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THE MINIMUM AND THE PRIMITIVE REPRESENTATION

OF POSITIVE DEFINITE QUADRATIC FORMS II

YOSHIYUKI KITAOKA

We are concerned with representation of positive definite quadratic forms by

a positive definite quadratic form. Let us consider the following assertion

Amn : Let M, N be positive definite quadratic lattices over Z with rank(M) = m

and rank(Λ0 = n respectively. We assume that the localization Mp is represented by

Np for every prime p, that is there is an isometry from Mp to Np. Then there exists a

constant c(N) dependent only on N so that M is represented by N if min(M) > c(N),

where min(M) denotes the least positive number represented by M.

We know that the assertion Amn is true if n > 2m + 3. A sucee.ding natural

problem is whether it is the best or not. It is known that this is the best if m = 1,

that is A M is false. But in the case of m > 2, what we know at present, is that

there is an example N so that Am>n is false if n — m = 3. We do not know such

examples when n — m = 4. Anyway, analyzing the counter-example, we come to

the following two assertions APWW n and Rm w.

APWm n : There exists a constant c'(N) dependent only on N so that M is repre-

sented by N if min(M) > c'{N) and Mp is primitively represented by Np for every

prime p.

Rm n: There is a lattice Mr containing M such that Mp is primitively represented

by Np for every prime p and min(M0 is still large ifmin(M) is large.

If the assertion Rmn is true, then the assertion Amn is reduced to the

apparently weaker assertion APWWW. If the assertion Rmn is false, then it becomes

possible to make a counter-example to the assertion Amn. As a matter of fact,

APWlf4 is true but RlA is false in general, and it yields examples of N such that

A l t4 is false.

We proved that the assertion Rm>2m+i (resp. Rm,2m+2) is true if m > 3 (resp. m

^ 2), respectively. The aim of this paper is study the case of n = 2m for m > 4.

In Section 1, we study min Σ ί = 1 \bri/N\ q{ where qi is a positive number, rif N

are integers, b runs over integers Φ 0 mod TV and \x[ (— 0.5 < \x] < 0.5)
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denotes the decimal part of x. In Section 2, we study the distribution of isotropic

vectors on a quadratic space over a finite field. In Section 3 the transformation

matrix of two specified basis {vv . . . , vm}, {wv . . . , wm} of a positive definite

quadratic forms over Z is studied, where (B(υif vj)) is reduced in the sense of

Minkowski and (B(wif Wj)) gives a Jordan splitting at a prime p. In Section 4, we

show the assertion Rm>2m(in ^ 6) is true.

We denote by Z, Q, Zp and Q ,̂ the ring of integers, the field of rational numbers

and their ^-adic completions.

Terminology and notation on quadratic forms are those from [3]. We denote a

quadratic form and the associated bilinear form by Q and B (B(x, x) =

Q(x)) respectively. For a lattice on M on a quadratic space V over Q, the scale

s(M) denotes {B(x, y)\x,y e M) and the norm n(M) denotes a Z-module

spanned by {Q(x) \x ^ M}. Even for the localization Mp they are similarly de-

fined. AM, άMp denote the discriminant of M, Mp respectively. A positive lattice

means a lattice on a positive definite quadratic space over Q. For a real number

x, [x] denotes the largest integer which does not exceed x.

1. Minimum

DEFINITION. For a real number x, we define the decimal part \x] by the con-

ditions

- 1/2 < \x] < 1/2 and x - \x] e Z.

Note that \x] = \— x] for every real number x.

DEFINITION. For positive numbers a, b, we write

a«mb

if there is a positive number c dependent only on m such that a/b < c. If both a

^mb and b C w a hold, then we write

If m is an absolute constant, then we omit m.

DEFINITION. For positive numbers clf c2, we say that a positive definite mat-

rix S m — (siyj) is (clf c2) -diagonal if we have

cx diag(s u , , sm>m) <S<c2 diag(s u , , sm>m).
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If S is reduced in the sense of Minkowski or in a Siegel domain ©, then S is (cv

c2)-diagonal for some positive numbers cv c2 (see Ch. 2 in [3]).

LEMMA 1. Let M = Z[vv . . ., vm] be a positive lattice and assume that (B(vif

Vj)) is (clf c2)-diagonal. For a primitive element w — Σ ί = 1 τivi in M and for a natu-

ral number N, we have

( m \

min(M), min Σ Γδr,/Λfl2Q(»,) .
beZMXb (=1 I

Proof. Since there are positive constants cιt c2 so that

c, Σ xfQiυ,) < Q(Σ X,V) < C 2 Σ xfQiυ,),

putting

( m \ m

ΣxivA — ΣxΪQiv),

we have

minQ(M + Z[w/N\)XCi>C2 minQ,(M + Z[w/N\)

Σ (ft,+ 6r</JV)2Q(t;l) ,

where integers b, b{ (i — 1,. . ., m) should satisfy b{ + brt/N Φ 0 for some i. By

noting that under the restriction N\ b, the minimum is equal to minQr(M), and that

the condition NX b yields bt + brt/N Φ 0 for some i because of the primitivity

of w in M, the above is equal to

min(M), min Σ Γ^ /M Q(υ)). D

Remark. Let M and M ' be positive lattices of rank M = rank M\ Then the

condition Mf =) M implies min (MO < min(Λβ < [M": Λ/]2min(M0

LEMMA 2. Suppose that minbeZN^b Σ ί = 1 Γδ^ /iV] Q(^) in Lemma 1 is attained

at b — B and then putting N' = (B> N), we have

min(M +Z[w/N\) XCpC2 min(M

min(Λί), min Σ \brt/{N/Nf)fQ(v) .
6eZ i = l 7
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min ( Σ ib^/NΫQiv,)) = min (
(b,N)=Nr \ =

Proof. By virtue of

(Σ ib^
S = l

( m \ / m \

Σlb^AN/mYQiv,))^ min Σ ibr./iN/N')fQ(υ)),
vt/^v/iv 7=x 1 = 1 ' b<ΞZ,(N/Nr)Xb \ = l '

we have

min(M + Z[w/N]) X c c min (min(M), min Σ F^

= min (min(M), min Σ [ ^
^ (b,N/N') = l ί = l

>min(min(M), min Έlbr^
^ beZΛN/NΊJfb i=l>Ci>C2 min(M + Z[w;/(iV/iV0])

because of M+Z[w/N\ 3 M + Z[w/(N/Nf)]. D

LEMMA 3. Let a{ be positive numbers with a{ < 1 /2 for i = 1,. . ., / αnί/ iV α

natural number. Put

w ΛΛ . ί/ x j ΛΓ I \rri W ] \<aifori=l9..., t and
X(a19...,at;N):= \(rίf...,rt)modN Λ A .

