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FINITE ARITHMETIC SUBGROUPS OF GLn, IV

YOSHIYUKI KITAOKA AND HIROSHI SUZUKI

In this paper, we improve a result of the third paper of this series, that is we

show

THEOREM. Let K be a nilpotent extension of the rational number field Q with

Galois group Γ, and G a Γ-stable finite subgroup of GLn(Oκ). Then G is of A-type.

Here, automorphisms in Γ act entry-wise on matrices in G, and G being

Γ-stable means that σ(g) e G for every σ e Γ and g e G. Oκ stands for the

ring of integers in K and G being of A-type means the following:

Let L = 2έ\ely. . . , en] be a free module over Z and we make g = (g i ; ) ^ G

act on OβX by g(et) = Σ ; = 1 £ ί ; £;. Then there exists a decomposition L = 0 ί = 1 Lt

such that for every g ^ G, we can take a root of unity εi(g)(l < i < k) and a

permutation s(#) so that ε^gLt = Z, s (^ ) ω for t = 1, . . . , k. (The definition of

A-type in the third paper [3] of this series is wrong, but the results in it are true

in the above sense of A-type. See the correction at the end.) We denote the identi-

ty matrix of size n by ln, and the ring of rational integers by Z.

LEMMA 1. Let F be an abelian extension ofQ with Galois group Γ, and 3 an in-

tegral ideal (Φ OF) of F. Let G be a Γ-stable finite subgroup of GLn(OF). Then G is

of A-type, and for a subgroup

G O ) : = {g<EΞ G\g = l w m o d 3 } ,

there exists an integral matrix T ^ GLn(Z) such that {TgT \ g ^ GO)} consists

of diagonal matrices.

Proof It is clear that
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5:= Σg'g
geG

is a rational integral positive definite matrix, where the bar denotes the complex

conjugation. We introduce a lattice L '•= Z[ev..., en] with bilinear form

(B(eif e)) '= S and consider the scalar extension OFL with B(λx> μy) ' =

λμ B(x, y) for λ, μ ^ OF and x, y ^ L. Then L, OFL are a positive definite

quadratic lattice over Z and a positive definite Hermitian lattice over OF, respec-

tively. Let

! : = ! , ! ••• I I ,

be the decomposition to indecomposable lattices. We define an automorphism φg:

OFL-+OFL by

Then φg is an isometry of OFL by (B(φg(et), φg(e^)) = gS*g = S. Hence by [1],

there exist a root of unity εt e F and a permutation <7 ̂  ©α such that

(1) SiφgiL) = Z,σ ω for ί = 1,. . . , α,

which implies that G is of A-type. Here assuming g ^ GO), we have

(2) φg(x) = x mod 3L,

and hence the permutation σ in (1) is the identity. Now we take a basis ί^,. . .,

z) of Z,£ for an integer k with 1 < k < #. Then there exist a root of unity ε ^ F

and A e GLS(Z) satisfying

(3) (εφgizj,..., εφg(zs)) = (zv..., ^ ) Ά .

Let $ be a prime ideal dividing 3 and p the rational prime number dividing ^3. At

first, we claim that we can choose the matrix A so that

A = l smod£.

By virtue of (2), (3), we have

(4) ε~ιA = ls mod %

which implies, by putting A = (aι;)

a u = 0 mod^ if i ^ h a a = ε mod 3̂ for every i,

and then we have
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(5) A = α n l 5 m o d ^ .

Hence the claim is clear if p = 2, and hereafter we assume p > 2. ε~ A( = ls mod

$) is of finite order, and the order is a power of p, say pr. Then we have ε* l s =

AP , which is a rational integral matrix. Thus AP = ± ls is clear. If AP = — l s ,

then by replacing ε, A by — ε, — A in (3), respectively, we may assume A = ln

and ε̂  = 1. If ε = 1, (4) implies the claim. Otherwise, let p be the prime ideal of

Q(ε) under $ then (4) implies aH = ε mod p. Now p = (1 — ε) yields au = 1

mod p and hence aH = 1 moάp. Thus we have shown the claim.

