HYPONORMAL TOEPLITZ OPERATORS ON $H^{2}(T)$ WITH POLYNOMIAL SYMBOLS

DAHAI YU*

Let T be the unit circle on the complex plane, $H^{2}(T)$ be the usual Hardy space on T, T_{ϕ} be the Toeplitz operator with symbol $\phi \in L^{\infty}(T)$, C. Cowen showed that if f_{1} and f_{2} are functions in H^{2} such that $f=f_{1}+\bar{f}_{2}$ is in L^{∞}, then T_{f} is hyponormal if and only if $f_{2}=c+T_{\bar{g}} f_{1}$ for some constant c and some function g in H^{∞} with $\|g\|_{\infty} \leq 1[1]$. Using it, T. Nakazi and K. Takahashi showed that the symbol of hyponormal Toeplitz operator T_{ϕ} satisfies $\phi-g=k \bar{\phi}, g \in H^{\infty}$ and $k \in H^{\infty}$ with $\|k\| \leq 1$ [2], and they described the ϕ solving the functional equation above. Both of their conditions are hard to check, T. Nakazi and K. Takahashi remarked that even "the question about polynomials is still open" [2]. Kehe Zhu gave a computing process by way of Schur's functions so that we can determine any given polynomial ϕ such that T_{ϕ} is hyponormal [3]. Since no closed-form for the general Schur's function is known, it is still valuable to find an explicit expression for the condition of a polynomial ϕ such that T_{ϕ} is hyponormal and depends only on the coefficients of ϕ, here we have one, it is elementary and relatively easy to check. We begin with the most general case and the following Lemma is essential.

Lemma 1. If $f, g \in H^{2}(T)$ and $\phi=f+\bar{g} \in L^{\infty}(T)$, then T_{ϕ} is hyponormal if and only if the (bounded) operator A on l^{2}

$$
\begin{gather*}
A=\left(A_{i j}\right) \equiv\left(A_{f}(i, j)-A_{g}(i, j)\right) \tag{1}\\
\equiv\left(\left\langle S^{*^{j}} f, S^{*^{i}} f\right\rangle-\left\langle S^{*^{j}} g, S^{*^{i}} g\right\rangle\right) i, j \geqq 1
\end{gather*}
$$

is non-negative where S refers to the unilateral shift on $H^{2}(T)$.
Proof. By definition T_{ϕ} is hyponormal when $T_{\phi}^{*} T_{\phi}-T_{\phi} T_{\phi}{ }^{*} \geqq 0$, i.e. $\left(T_{f+\bar{g}}\right)^{*} T_{f+\bar{g}}-T_{f+\bar{g}}\left(T_{f+\bar{g}}\right)^{*}=\left(T_{f}^{*} T_{f}-T_{f} T_{f}^{*}\right)-\left(T_{g}^{*} T_{g}-T_{g} T_{g}^{*}\right) \geqq 0$, the Lemma

Received March 9, 1995.

* supported by NNSFC
is no other than to find out the matrix form of $T_{\phi}{ }^{*} T_{\phi}-T_{\phi} T_{\phi}{ }^{*}$.
Put $f=\sum_{k=0}^{\infty} f_{k} z^{k}, g=\sum_{l=0}^{\infty} g_{l} z^{l}$, let $\left\{z^{n}\right\}_{n=1}^{\infty}$ be the natural base for $H^{2}(T)$ since

$$
\begin{equation*}
T_{f}^{*} T_{f}-T_{f} T_{f}^{*}=H_{\mathcal{T}}^{*} H_{\mathcal{F}} \tag{2}
\end{equation*}
$$

where $H_{\mathcal{F}}$ refers to the Hankel operator with symbol \bar{f} (consult [4] for the definition and related properties of a Hankel operator), for any pair of non-negative integers $i, j, i \geq j$, we have