[ /or some integer r with (r, N) = 1 J

1( ...,at;N)\<3'NΠ max(atN, 1).
i

Proof Suppose that (rlt . . . , rt) is an element in X(alf . . . , at;N) and

I \rrt/N] I < a{ for some integer r relatively prime to N. We can choose integer

b{ so that bi = rr{ mod N and | b{/N \ < a{. Then we have rt = Rbt mod N for an

integer R with rR = 1 mod iV, and hence

I Z | < iV| {(^ . . , bt) mod iV| I b{/N\ < a{ (i = 1,..., 0) I

< N Π (2[αί M + 1) < 3'iV Π maxG^ JV, 1). _

PROPOSITION 1. Lei qv . . ., #„ c 6e positive numbers with c/q{ < 1/4 /or i =

1,. . ., t, and N and Nr a natural number and a divisor of N, respectively. Let S be a
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subset of (Z/iVZ) such that for every element (rv..., rt) G S

min ( i \brt/N\'q)

is given at b with N' — (b, N). If

I S mod N/N'\ > tfiN/NO Umax(y/c7q^'N/N\ 1),

then there exists an element (rlf..., rt) ^ S such that

min ( Σ Ibr./Nfq) > c.

Proof. Suppose that the assertion is false; then for every (rv..., rt) ^ S

min (Σ \brt/N\2q\ < c,
beZ,NXb X ί = l '

where the minimum is given at b with N' = (b, N). This yields

min (Σ\bri/N]2q)= min ( i Ibr./Nfq)
b<=Z,NXb \ = 1 / (b,N)=N" Xί = l /

= min ( Σ ibr.ΛN/NOΫq) < c
(b,N/Nr) = l \/ = l i

and hence (rv . . . , rt) mod (N/N') e X{y/c/qι, . . . , y[c7qt\N/N'). Lemma 3

implies

\SmodN/N'\ < \X

< 3'(N/N') Πmax(i/c7fc JV/JNΓ, 1),

which contradicts, the assumption. •

THEOREM. Let qv . . . , #f ^̂  positive numbers, rv ..., ^ non-zero integers with rγ

= 1, αn<i iV α natural number. Then we have

K:= min ( έ \brs/ίf\2q
bZNfb Vl

. Suppose that
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id—) qf f o r ; = 1 , . . . , t - 1.

We will show that K is attained at 6 = 1 . Suppose that an integer 6 gives the

minimum K and | 6 | ^ iV/2. The condition N X b implies b Φ 0. First, we claim

(2) \bη\ <N/2ίorj= 1,..., ί.

When j = 1, it is true because of rx = 1. Suppose that (2) is true for j = i ( < / —

1) then we have | brt \ < N/2 and hence K > \bri/N\2qi = (brt/N)2qit which

yields | b \ < ^K/q{ - N/\ r{ |. Now using (1), we have | bri+1 \ < ^K/q^ N/\ rt |

I rΐ+11 < I rt\ /(2 I ri+ί |) N/\ rt \ | r ί + 1 | = Λ/72. Thus (2) has been shown induc-

tively.

The condition (2) implies Ϊbη/N]2 = (bη/N)2 and then

K=Σ {brj/N)2qj = b2/N2 Σ r2qj > N~2 Σ r2qjy

where the equality occurs for b — ± 1. This completes the proof. EH

COROLLARY 1. Let qjy rjt N, K be those in Theorem, and put

for j = 1 , . . . , ί. ΓΛen we

2 (η^/ηf, Σ Ίi){Λ/NΎ~μ>{ Π qkΓ
ι

l i f e <

(ϋ) ί i = 1,

(iii) if qx> q2> * > ^ , ί/iβn ίί;̂  have Δ} > 1 /or; = 1,. . .,

Proo/. TJi = 1 is trivial. We have for j < t,

(
v o 2 A r 2 ( ; - l ) / ί τ τ Λ-(j-l)/t

2 Λί 2>/'rτ Λ

?> + i^ Uk<J+1qk Δ
2(AΛut

= (Jk\2(AΛut

2/ '
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and hence

(rΛ2

and then by putting j = 1

" - \Ό,

— qt = ηt(Δ/N ) .

Therefore we have

The inequality in (i) follows trivially from the above.

Suppose qι> q2> > qt then we have

λ-(y-i)/ί _ T-T l-(;-l)/ί T-r -O'-D/f
4 - Π

> Σ ) Σ

COROLLARY 2. Suppose t = 2 in Theorem. Then we have

It follows from Theorem that

N

2 ίΓ>min»(>

Hence the first assertion is clear. Next we assume (r2, N) = 1 and take an integer

R2 such that rι = R2r2modN and 0 < R2 < N, and we note that B '•= br2 runs

over the same set mod N as b. Interchanging the suffices 1 and 2, we have

mm +
l \

J .

The second assertion follows from y/q2/qιNR^ l

COROLLARY 3. Lei qι,. > ., qt be positive numbers and N ( > 2) α natural num-

ber. Let xlf. . ., xt, x be integers and suppose that one of 2xlf. . ., 2xf, 2.r is noί <%>n-

gruent to 0 mod iV. T/iβn ί/iβrβ αr^ integers rl9..., ^ 5wc/ι ί/iαί Σ j = 1 ^ x t ^ ^ mod JV
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t \i/f

min ( i \brt/NVq) » (N~2 Π q)

Proof. We may suppose qx> q2> * > qt. For integers rx — ± 1, r2,. . .,

rt, let Δ, Δit r]i be those in Corollary 1. By virtue of Δ{ > 1, we can choose r{ so

that ηt X 1 for i > 1. We note that this property also holds for r{ + 1 instead of

r{ because of Δ{ > 1. If Σ = 1 rtx{ ^ x modΛ^, then Corollary 1 implies the asser-

tion. Suppose

Σ Rtx{ = x mod N for Rλ = ± 1, i?, = rf, ^ H- 1 (i > 1).

Substituting Rj = rjf η + 1, we have ^ = 0 modiV for j > 1. Hence we have xx

= — xλ = x mod iV, and then 2x = 2xx = 0 mod iV. This is the contradiction. •

PROPOSITION 2. Let qv . . ., #, 6̂  positive numbers, rlf. . ., ^ integers, and N a

natural number with (rx,..., rt9 N) = 1. Pwί

Π ί , , ϋ Γ : = min
ί = l

Proof. Define a positive lattice M •= Z[vv.. ., t J by

. . . , qt) and put M r : = M + Z [ ( Σ rp^/N]. Then we have [M Λ : M] = N and

hence AM = N άM\ The general theory of positive definite quadratic forms im-

plies minC/kfO < , (άMf)ιn = (Δ/N2)ι/t. On the other hand, Lemma 1 implies

min (MO Xt min (min (M), K), and hence if K < min CM) = m i n ί ^ , . . . , qt}, we

have IΓX,min(M') « , (dM')Ut = (Δ/N2)vt. D

EXAMPLE. In Proposition 2, put £ = 2, rx = r2 = 1, qγ = 1, #2 = iV2+ε (ε >

0). Then we have

Hence K C, (Δ/N ) is false in this case.

PROPOSITION 3. Let t, qif ri9 N, Δ, K be those in Proposition 2. Then there is a

positive number δt dependent on t such that
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K « f (Δ/N2)ι/t if (Δ/N2)ι/t < δtmm{qv..., qt).

Proof. We use induction on t The assertion is clearly true for t = 1, since K

= A /N . We may suppose qx < < qt without loss of generality. Put M =

(r2,. . ., rt, ΛO. First, suppose M Φ 1 then for b '= N/M& OmodiV), brJN

is not an integer and therefore we have

K< Σ \bri/N]2qi = \br1/N]2q1 < ? 1/4,
ί = l

which implies K <€t (Δ /N ) by virtue of Proposition 2.

