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A QUASIANALYTIC SINGULAR SPECTRUM WITH
RESPECT TO THE DENJOY-CARLEMAN CLASS

SOON-YEONG CHUNG AND DOHAN KIM

Abstract. Making use of the FBI (Fourier-Bros-Iagolnitzer) transforms we
simplify the quasianalytίc singular spectrum for the Fourier hyperfunctions,
which was denned for distributions by Hόrmander as follows; for any Fourier
hyperfunction u, (xo,£o) does not belong to the quasianalytic singular spec-
trum WFM(U) if and only if there exist positive constants C, 7 and iV, and a
neighborhood of XQ and a conic neighborhood Γ of £0 such that

KKexp -\ξ\(x - yf/2 - i(y,ξ)]\ < Cexp[-M(Ί\ξ\)}

for all x G U, \ξ\ G Γ and \ξ\ > N, where M(t) is the associated function of
the defining sequence Mv. This result simplifies Hδrmander's definition and
unify the singular spectra for the C°° class, the analytic class and the Denjoy-
Carleman class, both quasianalytic and nonquasianalytic.

§0. Introduction

The classification of singularities according to their spectrum was de-

veloped by several mathematicians around 1970. Sato introduced and

studied the analytic singular spectrum for the hyperfunctions in [Sa], and

Hόrmander defined WF{u) for the distributions by means of pseudodifferen-

tial operators, and later by multiplying cutoff functions and taking Fourier

transforms for the C°° class in [HI, H4]. Hόrmander also introduced the

wave front set WFM(V>) with respect to the Denjoy-Carleman class CM in

[H2, H4], which includes the analytic wave front set WFA{U) as a special

case. To define this he used a sequence of cutoff functions to overcome the

difficulty of absence of cutoff functions in the class of analytic functions.

But it is rather complicated, and difficult to compare this with C°° wave

front set WF(u). On the other hand, making use of the FBI transforms,

Bros and Iagolnitzer introduced the essential spectrum, which was shown

to be equal to the analytic singular spectrum of Sato and the analytic wave

front set of Hόrmander by Bony in [B].

Received March 26, 1996.
Partially supported by KOSEF and GARC

137



138 S.-Y. CHUNG AND D. KIM

The purpose of this paper is to define a singular spectrum with respect

to CM for the Fourier hyperfunctions which include distributions and Sato's

hyperfunctions in the spirit of Bros-Iagolnitzer and to unify the theories of

singular spectra for the case of the analytic class, the C°° class and the

Denjoy-Carleman class, both quasianalytic and nonquasianalytic.

The following is the local regularity theorem for CM by Hormander as

in [H2, H4]:

THEOREM 0.1. ([H4]) Let u be a distribution. Then u is CM near XQ

if and only if there exist a constant C > 0, a neighborhood U of XQ and a

bounded sequence up G Sf which is equal to u in U and satisfies

< C(C*>Mp/\ξ\p), p= 1 ,2 ,3 , . . . ,

where Λ denotes the Fourier transform.

We simplify the above theorem and generalize to the larger category of

Fourier hyperfunctions as a main theorem in this paper as follows:

THEOREM 0.2. Let u be a Fourier hyper function. Then u is CM near

XQ if and only if there are positive constants C', 7, N and a neighborhood

U of XQ such that

for all x G U and \ξ\ > N, where M(t) is the associated function of Mp (see

(1.6) for the definition).

Also, we derive from the above theorem a local regularity theorem for

the analytic class and the C°° class as a corollary, which generalizes a

microlocal result of Matsuzawa in [M].

§1. Preliminaries

We first introduce the real version of the Fourier hyperfunctions as

defined in [KCK]. We refer to [Ka] for the sphere compactification D n,

which is Rn U S^"1, of Rn where S^o"1 is an (n — 1)-dimensional sphere at

infinity and the original definition of Sato-Kawai.
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DEFINITION 1.1. ([KCK]) Let K be a compact set in D n . We say

that φ is in T(K) if φ e C°°(Ω Π Rn) for some neighborhood Ω of K and if

there are positive constants h and k such that

(1.1) \φ\k,h= sup

Here we use the multi-index notation: \a\ = αi + + α n , <9α = c^*1 <9^n,

θj = d/dxj for α = (αi, «2? * * > <̂ n) £ NQ where No is the set of nonnegative

integers.

We say that φj —> 0 in T{K) as j -+ oo if there are positive constants

h and k such that

\daΦi(x)\
sup Hj exp/qx —> 0 as j —> oo,

where Ω is any neighborhood of K.

