CRITERION OF (L^{p}, L^{r}) BOUNDEDNESS FOR A CLASS OF MULTILINEAR OSCILLATORY SINGULAR INTEGRALS

WENGU CHEN, GUOEN HU and SHANZHEN LU

Abstract

In this paper, we consider a kind of multilinear operators related to oscillatory singular integrals with rough kernels and give a criterion of certain boundedness for this kind of operators.

§1. Introduction

During the last decade, there has been significant progress in the study of oscillatory singular integral operators with polynomial phases. A prototypical work in this area is Ricci and Stein's paper [8]. Suppose that $K(x)$ is a function defined on $\mathbf{R}^{n} \backslash\{0\}$ such that
(i) $K(x)$ is homogeneous of $-n$,
(ii) $\int_{R_{1}<|x|<R_{2}} K(x) d x=0,0<R_{1}<R_{2}<\infty$.

Ricci and Stein showed that for real-valued polynomial $P(x, y)$ defined on $\mathbf{R}^{n} \times \mathbf{R}^{n}$, if $K(x) \in C^{1}\left(\mathbf{R}^{n} \backslash\{0\}\right)$, then the operator

$$
\begin{equation*}
T f(x)=p \cdot v \cdot \int_{\mathbf{R}^{n}} e^{i P(x, y)} K(x-y) f(y) d y \tag{1.1}
\end{equation*}
$$

is bounded on $L^{p}\left(\mathbf{R}^{n}\right), 1<p<\infty$, with bound depending only on the total degree of $P(x, y)$, not on the coefficients of $P(x, y)$. Subsequently, Chanillo and Christ [1] showed that $K(x) \in C^{1}\left(\mathbf{R}^{n} \backslash\{0\}\right)$ is also a sufficient condition such that T is of weak type $(1,1)$. Lu and Zhang [7] found out a simple criterion on L^{p}-boundedness for oscillatory singular integrals with polynomial phases when the kernels satisfy only a size conditions.

[^0]This paper is a continuation of our previous work [2], [3]. We shall extend above result of [7] to the case of multilinear oscillatory singular integral operators. Let us consider the following multilinear operators

$$
\begin{align*}
& T_{A_{1}, A_{2}} f(x) \tag{1.2}\\
& \quad=\int_{\mathbf{R}^{n}} e^{i P(x, y)} \frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^{2} R_{m_{j}}\left(A_{j} ; x, y\right) f(y) d y, n \geq 2
\end{align*}
$$

where $M=m_{1}+m_{2}, \Omega$ is homogeneous of degree zero, $R_{m}(A ; x, y)$ denotes the m-th order Taylor series remainder of A at x expanded about y, more precisely

$$
R_{m}(A ; x, y)=A(x)-\sum_{|\alpha|<m} \frac{1}{\alpha!} D^{\alpha} A(y)(x-y)^{\alpha}
$$

For functions A_{1} and A_{2}, one has derivatives of order $m_{1}-1$ in $\operatorname{BMO}\left(\mathbf{R}^{n}\right)$, another has derivatives of order m_{2} in $L^{r_{0}}, 1<r_{0} \leq \infty$. We will give a criterion of (L^{p}, L^{r}) boundedness for $T_{A_{1}, A_{2}}$.

To begin with, let us introduce two concepts (see [7]).
Definition 1. A real valued polynomial $P(x, y)$ is called non-trivial if $P(x, y)$ does not take the form of $P_{0}(x)+P_{1}(y)$, where P_{0} and P_{1} are polynomials defined on \mathbf{R}^{n}.

Definition 2. We will say that the non-trivial polynomial $P(x, y)$ has property \mathcal{P}, if P satisfies

$$
P(x+h, y+h)=P(x, y)+R_{0}(x, h)+R_{1}(y, h)
$$

where R_{0} and R_{1} are real polynomials.
Definition 3. We say that a non-trivial polynomial $P(x, y)$ is nondegenerate if

$$
\begin{aligned}
P(x, y)=\sum_{|\alpha| \leq k,|\beta| \leq l} a_{\alpha \beta} x^{\alpha} y^{\beta}, k, l & \text { are two positive integers } \\
& \text { and } \sum_{|\alpha|=k,|\beta|=l}\left|a_{\alpha \beta}\right|>0 .
\end{aligned}
$$

Now we formulate our main result.

Theorem 1. Let Ω be homogeneous of degree zero and belong to $L^{q}\left(S^{n-1}\right)$ for some $q>1$. If A_{1} has derivatives of order $m_{1}-1$ in $\operatorname{BMO}\left(\mathbf{R}^{n}\right)$, A_{2} has derivatives of order m_{2} in $L^{r_{0}}, 1<r_{0} \leq \infty$, then for $1 / r=$ $1 / p+1 / r_{0}, 1<p, r<\infty$, the following two facts are equivalent:
(i) If $P(x, y)$ is a non-degenerate real-valued polynomial, then $T_{A_{1}, A_{2}}$ is bounded from L^{p} to L^{r} with bound

$$
C(\operatorname{deg} P, n)\left(\sum_{|\alpha|=m_{1}-1}\left\|D^{\alpha} A_{1}\right\|_{\mathrm{BMO}}\right)\left(\sum_{|\beta|=m_{2}}\left\|D^{\beta} A_{2}\right\|_{r_{0}}\right) ;
$$

(ii) The truncated operator

$$
S_{A_{1}, A_{2}} f(x)=\int_{|x-y|<1} \frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^{2} R_{m_{j}}\left(A_{j} ; x, y\right) f(y) d y
$$

is bounded from L^{p} to L^{r} with bound

$$
C\left(\sum_{|\alpha|=m_{1}-1}\left\|D^{\alpha} A_{1}\right\|_{\mathrm{BMO}}\right)\left(\sum_{|\beta|=m_{2}}\left\|D^{\beta} A_{2}\right\|_{r_{0}}\right)
$$

where deg P denotes the total degree of the polynomial $P(x, y)$.

