
W. Chen, G. Hu and S. Lu
Nagoya Math. J.
Vol. 149 (1998), 33-51

CRITERION OF (IS, Lr) BOUNDEDNESS
FOR A CLASS OF MULTILINEAR OSCILLATORY

SINGULAR INTEGRALS

WENGU CHEN, GUOEN HU AND SHANZHEN LU

Abstract. In this paper, we consider a kind of multilinear operators related to
oscillatory singular integrals with rough kernels and give a criterion of certain
boundedness for this kind of operators.

§1. Introduction

During the last decade, there has been significant progress in the study
of oscillatory singular integral operators with polynomial phases. A proto-
typical work in this area is Ricci and Stein's paper [8]. Suppose that K{x)
is a function defined on Rn\{0} such that

(i) K(x) is homogeneous of —n,

(ii) / K(x)dx = 0, 0 < Rι < R2 < oo.
JR1<\X\<R2

Ricci and Stein showed that for real-valued polynomial P(x,y) defined on
R n x Rn, if K[x) e C ^ R ^ O } ) , then the operator

(1.1) Tf(x) = p.v. ί eip(χ>tiK{x - y)f{y)dy,

is bounded on L p (R n ), l < p < oo, with bound depending only on the
total degree of P(x,y), not on the coefficients of P(x,y). Subsequently,
Chanillo and Christ [1] showed that K(x) G C1(Rn\{0}) is also a sufficient
condition such that T is of weak type (1,1). Lu and Zhang [7] found out
a simple criterion on Lp-boundedness for oscillatory singular integrals with
polynomial phases when the kernels satisfy only a size conditions.
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This paper is a continuation of our previous work [2], [3]. We shall

extend above result of [7] to the case of multilinear oscillatory singular

integral operators. Let us consider the following multilinear operators

(1.2) TAuA2f(x)

-LL \x -tl , n > 2,

where M — m\ +rri2, Ω is homogeneous of degree zero, Rm(A; x, y) denotes

the ra-th order Taylor series remainder of A at x expanded about y, more

precisely

Rm(A;x,y) = A(x)- ] £ ~DaA{y){x - y)a.
\a\<m

For functions A\ and A2, one has derivatives of order πi\ — 1 in BMO(R n ),

another has derivatives of order 7712 in L r°, 1 < r$ < 00. We will give a

criterion of (L p ,L r ) boundedness for TA1^A2-

To begin with, let us introduce two concepts (see [7]).

DEFINITION 1. A real valued polynomial P(x^y) is called non-trivial

if P(x,y) does not take the form of Po(^) + Pi(y)i where PQ and Pi are

polynomials defined on R n .

DEFINITION 2. We will say that the non-trivial polynomial P(x, y)

has property V, if P satisfies

P(x + h,y + h)= P(x, y) + R0(x, h) + Rλ(y, h),

where RQ and R\ are real polynomials.

DEFINITION 3. We say that a non-trivial polynomial P(x, y) is non-

degenerate if

P(x,y) = VJ aaβXayP, k, I are two positive integers

\<*\<k,\β\<l

and V^ \a<aβ\ > 0

\a\=k,\β\=l

Now we formulate our main result.
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THEOREM 1. Let Ω be homogeneous of degree zero and belong to

Lq(Sn~1) for some q > 1. IfAi has derivatives of order πi\—\ mBMO(R n ) ;

A2 has derivatives of order 777,2 ^ Lr°,l < ro < 00, then for \jr =

l/p+ 1/ro, 1 < p, r < 00? the following two facts are equivalent:

(i) If P(x,y) is a non-degenerate real-valued polynomial, then TA 1 5 ^ 2

is bounded from Lp to Lr with bound

C(degP,n)( Σ
|α|=mi-l \β\=m2

(ii) The truncated operator

[
\x-y\<l

is bounded from Lp to U with bound

c( \=rri2

where degP denotes the total degree of the polynomial P(x,y).

§2. Proof of Theorem 1

To prove Theorem 1, we will use some lemmas.

LEMMA 1. (see [4]) Let b(x) be a function on R n with m-th order

derivatives in L s ( R n ) for some s, n < s < 00. Then

\Rm(b;x,y)\<Cm,n\x-yΓ Σ (ψi
ψ

|α|=m x

where Iχ is the cube centered at x, with sides parallel to the axes and whose

diameter is 2y/n\x — y\.