$$
\begin{align*}
& \left\langle\left(T_{f}^{*} T_{f}-T_{f} T_{f}^{*}\right) z^{j}, z^{i}\right\rangle=\left\langle H_{\bar{f}}^{*} H_{\bar{f}} z^{j}, z^{j}\right\rangle \tag{3}\\
& =\left\langle H_{\bar{f}} z^{j}, H_{\bar{f}} z^{i}\right\rangle_{L^{2}(T)}=\left\langle\sum_{l=j+1}^{\infty} \bar{f}_{l} z^{j-l}, \sum_{k=i+1}^{\infty} \bar{f}_{k} z^{i-k}\right\rangle_{L^{2}(T)} \\
& =\sum_{k=j+1}^{\infty} \bar{f}_{k} f_{i-j+k}
\end{align*}
$$

since $T_{f}^{*} T_{f}-T_{f} T_{f}{ }^{*}$ is self-adjoint (We temporarily disregard the boundedness of T_{f}, since $\left\{z^{n}\right\}_{n=0}^{\infty}$ are obviously in H^{∞}, the above computation has no problem). The element of the upper half of the matrix A_{f} is $\sum_{l=j+1}^{\infty} \bar{f}_{l+i-j} f_{l}$ respectively, thus we have

$$
\begin{align*}
& A_{f}=\left(\begin{array}{ccccc}
\sum_{l=1}^{\infty}\left|f_{l}\right|^{2}, & \sum_{l=2}^{\infty} \bar{f}_{l-1} f_{l}, & \sum_{l=3}^{\infty} \bar{f}_{l-2} f_{l}, & \sum_{l=4}^{\infty} \bar{f}_{l-3} f_{l}, \ldots & \\
\sum_{l=2}^{\infty} f_{l-1} \bar{f}_{1}, & \sum_{l=2}^{\infty}\left|f_{l}\right|^{2}, & \sum_{l=3}^{\infty} \bar{f}_{l-1} f_{l}, & \sum_{l=4}^{\infty} \bar{f}_{l-2} f_{l}, \ldots & \\
\sum_{l=3}^{\infty} f_{l-2} \bar{f}_{l}, & \sum_{l=3}^{\infty} f_{l-1} \bar{f}_{l}, & \sum_{l=3}^{\infty}\left|f_{l}\right|^{2}, & \sum_{l=4}^{\infty} f_{l-1} \bar{f}_{l}, \ldots & \\
\sum_{l=4}^{\infty} f_{l-3} \bar{f}_{l}, & \sum_{l=4}^{\infty} f_{l-2} \bar{f}_{l}, & \sum_{l=4}^{\infty} f_{l-1} \bar{f}_{l}, & \sum_{l=4}^{\infty}\left|f_{l}\right|^{2}, \ldots & \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \tag{4}\\
& =\left(\begin{array}{cccccc}
\left\|S^{*} f\right\|^{2}, & \left\langle S^{*^{2}} f, S^{*} f\right\rangle, & \left\langle S^{*^{3}} f, S^{*} f\right\rangle, & \left\langle S^{*^{4}} f, S^{*} f\right\rangle, & \cdots \\
\left\langle S^{*} f, S^{\left.*^{2}\right\rangle,}\right. & \left\|S^{*^{2}} f\right\|^{2}, & \left\langle S^{*^{3}} f, S^{*^{2}} f\right\rangle, & \left\langle S^{*^{4}} f, S^{*^{2}} f\right\rangle, & \cdots \\
\left\langle S^{*} f, S^{*^{3}} f\right\rangle, & \left\langle S^{*^{2}} f, S^{*^{3}} f\right\rangle, & \| S^{*^{3} f \|^{2},} & \left\langle S^{*^{4}} f, S^{*^{3}} f\right\rangle, & \cdots \\
\left\langle S^{*} f, S^{*^{4}} f\right\rangle, & \left\langle S^{*^{2}} f, S^{\left.*^{4} f\right\rangle,}\right. & \left\langle S^{*^{3}} f, S^{*^{4}} f\right\rangle, & \left\|S^{*^{4}} f\right\|^{2}, \cdots & \\
\vdots & \vdots & \ddots
\end{array}\right)
\end{align*}
$$

the Lemma is proved.
From the matrix form of $T_{\phi}^{*} T_{\phi}-T_{\phi} T_{\phi}{ }^{*}$, we have an explanation for the fact that T_{ϕ} is hyponormal, the analytic part of ϕ must be in some sense "larger" than it's co-analytic part, namely we have

