Y. Kitaoka and H. Suzuki Nagoya Math. J. Vol. 142 (1996), 183-188

FINITE ARITHMETIC SUBGROUPS OF *GLⁿ ,* IV

YOSHIYUKI KITAOKA AND HIROSHI SUZUKI

In this paper, we improve a result of the third paper of this series, that is we show

THEOREM. *Let K be a nilpotent extension of the rational number field* Q *with Galois group Γ, and G a Γ-stable finite subgroup of GLⁿ (O). Then G is of A-type.*

Here, automorphisms in *Γ* act entry-wise on matrices in G, and *G* being *Γ*-stable means that $\sigma(g) \in G$ for every $\sigma \in \Gamma$ and $g \in G$. O_K stands for the ring of integers in K and G being of A-type means the following:

Let $L = \mathbf{Z}[\mathit{e}_{1}, \ldots, \mathit{e}_{n}]$ be a free module over \mathbf{Z} and we make $g = (g_{\scriptscriptstyle ij}) \in \mathit{G}$ act on $O_K L$ by $g(e_i) = \sum_{j=1}^n g_{ij}e_j.$ Then there exists a decomposition $L = \bigoplus_{i=1}^n L_i$ such that for every $g \in G$, we can take a root of unity $\varepsilon_i(g)$ $(1 \leq i \leq k)$ and a permutation $s(g)$ so that $\varepsilon^{}_i(g) g L^{}_i = L^{}_{s(g)(i)}$ for $i = 1, \, \ldots, \, k$. (The definition of A-type in the third paper [3] of this series is wrong, but the results in it are true in the above sense of A-type. See the correction at the end.) We denote the identi ty matrix of size n by 1_n , and the ring of rational integers by $\mathbf Z$.

LEMMA 1. Let F be an abelian extension of **Q** with Galois group Γ , and \mathfrak{F} an in*tegral ideal* ($\neq O_F$) of F . Let G be a \varGamma -stable finite subgroup of $GL_n(O_F)$. Then G is *of A-type, and for a subgroup*

$$
G(\mathfrak{F}):=\{g\in G\,|\,g\equiv 1_n\,\mathrm{mod}\,\mathfrak{F}\},
$$

there exists an integral matrix $T \in GL_n({\bf Z})$ *such that* $\{TgT^{-1} \mid g \in G(\mathfrak{J})\}$ *consists of diagonal matrices.*

Proof. It is clear that

Received April 3, 1995.

Partially supported by Grand-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan.

$$
S := \sum_{g \in G} g^t \bar{g}
$$

is a rational integral positive definite matrix, where the bar denotes the complex conjugation. We introduce a lattice $L := \mathbf{Z}[e_1, \ldots, e_n]$ with bilinear form $(B(e_i, e_j)) := S$ and consider the scalar extension $O_F L$ with $B(\lambda x, \mu y) :=$ *λμ̃* $B(x, y)$ for *λ,* $\mu \in O_F$ and $x, y \in L$. Then L , $O_F L$ are a positive definite quadratic lattice over $\mathbf Z$ and a positive definite Hermitian lattice over O_F , respec tively. Let

$$
L:=L_1\perp\cdots\perp L_a
$$

be the decomposition to indecomposable lattices. We define an automorphism $\phi_{\mathbf{\mathit{g}}}\colon$ $O_F L \rightarrow O_F L$ by

$$
(\phi_g(e_1), \ldots, \phi_g(e_n)) := (e_1, \ldots, e_n)^t g \quad \text{i.e., } \phi_g(e_i) = \sum_{j=1}^n g_{ij} e_j.
$$

Then ϕ_g is an isometry of $O_F L$ by $(B(\phi_g(e_i), \phi_g(e_j)) = gS^t \bar{g} = S$. Hence by [1], there exist a root of unity $\varepsilon_i \in F$ and a permutation $\sigma \in \mathfrak{S}_a$ such that

$$
\varepsilon_i \phi_g(L_i) = L_{\sigma(i)} \quad \text{for } i = 1, \dots, a,
$$

which implies that G is of A-type. Here assuming $g \in G(\mathfrak{F})$, we have

$$
\phi_g(x) \equiv x \bmod \Im L,
$$

and hence the permutation σ in (1) is the identity. Now we take a basis $\{z_1, \ldots, z_n\}$ z_s of L_k for an integer k with $1 \leq k \leq a$. Then there exist a root of unity $\varepsilon \in F$ and $A \in GL_s(\mathbf{Z})$ satisfying

(3)
$$
(\varepsilon \phi_g(z_1), \ldots, \varepsilon \phi_g(z_s)) = (z_1, \ldots, z_s)^t A.
$$