LEMMA 2. Let ΩQ be homogeneous of degree zero and integrable on

Sn~1. For k a positive integer and j = 1, 2, , /c, Aj(x) have derivatives

of order rrij in Lrj, 1 < rj < oo; 1 < s < oo7 let

r > 0

. k

/ \H[Rmj(Aj χ,y)}snQ(x-y)f(y)\dy,
J\x-y\<r -=χ
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where M/s = m\ + rri2 + + vn^. If 1 < p < oo, 1 < r < oo, 1/r

Έ]j=is/rj^then

( ^

j=l \a\=πij

For the special case 5 = 1, Lemma 2 was proved by Cohen and Gosselin

[5]. If 1 < 5 < oo, the lemma can be proved by repeating the argument

used in [5].

LEMMA 3. Let Ω ,A\,A2 be the same as that in Theorem 1. Denote

2

/ \Ω(x-y)
r>0 J\x-y\<r

, r < oo, 1/r = 1/p + 1/ΓQ,

r
/

J\x

|α|=rai-l

Proof. It suffices to prove the lemma for MAl ^ 2 , a variant of M^ A

r>0 Jr/2<\x-y\<

r 2

/ \Q(χ -y)l[ Rπij(Aj',x,y)f(y)
dy.

For fixed x G R n , r > 0, let Q(x,r) be the cube centered at x and having

sidelength 2>/nr,

set

where raQ(a.)7.)(jDα.Ai) denotes the mean value of DaA\ on Q(x,r). By the

observation

of Cohen and Gosselin [4], we have

Rmi(Aι;x,y) = Rm^Af x.y).
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Holder's inequality then gives

M%,A2f(x) < sup(r-"-m™ ί |Ω(* - y)Rm2(A2;x,y)W(y)\dy)1/

r>0 J\x-y\<r

' f
Jr

\x-y\<r

r>0 Jr/2<\x-y\<r

It follows from Lemma 2 that

where 1/ri = l/p
For the estimate of II(/), we consider two cases:
(i) rni = 1, in this case, Ai G BMO and

r > 0 Jr/2<|x-

where the notation Cq

A (/) comes from [6]. By Theorem 2.4 in [6], we have

(ii) m\ > 1, in this case, we observe that if r/2 < \x — y\ < r, then for
s > n,

< Cmun\x - yΓ'1 Σ ( ] 4 /„
|α|=rπi—1 x

< c m i , n J ]
|α|=mi—1

So,

\Rrm-i(A?;x,y)\ + \ ^ ^DaA^(y)(x - y)a
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Thus for any t > 1,

< C m i , n

+ C
\

<C
\a\=mι-l

where Mf denotes the Hardy-Littlewood maximal function of / and Mtf(x)
= [M(\f\t)(x)]1^t. Holder's inequality and the above estimate yield that

\\Mn

AuA2f\\r <

\=m2

LEMMA 4. Let Ω; A\, A2 be the same as the assumption in Theorem
1, b(x,y) e L°°(R nxR n). Let I < p, r < 00 and 1/r = l/p+l/r 0 . Suppose
that the operator

25 bounded from Lp to Lr with bound

|α|=mi-l \β\=m2

Then the truncated operator

Tιί{x) = I K 1 R ^ ^

is bounded from LP to Lr with bound

\a\=πiι-l
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Proof. Without loss of generality, we may assume that

Σ H^4IIIBMO= Σ I I ^ ^ 2 | L = I.
|α|=mi-l \β\=m2

For each fixed h G R n , we split / into three parts as

/ = h + h + h

where

h{y) =

and

Let φh G C°°(Rn) such that s u p p ^ C {y : \y - h\ < 4}, φh(y) = 1 if

\y — h\ < 2, and HD^^Hoo < c for all multi-index v. Set

- h\ < 3/4.