Hereafter we suppose M = 1. We choose a sufficiently small constant δt. By

the assumption, we have Δ/N < δ^ί ̂  ^QIQI' ^nd hence ^2 ' ' '

2 ^ ^t-iQi it δt ̂  ^ί-i Then the induction hypothesis implies

min Σ \brι/N\2qi < ct_Mz
ZNJb i2i=2

for some constant ct_v Therefore, for the integer b which gives the minimum of the

left-hand side in the above inequality, we have

K < Σ \briZN\\ < ? 1/4 + ct_M2 ''' qt/N2)2 ) m t ~ ι )

Here we have

/ / λ 72xl/(ί-l) -1/ίί-D/y. / Λτ2x l

and hence # < (1/4 + c ^ ^ ^ ' " " ) ^ < q1 if 1 /4 + ct_x δ\nt~ι) < 1. Proposition

) '2 implies if < , (Δ/N ) ', which completes the proof. D

PROPOSITION 4. Lei t, qif ri9 N, K be those in Proposition 2. If N>tl, then

we have

Proof If N >t 1, then m i n W 6 Σ =i Γ ^ /Λ^l2 < , N m follows from Proposi-

tion 3. Thus there is an integer b & OmodiV such that Σ = 1 \br{/N]2 <tN~2/\

and hence we have K < Σ | = 1 Γύ^ /Λ^l2^- €tN~2/t max,- q{. D

PROPOSITION 5. L ί̂ t be a natural number, p a prime number and r{ = Rj)ei inte-

gers with (py Rt) = 1 for i = 1,2,. . ., t. We assume that ex = 0 < e2 < e3 <
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< et and define a sequence of integers v0 = 1 < vx < v2 < * * * < vk < f Λ + 1 = t +

1 63;

< e V i = -" = eV2_x

<
< e.. = - - = en 1.

vk Vk+1~L

For a natural number et+1 ( ^ et) and positive numbers qv q2>..., qt, we put

K'= min ( Σ \bη/N]2q) where N : = pe'+1

K, : = m i n ( Σ \bRi/pE'fqip~2(e''^''e')) forj=l,...,k + l
bt=Z,pEiXb ^iKVj '

where Ej = eυ. — eυ. . Then we have K > mm{Kv . . . , Kk+ι}.

Proof Putting υ •= vv e •= eVχi s = et+ι, we claim that

(1) K > mink, min ( Σ \brt/p"YqJ>-u + Σ \brφ"/p"β]2q)}.
L beZ,Ps~eXb \<v i:>v

 / J

Let us show the claim. For an integer c, we put

K{c) •= min Σ \bri/ps]2qi,
b i=l

where b runs over the set of integers satisfying b = c modps~~e and b Φ 0

It is easy to see

K(0) = min Σ \Brt/p'Yqt = Kv
BZeX i

Next, for an integer c (Φ 0moάps e) we assume K(c) is attained at b ( = c mod

ps e). Then we have

K(c) = Σ \bri/psλ2qi + Σ Ur./p'Vq,.
i<v i>v

Now we show

(2) \\brip-']\>\\brlp-(s-')]\p-' ίori<v.

We define integers B, Blt B2 by

B = br, mod/, - ps/2 < B < ps/2,
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B = Bx + Bφ8'6, - ps~e/2 < Bx< ps~e/2.

We have only to show | B/ps \ > \ Bx/ps~e \p~\ and may assume B > 0 without

loss of generality. If 0 < Bλ < ps~e/2, then we have B2 > 0 and then B/ps =

Bx/ps' + B2/pe >Bx/psr= (Bx/ps~e)p~\ which is the required inequality. If

- ps"/2 <B,<0, then we have B2 > 0 and hence B/ps = (B, + ps~e + (B2

- l)ps~e)/ps > (Bx + ps~e)/ps = (Bλ /ps~e + Dp" > I B1 /ps~e \ p", because of

x ~\- 1 > I x\ for a real number x '•= Bι/ps~e in [— 1/2,0). Thus we have

shown the inequality (2) and

K{c) > Σ, ibr^p I qj> ~r Σ, \cri/p \ q{

Σ
Γ , s-e~ι2 . -2e _j_ ^ ι r /j>s~]2

ι<v i>υ

Hence the identity K = mm{K(c) \ c ^ Z} implies

JfiΓ > min{X(0), min (Σ Icr./p^fqφ'26 + Σ Γ^,//l2^,)}
cίO mod />s"e ί < y ^ y

implies the inequality (1).

Now the assertion of the lemma is shown by induction on k. By the claim (1),

we have K > minίfi^, K'}, and

K':= min ( Σ ibRt/N'Yqφ'2*91 + Σ \brip"Vί/N'']2ql)

where N">= ps"υ\ Put

Vt' = υi+1ίor i= 1 , . . . , A; - 1, and Vo' = 1, V Λ := f + 1,

> i f i < ^ o . _ ί ^ - 2 ^ if f < vx,

ίf et,i II i <z- v v iq. if i > y^

Then we have

K, ~ K^ = evj+1 ~ eVj for j = 1 , . . . , A

©t£ Vy"1 ' = ^i^ w> ' ί ° r ^ ^ ^ 0 = 1 , . . . , A:).

Therefore we can apply the induction hypothesis to K\ D

2. Distribution of isotropic vectors

In this section, we study the distribution of isotropic vectors in a quadratic

space over a finite prime field, p denotes an odd prime number and Fp stands for
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the prime field Z//>Z through this section.

THEOREM 1. Let V = Fp[ev e2] be a regular quadratic space over Fp with

quadratic form Q. Then for every positive integer H < p, we have

I Σ χ{Q{xe1 + e2))\<2jp\ogp + l,
1<X<H

where χ stands for the quadratic residue symbol with X (0) = 0 .

To prove this, we prepare several lemmas.

LEMMA 1. Let H be an integer such that 1 < H < p. For a function c(x) on Fp

defined by

, v ί 1 if 1 < x t
c(x) := j \ .

[ U otherwise,

we put

h(y) =p~ι Σ c(z)e(-yz/p),

where e(x) denotes exp(2πix). Then we have

c(x) = Σ h(y)e(xy/p).

Proof The assertion follows from

Σ h(y)e(xy/p) = p~ι Σ Σ c(z)e((- yz + xy)/p)

= p~ι Σ c{z) Σ c(y(χ-z)/p) = c(x). π
zGFp y(=Fp I—I

LEMMA 2. For a, b ^ Fp with a2 — 4b Φ 0, let us define the function φ{x) on

Fp by φ(x) '-= x + ax + b. Then we have

Σ χ(φ(χ)) = - 1 ,

w/i£r# x stands for the quadratic residue symbol with X (0) = 0 .