§2. Proof of Theorem 1

To prove Theorem 1, we will use some lemmas.
Lemma 1. (see [4]) Let $b(x)$ be a function on \mathbf{R}^{n} with m-th order derivatives in $L^{s}\left(\mathbf{R}^{n}\right)$ for some $s, n<s \leq \infty$. Then

$$
\left|R_{m}(b ; x, y)_{\mid} \leq C_{m, n}\right| x-\left.y\right|^{m} \sum_{|\alpha|=m}\left(\frac{1}{\left|I_{x}^{y}\right|} \int_{I_{x}^{y}}\left|D^{\alpha} b(z)\right|^{s} d z\right)^{1 / s}
$$

where I_{x}^{y} is the cube centered at x, with sides parallel to the axes and whose diameter is $2 \sqrt{n}|x-y|$.

Lemma 2. Let Ω_{0} be homogeneous of degree zero and integrable on S^{n-1}. For k a positive integer and $j=1,2, \cdots, k, A_{j}(x)$ have derivatives of order m_{j} in $L^{r_{j}}, 1<r_{j} \leq \infty, 1 \leq s<\infty$, let

$$
\begin{aligned}
& \tilde{M}_{A_{1}, A_{2}, \cdots, A_{k}}^{\Omega_{0}} f(x) \\
& \quad=\sup _{r>0} r^{-(n+M)} \int_{|x-y|<r}\left|\prod_{j=1}^{k}\left[R_{m_{j}}\left(A_{j} ; x, y\right)\right]^{s} \Omega_{0}(x-y) f(y)\right| d y
\end{aligned}
$$

where $M / s=m_{1}+m_{2}+\cdots+m_{k}$. If $1<p<\infty, 1<r<\infty, 1 / r=$ $1 / p+\sum_{j=1}^{k} s / r_{j}$, then

$$
\left\|\tilde{M}_{A_{1}, A_{2}, \cdots, A_{k}}^{\Omega_{0}} f\right\|_{r} \leq C\left\|\Omega_{0}\right\|_{L^{1}\left(S^{n-1}\right)} \prod_{j=1}^{k}\left(\sum_{|\alpha|=m_{j}}\left\|D^{\alpha} A_{j}\right\|_{r_{j}}^{s}\right)\|f\|_{p}
$$

For the special case $s=1$, Lemma 2 was proved by Cohen and Gosselin [5]. If $1<s<\infty$, the lemma can be proved by repeating the argument used in [5].

Lemma 3. Let Ω, A_{1}, A_{2} be the same as that in Theorem 1. Denote

$$
M_{A_{1}, A_{2}}^{\Omega} f(x)=\sup _{r>0} r^{-(n+M-1)} \int_{|x-y|<r}\left|\Omega(x-y) \prod_{j=1}^{2} R_{m_{\jmath}}\left(A_{j} ; x, y\right) f(y)\right| d y
$$

If $1<p, r<\infty, 1 / r=1 / p+1 / r_{0}$, then

$$
\left\|M_{A_{1}, A_{2}}^{\Omega} f\right\|_{r} \leq C\|\Omega\|_{q}\left(\sum_{|\alpha|=m_{1}-1}\left\|D^{\alpha} A_{1}\right\|_{\mathrm{BMO}}\right)\left(\sum_{|\beta|=m_{2}}\left\|D^{\beta} A_{2}\right\|_{r_{0}}\right)\|f\|_{p}
$$

Proof. It suffices to prove the lemma for $\bar{M}_{A_{1}, A_{2}}^{\Omega}$, a variant of $M_{A_{1}, A_{2}}^{\Omega}$:

$$
\begin{aligned}
& \bar{M}_{A_{1}, A_{2}}^{\Omega} f(x) \\
= & \sup _{r>0} r^{-(n+M-1)} \int_{r / 2<|x-y|<r}\left|\Omega(x-y) \prod_{j=1}^{2} R_{m_{j}}\left(A_{j} ; x, y\right) f(y)\right| d y .
\end{aligned}
$$