Let $\mathfrak P$ be a prime ideal dividing $\mathfrak F$ and p the rational prime number dividing $\mathfrak P$. At first, we claim that we can choose the matrix *A* so that

$$
A\equiv 1_s \bmod p.
$$

By virtue of (2) , (3) , we have

$$
\varepsilon^{-1} A \equiv 1_s \bmod \mathfrak{P},
$$

which implies, by putting $A = (a_{ij})$

$$
a_{ij} \equiv 0 \mod p
$$
 if $i \neq j$, $a_{ii} \equiv \varepsilon \mod \mathfrak{B}$ for every *i*,

and then we have

$$
(5) \t\t\t A \equiv a_{11}1_{s} \bmod p.
$$

Hence the claim is clear if $p=2$, and hereafter we assume $p>2$. $\varepsilon^{-1}A (\equiv 1_{s}\text{ mod}$ \mathfrak{B}) is of finite order, and the order is a power of p , say p' . Then we have $\varepsilon^{p'} 1_{\varsigma} = 0$ A^p , which is a rational integral matrix. Thus $A^p = \pm \mathbb{1}_s$ is clear. If $A^p = -\mathbb{1}_s$, then by replacing ε , A by $-\,\varepsilon$, $-A$ in (3), respectively, we may assume $A^{^{\nu}}=1_{n}$ and $\varepsilon^{p^r} = 1$. If $\varepsilon = 1$, (4) implies the claim. Otherwise, let p be the prime ideal of $\mathbf{Q}(\varepsilon)$ under \mathfrak{P} ; then (4) implies $a_{ii}\equiv \varepsilon \text{ mod } \mathfrak{p}$. Now $\mathfrak{p}=(1-\varepsilon)$ yields $a_{ii}\equiv 1$ mod p and hence $a_{ii} \equiv 1$ mod p . Thus we have shown the claim.

Next we claim that we can take *l s* as *A.* Since *A* is of finite order, the claim above yields $A = 1_s$ if $p > 2$. Suppose $p = 2$. By virtue of $A \equiv 1_s \text{ mod } 2$ and $x =$ $(x + \varepsilon \phi_g(x))$ /2 + $(x - \varepsilon \phi_g(x))$ /2, we have $L_k = L_+ \perp L_-$, where $L_\pm = \{x \in \mathbb{R}^d : |f(x)| \leq k \}$ $L_k \, | \, \varepsilon \phi_g (x) \, = \, \pm \, x$ }. Since L_k is indecomposable, we have $L_k \, = \, L_+$ or L_- , which means $A=\pm$ 1_s. If necessary, by replacing $\varepsilon,$ A by $\varepsilon,$ A in (3), respectively, we may assume $A = 1_{s}$. Thus we have shown the claim. Hence we have only to take a matrix T as a transformation matrix from the original basis $\{e_1, \ldots, \, e_n\}$ of *L* to the one consisting of bases of L_k ($k = 1, ..., a$).

DEFINITION. Let *K* be a Galois extension of Q with Galois group *Γ* and \$ a prime ideal. Then we put, for a non-negative integer *m*

$$
V_m(\mathfrak{P}; K/\mathbf{Q}) := \{ u \in \Gamma \mid u(x) \equiv x \bmod \mathfrak{P}^{m+1} \text{ for } x \in O_K \}.
$$

LEMMA 2. Let K be a Galois extension of **Q** with Galois group Γ , and \mathfrak{B} a prime ideal of **K**, and suppose $\Gamma = V_1(\mathfrak{B} ; K/\mathbf{Q})$. Let **F** be the maximal abelian extension of ${\bf Q}$ contained in K . Let G be a \varGamma -stable finite subgroup of $GL_n(O_K)$ and k a *non-negative integer. Suppose that* $G(\mathfrak{B}^{k+1})$ consists of diagonal matrices. Then we h ave $G(\mathfrak{P}^k) \subset GL_n(O_F)$.

Proof. We take and fix an element $g \in G(\mathfrak{B}^k)$. Let us see, for $\sigma \in \Gamma$

$$
\sigma(g) \equiv g \bmod \mathfrak{B}^{k+1}.
$$

If $k = 0$, it is clear because of $\varGamma = V_1(\mathfrak{B}\,;K/\mathbf{Q})$. Suppose $k > 0$. Putting $g = 1_{n}$ $+$ $\pi^{\circ}A$ with $A \in M_{n} (O_{\mathfrak{P}})$, where π is a prime element in the completion $O_{\mathfrak{P}}$ of $O_{\mathfrak{p}}$ at the prime \mathfrak{B} , we have

$$
\sigma(\pi^k) \equiv \pi^k \mod \mathfrak{P}^{k+1}, \quad \sigma(A) \equiv A \mod \mathfrak{P}^2
$$

and hence

$$
\sigma(g) \equiv g \bmod \mathfrak{P}^{k+1} \quad \text{and} \quad \sigma(g)g^{-1} \in G(\mathfrak{P}^{k+1}).
$$

