ¢ mod
$°7°). Then we have

K@) = Z [br,/p' Vg, + 2 fer/0"T'q;.

i<v
Now we show
(2) | Torp™11 = | Torp™ 1| p™° fori <.
We define integers B, B,, B, by

B = br,modp’, —p°/2 < B<p’/2,
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B=B,+ By, —p /2 < B, <p/2.

We have only to show | B/p*| = lBl /p7 | p7°, and may assume B = 0 without
loss of generality. If 0 < B, < $°7°/2, then we have B, > 0 and then B/p’ =
B,/p"+ B,/p°= B, /p° = (B,/p" )p™°, which is the required inequality. If
—p"°/2 < B, <0, then we have B, > 0 and hence B/p’ = (B, +p"* + (B,
— D7V =B+ 7V =B/ D =B /pT b because of
z+12>|z|for a real number x := B,/p"° in [—1/2,0). Thus we have
shown the inequality (2) and

K() = Z [br,/p" ™ Vgp™ + § [er,/p° Vg,

i<v

= A:_j [er,/p" " Vgp™™ + § ler,/p° 1.

Hence the identity K = min{K(c) | ¢ € Z} implies

K> min{K©0), min (Z[er,/p™ Vgp™ + Z [er,/p'1q))

c#0 mod p$~¢ i<V

implies the inequality (1).
Now the assertion of the lemma is shown by induction on k. By the claim (1),
we have K > min{K,, K'}, and

K’:= min (Z [bR,/NVgp "+ = [brip‘e"l/N’1zqf)

beZ, N xb ‘i<v, iZzv,
where N’ := p*~°1. Put
I/leviﬂfori: 1,..., k— 1, and Vojzl’ Vk::t+1’

o {o ifi <, L {qi,,-”vl ifi<uw,
e, - = e s> Qi'— e s
e; — e, if12v, q; if1 = v,

Then we have

4 4

e, —¢€ =e —e forj=1,...,k

V-1 Vjs1

Qp o = gp T for i<, G=1,..., k).

Therefore we can apply the induction hypothesis to K”. O

2. Distribution of isotropic vectors

In this section, we study the distribution of isotropic vectors in a quadratic
space over a finite prime field. p denotes an odd prime number and F, stands for
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the prime field Z /pZ through this section.

THEOREM 1. Let V= F,le,, e,] be a regular quadratic space over F, with
guadratic form Q. Then for every positive integer H < p, we have

| X x(Qre,+e,)) | <2/plogp +1,

1<zx<H

where X stands for the quadvatic residue symbol with x (0) = 0.
To prove this, we prepare several lemmas.

LemMa 1. Let H be an integer such that 1 < H < p. For a function ¢(x) on F,
defined by

1 fl1<x<H,
0 otherwise,

c(x) = {

we put

W) :=p" 2 ce(— yz/p),

Z€F,
where e(x) denotes exp(2mix). Then we have

c@x) = 2 hyelxy/p).

yeF,

Proof. The assertion follows from

S helzy/p) =p' = 2 c@e((— yz + xy)/p)

YEF, YEF, z€F,

=p7" 2 ) X clylx — 2)/p) = c(x).

zeF, yeF, D
Lemma 2. Fora, b € F, with a° — 4b # 0, let us define the function ¢(x) on
F, by (@) := x* + ax + b. Then we have
Z @) = —1,

ZEF,

where ¥ stands for the quadratic residue symbol with x (0) = 0.

Proof. See Theorem 8.2 in [1]. ]
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LEMMA 3. For the above functions x and ¢, we have

| 2 x(@@)elxy/p) | < 2vp.

.l‘Ep

Proof. We use Theorem 2G on p. 45 in [5]. We put f(x) := ¢(x) and
g(x) := x there. Then Y? — f(X) is absolutely irreducible because of ¢(x) =
(x+a/2)'+b—a’/4 and b—a’/4# 0 in F,, and so is Z' — Z — g(X) by
Theorem 1B on p. 92 in [5]. Hence the condition (ii) in Theorem 2G is satisfied
and we have the assertion. ]

LEMMA 4.  For the function h(x) in Lemma 1, we have

2 | iy | <logp.

yeF;

Proof. Since Zyep; |hy) | = p"l ZyeF; | 21 <.<ue(—yz/p) |, the inequality
on p. 56 in [6] gives the required one. O

LemMMA 5. Let H be an integer such that 1 < H < p, the functions X and ¢ as
above. Then putting
0:= 2 x(¢@),

1<z<H

we have
|o| <2vplogp+ 1.
Proof. It is easy to see, using the function ¢(x) and A(x) in Lemma 1

0= 2 x(¢p@)clx)

yEF,

= 2 x(@p@) 2 hyelxy/p)

ZEF, yeF,

= 2 x@@)h0) + = h(y 2 x(¢p@)elxy/p)

ZEF, yeF, ZEF,

-7 @+ Z hy T x(@@)elxy/p)

2€F, yeF} zeF,

—H/p+ Z h(y){Z x (@) e(ry/p)}.

uEFp z€F,

Hence we have

|| < H/p+ X |h(y)|-2/p <H/p+2/plogp <2/plogp+1. [

x
yeFP
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Proof of Theorem 1. Putting ¢(z) := Q(ze, + ¢,), we show

| 2 x(@@)]| <2/plogp+ 1.