We denote by J-1 (K) the strong dual space oϊ J-(K) and call its elements

Fourier hyperfunctions carried by K. Especially if K = Bn then we often

use the notation T1 simply instead of J-! (W1).

In fact, in [KCK] the space T{K) is shown to be topologically equivalent

to the space 7̂ *(/C) of a holomorphic functions in a complex neighborhood

Ω Π Mn + i\\y\ < r} of K in C n satisfying the estimate

(1.2) sup |0(^)| exp/c|z| < oo
{ | | }

for some fc, which was originally defined by Sato-Kawai. Here z = x + iy

and Ω is a neighborhood of K in D n .

We denote by E(x, t) the n-dimensional heat kernel:

F ( τ f ] - I ( 4 π t ) / e x p [ | x | / 4 t ] , t > 0
^[X' j ~ \ 0, t<0

and set U(x,t) = uy(E(x - y,t)) for u G T'{K).
The following characterization of the Fourier hyperfunctions by the heat

kernel is very useful later.

THEOREM 1.2. ([KCK]) Let u e F'{K) and let

U(x, t) = uy(E{x -y,t)), t> 0.
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Then U(x,t) G C°°(R™+1)? R™+1 = {(a?,ί) G M n + 1 | x e Rn, t > 0}

satisfies the heat equation

(1.3) (ft - Δ)[/(x, ί) = 0 m R™+1.

For every ε > 0 t/iere exists a constant C > 0 swcΛ.

(1.4) ί ^ a ; A ^ M K

where K$ = {x\ \x — y\ < δ for some y E K}.

Moreover, we have

(1.5) £/(#,£) -+u inT' ast-* 0+, i.e.,

(1.5)' u(<£)= lim [u(x,t)φ(x)dx, φe

Conversely, every C°° solution U(x,t) defined in IR^+1 satisfying the

conditions (1.3) and (1.4) can 6e expressed in the form

U(x, t) = uy(E(x - y, t))

with a unique element u G J-'(K).

In particular, the heat kernel £"(#, ί) corresponds to the Dirac measure

<5, since

φ{x) = lirn^ ί E(x - y, t)φ(y)dy, φ G ̂ ( K ) .

For more details of the Fourier hyperfunctions and the related theory

we refer to [KCK, Ka].

Now we would like to introduce the Denjoy-Carleman class C M , which

lies between the analytic class and the C°° class.

Let M p, p = 0 , l , 2 , . . . , b e a sequence of positive numbers and Ω be an

open set in Rn. We impose the following conditions on Mp:

(M.0) There is a constant h > 0 such that

p\<ChpMpi p = 0,1,2,... .

(M.I) M p

2 < M p _ ! M p + 1 , p = 1,2,3,....
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(M.2) There are positive constants C, H such that

Mp+q < CH^MpMq, p, g = 0,1, 2, . . . .

DEFINITION 1.3. We denote by the Denjoy-Carleman class C M (Ω) the

set of all φ G C°°(Ω) such that on each compact set K C Ω its derivatives

satisfy the estimates

sup \daφ{x)\ < C7ι | α | M α ι , a G N£
xeK

for some constants C > 0 and fo > 0. Sometimes this class is called the

space of ultradiίϊerentiable functions in Ω.

Actually, for the above class (M.0) means that every analytic function

belongs to CM(Ω) and (M.2) means that C M (Ω) is stable under the ultra-

differential operator. By Gorny's theorem referred in [Ko] we can always

rearrange the sequence Mp without any change of C M (Ω) so that (M.I)

should be satisfied. Therefore, the above three conditions on Mp is the

most fundamental and essential.

For each sequence Mp given as above its associated function M(t) on

[0, oc) is defined as follows:

(1.6)

and

Then (M.0) gives

αlogt < M(t) <βt, t > 0

for a couple of positive constants a and β.

We refer to [H4, Ko] for more details on the Denjoy-Carleman class and

the properties of the associated function.

§2. Main Theorem

We first define the FBI transform ύ(x^ζ) of a Fourier hyperfunction u

by the formula

(2.1) ύ(x,ξ) = ^(expHξKx - yf/2 - ί(y,ξ)})
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for ξ φ 0 and x G Γ . Since the Gaussian function is exponentially decreas-

ing ύ(x, ξ) is well defined for any Fourier hyperfunction u.

We are now in a position to state the local regularity theorem for T1

which will be used to define a singular spectrum with respect to the Denjoy-

Carleman class for T'. In fact, this is the main theorem of this paper.