For fixed $x \in \mathbf{R}^{n}, r>0$, let $Q(x, r)$ be the cube centered at x and having sidelength $2 \sqrt{n} r$,
set

$$
A_{1}^{Q}(y)=A_{1}(y)-\sum_{|\alpha|=m_{1}-1} \frac{1}{\alpha!} m_{Q(x, r)}\left(D^{\alpha} A_{1}\right) y^{\alpha}
$$

where $m_{Q(x, r)}\left(D^{\alpha} A_{1}\right)$ denotes the mean value of $D^{\alpha} A_{1}$ on $Q(x, r)$. By the observation
of Cohen and Gosselin [4], we have

$$
R_{m_{1}}\left(A_{1} ; x, y\right)=R_{m_{1}}\left(A_{1}^{Q} ; x, y\right)
$$

Hölder's inequality then gives

$$
\begin{aligned}
\bar{M}_{A_{1}, A_{2}}^{\Omega} f(x) \leq & \sup _{r>0}\left(r^{-n-m_{2} q} \int_{|x-y|<r}\left|\Omega(x-y) R_{m_{2}}\left(A_{2} ; x, y\right)\right|^{q}|f(y)| d y\right)^{1 / q} \\
& \times \sup _{r>0}\left(r^{-n-\left(m_{1}-1\right) q^{\prime}} \int_{r / 2<|x-y|<r}\left|R_{m_{1}}\left(A_{1}^{Q} ; x, y\right)\right|^{q^{\prime}}|f(y)| d y\right)^{1 / q^{\prime}} \\
= & \mathrm{I}(f)(x)^{1 / q} \mathrm{I}(f)(x)^{1 / q^{\prime}}
\end{aligned}
$$

It follows from Lemma 2 that

$$
\|\mathrm{I}(f)\|_{r_{1}} \leq C\|\Omega\|_{L^{q}\left(S^{n-1}\right)}^{q}\left[\sum_{|\beta|=m_{2}}\left\|D^{\beta} A_{2}\right\|_{r_{0}}\right]^{q}\|f\|_{p}
$$

where $1 / r_{1}=1 / p+q / r_{0}$.
For the estimate of $\mathrm{II}(f)$, we consider two cases:
(i) $m_{1}=1$, in this case, $A_{1} \in \mathrm{BMO}$ and

$$
\begin{aligned}
\mathrm{I}(f)(x) & =\sup _{r>0} r^{-n} \int_{r / 2<|x-y|<r}\left|A_{1}(x)-A_{1}(y)\right|^{q^{\prime}}|f(y)| d y \\
& \leq C_{A_{1}}^{q^{\prime}}(f)(x),
\end{aligned}
$$

where the notation $C_{A_{1}}^{q^{\prime}}(f)$ comes from [6]. By Theorem 2.4 in [6], we have

$$
\|\operatorname{II}(f)\|_{p} \leq C\|f\|_{p}
$$

(ii) $m_{1}>1$, in this case, we observe that if $r / 2<|x-y|<r$, then for $s>n$,

$$
\begin{aligned}
& \left|R_{m_{1}-1}\left(A_{1}^{Q} ; x, y\right)\right| \\
\leq & C_{m_{1}, n}|x-y|^{m_{1}-1} \sum_{|\alpha|=m_{1}-1}\left(\frac{1}{\left|I_{x}^{y}\right|} \int_{I_{x}^{y}}\left|D^{\alpha} A_{1}(z)-m_{Q(x, r)}\left(D^{\alpha} A_{1}\right)\right|^{s} d z\right)^{1 / s} \\
\leq & C_{m_{1}, n} \sum_{|\alpha|=m_{1}-1}\left\|D^{\alpha} A_{1}\right\|_{\mathrm{BMO}}|x-y|^{m_{1}-1} .
\end{aligned}
$$

So,

$$
\begin{gathered}
\quad\left|R_{m_{1}}\left(A_{1}^{Q} ; x, y\right)\right| \leq\left|R_{m_{1}-1}\left(A_{1}^{Q} ; x, y\right)\right|+\left|\sum_{|\alpha|=m_{1}-1} \frac{1}{\alpha!} D^{\alpha} A_{1}^{Q}(y)(x-y)^{\alpha}\right| \\
\leq C\left(\sum_{|\alpha|=m_{1}-1}\left\|D^{\alpha} A_{1}\right\|_{\mathrm{BMO}}+\sum_{|\alpha|=m_{1}-1}\left|D^{\alpha} A_{1}(y)-m_{Q(x, r)}\left(D^{\alpha} A_{1}\right)\right|\right) \\
\times|x-y|^{m_{1}-1} .
\end{gathered}
$$

Thus for any $t>1$,

$$
\begin{aligned}
\mathrm{II}(f)(x) \leq & C_{m_{1}, n} \sum_{|\alpha|=m_{1}-1}\left\|D^{\alpha} A_{1}\right\|_{\mathrm{BMO}}^{q^{\prime}} M f(x) \\
& +C \sum_{|\alpha|=m_{1}-1} \sup _{r>0} r^{-n} \int_{|x-y|<r}\left|D^{\alpha} A_{1}(y)-m_{Q(x, r)}\left(D^{\alpha} A_{1}\right)\right|^{q^{\prime}}|f(y)| d y \\
& \leq C \sum_{|\alpha|=m_{1}-1}\left\|D^{\alpha} A_{1}\right\|_{\mathrm{BMO}}^{q^{\prime}} M_{t} f(x)
\end{aligned}
$$

where $M f$ denotes the Hardy-Littlewood maximal function of f and $M_{t} f(x)$ $=\left[M\left(|f|^{t}\right)(x)\right]^{1 / t}$. Hölder's inequality and the above estimate yield that

$$
\begin{aligned}
\left\|\bar{M}_{A_{1}, A_{2}}^{\Omega} f\right\|_{r} & \leq\|\mathrm{I}(f)\|_{r_{1}}^{1 / q}\|\mathrm{II}(f)\|_{p}^{1 / q^{\prime}} \\
& \leq C\left(\sum_{|\alpha|=m_{1}-1}\left\|D^{\alpha} A_{1}\right\|_{\mathrm{BMO}}\right)\left(\sum_{|\beta|=m_{2}}\left\|D^{\beta} A_{2}\right\|_{r_{0}}\right)\|f\|_{p} .
\end{aligned}
$$