Proof See Theorem 8.2 in [1]. D
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LEMMA 3. For the above functions χ and φ, we have

I Σ χ(φ(x))e(xy/p) \

Proof. We use Theorem 2G on p. 45 in [5]. We put fix) '•= φ(x) and

g(x) '-= x there. Then Y — f(X) is absolutely irreducible because of φ{x) =

(x + a/2Ϋ + b - a /A and b - a /A Φ 0 in Fp, and so is ZP ~ Z - g{X) by

Theorem IB on p. 92 in [5]. Hence the condition (ii) in Theorem 2G is satisfied

and we have the assertion. CH

LEMMA 4. For the function h(x) in Lemma 1, we have

Σ \h(y)\ <logp.
V*F*p

Proof Since ΣyGF* \ h(y) \ = p~ι ΣyGF« I Σλ<z<H e(— yz/p) |, the inequality

on p. 56 in [6] gives the required one. D

LEMMA 5. Let H be an integer such that 1 < H < p, the functions χ and φ as

above. Then putting

:= Σ
l<x<H

Σ χ(φ(x)),

we have

I Φ\ < 2y[p\ogp+ 1.

Proof It is easy to see, using the function c(x) and h(x) in Lemma 1

Φ= Σ χ(φ(x))c(x)

= Σ χ(φ(x)) Σ h{y)e{xy/p)
xeFp yeFp

= Σ χ(φ(x))h(0) + Σ h(y) Σ χ(φ(x))e(xy/p)

= -p'1 Σ c(z) + Σ h(y) Σ χ(φ(x))e(xy/p)
Z€=FP yeFp* xeFp

= -H/p+ Σ h(y){Σ χ(φ(x))e(xy/p)}.
y<=FXp x^Fp

Hence we have

\φ\<H/p+ Σ \h(y) \ 2yfp <H/p + 2jp\ogp<2y/plogp + 1. D
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Proof of Theorem 1. Putting φ{x) •= Q(xeί + e2), we show

I Σ χ(φ(x))\<2/plogp + l.
l<x<H

If O(^) Φ 0, then we can apply Lemma 5 because of φ(x) = ζK^M r + 2B(ely

e2)Q(e1)~lχ + Q(e2)Q(eί)~1}, where the bilinear form B(x, y) is defined by

2 β ( x , y) : = QCr + y) - QCr) - Q(#). If O(^) = 0, then we have B(ev e2) Φ 0

and φix) = 2B(ev e2)(x + Q(e2)/(2B(el9 e2))), and then Pόlya-Vinogradov's ine-

quality (Problem a) in b. on p. 102 in [6]) yields the inequality. CD

T H E O R E M 2. Let V= Fp[elf . . . , em] (m > 3 ) be a quadratic space over Fp.

Then we have the following assertions:

(i) Suppose that Q(e^) = 0 , B(eif e) Φ 0 for some i, j (i Φ j ) . Then for any x k e Fp

(k Φ iy j ) , there are elements y { ^ Fpy y } = ± 1 and u ^ V so that

v : = ytet + yfr + Σ xkek
kΦiJ

is isotropic and B(u, v) Φ 0.

(ii) Suppose m > 4 and dim Rad V ̂  m — 3. T/iβn ί̂ grβ exists a subset T = {̂ , ί2,

3̂} c: {1, 2 , . . . , m} which satisfies the following property:

L#t Sx, S2 fr# subsets of Fp and assume that \ S1 \ = 3 αnίi S2 i5 a set of con-

secutive integers. Ifp>5 and \ S2\ > 5 \[p log p, then there are elements

xγ = ± 1, x2 ^ S t, x3 e S2, z/t ̂  Fp for i £ T and u ^ V such that

3

v = Σ a^, + Σ z/̂ ,

is isotropic and B(u, υ) Φ 0.

Pr<%>/ o/ (i). Suppose that Q(et) — 0, B(e{, e) Φ 0 for some i, j (i Φ j) and

xk (k Φ i, j) is given. Putting υ '-= y{e{ + yfij + Σ Λ ^ f J xΛβΛ, we have

Q(v) = 2yiB(ei> yfij + Σ xkek) + Qiy^j + Σ xkek)
kφι,j kΦtJ

= 2yi(yjB(ei, e) + B(eif Σ xkek)) + Qiy^j + Σ xkek).
kφij kΨiJ

Because of B(eif βj) Φ 0, we can take z/; = ± 1 so that yjB(eif βj) + B(eif ΣkΨii]

xkek) Φ 0 and then we can choose y{ so that v is isotropic. For u '•= eu we have

B(u, υ) = yjBiβj, βj) + B(eif Σ xkek) Φ 0. D
kΦiJ
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To prove the assertion (ii), we prepare two lemmas.

LEMMA 6. Let W = Fp[wv . . ., wn] (n > 3) be a quadratic space over Fp and

assume that Qiw^ Φ 0, and dim Rad W < n — 2. For a subset S c Fp with \ S | =

3, there exist an element x ^ S and suffices i, j > 1 (i Φ j) such that Fp[Wj + xwjf

wj is a regular quadratic space.

Proof Putting w\'-~ wι Q/ N* WV we have a decomposition W =

FpίwJ _L Fp[w2,..., w'n]. It is easy to see, for i, j

Fp[wt + xWj, wj is not regular for any x e S

) = B(wt + x^ ; , % ) 2 for any x ^ S

B(wjf wy)χ2 + 2(B(wiy w^QiwJ - B(wv w)B(wv w))x

- B(wif w,)2 = 0 for a n y x e S

= B(wkf w,)2 for /c = y, i,

i) = B(wlt wi)B(wί, Wj).

Moreover we have

Q{w\) = QiwJ-'iQiwJQiw) -B(wv wt)
2),

B(w't, w'j) = Q{wι)~\Q{wι)B{wiJ Wj) - B(w19 w)B{wiy wλ)).

Now suppose that Fplw^ + xwjy wj is not regular for any i, y > 1 (i T6 y) and for

any x ^ S. Then the above implies Q(w ) = β ( ^ , wp = 0 for the above i, j ,

which implies Q(Fp[w'2,..., w'n]) — 0, and then contradicts dim Rad W < n ~ 2.

LEMMA 7. Let W = Fp[wv . . ., wn] (n > 3) be a quadratic space over Fp and

suppose Q{w^) Φ 0, dim Rad W < n — 2. Then we have the following:

Let Sv S2 be subsets of Fp and assume that | Sλ \ = 3 and S2 is a set of con-

secutive integers. If p > 5 and \ S2 I > δ y ^ l o g ^ then there are elements x €=

Slf y G 52, and indeces i, j > 1 (i =£ y) 5ii^ ί/iaί Q(^ ? + XWj + yw^) ^

Proof By virtue of Lemma 6, there exist suffices i, j > 1 (z =£ j) and x ^ SL

such that FplWf 4- x^ ; , M J is regular. Suppose Qiw^ + XWj + ywλ) £ (Fp

x) for

any y e 52. By putting f : = | {z/ e S21 Q ( ^ + x ^ + z/^) = 0}|, Q(%) ^ 0

yields 0 < t < 2 and the supposition implies Σ ^ ^ χ ( 0 ( ^ + ^ ^ + ?/^i)) =

"~ (I Sg I — β, where χ denotes the quadratic residue symbol. Theorem 1 yields
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I Σ ^ e 5 2 x(Q{w{ + xWj + ywj) I < 2(2 /plogp + 1), and hence we have \ S2\

< 2(2jplogp + 1) + 2. If I S21 > 5v^"logA which yields p = 3 or 5. D

Proof of (ii) in Theorem 2. First, suppose that ©(^ ) = 0 for every i then the

assumption dim Rad V < m — 3 yields that there are indeces i,j(iΦj) such

that £ ( ^ , e) Φ 0. Let Γ be a set {flf f2, t3) with ^ = and i £ T. For x2 e 5X, x3