Thus $D_{\sigma} := \sigma(g)g^{-1}$ is diagonal and it is easy to see

$$
D_{u\sigma} = \mu(D_{\sigma})D_{u} \quad \text{for } \sigma, \mu \in \Gamma.
$$

By Lemma 1 in [3], there exists a diagonal matrix $D \in GL_n(K)$, which satisfies

$$
D^w \in GL_n(\mathbf{Q}) \quad \text{and} \quad D_{\sigma} = \sigma(D^{-1})D,
$$

where w is the number of roots of unity in K. Then $\sigma(g)g^{-1} = \sigma(D^{-1})D$ for every $\sigma \in \Gamma$ yields $h \mathrel{\mathop:}= Dg \in GL_n(Q)$. We choose a rational diagonal matrix h_1 so that the greatest common divisor of entries of each row of h_1h is 1. Since $g = D^{-1}h =$ $(h_1D)^{-1}h_1h$ and $g\in GL_n(O_K)$, all diagonal entries of the diagonal matrix h_1D are units in O_K . Moreover we know that $(h_1D)^w = h_1^wD^w$ is rational, and so all diagon al entries of $(h_1D)^w$ are ± 1 , which means that all diagonal entries of h_1D are roots of unity in K. Thus we have $g = (h_1 D)^{-1} h_1 h \in GL_n(F)$.

LEMMA 3. *Keeping everything in Lemma 2, we have* $G \subseteq GL_n(O_F)$ *.*

By Lemma 1, we may assume that $G(\mathfrak{P}) \ \cap \ M_n(F)$ consists of diagonal matrices. We take a sufficiently large integer k so that $G(\mathfrak{P}^*) = \{1_n\}$; then Lem ma 2 yields $G(\mathfrak{P}^{k-1}) \subset G(\mathfrak{P}) \cap M_n(F)$ and then $G(\mathfrak{P}^{k-1})$ consists of diagonal matrices, too. By iterating this operation, we see that $G(\mathfrak{B})$ consists of diagonal matrices and then Lemma 2 yields $G \subseteq GL_n(O_F)$.

LEMMA 4. L#f *K be a nilpotent extension of* Q wί/i *Galois group Γ and suppose that* 2 *is the only ramified rational prime. Denoting a prime ideal of K lying over* 2 *by* \mathfrak{B} *, we have* $\Gamma = V_1(\mathfrak{B}; K/\mathbf{Q})$.

Proof. Let *Φ(Γ)* be the Frattini subgroup of *Γ.* Then it contains the com mutator subgroup and the subfield $F (\neq Q)$ corresponding to $\Phi(\Gamma)$ is an abelian extension of Q and 2 is the only ramified prime number. Let *p* be a prime ideal of F lying over 2. Then $V_0(\mathfrak{p};F/{\bf Q})$ is induced by $V_0(\mathfrak{P};K/{\bf Q})$ and hence $V_0(\mathfrak{P}$ K/\mathbf{Q}) $\Phi(\Gamma)$ / $\Phi(\Gamma)$ = $V_0(\mathfrak{p}$; F/\mathbf{Q}). $V_0(\mathfrak{p}$; $F/\mathbf{Q})$ = Gal(F/\mathbf{Q}) yields $V_0(\mathfrak{P};K/\mathbf{Q})$ $\varPhi(\varGamma) = \varGamma$ and the property of the Frattini subgroup implies $V_o(\mathfrak{P} \: ; \: K / \mathbf{Q}) = \varGamma$. Hence \mathfrak{B} is fully ramified and the order of the quotient group $V_0(\mathfrak{B}; K/\mathbf{Q})/V_1(\mathfrak{B}; K/\mathbf{Q})$ K/Q) divides $N\$ - 1 = 1, which means $V_0 (\mathfrak{B}; K/Q) = V_1 (\mathfrak{B}; K/Q)$.

Proof of Theorem. We use induction on the degree $[K: \mathbf{Q}]$. By virtue of Lem-

ma 3 in [3], we may assume that the number of ramified rational prime number is one, and let it be p . We claim that G is contained in $GL_n(F)$, where F is the max imal abelian subfield of *K.* Then Theorem on p. 142 in [1] completes the proof. If p is odd, then K is a cyclic extension of Q as in [3] and so the claim is obvious. Suppose $p = 2$; then Lemma 3 and Lemma 4 yield that G is contained in $GL_n(F)$. \Box