Lemma 4. Let $\Omega ; A_{1}, A_{2}$ be the same as the assumption in Theorem $1, b(x, y) \in L^{\infty}\left(\mathbf{R}^{n} \times \mathbf{R}^{n}\right)$. Let $1<p, r<\infty$ and $1 / r=1 / p+1 / r_{0}$. Suppose that the operator

$$
T f(x)=\int_{\mathbf{R}^{n}} \frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^{2} R_{m_{j}}\left(A_{j} ; x, y\right) b(x, y) f(y) d y
$$

is bounded from L^{p} to L^{r} with bound

$$
A\left(\sum_{|\alpha|=m_{1}-1}\left\|D^{\alpha} A_{1}\right\|_{\mathrm{BMO}}\right)\left(\sum_{|\beta|=m_{2}}\left\|D^{\beta} A_{2}\right\|_{r_{0}}\right)
$$

Then the truncated operator

$$
T_{1} f(x)=\int_{|x-y|<1} \frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^{2} R_{m_{j}}\left(A_{j} ; x, y\right) b(x, y) f(y) d y
$$

is bounded from L^{p} to L^{r} with bound

$$
C\left(A+\|b\|_{\infty}\right)\left(\sum_{|\alpha|=m_{1}-1}\left\|D^{\alpha} A_{1}\right\|_{\mathrm{BMO}}\right)\left(\sum_{|\beta|=m_{2}}\left\|D^{\beta} A_{2}\right\|_{r_{0}}\right)
$$

Proof. Without loss of generality, we may assume that

$$
\sum_{|\alpha|=m_{1}-1}\left\|D^{\alpha} A_{1}\right\|_{\mathrm{BMO}}=\sum_{|\beta|=m_{2}}\left\|D^{\beta} A_{2}\right\|_{r_{0}}=1
$$

For each fixed $h \in \mathbf{R}^{n}$, we split f into three parts as

$$
f=f_{1}+f_{2}+f_{3}
$$

where

$$
f_{1}(y)=f(y) \chi_{\{|y-h|<1 / 2\}}(y)
$$

and

$$
f_{2}(y)=f(y) \chi_{\{1 / 2 \leq|y-h|<5 / 4\}}(y) .
$$

Let $\phi_{h} \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ such that $\operatorname{supp} \phi_{h} \subset\{y:|y-h|<4\}, \phi_{h}(y)=1$ if $|y-h|<2$, and $\left\|D^{\nu} \phi_{h}\right\|_{\infty} \leq c$ for all multi-index ν. Set

$$
A_{2}^{\bar{h}}(y)=R_{m_{2}}\left(A_{2} ; y, \bar{h}\right) \phi_{\bar{h}}(y) \text { with }|\bar{h}-h|<3 / 4
$$

It is easy to verify that if $|x-h|<1 / 4$, then

$$
T_{1} f_{1}(x)=\int_{\mathbf{R}^{n}} \frac{\Omega(x-y)}{|x-y|^{n+M-1}} R_{m_{1}}\left(A_{1} ; x, y\right) R_{m_{2}}\left(A_{2}^{\bar{h}} ; x, y\right) b(x, y) f_{1}(y) d y
$$

Thus

$$
\int_{|x-h|<1 / 4}\left|T_{1} f_{1}(x)\right|^{r} d x \leq A^{r}\left(\sum_{|\beta|=m_{2}}\left\|D^{\beta} A_{2}^{\bar{h}}\right\|_{r_{0}}\left\|f_{1}\right\|_{p}\right)^{r}
$$

For each fixed multi-index $\beta,|\beta|=m_{2}$, write

$$
D^{\beta} A_{2}^{\bar{h}}(y)=\sum_{\beta=\mu+\nu} C_{\mu, \nu} R_{m_{2}-|\mu|}\left(D^{\mu} A_{2} ; y, \bar{h}\right) D^{\nu} \phi_{\bar{h}}(y)
$$