^ S2, the assertion (i) implies that yet + x^^ + x2et2 ~^~ X3et3 ^ o r some y ^ Fp and

#! = ± 1 is a required element

Next suppose that Q(e^) Φ 0 for some index i. For simplicity, we may assume

i = 1:

W ^ 0

and put

B(eif ex)

Putting W= Fp[w2, . . . , wm], we have V = FpleJ ± W and dimRadPF =

dim Rad V < m — 3 = dim FT — 2. We note that for an element v = Σ™=1 x{e{ ^ V,

Case (I). Suppose that there is an index k ( > 2) such that Q{wk) Φ 0. By

applying Lemma 7 to the quadratic space W scaled by — Q(e^)~ , there are dis-

tinct indeces i, j , k with i, j > 2 and Xj G Slf xk ^ S2 suth that

2

for some element r ^ i ^ . By putting

t; : = ΛT^! + x& + ^ ; ̂  + xkek

for xx e F ί f Xi = 1, (1) implies Q(v) = Q(e^~ιB(eλ, υ)2 - Qiejr2. Now we

choose x1 so that B(ely v) = Σh=UJtkxhB{ehJ ej = Q ( ^ ) r because of the

assumption B(ev e^ = QieJ Φ 0. Hence we have Q(v) = 0 and B(ev υ) —

Qie^r Φ 0 and have completed the proof of (ii) in the case of (I), by taking tx = i,

k = j , t3 = k.

Case (II). Suppose that Q(wt) = 0 if i > 2. Since dim Rad W< dim W~ 2,

there are indeces i,j > 2 (ί ^ j) such that 5(ίί;f , ^ ; ) Φ 0. For simplicity, we

may assume B(w2, w3) Φ 0. First, suppose m > 5; then put z •= x2w4 + x3w5 for
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x2 e Sίf x3 ^ 5 2 and υ' > = yw2 + x1w3 + z for y, xλ e /^. Since Q(vf) —

2y(x1B(w2, w3) + B(w2, z)) + 2xβ{w3i z) + Q(z), we choose y ^ Fp and xx =

± 1 so that xxB(w2i w3) + B(w2, z) Φ 0 and Q(t/) = — Q{e^). By putting 2; : =

xeλ + z/#2 + xλe3 + 2̂̂ 4 + 3̂̂ 5 f° r # e /̂>> w e c a n choose x so that B(ev υ) —

QieJ, and then Q(υ) = 0 follows from (1) and we complete the proof of the asser-

tion (ii) in case of m > 5, putting tx

 %-— 3, t2 " = 4, t3 '= 5 and w ' = ^ .

Next suppose m = 4. We are assuming that QieJ Φ 0 and Q(w2) =

Q(w3) = Q(w4) = 0, and B(w2, w3) Φ 0. For an element v = xAex + x3e2 + xxe3

+ x2eA e V', (1) implies

Q(t ) = Q{eJ~ιB{ev υ)2 + xz{2xxB(w2, w3) + 2x2B(w2, w4)) + 2x1x2B(w3y wA).

Suppose x2 e 5X and choose xλ = + 1 so that α : = 2^5(^2, M;3) + 2

ίί;4) τ̂= 0. Now we claim that there is an element x3 ^ 5 2 so that χ (ax3

2xϊx2B{w3y w4)) = χ ( — 0 ( ^ ) ) . If it is false, then we have

Σ χ{ax3 + 2xιxβ(w3, w4)) = - χ ( - Q(^))(| S21 - f),
X3<=S2

where ί = | {x3 e S21 &r3 + 2x^2.8(M;3, ^ 4 ) = 0} | = 0 or 1. By applying

Pόlya-Vinogradov's inequality, we have | S2 \ — t < 2\fp\ogp, which contradicts

I S21 > byfplogp. Therefore there exists x3 ^ S2 so that ax3 + 2xιx2B{w3i w4) =

- QieJ'V for some r <= Fp\ Then we have Q(υ) = Qie^Bie,, υ)2 -

Q(£1)~V2. Now we choose x4 so that B(ev υ) = r because of O(^) Φ 0. Then v is

isotropic and for u '-= w2 we have

B(u, υ) = xxB(w2i w3) + x2B(w2, w4) = a/2Φ 0,

which completes the proof of the assertion (ii) with tx

 : = 3, t2 •= 4, t3 •= 2. O

3. Transformation matrix

Let us give a result to combine the reduced form at the infinite prime with a

Jordan decomposition at a finite prime.

THEOREM. Let p be a prime number and r, m positive integers with r < m. Let

1 2 j and
(r)

let
S/

Dx e Mm_r(Zp), D2 e Mr(Zp) be regular matrices and suppose that p*\ . . . , ptm r

(resp. p m~r+\ . . . , pm) be elementary divisors of Dγ (resp. D2) over Zp and tx ^ * * *
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r,m-r)

< tm. Let Am — ( 2 ) be an integral matrix with det A= ± 1.
m \ Λm-r) Λm-r,r) / δ

AT A,

Assume that for a natural number e,

A4 = 0 moάpe, tm_r <e + t,< mm(tm + 1, tm_r+ι)

Then SA and Dλ have the same elementary divisors over Zp and S3 = 0 moάp \ and

the matrix S4~ S3 is integral over Zp and both Sx — S4~ [S3] and D2 have the same

elementary divisors over Zp.

Proof We note

_!3 _J mod/>%.
/±2 2 1 3

By virtue of

p~h S[A] Ξ p~h ( λ ) modptm~tl+1 and tm - tx + 1 > e,

we have

n ( r ) n<» ,m-ί )

o("-r r>
 D M ' T

by ΰ 2 = 0 mod p m~r+1. Hence 5 4 and Dx have the same elementary divisors over

Tip and we have S3 = Omod^ 1 and then 5 4 S3 is integral over Zp by the condi-

tion tm_r < e + tv By the identity

0 \ Γ/ \ 0 vi

4 °4 ^3 -"-w-r0

both D2 and 5 : — 54~ [S3] have the same elementary divisors over Zp. D

4. Theorem

The following is the destination of this paper.
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THEOREM. Let m be an integer > 6 and N a positive lattice of rank 2m. For a

positive number K, there is a positive number κγ — K^K, N) satisfying the following

condition:

Let M be a positive lattice of rank(M) = m and min(M) > κλ and Mp is rep-

resented by Np for every prime p. Then there is a lattice Mf ^ M such that

minC/kP) > K and Mp is primitively represented by Np for every prime p.

The rest of this section is devoted to the proof.

We fix a basis {vv . . . , vm) of M so that (B(vit υ)) is reduced in the sense of

Minkowski, and we define a transformation matrix A = (α o ) by

(1) («>i,..., u>m) = (t>i,..., vJA

for another basis {wlf..., wm} of M.