THEOREM 2.1. Let u G T1 and x 0 £ Rn. Then u G CM in a neigh-

borhood of XQ if and only if there are positive constants C, 7, N and a

neighborhood U of XQ such that

(2.2) |ϋ(*,OI < C e x p [ - M ( 7 | ξ | ) ]

for allx eU and \ξ\ > N.

To prove this theorem we need the following two lemmas.

LEMMA 2.2. Let u G T' vanish near XQ. Then for any N > 0 there

exist positive constants C, a and a neighborhood W of x$ such that

\ύ(x,O\<Cexp[-a\ξ\],

for allx eW and \ξ\ > N.

Thus, u satisfies the condition (2.2).

Proof. Choose δ > 0 sufficiently small so that u = 0 in a neighborhood

W3β = {x I \x - xo\ < 3(5}.

Since

suppu C Bn\W3δ

for any r > 0 and k > 0 there exists a constant C > 0 such that

\U{Φ)\ ^ C S U P \Φ(Z)\ expfc|z|
z=y+iη

\y-xo\>2δ
\η\<r

for any φ G JF(Dn). Let x G Wδ, r < δ, \ξ\ > N and z = y + iη. Then we

have
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< C sup |exp [-
\y-xO\>2δ L

\η\<r

<C sup
\y-xQ\>2δ

r 2[ c o r
— δ + |£|( h r) + kδ + k\xo\ + kr

< Cexp [ - |e |(^ - ^ ± ^ ) + k(δ + \xo\ + r) + ^\

<C(k,r,xo,N)exV[-a\ξ\]

for some a — α(<5, r) if we choose r > 0 so small that <52/4 > (r 2 + 2r)/2.

This completes the proof.

LEMMA 2.3. Let n , v G f ' and u = v in a neighborhood of #o Suppose

u satisfies (2.2). T/̂ en v a/so satisfies (2.2).

Proof. Let w = v — u. Then u> vanishes in a neighborhood [/ of xo
Therefore it follows that u> satisfies

for \ξ\ > iV and x in a neighborhood W C U of cco Thus we obtain

\v(x,ξ)\<\ΰ(x,ξ)\ + \w(x,ζ)\

<2C3exp[-M(7'|e|)]

where C3 = max(CΊ, C2) and 7' = min(α,7), which completes the proof.

We now prove the theorem.

Proof of Theorem 2.1. (i) Necessity: By the above lemmas it suffices to

prove in a local context. As a result of this observation we may assume in

the sequel that u belongs to C in a neighborhood W28 of α?o and vanishes

on Rn\Wδ.



144 S.-Y. CHUNG AND D. KIM

Then using integration by parts we have

ξaΰ(x,ξ)

= ί u(y)exp[-\ξ\(x-y)2/2}ξaexp(-i(y,ξ))dy
JWs

= ί (-l)^da{u(y)exp[-\ξ\(x-y)2/2}}i^exp(-i(y,ξ))dy.
JWs

Making use of the fact

sup\d°exp[-sx2]\ < C^s^^al^2, s > 0,
X

we obtain that for |£| > 1

\d«{u(y)exp[-\ξ\(x-y)
2/2}}\

Σ ( I< Σ

( 0 )
β<a \ H )

< Cl

3

alMHexp(M(\ξ\)/2),

where the last inequality follows from (M.I).
Then it follows that for x E W$

Making use of the inequality

^M(A\ξ\)-M(\ξ\)>0, \ξ\>l/A3
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we have, for |f | > max(l, I/A3)

\u(x,ζ)\<Cexp[-M(A\ξ\)β].

Therefore, if Mp satisfies (M.2) then we have

\ΰ(x,ξ)\<C'exp[-M(Ί\ξ\)].

(ii) Sufficiency: Since we need only the local regularity of u near xo

we may assume that u — 0 outside of a neighborhood U of XQ. Then by

Lemma 2.3 the condition (2.2) remains still valid.

We follow the context given in the proof of Lemma 2.2 in [S].

Since

m/2n)n/2 ί exp[-\ξ\(s - y)2/2}ds = 1

and for t > 0

(2π)~n / exp[-£|£|2 - i(x,ξ)]dξ - {Aπt)~n'2 exp(-|x|2/At)

we can express the heat kernel E(x — y,t) by the integral

(2.3) E(x-y,t)

|e|(β - yf!/2 - i(x - y, ξ)]e-M2ds dξ.