It is easy to verify that if \x — h\ < 1/4, then

Thus

For each fixed multi-index /?, \β\ = 7712, write

Using the formula

we have

\ l/r

\Rm(F;y,h)\rdy)
<-h\<4 I
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t{y-h))\rdy\ dt

\y-h\<A J

1/r

dtΣ t( ί \DaF(z)\rt-ndz)

<CMrl ^ \DaF\χB(ht5) j (h).
\jat\=m

Using this inequality, we obtain

(*) Σ \\DβA%o<CMro( Σ \DaA2\XB(h,5))(h)-

We can choose /i, \h—h\ < 3/4, so that the right hand side of (*) is majorized

by

a\=m

This shows that

(2.1) / \TMx)\rdx
J\x-h\<l/4

r|=m2

If |j; - /ι| < 1/4 and 1/2 < \y - h\ < 5/4, then 1/4 < \x - y\ < 3/2. So we
see that for \x — h\ < 1/4,

dy
/l/4<φ-2/|<3/2

<

Lemma 3 now tells us that
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(2.2) <C\\b\\rJ ]Γ ( /
\β\=m2

 yj\y-

Obviously, we have T\fs(x) — 0 for \x — h\ < 1/4. Combining inequalities

(2.1) and (2.2) leads to

/
\x-h\<lβ

Φr°( ί \f(y)\pdy)
l\y-h\<2

Integrating the last inequality with respect to h gives that

||Ti/||ί<c(ΛΓ + ||δ||̂ ) Σ (JRnJ h \DβMυ)

r/p
\f(yWdydhY

Pj\y-h\<2 J

Γ II f l Γ
I r o ll ' l i p '

\β\=m2

This completes the proof of Lemma 4.

Proof of Theorem 1. We only treat the case that

| α | = m i - l |/3|=m2

First we show that (ii) implies (i). Let k and I be two positive integers,

P(x,y) be a non-degenerate real-valued polynomial with degree k in x and

I in y. Write

\a\<k,\β\<l

By dilation invariance, we may assume that X^ui-^. \β\=ι \aaβ\ = l Decom-

pose TΛUA2 as

x-y\<l \χ-y\ j==1
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d=l

We first consider the operator TA A , d > 1. We claim that if D$ A<ι is

in L°° for all |/3| = m 2 , then

(2.3) 11^,^/112 < C2-£ld Σ l l ^ U I / l b , rf> l,

where ε\ is independent of d and /. If this is done, then by interpolating

between inequality (2.3) and the crude estimate

\\Td

AlΛJ\\P<C Σ ||JD^2||oo||/||p, l < P < o o ,

\β\=m2

we can get

(2.4) \\ΊiuΛ2f\\p < C2~^d Σ II^Aallooll/Hp, 1< p < oo.
\=m2

For each fixed p and ΓQ, we choose rό, f such that 1 < -ΓQ < ΓQ, l / p + 1/rb =
1/f < 1. Lemma 3 then tells us that

p Kp<OO.

\β\=m2

We regard TA Λ as a linear operator of A2. Thus the inequality (2.4)

together with the last inequality states that

(2.5) \\Td

MΛJ\\r < C2~εd Σ \\DβA2\\ro\\f\\P, l < P < o o ,
\=rn2

where ε is a positive constant. Summing over all d > 1, we obtain

d=l



MULTILINEAR OSCILLATORY SINGULAR INTEGRALS 4 3

To prove (2.3), we may assume Σ\β\=m2 l l^^l loo = 1. Define

2
iP(2d-i*.2d-M n(x -V) TT

) x _ y h + M - i Π

By dilation invariance, it is enough to prove that

(2-6) HTJ1>A2/||2 < CT

Decompose R n into R n = |J/χ, where I{ is a cube with side length 1,
and the cubes have disjoint interiors. Set fi = fχιi. Since the support of
^M A2f

i ιs c o n t a i n e c l i n a fixed multiple of /̂ , so that the supports of the
various terms Γj[ A fi have bounded overlaps. Thus we have the "almost
orthogonality" property

and therefore it suffices to show

(2.7) \\fίlAJ

For fixed i, denote ϊi = lOOn/̂ . Let φi(x) G Cg°(Rn) such that 0 < φi <
1, 0i is identically one on 10\/n/ΐ and vanishes outside of 50y/nIi, \\DΊφi\\oo

< CΊ for all multi-index 7. Let XQ be a point on the boundary of 80\fnli.
Denote

|α|=mi-l

and for multi-index α, define

ll<\x-y\<2 \X-y

It is easy to see that
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l<\x-y\<2

\a\=mι-l

= I + II + III.

Before we estimate these terms, let us state a lemma.

LEMMA 5. There exists a positive constant δ = <5(n,degP) such that
for any d > 1 and multi-index a,

Γ iP(x,y) Ω(x - y)Rm2(A2; x, y)
11 Id i , i od b-uh+A^-1 ^ y j J\y)ay\\p

J2d-ι<\x-y\<2d \x y\
p 1 < p < oo,

where constant C is independent of d,f and coefficients of P(x,y).