LEMMA 1. Let M be a positive lattice such that rank(Λ/) > 4, s(M) c pZ and

suppose that Mp contains a p-modular sublattice of rank ^ 3. Then there is a positive

number δε for 0 < ε < 1 /6 satisfying the following condition:

If p > δε, then there is an element w e M such that (M + p~lZ[w])p con-

tains a hyperbolic unimodular plane with s(M H~ p Z[w])Zp — Zp and

minϋlf + ^ Z t w ] ) > p1/3~2ε(p'1 min(M)) > min(M) 1 / 3 " 2 ε

Proof Put S,:= ilp1'3], [p1/3] ± 1} and S 2 : = {x e Z | p2/3~ε < x < p2/3+ε}.

Up ( > 5) is sufficiently large, then we have \ S2\ > 5^p logp, which is supposed

in the rest of the proof. By applying Theorem 2 in Section 2 to a quadratic space

V : = M{p~l) /pM{p'l) over Z/pZ, there exist a subset {tv t2, t3} c {1, . . . , m},

Xχ(^ ± 1 mod/)), x2 modp e Slf x3 moάp G S2 and y{ G Z for i ^ ίy, such that

w '-= Σ3

=1XjVtj + ΣiΦt.yfVi satisfies Q(w) = Omod^ 2 and B(w, M) & Omod^ 2.

This implies s(M + p Z[w\) Zp = Zp, and for an element u ^ M with B(w, u)

Ξ£ Omod/> , Zp[u,p~ w] is a unimodular hyperbolic plane. Putting w = Σ r,- ,̂

we have

Xmin(min(ΛO, min Σ \bri/p
PXb i=l

> min (min CM), min Σ ibXj/pΫQiVi))
PXb j=l }

3

> min(M) min(l, min Σ \bxj/p] )

> min (A/) mind, min((4χ2y\ 4"1(x2/x3)
2, ^" 2(1 + x\ + x3

2))) by Theorem in
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Section 1

> min (M) min (1, p~2/3~2ε)

»p-2/3-2εmm(M).

By putting min(M) = pa, we have a> 1 and p~ ~ ε min(M) = min(M)
2/3+2ε ^ . / , ^1/3-26 I—ι

a > min(M) . •

LEMMA 2. Suppose p Φ 2. Let M be a positive lattice such that s(M) c ^ Z and

Mp is a p7ip-maximal quaternary lattice o/indCQ^M) < 1. Moreover we assume that

the rank of a p-modular component of Mp is at most 2. Then there is an element w ^

M such that s(M + p~ιZ\w\)Zp = Zp and min(M + p~ιZ[w\) > pu\

Proof For some integers εv ε2 relatively prime to p, we can take a basis

{wv..., wj of M such that

(B(wi9 Wj)) = diag(^>, εj>, p2

y εφ2) mod^ 3 .

The assumption on Mp implies that — ε2 is not a quadratic residue mod. p. For

any integers / , g, s(M + p~1Z[fw3 + gw4])Zp — Zp is clear, unless f=g=0

mod£. By putting s, '•= ai3, t{ '•= ai4 for atj defined by (1) and r{ : = fs{ + gt{ we

have fw3 + gw4 = Σ rivi and

min(M + p ιZ[fw3 + gw4]) Xmin(min(Λ/), Kftg))9

where

Kftg:= min Σ ίb^/pfQiv,).
6*0 mod p i=l

Now we choose 1 < a, β < 4 by the condition daβ •= satβ — sβta ^ Omod/?.

Then we have

KtΛ > min (\bra/pfQ(va) + \brβ/p]2Q(vβ))
bmo mod p

and Corollary 3 in Section 1 with xλ = x2 — 1, x — 0 there implies the existence

of integers / , g such that

(2) Kftg> (Q(υa)Q{υ,))ι/2p-1

since f=g = Omod^ is equivalent to ra = rβ = Omod^. First, suppose α or

jS > 3 then we have
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On the other hand, we have

YQ{v)Q{v) X QivJdZlv v v] > p-p4 = p\Q{vxYQ{v2)Q{vz) X QivJdZlv^ v2y v3] > p-p4 = p\

since elementary divisors oί(B(wit Wj)) over Zp are p, p, p , p . Thus we have

Kfg > p and then min(M + p~ Z[fw3 + gw4]) > p under the assumption a

or β > 3. Next, we suppose that a or β > 3 is impossible; then we have {α, β) =

{1,2). By the way of choice of α, /3, we have d31 = d32 = d41 = d42 = 0 moάp and

then s3 = t3 = 54 = t4 = Omod^. Now we can apply Theorem in Section 3 with

r = 2, m - 4, t, = t2 = 1, t3 = t4 = 2, e = 1, S = (Sί SA : = (J30;,, ^ ) ) ,
5 3 5 4

A = diag(^, εφ), D2 = diag(/>2, ε^ 2) and then we have 5X - 54"
1[53] - 5 3 = 0

mod^ and 5 4 is ^-modular. Therefore S1 = 0moάp holds and it implies

= Q(v2) = Omod^ 2, and by (2) there are integers/, g such that

Kf,g>p>pu\ D

PROPOSITION 1. Let M be a positive lattice such that rank(M) > 4, s(M) c

^Z. T/ι̂ n ί^r^ is α positive number δ satisfying the following condition:

If p > δ, then there is a lattice Mr containing M such that [Mf: M] is a pow-

er of prime p, s(Mp = Zp and min(ΛΓ) > pu*. //rank(M) > 5 in addition,

Mp contains a unimodular hyperbolic plane.

Proof Let a lattice M be a lattice such that [M: M] is a power of p and Mp

is ^Z^-maximal. minC/βf) > p is clear. If Mp contains a ^-modular sublattice of

rank > 3, then the assertion follows from Lemma 1 with ε = 1/24 if p > δ1/24.

Otherwise, both iruKQ^M) < 1 and rankCM^) = 4 hold and then Lemma 2 im-

plies the assertion. Π

By virtue of Proposition 1, if rank(M) > 4 and s(M) a pZ for a sufficiently

large prime number p, then there exists a lattice Mr{^> M) such that s(M') c Z

and min(M0 is larger than a given number K in advance. The assumption m > 4

is crucial. In the following examples, min(M) is arbitrarily large but

min(M') < 4 + 5p for every ΛΓ(i3 M) with s(M')Zp = Zp.

EXAMPLE 1. Let M = Z[υv υ2] be a positive lattice defined by the reduced

matrix



22 YOSHIYUKI KITAOKA

where p is an odd prime number and 5 is a natural number. Then d(M) = 4(1 ~\~ p)

(1 + ps)2p2s+1 and Mp = <p> ± <p2s>. Moreover, by putting ΛΓ : = M + Z[p~*w]

for w e M, the condition s(Mp = Z^ compels Mr = Z[p~*\v1 — v2), vj and then

min(ΛΓ) < Q{p~s{υx - v2)) = 4 + bp.

EXAMPLE 2. Let M = Z[vlf v2] -L Z[%], where vlf v2 are those in Example 1

and Q(v3) '•— ap, where a is a natural number relatively prime to p satisfying that

a > (1 +/>s) and — a is not a square in Z^. Then we have min(M) =/>(l +

/ ) 2 and by putting M" = M + Z[p~'w] for «/ e Λf, the condition 5(Mp = Zp

compels Mf = Z[p~s{vλ — υ2), f̂  2;3] and then min(M0 < Q(p~s(v1 — υ2)) = 4

EXAMPLE 3. Let ^ , υ2 and z;3 be as in the previous example. Put M .*= Z[z;L,

t J ± Z[υ3] 1 d Γ / Z [ ? ; , ] ) with Q(^) > α( l + / ) 2 and put Q(v{) e ( Z ; ) 2 for

f >: 4 then if, for a lattice M ^> M, Mp is primitively represented by Np =

<lm> 1 < - 1> 1 < - 1> 1 < - 3 X 3 e= Zx

p\(Zp)
2), then we have M=Z[p~s(vι

— υ2), υv v3,..., vm] and min(M) < 4 + 5^.