Using the formula

$$
R_{m}(F ; y, \bar{h})=\sum_{|\alpha|=m} \frac{m}{\alpha!} \int_{0}^{1}(1-t)^{m-1} D^{\alpha} F(\bar{h}+t(y-\bar{h}))(y-\bar{h})^{\alpha} d t
$$

we have

$$
\left(\int_{|y-\bar{h}|<4}\left|R_{m}(F ; y, \bar{h})\right|^{r} d y\right)^{1 / r}
$$

$$
\begin{aligned}
& \leq C \sum_{|\alpha|=m} \int_{0}^{1}\left(\int_{|y-\bar{h}|<4}\left|D^{\alpha} F(\bar{h}+t(y-\bar{h}))\right|^{r} d y\right)^{1 / r} d t \\
& =C \sum_{|\alpha|=m} \int_{0}^{1}\left(\int_{|z-\bar{h}|<4 t}\left|D^{\alpha} F(z)\right|^{r} t^{-n} d z\right)^{1 / r} d t \\
& \leq C M_{r}\left(\sum_{|\alpha|=m}\left|D^{\alpha} F\right| \chi_{B(h, 5)}\right)(\bar{h}) .
\end{aligned}
$$

Using this inequality, we obtain

$$
\begin{equation*}
\sum_{|\beta|=m_{2}}\left\|D^{\beta} A_{2}^{\bar{h}}\right\|_{r_{0}} \leq C M_{r_{0}}\left(\sum_{|\alpha|=m_{2}}\left|D^{\alpha} A_{2}\right| \chi_{B(h, 5)}\right)(\bar{h}) \tag{*}
\end{equation*}
$$

We can choose $\bar{h},|\bar{h}-h|<3 / 4$, so that the right hand side of $(*)$ is majorized by

$$
C\left\|\sum_{|\alpha|=m}\left|D^{\alpha} A_{2}\right| \chi_{B(h, 5)}\right\|_{r_{0}} .
$$

This shows that

$$
\begin{align*}
& \int_{|x-h|<1 / 4}\left|T_{1} f_{1}(x)\right|^{r} d x \tag{2.1}\\
& \leq C A^{r} \sum_{|\beta|=m_{2}}\left(\left(\int_{|y-h|<8}\left|D^{\beta} A_{2}(y)\right|^{r_{0}} d y\right)^{1 / r_{0}}\left\|f_{1}\right\|_{p}\right)^{r} .
\end{align*}
$$

If $|x-h|<1 / 4$ and $1 / 2 \leq|y-h|<5 / 4$, then $1 / 4<|x-y|<3 / 2$. So we see that for $|x-h|<1 / 4$,

$$
\begin{aligned}
\left|T_{1} f_{2}(x)\right| & \leq\|b\|_{\infty} \int_{1 / 4<|x-y|<3 / 2}\left|\frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^{2} R_{m_{j}}\left(A_{j} ; x, y\right) f_{2}(y)\right| d y \\
& \leq C\|b\|_{\infty} M_{A_{1}, A_{2}^{\bar{h}}}^{\Omega} f_{2}(x)
\end{aligned}
$$

Lemma 3 now tells us that

$$
\int_{|x-h|<1 / 4}\left|T_{1} f_{2}(x)\right|^{r} d x \leq C\|b\|_{\infty}^{r}\left(\sum_{|\beta|=m_{2}}\left\|D^{\beta} A_{2}^{\bar{h}}\right\|_{r_{0}}\left\|f_{2}\right\|_{p}\right)^{r}
$$

$$
\begin{equation*}
\leq C\|b\|_{\infty}^{r}\left(\sum_{|\beta|=m_{2}}\left(\int_{|y-h|<8}\left|D^{\beta} A_{2}(y)\right|^{r_{0}} d y\right)^{1 / r_{0}}\left\|f_{2}\right\|_{p}\right)^{r} \tag{2.2}
\end{equation*}
$$

Obviously, we have $T_{1} f_{3}(x)=0$ for $|x-h|<1 / 4$. Combining inequalities (2.1) and (2.2) leads to

$$
\begin{aligned}
& \int_{|x-h|<1 / 4}\left|T_{1} f(x)\right|^{r} d x \\
\leq & C\left(A^{r}+\|b\|_{\infty}^{r}\right) \sum_{|\beta|=m_{2}}\left(\int_{|y-h|<8}\left|D^{\beta} A_{2}(y)\right|^{r_{0}} d y\right)^{r / r_{0}}\left(\int_{|y-h|<2}|f(y)|^{p} d y\right)^{r / p}
\end{aligned}
$$

Integrating the last inequality with respect to h gives that

$$
\begin{aligned}
\left\|T_{1} f\right\|_{r}^{r} \leq & C\left(A^{r}+\|b\|_{\infty}^{r}\right) \sum_{|\beta|=m_{2}}\left(\int_{\mathbf{R}^{n}} \int_{|y-h|<8}\left|D^{\beta} A_{2}(y)\right|^{r_{0}} d y d h\right)^{r / r_{0}} \\
& \times\left(\int_{\mathbf{R}^{n}} \int_{|y-h|<2}|f(y)|^{p} d y d h\right)^{r / p} \\
\leq & C\left(A^{r}+\|b\|_{\infty}^{r}\right) \sum_{|\beta|=m_{2}}\left\|D^{\beta} A_{2}\right\|_{r_{0}}^{r}\|f\|_{p}^{r} .
\end{aligned}
$$

This completes the proof of Lemma 4.
Proof of Theorem 1. We only treat the case that

$$
\sum_{|\alpha|=m_{1}-1}\left\|D^{\alpha} A_{1}\right\|_{\mathrm{BMO}}=\sum_{|\beta|=m_{2}}\left\|D^{\beta} A_{2}\right\|_{r_{0}}=1
$$