Corollary 1. Suppose $\phi \in L^{\infty}(T), \phi=f+\bar{g}, f, g \in H^{2}(T)$ and T_{ϕ} is hyponormal, then the following inequalities hold

$$
\begin{equation*}
\left\|S^{*^{i}} f\right\|^{2}=\sum_{l=i}^{\infty}\left|f_{l}\right|^{2} \geqq\left\|S^{*^{i}} g\right\|^{2}=\sum_{l=i}^{\infty}\left|g_{l}\right|^{2} \quad \forall i=1,2, \cdots, \tag{5}
\end{equation*}
$$

where S^{*} is the backward shift on $H^{2}(T)$.
Proof. It is enough to take $h \in H^{2}(T)$ such that the coefficient of z^{n} is zero for all n except $n=i$ where it equals 1 and compute $\left\langle\left(A_{f}-A_{g}\right) h, h\right\rangle$.

In particular, when f is a polynomial, we have the following
Theorem 1. If $T_{f+\bar{g}}$ is a hyponormal Toeplitz operator where $f=\sum_{k=0}^{n} f_{k} z^{k}$, $f_{n} \neq 0, g \in H^{\infty}$, then g must be a polynomial with order less or equal to $n, g=$ $\sum_{l=0}^{n} g_{l} z^{l}$, and the finite matrix.

$$
\left(\begin{array}{cccc}
\sum_{l=1}^{n}\left(\left|f_{l}\right|^{2}-\left|g_{l}\right|^{2}\right), & \sum_{l=1}^{n}\left(\bar{f}_{l-1} f_{l}-\bar{g}_{l-1} g_{l}\right), & \cdots, & \bar{f}_{1} f_{n}-\bar{g}_{1} g_{n} \tag{6}\\
\sum_{l=2}^{n}\left(f_{l-1} \bar{f}_{l}-g_{l-1} \bar{g}_{l}\right), & \sum_{l=2}^{n}\left(\left|f_{l}\right|^{2}-\left|g_{l}\right|^{2}\right), & \cdots, & \bar{f}_{2} f_{n}-\bar{g}_{2} g_{n} \\
\sum_{l=3}^{n}\left(f_{l-2} \bar{f}_{l}-g_{l-2} \bar{g}_{l}\right), & \sum_{l=3}^{n}\left(f_{l-1} \bar{f}_{l}-g_{l-1} \bar{g}_{l}\right), & \cdots, & \bar{f}_{3} f_{n}-\bar{g}_{3} g_{n} \\
\sum_{l=4}^{n}\left(f_{l-3} \bar{f}_{l}-g_{l-3} \bar{g}_{l}\right), & \sum_{l=4}^{n}\left(f_{l-2} \bar{f}_{l}-g_{l-2} \bar{g}_{l}\right), & \cdots, & \bar{f}_{4} f_{n}-\bar{g}_{4} g_{n} \\
\cdots, & \cdots, & \cdots, & \cdots, \\
f_{1} \bar{f}_{n}-g_{1} \bar{g}_{n}, & f_{2} \bar{f}_{n}-g_{2} \bar{g}_{n}, & \cdots, & \left|f_{n}\right|^{2}-\left|g_{n}\right|^{2}
\end{array}\right)
$$

is non-negative.
Proof. Since $S^{*^{i}} f \equiv 0 \forall i>n$ by Lemma 1, all the components in A_{f} are zeros except the first n rows and rays, so by Corollary $1, g_{k}=0 \forall k>n$, the rest of the proof is trivial. we are done.

We give some examples, they are Example 6 and a special case of Example 7 respectively in [3].