Next we claim that we can take ls as A. Since A is of finite order, the claim

above yields A = ls if p > 2. Suppose p = 2. By virtue of A = ls mod 2 and x —

(x + εφg(x)) /2 + (x — εφgix)) /2, we have Lk = L+ ± L_, where L± = {x.e

LAI εφg{x) =• ± x}. Since L^ is indecomposable, we have LΛ = L + or L_, which

means A = ± l s . If necessary, by replacing ε, A by — ε, — A in (3), respectively,

we may assume A = ls. Thus we have shown the claim. Hence we have only to

take a matrix T as a transformation matrix from the original basis ieu. . ., en) of

L to the one consisting of bases of Lk (k = 1 , . . . , a). D

DEFINITION. Let K be a Galois extension of Q with Galois group Γ and $ a

prime ideal. Then we put, for a non-negative integer m

Vm(% K/Q) : = {« e Γ | «Gr) = x mod $ m + 1 for x ^ Oκ).

LEMMA 2. Lei K be a Galois extension of Q with Galois group Γ, and β̂ a jί>nmβ

ΐctea/ o/iί, and suppose Γ — Vj (̂ S K/Q). L#ί i*1 /?e ί/ie maximal abelian extension of

Q contained in K. Let G be a Γ-stable finite subgroup of GLn(Oκ) and k a

non-negative integer. Suppose that G($ ) consists of diagonal matrices. Then we

have G{^k) c GLn(OF).

Proof. We take and fix an element g ^ G($ ). Let us see, for σ ^ Γ

σ(g) = g mod $*+ 1.

If k = 0, it is clear because of Γ = Vx(φ K/Q). Suppose k > 0. Putting £ = l w

+ 7Γ A with 4̂ ^ Mn(Oςβ), where π is a prime element in the completion 0^ of Oκ

at the prime $, we have

σ(πk) = πk mod $"+ 1, σG4) = A mod φ 2

and hence
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σ(g) = g mod %k+1 and

Thus Dσ •= σ{g)g is diagonal and it is easy to see

By Lemma 1 in [3], there exists a diagonal matrix D ^ GLn(K), which satisfies

Dw e GLM(Q) and Z)σ = σ(D~ι)D,

where «/ is the number of roots of unity in K. Then σ(g)g~ = σ(D~ )D for every

σ G Γ yields /* : = Z)g e GLn(Q). We choose a rational diagonal matrix Ax so that

the greatest common divisor of entries of each row of hxh is 1. Since g — D h —

(J%XD)~ hxh and g ^ GLn(Oκ), all diagonal entries of the diagonal matrix hj) are

units in Oκ. Moreover we know that (hλD)w = h™Dw is rational, and so all diagon-

al entries of {hxD) are ± 1, which means that all diagonal entries of hλD are

roots of unity in K. Thus we have g = (hflV^h e GLn(F). D

LEMMA 3. Keeping everything in Lemma 2, we have G c GLn(OF).

By Lemma 1, we may assume that G(^β) Π Mn(F) consists of diagonal

matrices. We take a sufficiently large integer k so that G($ ) — {lw} then Lem-

ma 2 yields GOβ*"1) c G($) Π MW(F) and then G ^ ^ " 1 ) consists of diagonal

matrices, too. By iterating this operation, we see that GOβ) consists of diagonal

matrices and then Lemma 2 yields G cz GLn(OF).

LEMMA 4. L#f K be a nilpotent extension of Q wί/i Galois group Γ and suppose

that 2 is the only ramified rational prime. Denoting a prime ideal of K lying over 2 by

%,wehaveΓ= V^φ K/Q).