1<r<H

If Q(e,) # 0, then we can apply Lemma 5 because of ¢(x) = Q(e,) {x” + 2B(e,,
¢,) Qle) 'z + Q(e) Qle) ™"}, where the bilinear form B(xz, y) is defined by
2B(x, y) '= Qx +y) — Q@) — Qy). If Q(e)) = 0, then we have B(e,, ¢,) # 0
and ¢(x) = 2B(e,, ¢,) (x + Q(e,)/(2B(e,, ¢,))), and then Polya-Vinogradov's ine-
quality (Problem ) in b. on p. 102 in [6]) yields the inequality. ]

TueOREM 2. Let V= F,le,, . .., e,](m = 3) be a quadratic space over F,.
Then we have the following assertions:
(i) Suppose that Q(e;) = 0, Ble;, ¢;) # 0 for some i, j (i # j). Then for any x, € F,
(k # 1, 7)), there are elements y; € F,, y, = £ 1 and u € V so that

vi=ye, Tyt 2 ox4e,
k#1,j

is isotropic and B(u, v) # 0.

(ii) Suppose m = 4 and dim Rad V < m — 3. Then there exists a subset T = {t,, t,,

ty) 11, 2,..., m} which satisfies the following property:
Let S,, S, be subsets of F, and assume that | S;| = 3 and S, is a set of con-
secutive integers. If p > 5 and | S,| > 5Vp logp, then there ave elements
=21, 2,€S5,2€S5, ¢, €F, for i €T and u € V such that

3
v= 2 xe, + 2y

j=1 i€T
is isotropic and B(u, v) # 0.
Proof of (i). Suppose that Q(e,) = 0, B(e;, ¢;) # 0 for some ¢, j (i # j) and

z, (k # i, j) is given. Putting v := y,e; + y,¢; + 2,.;; Z,,, we have
Q) = 2y,Ble, ye; + 2 x,6) + Qlyse; + 2 x,¢,)
k#1,5 k#1,j
= Zyi(ij(ei’ ej) + B(eiy 2 .Z'kek)) + Q(y,»ej + Z -Z'kek).
k#1,j k#i,j

Because of Ble,, ¢) # 0, we can take y, = & 1 so that y;B(e;, ¢,) + Ble;,, 2.,
Zye,) #+ 0 and then we can choose y; so that v is isotropic. For # := ¢,, we have

B(u, v) = y;Ble;, ) + Ble,, 2 x,e,) #0. (I

k#i,j
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To prove the assertion (ii), we prepare two lemmas.

LemMA 6. Let W= F,[w,, ..., w,] (n > 3) be a quadratic space over F, and
assume that Q(w,) # 0, and dim Rad W < n — 2. For a subset S C F, with [S|=
3, there exist an element x € S and suffices i, § > 1 (i # j) such that F,[w, + zw,,
w,] is a regular quadratic space.

B(w,, w,)
Proof. Putting w;:= w, — W w,, we have a decomposition W =
w,
F,lw] L F,lw,,..., w,]. It is easy to see, for i, J

F,lw, + xw;, w,] is not regular for any x € S
& Qw, + xw,) Q(w,) = B(w, + xw,, w,)’ for any x € S
& (Q(w) Q(w,) — Blw,;, w))x* + 2(B(w,, w)Qw,) — Bw,, w)Bw,, w))x
+ Qw) Q(w,) — B(w,, w,)* =0 for any x € S
{Q(wk)Q(w,) = B(w,, w)* for k=7j, i,
B(w;, w;) Q(w,) = B(w,, w)B(w,, w,).

Moreover we have

QW) = Q(w) " (Q(w) Q(w,) — Bw,, w)?,
Bw,, w)) = Q(w,) " (Q(w,) B(w,, w) — Bw,, w,) B(w, w,)).