Remark. It is a problem to consider a general algebraic number field as a base field instead of Q. Let *K/F* be a Galois extension of algebraic number fields, and G a $\operatorname{Gal}(K/F)$ -stable finite subgroup of $GL_n(O_K)$. If K is totally real, then one generalization of the notion of being A-type is that G is already in $GL_n(O_F)$. But this is not adequate because there exists a counter-example when K/F is unramified. Nevertheless, it seemed not necessarily to be off the point, since the ex istence of a certain kind of element in *G* induces the existence of a proper in termediate subfield of *K* unramified over *F.* So, we asked the role of the existence of an unramified proper intermediate field, (c.f. p. 261 in [2].) But D. A. Malinin gave a following example in [4]: Set

$$
K = \mathbf{Q}(\alpha, \beta), F = \mathbf{Q}(\alpha\beta) \quad \text{for } \alpha = \sqrt{2 + \sqrt{2}}, \beta = \sqrt{3 + \sqrt{2}}.
$$

Then *K/F* is not unramified and for

$$
g=(g_{ij}),\,g_{11}=-g_{22}=-\beta,\,g_{21}=-g_{12}=-\alpha,
$$

 $G = \{\pm \mathbb{1}_2, \ \pm \mathbb{g} \}$ is a $\text{Gal}(K/F)$ -stable subgroup of $GL_2(O_K)$. This seems to be the first example such that K/F is not umramified and G is not in $GL_n(O_F)$ up to roots of unity, although it is $Gal(K/F)$ -stable.

We can give another example: Let *n* be a natural number and *F* an algebraic number field containing *nth* roots of unity, and ε a unit in *F,* which is not a root of unity. Put $K := F(\varepsilon^{1/n})$, which is a not necessarily unramified but abelian extension of F . For a cyclic permutation $\sigma := (1, 2, \ldots, n) \in \mathfrak{S}_n$ and for $a_1 =$ $= a_{n-1} = \varepsilon^{1/n}$ and $a_n = (\varepsilon^{1/n})^{1-n}$, we put

$$
S=(a_i\delta_{\sigma(i),j}),
$$

where δ_{ij} denotes Kronecker's delta function. Then $S^{\prime \prime} \equiv 1_n$ is easy and

$$
G := \left\{ \begin{pmatrix} \varepsilon_1 & 0 \\ 0 & \varepsilon_n \end{pmatrix} S^i \middle| \varepsilon_i : \text{nth root of unity} \right\}
$$

is a $\mathop{{\rm Gal}}\nolimits(K/F)$ -stable finite subgroup of $GL_n(O_{\scriptscriptstyle{K}})$. G is not contained in

 $GL_n(O_F)$ up to roots of unity.

Is there an example of a $\operatorname{Gal}(K/F)$ -stable finite subgroup G in $GL_n(O_K)$ such that G is not contained in $GL_n(O_L)$ for the maximal abelian subfield L of K over *F,* or what can we expect ?

Malinin announced good results in [5], but the details are not available yet.

REFERENCES

- [1] Y. Kitaoka, Finite arithmetic subgroups of GL_n , II, Nagoya Math. J., **77** (1980) 137-143
- [2] -, Arithmetic of quadratic forms, Cambridge University Press, 1993
- [3] , Finite arithmetic subgroups of *GLⁿ ,* III, Proc. Indian Acad. Sci., **104** (1994) 201-206
- [4] D. A. Malinin, Isometries of positive definite quadratic lattices, ISLC Mathematical College Works. Abstracts, Lie-Lobachevsky Colloquium. Tartu. October 26-30, 1992
- [5] —, Lecture Notes in Mannheim, 1994

Corrections to [3]

As stated in the introduction, the definition of A-type in [3] is not adequate, and we should adopt the definition in this paper. Then the results are true with the following minor modifications in the proof of Lemma 3:

Page 203, line 6: $\varepsilon_i \sigma(L_i) = L_i$ should be " $\varepsilon_i \sigma(L_i) = L_{s(i)}$ for some permutation $s \in$ **®«"**

Page 203, line 12: The displayed equation is numbered by (2).

Page 203, line 18: $\varepsilon_i \eta(L_i) = L_i$ should be " $\varepsilon_i \eta(L_i) = L_{s(i)}$ for some permutation

Page 203, line 19: $\mu(L_i) = L_i$ should be $\mu(L_i) = L_{s(i)}$.

Page 203, line 19: $η$ ($O_{K'}L_i$) = $O_{K'}L_i$ should be $η$ ($O_{K'}L_i$) = $O_{K'}L_{s(i)}$.

Pabe 203, line 19-line 20: Insert "that the permutation s is the identity and" between implies and $\eta(x)$.

Page 203, line 35: (1) should be (2).

Theorem 2 on p. 205 is improved as follows:

Page 205, line 9: $GL_n(O_{\tt K})$ should be " $GL_m(O_{\tt K})$ for any natural number $m,$ ".

Graduate School of Polymathematics Nagoya University

Chikusa-ku, Nagoya 464-01 Japan