EXAMPLE 1. Put $\phi=a_{0}+a_{1} z+a_{2} z^{2}+\overline{b_{0}+b_{1} z+b_{2} z^{2}}$ and

$$
A_{2}=\left(\begin{array}{cc}
\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}-\left|b_{1}\right|^{2}-\left|b_{2}\right|^{2}, & \bar{a}_{1} a_{2}-\bar{b}_{1} b_{2} \tag{7}\\
a_{1} \bar{a}_{2}-b_{1} \bar{b}_{2}, & \left|a_{2}\right|^{2}-\left|b_{2}\right|^{2}
\end{array}\right) .
$$

The non-negativity conditions of this matrix A_{2} are
(i) $\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2} \geqq\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}$ and $\left|a_{2}\right|^{2} \geqq\left|b_{2}\right|^{2}$,
(ii) $\left.\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}-\left|b_{1}\right|^{2}-\left|b_{2}\right|^{2}\right)\left(\left|a_{2}\right|^{2}-\left|b_{2}\right|^{2}\right)-$

$$
\begin{equation*}
-\left(a_{1} \bar{a}_{2}-b_{1} \bar{b}_{2}\right)\left(\bar{a}_{1} a_{2}-\bar{b}_{1} b_{2}\right) \tag{8}
\end{equation*}
$$

$$
=\left(\left|a_{2}\right|^{2}-\left|b_{2}\right|^{2}\right)^{2}-\left|a_{1} b_{2}-b_{1} a_{2}\right|^{2} \geqq 0
$$

(iii) $\left|a_{2}\right|^{2} \geqq\left|b_{2}\right|^{2}+\left|a_{1} b_{2}-b_{1} a_{2}\right|$.

It is easy to check (iii) implies (i) and (ii), so (iii) is the necessary and sufficient condition for that T_{ϕ} is hyponormal.

Example 2. Put $\phi=a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+\overline{b_{0}+b_{1} z+b_{2} z^{2}}$,
(9) $\quad A_{3}=\left(\begin{array}{ccc}\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\left|a_{3}\right|^{2}-\left|b_{1}\right|^{2}-\left|b_{2}\right|^{2}, & \bar{a}_{1} a_{2}-\bar{b}_{1} b_{2}+\bar{a}_{2} a_{3}, & \bar{a}_{1} a_{3} \\ a_{1} \bar{a}_{2}-b_{1} \bar{b}_{2}+a_{2} \bar{a}_{3}, & \left|a_{2}\right|^{2}+\left|a_{3}\right|^{2}-\left|b_{2}\right|^{2}, & \bar{a}_{2} a_{3} \\ a_{1} \bar{a}_{3}, & a_{2} \bar{a}_{3}, & \left|a_{3}\right|^{2}\end{array}\right)$
and
(10) $\quad \operatorname{det} A_{3}=$

$$
\left|a_{3}\right|^{2}\left|\begin{array}{ccc}
\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\left|a_{3}\right|^{2}-\left|b_{1}\right|^{2}-\left|b_{2}\right|^{2}, & \bar{a}_{1} a_{2}-\bar{b}_{1} b_{2}+\bar{a}_{2} a_{3}, & \bar{a}_{1} \\
a_{1} \bar{a}_{2}-b_{1} \bar{b}_{2}+a_{2} \bar{a}_{3}, & \left|a_{2}\right|^{2}+\left|a_{3}\right|^{2}-\left|b_{2}\right|^{2}, & \bar{a}_{2} \\
a_{1}, & a_{2}, & 1
\end{array}\right| .
$$

A computation shows that T_{ϕ} is hyponormal if and only if the following (11) is true.

$$
\begin{equation*}
\left|a_{3}\right|^{2} \geqq\left|b_{2}\right|^{2}+\left|a_{3} b_{1}-a_{2} b_{2}\right| \tag{11}
\end{equation*}
$$

Of course, we can give more examples (through routine computation), but I feel it probably looks more natural to give the condition in matrix form.

REFERENCES

[1] C. Cowen, Hyponormal and subnormal Toeplitz operators, in Surveys of Some Recent Results in Operator Theory (J. B. Conway and B. B. Morrel, editors), Pitman Research Notes in Math., 171 (1988), 155-167.
[2] T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Tran. Amer. Math. Soc., 338 (1993), 753-766.
[3] Kehe Zhu, Hyponormal Toeplitz operators with polynomial symbols, Integr. Equat Oper. Th., 21 (1995), 376-381.
[4] S. C. Power, Hankel operators on Hilbert space, Research Notes in Math,. 64 (A. Jeffrey, R. G. Douglas).

Department of Mathematics

Sichuan University
Chengdu, China 610064