First we show that (ii) implies (i). Let k and l be two positive integers, $P(x, y)$ be a non-degenerate real-valued polynomial with degree k in x and l in y. Write

$$
P(x, y)=\sum_{|\alpha| \leq k,|\beta| \leq l} a_{\alpha \beta} x^{\alpha} y^{\beta}
$$

By dilation invariance, we may assume that $\sum_{|\alpha|=k,|\beta|=l}\left|a_{\alpha \beta}\right|=1$. Decompose $T_{A_{1}, A_{2}}$ as

$$
\begin{aligned}
& T_{A_{1}, A_{2}} f(x) \\
= & \int_{|x-y|<1} e^{i P(x, y)} \frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^{2} R_{m_{j}}\left(A_{j} ; x, y\right) f(y) d y
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{d=1}^{\infty} \int_{2^{d-1} \leq|x-y|<2^{d}} e^{i P(x, y)} \frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^{2} R_{m_{j}}\left(A_{j} ; x, y\right) f(y) d y \\
= & T_{A_{1}, A_{2}}^{0} f(x)+\sum_{d=1}^{\infty} T_{A_{1}, A_{2}}^{d} f(x)
\end{aligned}
$$

We first consider the operator $T_{A_{1}, A_{2}}^{d}, d \geq 1$. We claim that if $D^{\beta} A_{2}$ is in L^{∞} for all $|\beta|=m_{2}$, then

$$
\begin{equation*}
\left\|T_{A_{1}, A_{2}}^{d} f_{\| 2} \leq C 2^{-\varepsilon_{1} d} \sum_{|\beta|=m_{2}}\right\| D^{\beta} A_{2}\left\|_{\infty}\right\| f \|_{2}, d \geq 1 \tag{2.3}
\end{equation*}
$$

where ε_{1} is independent of d and f. If this is done, then by interpolating between inequality (2.3) and the crude estimate

$$
\left\|T_{A_{1}, A_{2}}^{d} f\right\|_{p} \leq C \sum_{|\beta|=m_{2}}\left\|D^{\beta} A_{2}\right\|_{\infty}\|f\|_{p}, 1<p<\infty
$$

we can get

$$
\begin{equation*}
\left\|T_{A_{1}, A_{2}}^{d} f\right\|_{p} \leq C 2^{-\varepsilon_{2} d} \sum_{|\beta|=m_{2}}\left\|D^{\beta} A_{2}\right\|_{\infty}\|f\|_{p}, 1<p<\infty \tag{2.4}
\end{equation*}
$$

For each fixed p and r_{0}, we choose $\tilde{r_{0}}, \tilde{r}$ such that $1<\tilde{r_{0}}<r_{0}, 1 / p+1 / \tilde{r_{0}}=$ $1 / \tilde{r}<1$. Lemma 3 then tells us that

$$
\left\|T_{A_{1}, A_{2}}^{d} f\right\|_{\tilde{r}} \leq C \sum_{|\beta|=m_{2}}\left\|D^{\beta} A_{2}\right\|_{\tilde{r_{0}}}\|f\|_{p}, 1<p<\infty
$$

We regard $T_{A_{1}, A_{2}}^{d}$ as a linear operator of A_{2}. Thus the inequality (2.4) together with the last inequality states that

$$
\begin{equation*}
\left\|T_{A_{1}, A_{2}}^{d} f\right\|_{r} \leq C 2^{-\varepsilon d} \sum_{|\beta|=m_{2}}\left\|D^{\beta} A_{2}\right\|_{r_{0}}\|f\|_{p}, 1<p<\infty \tag{2.5}
\end{equation*}
$$

where ε is a positive constant. Summing over all $d \geq 1$, we obtain

$$
\left\|\sum_{d=1}^{\infty} T_{A_{1}, A_{2}}^{d} f\right\|_{r} \leq C\|f\|_{p}
$$

To prove (2.3), we may assume $\sum_{|\beta|=m_{2}}\left\|D^{\beta} A_{2}\right\|_{\infty}=1$. Define

$$
\begin{aligned}
& \tilde{T}_{A_{1}, A_{2}}^{d} f(x) \\
& \quad=\int_{1<|x-y| \leq 2} e^{i P\left(2^{d-1} x, 2^{d-1} y\right)} \frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^{2} R_{m_{j}}\left(A_{j} ; x, y\right) f(y) d y
\end{aligned}
$$

By dilation invariance, it is enough to prove that

$$
\begin{equation*}
\left\|\tilde{T}_{A_{1}, A_{2}}^{d} f\right\|_{2} \leq C 2^{-\varepsilon d}\|f\|_{2} \tag{2.6}
\end{equation*}
$$