Now suppose that F,lw; + zw;, w,] is not regular for any ¢, j > 1 (i # ) and for

any £ € S. Then the above implies @(w; = B(wj, w)) = 0 for the above {, j,

which implies Q(F,[w;,..., w;]) = 0, and then contradicts dim Rad W < n — 2.
O

Lemma 7. Let W= F,[w,, ..., w,] (n = 3) be a quadratic space over F, and
suppose Q(w,) # 0, dim Rad W < n — 2. Then we have the following
Let S, S, be subsets of F, and assume that | S;| = 3 and S, is a set of con-
secutive integers. If p > 5 and | S, | > 5vp log p, then there are elements T €
S, Yy €S, and indeces i,j > 1 (@ # j) such that Qw, + xw; + yw,) €
(F))"

Proof. By virtue of Lemma 6, there exist suffices ¢, j > 1 (i # j) and x € S,
such that F,lw, + zw,, w,] is regular. Suppose Q(w; + zw; + yw,) & (F,X)Z for
any y € S, By putting ¢:=|{y € S,| Qw; + zw, + yw,) = 0}|, Q(w,) # 0
yields 0 <¢<2 and the supposition implies 2,c5 x (Q(w; + xw; + yw,)) =
— (| S,| — 1), where x denotes the quadratic residue symbol. Theorem 1 yields
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| Z”esz x(Q(w; + zw; + yw,))) | < 2(2yVplogp + 1), and hence we have |S,]|
<2@Vplogp+ 1) +2.1f| S, | > 5/p log p, which yields p = 3 or 5. |

Proof of (ii) in Theorem 2. First, suppose that @(e;) = 0 for every ¢ ; then the
assumption dim Rad V < m — 3 yields that there are indeces ¢, 7 ( # ) such
that Ble;, ¢)) # 0. Let T be a set {t,, t,, t,;} with t, =jand i € T. For z, € S,, z,
€ S,, the assertion (i) implies that ye; + x.e, + z,¢, + Z4¢, for some y € F, and
x, = * 1is a required element.

Next suppose that Q(¢;) # O for some index i. For simplicity, we may assume
1= 1:

Qe) #0
and put
[ _ B(ei’ el)
w,-=e, Q(el) €.
Putting W= F,lw,, . . ., w,], we have V= F,le;] L W and dimRad W=
dim Rad V < m — 3 = dim W — 2. We note that for an element v 1= X ze; € V,
_ Ble;, e) _ -1 m
(1) v = 2in 1'{(“’{ + W‘ﬁ) = Q(e) Ble, v)e, + 2, Tw,

QW) = Q(e) 'Ble, v)* + QX1 z.w).

Case (I). Suppose that there is an index k (= 2) such that Q(w,) # 0. By
applying Lemma 7 to the quadratic space W scaled by — Q(el)_l, there are dis-
tinct indeces ¢, 7, K with ¢, § 2 2 and x; € S|, x, € S, suth that

— Qe ' Qw, + w; + xw,) = r?
for some element » € FI,X. By putting
v:i=xe T x0T 10, T 200,

for x, € F,, ;= 1, (1) implies Q) = Q(e) 'Ble,, v)* — Q(e)r’. Now we
choose x; so that Ble, v) = 2,_,,,;, x,B(e,, e;) = Q(e)r because of the
assumption B(e,, ¢;) = Q(¢;) # 0. Hence we have Q(v) =0 and Ble, v) =
Q(e)7 # 0 and have completed the proof of (ii) in the case of (I), by taking ¢, = i,
t,=j, t,=k

Case (II). Suppose that @(w,) = 0 if ¢ = 2. Since dim Rad W < dim W — 2,
there are indeces 7,7 = 2 (¢ # j) such that B(w,, w;) # 0. For simplicity, we
may assume B(w,, w;) # 0. First, suppose m = 5; then put z = x,w, + I,w, for
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€S, €S, and v :=yw, + 2w, +2z for y,x €F, Since Q) =
2y(x,B(w,, w;) + B(w,, 2)) + 2x,B(w,, 2) + Q(2), we choose y € F, and x, =
+ 1 so that x,B(w,, w,) + B(w,, 2) # 0 and Q') = — Q(e,). By putting v :=
xe, + ye, + x,e; + 1,6, + 256, for x € F,, we can choose x so that B(e, v) =
Q(e)), and then @(v) = 0 follows from (1) and we complete the proof of the asser-
tion (ii) in case of m = 5, putting £, := 3, t,:=4, t,:=5and u : = e,.

Next suppose m = 4. We are assuming that Q(e) # 0 and Q(w,) =
Q(wy) = Q(w,) =0, and B(w,, wy) # 0. For an element v = x,¢, + T3¢, + z,¢,
+ z,e, € V, (1) implies

Q) = Q(e) 'Bley, v)* + x,2x,B(w,, w) + 22,Bw,, w,)) + 22,2,B(w,, w,).