In Example 3, a local extension of M is uniquely determined under the condi-

tion that it is primitively represented by Np. If this is not the case, is there an ex-

tension Mr with min(M) being small ? If so, we can make a counter-example to

the assertion Amn.

LEMMA 3. Let p be an odd prime and Fp = Z/pZ. Suppose that V be a quadra-

tic space over Fp with basis {zly. . ., zt} and integers rx = 1, r2,. . ., τt are given. If

Q(V) Φ {0}, then there are integers xx = rx ( = 1), x{ = ri} rt ± l(i > 1)

satisfying Q(Σ = 1 Xfa) Φ 0.

Proof. We use induction on t. The case of t — 1 is clear. Suppose that the

assertion is false for t > 1. Since the equation

Q(Σ X&) = x2Q(zt) + 2xt(ΣB(zt9 Zi)xt) + Q(Σ xtz) = 0,
f = l ί = l i = l

has the three solutions xt = rt, rt + 1, we have

Q(zt) = 0, Σ β ( ^ , z,)^ = 0, Q(Σ XA) = 0,
ί = l f = l

for xί

 = 1, Xj = rif r{ ± 1 for ί = 2, . . . , f — 1. From the induction hypothesis,
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Q(Fp[zλ,..., zt_J) = 0 follows. Making use of the middle equality above for xt =

rif r{ + 1, we have B(zt, z{) = 0 for i = 2, . . . , t — 1 and hence B(zt, zx) = 0.

Thus we have the contradiction Q(V) = {0}. D

LEMMA 4. Lei L = Zp[wlf . . . , wt] be a quadratic lattice over Zp such that

(B(wif w,)) = d i a g ( ε ^ f l l , . . . , eft"'), (ε,• <= Z*py aγ = 0 < a2 < < a), and

assume a : < a2 if p — 2. Let {zv . . ., z) be another basis of L and let rι = 1, r 2 , . . .,

r, 6β integers. Then for integers xι—\yxi = riyri^i\{iyi), we have Q(Σ,i=1

XiZi) e z ; .

Proo/. lί p Φ 2, then we have only to apply Lemma 3 to L/pL. Suppose

p — 2 and ' ( ^ . . . , zt) = B\wl9 . . . , wt) for some J5 e GLt(Z2). By virtue of

Σ ί = 1 ^ t 2f = tei,. . . , x^Bt(wv . . ., w,), we have only to show that Σt

ι=ιXibiι Φ

0 m o d 2 , which implies Θ ( Σ | = i ^ ^ ) ^ Z2. If Σ^xXfftα = 0 mod 2 for x1 = 1,

^ = ri9 r{ + 1 (i > 1), we have δ α = 0 mod 2 for i > 1, which is the contradic-

tion. D

LEMMA 5. Let p be a prime number and M a positive lattice o/rank(M) = rn,

s(M) c Z. Suppose that

ε, G Z^ αn<i 0 < αx < < am. Divide the set {1,.. ., m} to disjoint subsets

S and T •= {/ẑ  . . . , hm_r}(h1 < < /*w_r and 0 < r '•= \ S \ < m), and sup-

pose ah. < ah2 if p = 2 and let s be a natural number < ahl/2. Let {wv. . ., wm} be

a basis of M such that (B(wiy Wj)) is sufficiently close to d iag fe^ 1 , . . ., ε^J)^) in

Mm(Zp). Let A = (α/7) be the transformation matrix defined by (1), and choose inte-

gers kλ < * <ikm_γ so that the determinant of (ak ,h\<ij<m-r ^s relatively prime to

p. Then there are integers f{ (i ^ T) such that for w = yΣli&τfiwi we have

Tί Q(vk))mm~r\

Kp,

for some lattice Kp of rank (KJ = m — r - 1 and s(Kp) a pa"2Zp. If r<m/2
p of rank (KJ = m r 1 and s(Kp) a p2Zp.

in dditi th ( )in addition, then we have min(M + Z[p~sw]) > min(M)1/(m~r).

Proof Let rl9. . . , rm_r be integers, and for B = (#&.fc.)!<*,,<m_r we define in-

tegers fh{ by
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(/*!>•••»/**_,) = (rv..., rm_ryB~ι moάps.

By putting 1?,- •= Σ ; e Γ <z^, we have

' ( # * , . . . , Rk ) = B\fh,...,fh ) = \rv..., rm_r)modps

KV κm-r J ni J nm-r L m—r' r
_ m

min(M+ Zlp~sw]) X min (min (M), min Σ

m mr

min Σ \bRt/p*}2Q(Όd » min Σ [ ^ / / ] 2 0 ( ^ ).
psXb i = \ psXb i = l

Since Q(vk^) < < Q(υkm_), Corollary 1 in Section 1 yields that there exist in-

tegers rm_r= 1, rm_r_v..., rx such that

min Σ Γ^//l2O(z;A.) » (^"2s Π Q(z;A.))1/(m-r).

By applying Lemma 4 to L'-— Zp[whi, * , wΛ;w_r] scaled by ^~a/>1, and a basis

'(*i,. . ., zm_r) : = 'B'1'^,. . ., ^ Λ w _ r ) , there exist integers r^_r = 1, r/ = r, or

rf ± 1(1 < i < m — r) such that ord ,̂ Q(Σ^ r-z^ = αΛχ. Define integer / ^ by

(/*V * # e» /*w.r) = (K , rf

m_tyB~ι m o d / then w/ : = Σ,Λ> A ί = Σ< r> t mod

/>SL and hence ord^ Q(^0 = # Λ . Thus we may assume ord^ Q(w) = ah. Hence w

splits Z^tw, ( i e l ) ] , and

which implies the second assertion. Finally we assume m >: 2r + 2 then we have

I C Γ 1 ©(V - dZ[»4l> . . . , 1;̂ . J > / ' + - + a » - > / — > / " ' > pa* since
m > hm_r > - - - > hι implies m — r> hm_r — r > > hι — r and hence hι

-r<\. Π

Remark. In Lemma 5, the assumption ahι < ah2 is not satisfied in general.

But we can modify it by enlarging as follows: If ahχ = ah2, then for Mr ' = M +

Z[wh/p] we have min (MO X , min CM) and M; = <diag(εj/>β\ . . . , εhι-φahι~\

When ?̂ = 2, a lattice does not have any orthogonal basis in general, but the fol-

lowing is useful to reduce to a lattice having an orthogonal basis. If H2 = Z2[wlf

2α(M J is isometric to (B(wif w)) = 2α( j , then

i/2 + Z2[(w1 + w/2)/2] = Z2[(ί(;1 + w;2)/2, (w1 —
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If (B(wif Wj)) =2a(\ g ) . then

H2 + Z2[w1/2] = Z2K/2, w2 - wx/2\ = <diag(2β~\ S^*"1)).