Proof. Let Φ(Γ) be the Frattini subgroup of Γ. Then it contains the com-

mutator subgroup and the subfield F (Φ Q) corresponding to Φ(Γ) is an abelian

extension of Q and 2 is the only ramified prime number. Let p be a prime ideal of

F lying over 2. Then V0(p F / Q ) is induced by Vo(^ K/Q) and hence Vo($

K/Q)Φ(Γ) /Φ(Γ) = V0(p F/Q). V0(p F/Q) = Gal(F/Q) yields F o ($ tf/Q)

Φ(F) = F and the property of the Frattini subgroup implies Vo(?$ K/Q) = 77

Hence $ is fully ramified and the order of the quotient group V0C$ K/Q) /Vλ($

ΛΓ/Q) divides iV$ - 1 = 1, which means ^ ( ^ K/Q) = ^ ( ^ # / Q ) . Π

Proof of Theorem. We use induction on the degree [K : Q]. By virtue of Lem-
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ma 3 in [3], we may assume that the number of ramified rational prime number is

one, and let it be p. We claim that G is contained in GLn(F), where F is the max-

imal abelian subfield of K. Then Theorem on p. 142 in [1] completes the proof. If

p is odd, then K is a cyclic extension of Q as in [3] and so the claim is obvious.

Suppose p — 2; then Lemma 3 and Lemma 4 yield that G is contained in GLn(F).

Remark. It is a problem to consider a general algebraic number field as a

base field instead of Q. Let K/F be a Galois extension of algebraic number fields,

and G a Gal (K/F) -stable finite subgroup of GLn(Oκ). If K is totally real, then

one generalization of the notion of being A-type is that G is already in GLn(OF).

But this is not adequate because there exists a counter-example when K/F is un-

ramified. Nevertheless, it seemed not necessarily to be off the point, since the ex-

istence of a certain kind of element in G induces the existence of a proper in-

termediate subfield of K unramified over F. So, we asked the role of the existence

of an unramified proper intermediate field, (c.f. p. 261 in [2].) But D. A. Malinin

gave a following example in [4]: Set

K= Q(α, /3), F= Q(aβ) for a = Λ/2 + yf2 , β = y/3 + y/2 .

Then K/F is not unramified and for

8 = tea), 8u = ~ £22 = ~ β, 821 = ~ 812 = ~ a>

G = {± 12, ± g] is a Gal (K/F) -stable subgroup of GL2(OK). This seems to be

the first example such that K/F is not umramified and G is not in GLn(OF) up to

roots of unity, although it is Gal (K/F) -stable.

We can give another example: Let n be a natural number and F an algebraic

number field containing nth roots of unity, and ε a unit in F, which is not a root

of unity. Put K '•= F(ε n), which is a not necessarily unramified but abelian ex-

tension of F. For a cyclic permutation σ '-= (1,2,. . ., n) ^ ©w and for a1 =

— an_1 — ε and an — \ε ) , we put

S = (aiδσ(i)J),

where δ^ denotes Kronecker's delta function. Then S = ln is easy and

SΛ .

0

zi: «th root of unity

is a Gal (K/F) -stable finite subgroup of GLn(Oκ). G is not contained in
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GLn(OF) up to roots of unity.

Is there an example of a Gal(K/F)-stable finite subgroup G in GLn(Oκ)

such that G is not contained in GLn(OL) for the maximal abelian subfield L of K

over F, or what can we expect ?

Malinin announced good results in [5], but the details are not available yet
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Corrections to [3]
As stated in the introduction, the definition of A-type in [3] is not adequate, and we

should adopt the definition in this paper. Then the results are true with the following
minor modifications in the proof of Lemma 3:

Page 203, line 6: εflίL^) — L{ should be "s^oiL) = Lsii) for some permutation 5 ^

®«"
Page 203, line 12: The displayed equation is numbered by (2).
Page 203, line 18: ε{η(Lt) = L{ should be "etf(Lt) = Ls{i) for some permutation

Page 203, line 19: μ(Lf) = L{ should be μ(Lt) = Ls(i).
Page 203, line 19: η(Oκ,Lt) = Oκ,Li should be η(Oκ,Lt) = Oκ,Ls{i).
Pabe 203, line 19-line 20: Insert "that the permutation 5 is the identity and" be-

tween implies and ϊ](x).
Page 203, line 35: (1) should be (2).
Theorem 2 on p. 205 is improved as follows:
Page 205, line 9: GLn(Oκ) should be "GLm(Oκ) for any natural number m".

Graduate School of Polymathematics

Nagoya University

Chikusa-ku, Nagoya 464-01

Japan