Suppose &, € S, and choose 2; = = 1 so that a:= 2x,B(w,, w)) + 2x,B(w,,
w,) # 0. Now we claim that there is an element x; € S, so that x(azx, +
2x2,2,B(w,, w)) = x(— Q(e)). If it is false, then we have

ZZ; X(axs + lesz(ws’ w)) = — x(— Q) (| Sz' -9,

3€353
where t=|{z, €S,|ax, + 22,2,B(w,, w) =0}| =0 or 1. By applying
Polya-Vinogradov’s inequality, we have | S,| — ¢ < 2v/p log p, which contradicts
| S,| > 5yp log p. Therefore there exists x, € S, so that ax, + 2x,2,B(w,, w,) =
— Q(el)—lr2 for some 7 € F,,X. Then we have Q(v) = Q(el)_lB(el, )
Q(e)"'7*. Now we choose i, so that B(e,, v) = 7 because of @Q(¢;) # 0. Then v is
isotropic and for # ‘= w, we have

B(u, v) = 2,B(w,, w,) + x,B(w,, w,) = a/2 + 0,

which completes the proof of the assertion (ii) with ¢, := 3, £, := 4, t;:= 2. ]

3. Transformation matrix

Let us give a result to combine the reduced form at the infinite prime with a
Jordan decomposition at a finite prime.

THEOREM. Let p be a prime number and v, m positive integers with v < m. Let

(r)
S™ be a regular symmelric integral matvix and we write S = (S‘ SZ) and let
3 4

D, eM,_,Z,), D, € M,(Z,) be regular matrices and suppose that P pm
(resp. p'™*, ..., ™) be elementary divisors of D, (resp. D,) over Z, and t; < - -
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(r,m—vr) (r)
A A,

(m—r) (m—r,r)
A, A,

Assume that for a natural number e,

<t, Let A" = ( ) be an integral matrix with det A= £ 1.

A4 = OmOdPe, tm—r <e + tl = mln(tm + 17 tm—r+1)

b, 0 > mod p"*.

Stal = ( 0 D,

Then S, and D, have the same elementary divisors over Z, and S; = 0 mod P71, and
the matrix S, ' S, is integral over Z, and both S, — S, '[S,] and D, have the same

elementary divisors over Z,.
Proof. We note

A—l

( O(m—r,r) A;l
-1

. _1> mod p°Z,.
Az - Az A1A3

By virtue of

pS[Al =p 7" (D modp™ " and t, —t, +1=e,

0

1

0 )
we have

S

I

-1
(2 0N s

0(7) O(r,m—r)
F

by D, = 0modp™ . Hence S, and D, have the same elementary divisors over
Z, and we have S, = 0mod p°*" and then S;'S, is integral over Z, by the condi-
tion ¢,,_, < e + f,. By the identity

_ gt 1, 0
5= (%78 (s3] 5;2-“> (i L))

both D, and S, — S; '[S,] have the same elementary divisors over Z,. U

e+t

mod p 7,

1

4. Theorem

The following is the destination of this paper.
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THEOREM. Let m be an integer = 6 and N a positive lattice of rank 2m. For a
positive number Kk, there is a positive number £, = k,;(k, N) satisfying the following
condition:

Let M be a positive lattice of rank(M) = m and min(M) > k, and M, is rep-
resented by N, for every prime p. Then theve is a lattice M" D M such that
min(M") > & and M; is primitively represented by N, for every prime p.

The rest of this section is devoted to the proof.

We fix a basis {v, ..., v,} of M so that (B(v;, v))) is reduced in the sense of
Minkowski, and we define a transformation matrix A = (a,;) by
(1) (w,..., w,) = (v,..., v,)A

for another basis {w,,..., w,} of M.

LEMMA 1. Let M be a positive lattice such that rank(M) = 4, s(M) C pZ and
suppose that M, contains a p-modular sublattice of rank = 3. Then there is a positive
number 0, for 0 < e < 1/6 satisfying the following condition:

If p > 0., then there is an element w € M such that (M + p”Z[w])p con-
tains a hyperbolic uwimodular plane with s(M + p_IZ[w])Zp =17, and
min(M + p7'Zlw]) > p°* ¢ min(M)) = min(M)**7*

Proof. Put S;:={[p"°1, [#"°1 £ 1} and S,:={x € Z|p*** <z <p"**).
If p (> 5) is sufficiently large, then we have | S,| > 5y log p, which is supposed
in the rest of the proof. By applying Theorem 2 in Section 2 to a quadratic space
Vi=M?"/pM?" over Z/pZ, there exist a subset {t, t, ;b < {1,..., m},
2, (= * 1modp), x,modp € S, x;, modp € S, and y; € Z for i # {;, such that
wi= Z,llxjvtj + 2isr, Yi0; satisfies Q(w) = 0 mod p* and B(w, M) % 0 mod p°.
This implies s(M + p""Z[w]) Z, = Z,, and for an element u € M with B(w, u)
# Omod p°, Z, [#, p'w] is a unimodular hyperbolic plane. Putting w = >, 7,
we have

min(M + p'Zlw])
= min(min(M), min 3, [57,/5)°Q(v))
pAb

i=1

> min(min(M), min 23: [bz; /p]zQ(vij))

pab =1
3

> min(M) min(1, min X [bz; /p1%)
kb j=1

> min(M)min(1, min((4z)) ™", 47 (z,/x)%, p72A + 27 + 2))) by Theorem in
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Section 1
> min(M)min(1, p—m_ze)
> 7 *min(M).