Decompose \mathbf{R}^{n} into $\mathbf{R}^{n}=\bigcup I_{i}$, where I_{i} is a cube with side length 1 , and the cubes have disjoint interiors. Set $f_{i}=f \chi_{I_{i}}$. Since the support of $\tilde{T}_{A_{1}, A_{2}}^{d} f_{i}$ is contained in a fixed multiple of I_{i}, so that the supports of the various terms $\tilde{T}_{A_{1}, A_{2}}^{d} f_{i}$ have bounded overlaps. Thus we have the "almost orthogonality" property

$$
\left\|\tilde{T}_{A_{1}, A_{2}}^{d} f\right\|_{2}^{2} \leq C \sum_{i}\left\|\tilde{T}_{A_{1}, A_{2}}^{d} f_{i}\right\|_{2}^{2}
$$

and therefore it suffices to show

$$
\begin{equation*}
\left\|\tilde{T}_{A_{1}, A_{2}}^{d} f_{i}\right\|_{2}^{2} \leq C 2^{-\varepsilon d}\left\|f_{i}\right\|_{2}^{2} \tag{2.7}
\end{equation*}
$$

For fixed i, denote $\tilde{I}_{i}=100 n I_{i}$. Let $\phi_{i}(x) \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ such that $0 \leq \phi_{i} \leq$ $1, \phi_{i}$ is identically one on $10 \sqrt{n} I_{i}$ and vanishes outside of $50 \sqrt{n} I_{i},\left\|D^{\gamma} \phi_{i}\right\|_{\infty}$ $\leq C_{\gamma}$ for all multi-index γ. Let x_{0} be a point on the boundary of $80 \sqrt{n} I_{i}$. Denote

$$
A_{1}^{\phi_{i}}(y)=R_{m_{1}-1}\left(A_{1}(\cdot)-\sum_{|\alpha|=m_{1}-1} \frac{1}{\alpha!} m_{\tilde{I}_{i}}\left(D^{\alpha} A_{1}\right)(\cdot)^{\alpha} ; y, x_{0}\right) \phi_{i}(y)
$$

and for multi-index α, define

$$
\begin{aligned}
& \tilde{T}_{A_{1}, A_{2}}^{d, \alpha} f(x) \\
& \quad=\int_{1<|x-y| \leq 2} e^{i P\left(2^{d-1} x, 2^{d-1} y\right)} \frac{\Omega(x-y) R_{m_{2}}\left(A_{2} ; x, y\right)}{|x-y|^{n+M-1}}(x-y)^{\alpha} f(y) d y
\end{aligned}
$$

It is easy to see that

$$
\tilde{T}_{A_{1}, A_{2}}^{d} f_{i}(x)
$$

$$
\begin{aligned}
& =\int_{1<|x-y| \leq 2} e^{i P\left(2^{d-1} x, 2^{d-1} y\right)} \frac{\Omega(x-y) R_{m_{2}}\left(A_{2} ; x, y\right)}{|x-y|^{n+M-1}} R_{m_{1}}\left(A_{1}^{\phi_{i}} ; x, y\right) f_{i}(y) d y \\
& =A_{1}^{\phi_{i}}(x) \tilde{T}_{A_{1}, A_{2}}^{d, 0} f_{i}(x)-\sum_{|\alpha|<m_{1}-1} \frac{1}{\alpha!} \tilde{T}_{A_{1}, A_{2}}^{d, \alpha}\left(D^{\alpha} A_{1}^{\phi_{i}} f_{i}\right)(x) \\
& \quad-\sum_{|\alpha|=m_{1}-1} \frac{1}{\alpha!} \tilde{T}_{A_{1}, A_{2}}^{d, \alpha}\left(D^{\alpha} A_{1}^{\phi_{i}} f_{i}\right)(x) \\
& =\mathrm{I}+\mathrm{II}+\mathrm{III} .
\end{aligned}
$$

Before we estimate these terms, let us state a lemma.
LEmma 5. There exists a positive constant $\delta=\delta(n, \operatorname{deg} P)$ such that for any $d \geq 1$ and multi-index α,

$$
\begin{aligned}
& \left\|\int_{2^{d-1} \leq|x-y|<2^{d}} e^{i P(x, y)} \frac{\Omega(x-y) R_{m_{2}}\left(A_{2} ; x, y\right)}{|x-y|^{n+M-1}}(x-y)^{\alpha} f(y) d y\right\|_{p} \\
\leq & C 2^{-\left(\delta+m_{1}-1-|\alpha|\right) d}\|f\|_{p}, 1<p<\infty
\end{aligned}
$$

where constant C is independent of d, f and coefficients of $P(x, y)$.
Recall that $P(x, y)=\sum_{|\alpha| \leq k,|\beta| \leq l} a_{\alpha \beta} x^{\alpha} y^{\beta}$ and $\sum_{|\alpha|=k,|\beta|=l}\left|a_{\alpha \beta}\right|=1$. Lemma 5 can be proved by an argument used in [2]. We omit the details here.