Recall that P(α,ϊ/) = Σ|α|<fc,|/3|</α«/3^/ and Σ\a\=k,\β[=ι ' t t α / 3 ' == L

Lemma 5 can be proved by an argument used in [2]. We omit the details
here.

We return to the estimates of I, II and III. Note that for multi-index
β, \β\ < mi - 1,

~ Σ ^r

Since that supp φi C δOy^/^ by Lemma 1, we have

\Df*Af<(y)\<C Σ (Wϊ f ^A^-m^

|α |= m i _i lia»I No-

where t > n. Thus, it follows from Lemma 5 that
I <: \\ A^ II IIT^'0 f II < ΓiΓ>~^\

|2 S 1 1 ^ | | | μ ^ l l 2 S ^ ^ l



MULTILINEAR OSCILLATORY SINGULAR INTEGRALS 4 5

Similarly, we have

It remains to estimate the third term III. Note that for any 0 < 7 < n,

\f}?tAaf(x)\<C ί \n(x-y)f(y)\dy
Jl<\x-y\<2

where IΊ denotes the usual fractional integral of order 7. If p > qf and
σ > 0, we take a 7 such that 0 < 7 < nqf/p, and l/(p + σ) = 1/p — η/nq'.
By the Hardy-Littlewood-Sobolev theorem [9], we get

, P>q',σ>0.

By the last inequality and Lemma 5, an interpolation will give

(2.8) \\f%°AJ\\p < C2-* d | | / | | p _ σ , for 1< p < oo and 0 < σ < σp,

where σ is a positive constant. On the other hand, if \β\ = m\ — 1, then,

β=μ+v,\μ\<m1-l

al
|α|=τrii—1

+(DβA1(y)-mίi(D(3A1))φi(y).

Thus, it follows that

\D"At(y)\ < C{1 + \D?A1{y) - m

and this shows that for any t > 1,

Combining the above inequality and (2.8), we obtain

Γ \\D°A+'\\t\\fi\\2

\a\=mι—l |α|=77ii—1

< ^ 2 \\ji\\2,



46 W. CHEN, G. HU AND S. LU

where we choose σ > 0 and 1 < t < oc such that 1/2 + l/£ = 1/(2 — σ).

All above estimates imply that (2.3) is true.

We turn our attention to the operator T^ A<2. The estimate for this

operator follows from the following lemma.

LEMMA 6. Suppose that the condition (ii) in Theorem 1 holds. Then

for any real-valued polynomial P(x,y), the operator

UAUAJ(X)= f e*(«*> " ( * ~ j L Π Rrn, (Λ, s, y)f(y)dy

J\x-y\<l F 2/i J = 1

satisfies

(2.9) | |C/A l )A 2/| |r<C(degP,n)| |/ | | p .

Proof. We shall carry out our argument by a double induction on the

degree in x and y of the polynomial. If the polynomial P(x, y) depends

only on x or only on y, it is obvious that the condition (ii) implies (2.9).

Let u and υ be two positive integers and the polynomial has degree u in x

and v in y. We assume that (2.9) holds for all polynomial which are sums

of monomials of degree less than u in x times monomials of any degree in y,

together with monomials which are of degree uinx times monomials which

are of degree less than v in y. Write P{x,y) as

\a\=u,\β\=v

where P${x, y) satisfies the inductive assumption. We consider the following

two cases.

Case I. Σ\a\=um=v \baβ\ < 1. Rewrite

\a\=u,\β\=v

where Po(x^y) satisfies the induction assumption. It follows that

UAl,A2f(x)

= ί
J\x-

y\<l

χ-y\<i
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Our induction assumption now states that

\\U\ltMf\\r < C\\f\\p.

Denote f(y) = f{y)X{\y\<2}• It is easy to see U\i>AJ{x) = U2

MAJ(x)
when |x| < 1. Thus,

\U2

Al,AJ(x)\ < C ί
J\x-\χ-y\<l |χ- — y| ~ —

dy, \x\ < 1.