By putting min(M) = pa, we have a =1 and p > "> min(M) = min(M)"*~*.
02/3+2£ 2 min (m 1/3—25. D

LEMMA 2. Suppose p # 2. Let M be a positive lattice such that s(M) C pZ and
M, is a pZ,-maximal quaternary lattice of ind(Q,M) < 1. Moreover we assume that

the rank of a p-modular component of M, is at most 2. Then there is an element w €
M such that sS(M + p~'Z[w])Z, = Z, and min(M + p~'Z[w]) > p'*.

Proof. For some integers g,, &, relatively prime to p, we can take a basis
{w,,..., w} of M such that

(B(w;, w)) = diag(p, e,p, p°, e;p") mod p’.

The assumption on M, implies that — ¢, is not a quadratic residue mod p. For
any integers f, g, s(M + p™'Zl fw, + gw,)Z, =17, is clear, unless f=g=0
mod p. By putting s, := a4, ¢, := a,, for a,;; defined by (1) and 7, := fs; + gt, we
have fw, + gw, = 2 v, and

min(M + p"'ZL fw, + gw,]) < min(min(M), K, )),

where
4
K,,:= min X [b7,/p1°Q().
b0 mod p i=1

Now we choose 1 < a, B8 <4 by the condition d,gz:= s,t; — spt, # 0 mod p.
Then we have

K, 2 min ([br,/p]’Qv,) + [br,/51°Q(uy)

b#0 mod p

and Corollary 3 in Section 1 with x; = x, = 1, £ = 0 there implies the existence
of integers f, g such that

@) K,, > Q) Q) "™

since f= g = 0modp is equivalent to 7, = 7, = O mod p. First, suppose @ or
B = 3; then we have

Q) Q) Qv = (1) Q1)) (R Q1)) € () QW) € (K, )",
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On the other hand, we have
Q(1)*Q(v,) Q) < Q(v)dZlv,, v, v;] = p-p* =1,

since elementary divisors of (B(w;, w)) over Z, are p, p, p°, p°. Thus we have
K., > $"* and then min(M + p 2 fw, + gw,]) > »"* under the assumption &
or B 2 3. Next, we suppose that & or 8 = 3 is impossible; then we have {a, B} =
{1,2). By the way of choice of &, 8, we have d;, = dj, = d,; = d,, = 0 mod p and
then s, = ¢, =s, = ¢, = 0mod p. Now we can apply Theorem in Section 3 with
@
r=2,m=4,t=t,=1,4=4,=2¢=15= (Ssl S2) = (B, v)),

3 4

D, = diag(p, &,p), D, = diag(p’, e,p") and then we have S, — S; '[S] = S, =0
modp® and S, is p-modular. Therefore S; = O0modp’ holds and it implies
Q(v) = Q(vy) = 0mod p’, and by (2) there are integers f, g such that

Kf'g Z p 21’1/4. D

ProPOSITION 1. Let M be a positive lattice such that rank(M) = 4, s(M) <
DZ. Then there is a positive number 0 satisfying the following condition:
Ifp > 0, then there is a lattice M’ containing M such that [M’ : M] is a pow-
er of prime p, s(M)) = Z, and min(M") > p*"*. If rank(M) > 5 in addition,
M,,’ contams a unimodular hyperbolic plane.

Proof. Let a lattice M be a lattice such that [M: M] is a power of p and M,
is pZ,-maximal. min(M) > p is clear. If Mp contains a p-modular sublattice of
rank = 3, then the assertion follows from Lemma 1 with € = 1/24 if p > 0y,
Otherwise, both ind(Q,M) <1 and rank(M,) =4 hold and then Lemma 2 im-
plies the assertion. ]

By virtue of Proposition 1, if rank(M) = 4 and s(M) C pZ for a sufficiently
large prime number p, then there exists a lattice M’(D M) such that s(M’) C Z
and min(M”) is larger than a given number £ in advance. The assumption m = 4
is crucial. In the following examples, min(M) is arbitrarily large but
min(M") < 4 + 5p for every M’ (D M) with s(M)Z, = Z,.