LEMMA 6. Let 0 < r < m < n be integers and M = Kx ± K2f N be regular

quadratic lattices overZp with rank(M) = m, rankCK^) = r and rank(Λ0 = n. (If r

= 0, then we assume Kι = 0) Suppose that there is a quadratic space V such that

QpN = Qp^ A. V and ind( V) > m — r, and that M is represented by N. Then there

is a constant c = c{Kv N) such that there is a lattice Mr in N isometric to M with

[%Mr Π N:M'] <c.

Proof. Put 5 : = {K c N | K = Kj and let {Hί9. . ., Ht) be the set of repre-

sentatives of 0(N)\S. Since M is represented by N, there exist an isometry σ

from M to N and an integer i (1 < i < t) so that σ(K^) = Ht. By virtue of Q /̂/,-

= QPKV we have QpH^ = V and hence i n d ( Q ^ x ) > m — r. Since K2 is repre-

sented by Hf , we can apply Lemma 3 in [2] and therefore there is a constant c{

such that there is a lattice K2 ( c Ht

λ) satisfying K2 = K2 and [ Q ^ ' Π i/,1 :

i^21 < cv Now M r : = / / , • ! K2 (= M) satisfies

' Π N : Ml = [QpM
f Π JV : Q^M7 Π (i/, 1 ^ ) ] [Q^M' Π (i/, 1 ^ ) : AT]

< [iV : ̂  1 #/] [//, 1 ( Q ^ ' Π Ht) : ^ 1 K£

< [NiHtlH^c,.

Thus the number c(Klf N) '= max{[N : H{ _L H^Ci is what we want. D

PROPOSITION 2. Let M and N be positive lattices of rank(M) = m and

rank(Λ0 — n respectively, and p a prime number, and suppose that n > 2m — [m/2]

+ 3 and Mp is represented by Np. Then there is a lattice Mf ( ^ M) such that M'q =

Mq if q Φ p, Mp is primitively represented by Np and min(ikΓ) > c(Np) min(M)cp,

where c(Np) depends only on Np and cp depends only on m.

Proof. First, we note that if once, for a lattice M n> M, an isometry σ from

Mp to Np with [Qpσ(Mp) Π Np : σ(Mp)] < c has been constructed, then M has an

extension Mf such that Mp — σ (Q,pσ(Mp) Π Np) is primitively represented by

Np, M'q = Mq for q Φ p and [AT: M\ < c, which yields min(ΛΓ) > c"2min(M).

Let h1 be an integer such that JV̂  contains a ^^^-maximal lattice.

Let h be an integer and S(h) the set of regular submodules Kp of Np such that the

scale of each Jordan component of Kp contains p Z*. Then there is a finite subset
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X(h) of S(h) so that any L ^ S(h) is transformed to an element in X(h) by

O(Np). Hence we can define an integer n(h)(> hλ) so that for L e S(/0, LL in

iV̂ , contains a maximal lattice whose norm contains p Zp. We note that

nih) depends only on h and Np.

First, suppose s(Mp) ^ p 1 Zp; then by the iterative application of Lemma 5

and the remark after it for p = 2, there is a lattice M(z> M) such that min(M) > i,

min(A/)Cί and M^ = (diagCεjΛ,..., ε^/Λ")) with hλ< aλ< - -' < am and β [ w / 2 ]

< ftx + 1. Since iV̂  contains p ^-maximal lattice, Mp is represented by Np. We

note that for a regular quadratic space V over Q ,̂, dim(V) > 2t + 3 implies

ind(V) > ί. By applying Lemma 6 to Mp = Kx _L ί ζ where ϋ^ = (diagίε^* 1 , . . .,

^[m/2]/tw/21)> and if2 = <diag(ε t w / 2 ] + 1/ t M / 2 1 + 1,. . . , ε j Λ 1 ) ) , there is a constant c ^ ,

Λ^) such that there is an isometry σ from Mp to Np such that [Q^σίM^,) Π Np :

(7(M,)] < c ( ^ , Np).

Next suppose that Mp = Jλ -L J2 with rankC/^ = r and that the scale of ev-

ery Jordan component of Jx contains p Zp and s(J2) c p + Zp with an integer h

< hλ + 1. If 5(/2) ^ pnhZp and r < [m/2] — 1, then by virtue of Lemma 5,

there exists a lattice M ( 3 M) such that min(M) > min(M) w ~ r , and M^ = / x

1 <εpn(h)+δ> 1 i ς for ε e Z,x, 3 = 0 or 1 and some lattice # , of 5 ( i ς ) c pnih)Zp.

By virtue of the choice of n(h), M^ is represented by Λ^. Thus by iterating this,

there exists a lattice M ^> M such that (i) min(M) > min(M)c for some positive

number c dependent only on m, (ii) Mp = (εj)"1} J_ ± iεj^^ with αx < * * *

^ β w and α / + 1 — tf; < cp{N) for some positive number dependent on Np for

z < [m/2] — 1, and (iii) M^ is represented by Np. Now we can apply Lemma β

with r= [m/2] because of n — [m/2] > 2(m — [m/2]) + 3, and complete the

proof. D

Proof of Theorem. Let M and N be positive lattices of rank CM) = m and

rank(Λ0 = n and suppose that Mp is represented by Np for every prime p. We

note that Mp is primitively represented by Λ^ if and only if Mp/pMp is repre-

sented by Np/pNp over Zp/pZp when Np is umimodular and p > 2. We assume

that s(N) (Z Z without loss of generality. Let δ be a natural number given in

Proposition 1 and we assume that Λ^ is unimodular if p > <5.

(i) Suppose that there is a prime p such that s(Mp) cz ^Z^, and ^ > <5. By enlarg-

ing M to Λfr, we may assume that M'q is primitively represented by Nq if # Φ p

and M^ = Mp. If m > 4, then we can use Proposition 1 and conclude that there is

a lattice M ^> Mr such that s(Mp) = Zp and min(M) > / / 4 . If n = 2m in addi-

tion, the condition s(Mp) = Z^ implies that M^ is primitively represented by Np.

(If n < 2m, then the property s(Mp) = Zp does not yield the primitively-



POSITIVE DEFINITE QUADRATIC FORMS 2 7

representedness of Mp by Np.)

(ii) Denote by S the set of primes p such that Mp is not primitively represented by

Np. Excluding the case (i), we assume that the condition s(Mp) c pϊp yields p < δ

and hence 5 c {p \ p < δ) by n = 2m. If n > 2m - [m/2] + 3 = m + [(m +

l)/2] + 3, then by iterative use of Proposition 2, there is a lattice M(^> M) such

that min(M) > c(JV)min(M)c for some constants c(N), c where c(N) depends on

Λ̂  but c does not depend on M, N.

Remark. Let us examine the above proof in the case of rankC/V) = 2m — 1.

We assume m > 5 then at the step (i), we may assume that Mp contains a unim-

odular hyperbolic plane and hence Mp is primitively represented by Np. Thus we

can clear the case (i). But at the setp (ii), the cardinality of the set S is not less

than a constant independent of M. So, after applying Proposition 2 iteratively,

min(M) may be small.
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