Let Φh e C^(Rn) such that suppΦ^ C {x : |x - /ι| < 8}, Φh(x) = 1 if
|x — /ι| < 4 and H^Φ^Hoo < c for all multi-index 7. We have that if \x\ < 1,
then

where A%(y) = Rπi2{A2',y,h)Φjι{y) with \h\ < 3. By the same argument
used in the proof of Lemma 4, we can get that

\UAl,Aj\rdx
,x\<l

<C Σ ( [ \DβA2(y)\rody)r/rΊ f \f{y)\pdyY'\
\n\ ^J\v\<& ' ^ J\v\<2 '

from which the same argument as that in [8, p. 189] show that the inequality

/ \UAuAJ\rdx
\x-h\<l

<C Σ (/ \D^A2(y)rdy)r/rΊ[ \f(yWdy)Φ

holds for all h G R n and C is independent of h. Integrating the last in-
equality with respect to h and using Holder's inequality, we finally obtain
that

\\UAl,AJ\\r<C\\f\\p.

Case II. Σ\a\=*,\β\=v I M > L D e n o t e B = (ΣH=«,|/3|=. Kβ\)ί/u+v.
Write

p(x'V)= Σ
\a\=u,\0\=υ
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and denote
2

UAuAJ(x) = f e«M**> • " ( f ~ $_t Π Rm3 (Aj; x, y)f(y)dy.

J\x-y\<B F y\ j = 1

It is not difficult to find that (2.9) is equivalent to the estimate

(2.10) \\UAuA2f\\r < C\\f\\p.

we split UAuA2f(x) as

UAltAj(x)

χ-y\<i

+
C{J2*-i<\x-v\<2* \x-yy^- — χ

where 2do — B. The estimate for UA A<2 follows along the same line as

in case I. On the other hand, by Lemma 5 and the argument used in the

treatment for T A A , we have

This leads to the estimate (2.10).

Now we show that (i) implies (ii). To do this, we need to use Definition

2. We choose Q(x,y) such that Q(x,y) has V and decompose

- f
J\

ί
\x-y\<l

χ-y\>i

By Lemma 4, TAi A<2 is bounded from LP to Lr. The same argument as in

the proof of Lemma 4 tells us that

'\x-h\<l



MULTILINEAR OSCILLATORY SINGULAR INTEGRALS 49

Σ / \D^Λ2(y)rdy)1/r°( ί \f(y)\pdy)1/P,
\β\=m2

J\y-h\<S KJ\y-h\<2 J

where C is independent of h. Since Q(x,y) has V, we have

Q(x,y) = Q(x -h,y-h) + R0(x,h) + Rι(y,h),

where RQ,R\ are real polynomials. When \x — h\ < 1, it follows that

2

/ n { ^ Π

-iRo(x,h) [ ciQ(χ,v)
/

Observe that the Taylor's expression of e-
ιQ{χ-h^-h) [s

m,u,v(x - h)u(y - h)v\

For \x — h\ < 1 and |y — h\ < 2, we have

\x-h\<\

V

/

\y-h\<2

\am,u,v\aubv[
OO

[ /
J\y-\y-h\<2

otβ
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where CA^h = C ( Σ | / J | = m 2 J ] y _ Λ | < 8 \D<3A2(y)\rody)1/r°, and a = (1,1, , 1),

6 = (2,2, •••,2). Hence,

\\SAUAA < C\\f\\p.

This completes the proof of Theorem 1.

Remark 1. Consider the operator defined by:

= ί
3 j , n>2.

Repeating the arguments of Theorem 1, we can obtain that

THEOREM 2. Let 1 < p < oo, Ω, M be the same as that in Theorem

1. Suppose Ai have derivatives of order rrii — 1 in BMO(R n) respectively,

i = l,2. Then the following two facts are equivalent:

(i) If P(x,y) is a non-degenerate real-valued polynomial, then TAX,A2

is bounded on Lp(Rn) with bound

C(degP,n)(
|α|=TOi—1

(ii) The truncated operator

is bounded on Lp(Rn) with bound

|α|=mi-l \β\=m2-l

Remark 2. Here we give an example which satisfies the condition (ii)

of Theorem 1. The example of Theorem 2 is analogous.

In i?1, suppose A\(x) = log(l + |x|), ^ ( x ) = x, and Ω(x) = sgn(x),

then Aι G BMO(iϊ), Λ2 has derivatives of order 1 in L°°(R).

Ω{X~^(Aι(x) - A1(y))(A2(x) - A2(y))f(y)dy
x-y\<l \χ-y\

Therefore | 5 A l ^ 2 / ( x ) | < M/(x). So SΆl5A2 is bounded on 17(iϊ).
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