Exampie 1. Let M = Z[v,, v,] be a positive lattice defined by the reduced
matrix

(B(v;, v)) = (‘b(l +p) pA+p) >

pA+1p) p+ 4l +pp*
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where p is an odd prime number and s is a natural number. Then d(M) = 4(1 + p)
1+ p)***" and M, =y L (p*>. Moreover, by putting M’ := M + Z[p~'w]
for w € M, the condition s(M;) = Z, compels M’ = Z[p (v, — v,), v,] and then
min(M) < Q™" (v, — v,)) = 4 + 5p.

ExampLE 2. Let M = Zlv,, v,] L Zl[v,], where v,, v, are those in Example 1
and Q(vs) ‘= agp, where a is a natural number relatively prime to p satisfying that
a> Q1+ and — a is not a square in Z, Then we have min(M) = p(1 +
$)° and by putting M’ := M + Z[p~'w] for w € M, the condition s(Mp) =Z,
compels M’ = Z[p~* (v, — v,), v, v,] and then min(M") < Q" (v, — v,)) = 4
+ 5p.

ExaMpLE 3. Let v,, v, and v, be as in the previous example. Put M := Z[v,,
v,] L Zv,] L (L7 Z10,]) with Q) > a( + p°)* and put Q(v,) € (Z;)2 for
i>4; then if, for a lattice M D M, Mtz is primitively represented by N, =
Ly L= L<=1 L= € Z;\(Z,))?), then we have M = Z[p~*(v,
—v), v, Us,...,0,] and min(M) < 4 + 5p.

In Example 3, a local extension of M is uniquely determined under the condi-
tion that it is primitively represented by N,. If this is not the case, is there an ex-
tension M’ with min(M) being small ? If so, we can make a counter-example to
the assertion 4,,,.

LEMMA 3. Let p be an odd prime and F, = Z/pZ. Suppose that V be a quadra-
tic space over F, with basis {zl, ...y 2} and integers r; = 1, Voo ooy ¥y ave given. If
Q(V) # {0}, then there are integers x, =1, (=1,x;=7r,r,216>1)
satisfying Q(Zi_, xr,z,) # 0.

Proof. We use induction on {. The case of # =1 is clear. Suppose that the
assertion is false for ¢ > 1. Since the equation

t t—1 =1
Q(X x,2) = x/Q(z) + 2x,(X Blz, z)x) + Q(Z x.2) =0,
i=1 i=1 i=1
has the three solutions &, = 7,, 7, = 1, we have
t—1 t—1
Q(zt) = 0’ Z B(zt’ zz)xi = 0’ Q(Z xizi) = 0’
i=1 i=1

forx, =1, x;,=7,7v,£1fort=2,...,¢t— 1 From the induction hypothesis,
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Q(F,lz,..., z,_,]) = 0 follows. Making use of the middle equality above for x, =

r, r; + 1, we have B(z,, z) =0 for i =2,...,¢t—1 and hence B(z, z) = 0.
Thus we have the contradiction Q(V) = {0}. ]

Lemva 4. Let L =1Z,lw,, ..., w] be a quadratic lattice over Z, such that
(B(w;, w)) = diag(ep™, . . ., ep™), (e, €Zy,a,=0<a,<- - <a), and

assume a, < a, if p=2. Let {z,,..., 2} be another basis of L and let , =1, 7,,.. .,
7, be integers. Then for integers &, =1, 2, =7, 7, £ 1G> 1), we have Q(X;_,
x2) €Z,.

Proof. 1f p # 2, then we have only to apply Lemma 3 to L/pL. Suppose
p=2and ‘(z,...,2) =B (w,...,w) for some BE GL,(Z,). By virtue of
> xz, = (xy,...,2)B (wy, ..., w), we have only to show that X._, x,b, #
0 mod 2, which implies Q(Z;_, x,2) € Z;. If =, x;b, =0mod?2 for x, =1,
x; =7, +1G>1), we have b;; = 0mod 2 for ¢ > 1, which is the contradic-
tion. L]

LEMMA 5. Let p be a prime number and M a positive lattice of rank (M) = m,
s(M) C Z. Suppose that

M, = {diag(e,p™,.. ., €,p")>

where ¢, € Zy and 0 < a, < -+ < a,,. Divide the set {1,..., m} to disjoint subsets
Sand T:=Ahy, ..., by (W, < <hp_,and 0 < 7:=|S| <m), and sup-
pose a;, < @, if p =2 and let s be a natural number < @, /2. Let {w,, . .., w,} be
a basis of M such that (B(w,, w,)) is sufficiently close to diag(e,p™, . .., €, in
M, (Z,). Let A = (a;;) be the transformation matrix defined by (1), and choose inte-
gers k, < -+ <k,,_, so that the determinant of (ak"hi)lgi,jgm_, 1s relatively prime to
p. Then there ave integers f; (i € T) such that for w = 23, f;w; we have

min(M + p~°Zlw]) > (p—ZS mﬁ Q(vk,))l/(m_”’
i=1
(M + p™°Zlw]), = (L,s<ep™) L g, p™7*) L K,
for some lattice K, of rank(K,) = m — r — 1 and s(K,) C p**Z, If r <m/2 — 1
in addition, then we have min(M + Z[p~*w]) > min(M)V ™"