Then it follows from Theorem 1.2 that

(2.4) δ(x - y)

= (2τr)-" Jj (|e|/2π)n/2 exp[-|e|(β - y)2/2 - t(x - y, ξ)}dsdξ

in the oscillatory sense for the Fourier hyperfunctions. In other words, for

every φ G J~ we have

(2.5) tUm J E{x - y, t)φ(y)dy

= ^ (2πΓn ///(lei/2π)"/2 exp[-\ξ\(s - yf/2 - i(x - y, ξ)}

•exp{-t\ξ\2]ψ(y)dsdξdy

= (δ(χ-y),Φ(y))
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Moreover, for any TV > 0 we obtain from (2.4) that

(2.6) 6{x - y)

ί (|£|/2πΓ/2 exp[-\ξ\(s - y)2/2 - i(x - y, ζ)]ds dξ
\ξ\>N

with some entire function g. Then it follows that the second term in (2.6)

is analytic for x φ y. In particular, consider

h(x,y)

= (2τr)-» JJls_χo]>2ε (|ί |/2π)»/2 exphiei (s - y)2/2 - i(x - y, ξ)]ds dξ.

Then by the same reason in the proof of Lemma 2.2 in [S], /ι(x, y) is analytic

in {(x,y) G M2n I \x — xo\ < ε}. Thus we have, in \x — XQ| < ε?

(2.7) δ(x - y)

= (2π)-* / / o | < 2 ε(|e|/2τr)-/2exp[-|e|(s - y)2/2 - <<x - y,Q]dadξ

+kε(x,y)

with some analytic function kε(x,y) in the region {(x,y) G M2n | |x — xo| <

ε}.

Since u vanishes outside of U we can regard u as an analytic functional

with carrier in U. Thus

(2.8) u(x) = (2π)~n if χ (|^|/2πΓ

-i(x - y, ξ)])ds dξ + wε(x)

= (2π)-n ff χ ι<2ε(\ξ\/2πr/2ύ(

+wε(x)

where wε(x) is an analytic function in \x — XQ\ < ε and ε > 0 is a sufficiently

small number.

On the other hand, since we have under the condition (M.I)
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it follows from (2.2), (2.8) and (M.2)' that

2π)n/2ύ(s, ξ) exp[-i(x, ξ)]ds dξ
dxa

< C

for some constants C = C{n) > 0 and hf > 0. Therefore, there exist

constants C > 0 and fo > 0

\dau(x)\ <

for all x in the region |x — XQ\ < ε, which means that u belongs to CM in

x — XQ\ < ε. This completes the proof.

COROLLARY 2.4. (i) Let u £ T' and x 0 £ ^ n 27ιen ^ ώ reα/ analytic

in a neighborhood of XQ if and only if there are positive constants C, 7, N

and a neighborhood U of XQ such that

(2.9) | f i(ίc,0l<Cexp[-7|ξ |]

/or all x eU and \ξ\ > N.

(ii) Lei u ^ T1 and xo G Mn. Γ/ien -u Z5 infinitely differentiable in a

neighborhood of xo if and only if for any k there exist positive constants

C&, N and a neighborhood U of xo such that

/or all x eU and \ξ\ > N.

Proof (i) Since Mp = p\ in this case every function φ G CM is real

analytic and M(t) = t. Thus the condition (2.2) just becomes (2.9).

(ii) Since Mp — 00 for all p except a finite number of p every function

φ G CM is simply infinitely differentiable and the condition (2.2) becomes

(2.10), which completes the proof.
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Remark. In view of the above corollary Theorem 2.1 does not exclude
the case of analytic functions or that of C°° functions. Thus the advantage
of our approach is to unify the theory of local regularity with respect to
differentiability, analyticity and the Denjoy-Carleman class, both quasian-
alytic and non-quasianalytic.

We can now introduce a singular spectrum with respect to the Denjoy-
Carleman class WFM{U) for the Fourier hyperfunction u as follows:

DEFINITION 2.5. Let u G T'. Then we denote by WFM{U) the com-
plement of the set of (xo^o) such that there exist a neighborhood U of XQ
and a conic neighborhood Γ of ξo such that for some positive constants C, 7
and iV,

\ύ(x,ξ)\<Cexp[-M(Ί\ξ\)}

for all x G U and ξ G Γ Π {£ G Rn\ \ξ\ > N}.

In general, if ]Γ^=i Mp-ι/Mp = 00, that is, it is quasianalytic then
the space CM has no cutoff functions. In [H4], to avoid this difficulty
Hormander chose some sequence of cutoff functions with adequate bounds
for derivatives up to a certain order only, which leads to a more complicated
description than our results.

By the above definition of WFM(U) and Theorem 2.1 we easily obtain
the following:

COROLLARY 2.6. Let u G T1. Then the 'projection ofWFM(u) in the
space variables is equal to sing snppMu.
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