Proof. Let 7y,..., #,_, be integers, and for B = (a; ) <;;<m-, we define in-
tegers fh, by
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(o evor fo ) = (ry. o, 7, ) B mod p°.
By putting R, := 2,.; a,;f;, we have
) =B'(f,.... [, ) ="(n,..., r,,) modp’
min(M + Z[p™*w]) < min(min(M), min 3 [6R,/p*1'Q(v))

Kb i=1

‘(Ry,..., R

km—r

min Z [bR, /p°1*Q(v) > mm Z [b7,/p°1? Q(v,).

P5b i=1 i
Since Q(v,) € -+ € Q(y, ), Corollary 1 in Section 1 yields that there exist in-
tegers 7,,_, =1, #,,_,_1,..., 7, such that

min Z [ b7, /j)] Q(vk) > (p‘zs n Q(y, ))1/(m -

pShb i=1

By applying Lemma 4 to L= 2Z,lw,,---,w, 1 scaled by p~ " and a basis
t . —1t . . 7 — ’ —
(2500 vy 2py) 1= (wy,, ..., w,, ), there exist integers #,,_, = 1, 7/ = 7, or

7; £ 10 <7 <m—7) such that ord, Q(Z;7z) = a,. Define integer f, by
Fio o fr )= (-, 7, )' B mod p°; then w' := %, f{w, = X, r/z, mod
p°L and hence ord, @(w") = a, . Thus we may assume ord, Q(w) = a, . Hence w

splits Z,[w; (¢ € T)], and

_ Bw, w,)

Kp = Zp [w, Q(w)

w|ie T]

which implies the second assertion. Finally we assume m = 27 + 2 ; then we have

m! Q(Uk) = dZ[vk vee Uy, 12 P Im e > pImort > pira > 5% since
mZ Pp_y> "> hyimplies m —r=h,_,—r> - >h — v and hence h,
—r< 1. L]

Remark. In Lemma 5, the assumption @, < @,, is not satisfied in general.
But we can modify it by enlarging as follows: If a, = a,, then for M= M +
Z{w, /p] we have min(M") =, min(M) and M; = {diag(e,p”, . . ., &, _p™",
g 07 & 0™ L, ™)) LK,

When p = 2, a lattice does not have any orthogonal basis in general, but the fol-
lowing is useful to reduce to a lattice having an orthogonal basis. If H, = Z,[w,,
01

10 > then

w,] is isometric to (B(w;, w,)) = 2a<

H, + Z,[(w, + w,)/2] = Z,[(w, + w,)/2, (w, — w,)/2] = {diag(2*™}, — 2°7).
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If (B(w,, w)) = 2”(1 5

), then
H, + Z,[w, /2] = Zy[w,/2, w, — w, /2] = {diag(2"", 3-2°7)).

LEMMA 6. Let 0 < v < m < n be integers and M = K, L K,, N be regular
quadratic lattices over Z, with rank(M) = m, rank(K,) = 7 and rank(N) = n. (If r
=0, then we assume K, = 0) Suppose that there is a quadratic space V such that
Q,N = Q,K, L Vandind(V) = m — 7, and that M is represented by N. Then there
is a constant ¢ = ¢(K;, N) such that there is a lattice M’ in N isometric to M with
QM NN:M1<c

Proof. Put S:={KC N|K = K} and let {H,,..., H,} be the set of repre-
sentatives of O(N)\ S. Since M is represented by N, there exist an isometry &
from M to N and an integer ¢ (1 < ¢ < #) so that 6(K,) = H,. By virtue of Q,H,
= Q,K,, we have Q,H,” = V and hence ind(Q,H;) = m — 7. Since K, is repre-
sented by Hil, we can apply Lemma 3 in [2] and therefore there is a constant c;
such that there is a lattice Kj (C H;') satisfying K; = K, and [Q,K; N H; :
K] <c, Now M’ := H; 1 K; (= M) satisfies

QM NN:M1=[QM NN:QM nH LHNIQM N H, LH"): M’
<[N:H, L H'1H L QKN H"):H LK)
< [N:H, L H'lc,

Thus the number ¢(K,, N) := max,[N : H, L H;]c, is what we want. ]

ProposiTioN 2. Let M and N be positive lattices of rank(M) = m and
rank(N) = n respectively, and p a prime number, and suppose that n = 2m — [m/2]
+ 3 and M, is represented by N,. Then there is a lattice M' (D M) such that M] =
M, if ¢ # p, M is primitively represented by N, and min(M’) > ¢(N,) min(M)®,
where ¢(N,) depends only on N, and ¢, depends only on m.

Proof. First, we note that if once, for a lattice M> M, an isometry ¢ from
M, to N, with [Q,6(M,) N N,:0(M,)] < ¢ has been constructed, then M has an
extension M’ such that M; = O'_I(QPO'(MI,) N N,) is primitively represented by
N,, M, = M, for ¢ # p and [M’: M] < ¢, which yields min(M") > ¢ “min(M).
Let 4, be an integer such that N, contains a p"Z,-maximal lattice.
Let 2 be an integer and S(A) the set of regular submodules K, of N, such that the
scale of each Jordan component of K, contains pth. Then there is a finite subset
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X(h) of S(h) so that any L € S(h) is transformed to an element in X(#) by
O(N,). Hence we can define an integer n(h) (> hy) so that for L € S(h), L' in
N, contains a maximal lattice whose norm contains pn(h)Zl,. We note that
n(h) depends only on % and N,.

First, suppose s(M,) C ph‘+2Z1,; then by the iterative application of Lemma 5
and the remark after it for p = 2, there is a lattice M(> M) such that min(M) > »
min(M)® and M, = <diag(e,p", ..., e, with h; < a, < -+ < a,, and @,
< h, + 1. Since N, contains p"Z,-maximal lattice, M, is represented by N,. We
note that for a regular quadratic space V over Q,, dim(V) = 2¢+ 3 implies
ind(V) = t. By applying Lemma 6 to Mp = K, 1 K, where K, = {diag(e,p”, ...,
Epmmb ™2 and K, = {diag(eyuz0” ™", . .., €,0“™7, there is a constant c(h;,
N,) such that there is an isometry ¢ from M, to N, such that [Q,0(M,) N N,:
o(M,)] < c(hy, N,).

Next suppose that M, = J, L J, with rank(J;) = 7 and that the scale of ev-
ery Jordan component of J; contains pth and s(J,) C thZp with an integer &
<ho+ 1.1 s(,) €p"MZ, and » < [m/2] — 1, then by virtue of Lemma 5,
there exists a lattice M (D M) such that min(A2) > min(M)" ™", and Mp =]
L <ep"™* L K, fore € Z;,5=0or 1 and some lattice K, of s(K,) < p""Z,.
By virtue of the choice of #(h), M,, is represented by N,. Thus by iterating this,
there exists a lattice M D M such that (i) min(M) > min(M) for some positive
number ¢ dependent only on s, (ii) M, = <e;p> L --+ L (g, p"™ with a, < -
< a, and a;; — a; < c,(N) for some positive number dependent on N, for
i< Im/2] ~ 1, and (iii) M, is represented by N,. Now we can apply Lemma 6
with » = [m/2] because of  — [m/2] = 2(m — [m/2]) + 3, and complete the
proof. ]

Proof of Theovem. Let M and N be positive lattices of rank(M) = m and
rank(N) = n and suppose that M, is represented by N, for every prime p. We
note that M, is primitively represented by N, if and only if M,/pM, is repre-
sented by N,/pN, over Z,/pZ, when N, is umimodular and p > 2. We assume
that s(N) € Z without loss of generality. Let § be a natural number given in
Proposition 1 and we assume that N, is unimodular if p > 0.

(i) Suppose that there is a prime p such that s(M,) < pZ, and p > 0. By enlarg-
ing M to M’, we may assume that M, is primitively represented by N, if ¢ # p
and M, = M,. If m = 4, then we can use Proposition 1 and conclude that there is
a lattice M D M’ such that s(M,) = Z, and min(M) > p"* If n = 2m in addi-
tion, the condition S(Mi,) = Z, implies that Mj, is primitively represented by N,.
(If n <2m, then the property S(Mp) = Z, does not yield the primitively-
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representedness of M, by N,.)

(ii) Denote by S the set of primes p such that M, is not primitively represented by
N,. Excluding the case (i), we assume that the condition s(M,) C pZ, yields p < 0
and hence SC{p|p<d by n=2m U n=2m—[m/21 +3=m+ [(m +
1)/2]1 + 3, then by iterative use of Proposition 2, there is a lattice M(D M) such
that min(M) > ¢(N)min(M)° for some constants ¢(N), ¢ where ¢(N) depends on
N but ¢ does not depend on M, N.

Remark. Let us examine the above proof in the case of rank(N) = 2m — 1.
We assume m = 5; then at the step (i), we may assume that M,, contains a unim-
odular hyperbolic plane and hence M,, is primitively represented by N,. Thus we
can clear the case (i). But at the setp (ii), the cardinality of the set S is not less
than a constant independent of M. So, after applying Proposition 2 iteratively,
min(M) may be small.
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