We return to the estimates of I, II and III. Note that for multi-index $\beta,|\beta|<m_{1}-1$,

$$
\begin{aligned}
D^{\beta} A_{1}^{\phi_{i}}(y)= & \sum_{\beta=\mu+\nu} C_{\mu, \nu} R_{m_{1}-|\mu|-1}\left(D ^ { \mu } \left(A_{1}(\cdot)\right.\right. \\
& \left.\left.-\sum_{|\alpha|=m_{1}-1} \frac{1}{\alpha!} m_{\tilde{I}_{i}}\left(D^{\alpha} A_{1}\right)(\cdot)^{\alpha}\right) ; y, x_{0}\right) D^{\nu} \phi_{i}(y) .
\end{aligned}
$$

Since that $\operatorname{supp} \phi_{i} \subset 50 \sqrt{n} I_{i}$, by Lemma 1 , we have

$$
\left|D^{\beta} A_{1}^{\phi_{i}}(y)\right| \leq C \sum_{|\alpha|=m_{1}-1}\left(\frac{1}{\left|I_{x_{0}}^{y}\right|} \int_{I_{x_{0}}^{y}}\left|D^{\alpha} A_{1}(z)-m_{\tilde{I}_{i}}\left(D^{\alpha} A_{1}\right)\right|^{t} d z\right)^{1 / t} \leq C
$$

where $t>n$. Thus, it follows from Lemma 5 that

$$
\|\mathrm{I}\|_{2} \leq\left\|A_{1}^{\phi_{i}}\right\|_{\infty}\left\|\tilde{T}_{A_{1}, A_{2}}^{d, 0} f_{i}\right\|_{2} \leq C 2^{-\delta d}\left\|f_{i}\right\|_{2}
$$

Similarly, we have

$$
\|\mathrm{II}\|_{2} \leq C 2^{-\delta d}\left\|f_{i}\right\|_{2}
$$

It remains to estimate the third term III. Note that for any $0<\gamma<n$,

$$
\begin{aligned}
\left|\tilde{T}_{A_{1}, A_{2}}^{d, \alpha} f(x)\right| & \leq C \int_{1<|x-y| \leq 2}|\Omega(x-y) f(y)| d y \\
& \leq C_{\gamma}\|\Omega\|_{L^{q}\left(S^{n-1}\right)}\left(\int_{1<|x-y| \leq 2} \frac{|f(y)|^{q^{\prime}}}{|x-y|^{n-\gamma}} d y\right)^{1 / q^{\prime}} \\
& \leq C_{\gamma}\|\Omega\|_{L^{q}\left(S^{n-1}\right)}\left[I_{\gamma}\left(|f|^{q^{\prime}}\right)(x)\right]^{1 / q^{\prime}}
\end{aligned}
$$

where I_{γ} denotes the usual fractional integral of order γ. If $p>q^{\prime}$ and $\sigma>0$, we take a γ such that $0<\gamma<n q^{\prime} / p$, and $1 /(p+\sigma)=1 / p-\gamma / n q^{\prime}$. By the Hardy-Littlewood-Sobolev theorem [9], we get

$$
\left\|\tilde{T}_{A_{1}, A_{2}}^{d, \alpha} f\right\|_{p+\sigma} \leq C\|\Omega\|_{L^{q}\left(S^{n-1}\right)}\|f\|_{p}, p>q^{\prime}, \sigma>0
$$

By the last inequality and Lemma 5, an interpolation will give
(2.8) $\left\|\tilde{T}_{A_{1}, A_{2}}^{d, \alpha} f\right\|_{p} \leq C 2^{-\tilde{\sigma} d}\|f\|_{p-\sigma}$, for $1<p<\infty$ and $0<\sigma<\sigma_{p}$,
where $\tilde{\sigma}$ is a positive constant. On the other hand, if $|\beta|=m_{1}-1$, then,

$$
\begin{aligned}
D^{\beta} A_{1}^{\phi_{i}}(y)= & \sum_{\beta=\mu+\nu,|\mu|<m_{1}-1} C_{\mu, \nu} R_{m_{1}-1-|\mu|}\left(D ^ { \mu } \left(A_{1}(\cdot)\right.\right. \\
& \left.\left.-\sum_{|\alpha|=m_{1}-1} \frac{1}{\alpha!} m_{\tilde{I}_{i}}\left(D^{\alpha} A_{1}\right)(\cdot)^{\alpha}\right) ; y, x_{0}\right) D^{\nu} \phi_{i}(y) \\
& +\left(D^{\beta} A_{1}(y)-m_{\tilde{I}_{i}}\left(D^{\beta} A_{1}\right)\right) \phi_{i}(y) .
\end{aligned}
$$

Thus, it follows that

$$
\left|D^{\beta} A_{1}^{\phi_{i}}(y)\right| \leq C\left(1+\left|D^{\beta} A_{1}(y)-m_{\tilde{I}_{i}}\left(D^{\beta} A_{1}\right)\right|\right)
$$

and this shows that for any $t>1$,

$$
\left\|D^{\beta} A_{1}^{\phi_{i}}\right\|_{t} \leq C_{t}
$$

Combining the above inequality and (2.8), we obtain

$$
\begin{aligned}
\|\mathrm{III}\|_{2} & \leq C 2^{-\tilde{\delta} d} \sum_{|\alpha|=m_{1}-1}\left\|D^{\alpha} A_{1}^{\phi_{i}} f_{i}\right\|_{2-\sigma} \leq C 2^{-\tilde{\delta} d} \sum_{|\alpha|=m_{1}-1}\left\|D^{\alpha} A_{1}^{\phi_{i}}\right\|_{t}\left\|f_{i}\right\|_{2} \\
& \leq C 2^{-\tilde{\delta} d}\left\|f_{i}\right\|_{2}
\end{aligned}
$$

where we choose $\sigma>0$ and $1<t<\infty$ such that $1 / 2+1 / t=1 /(2-\sigma)$.
All above estimates imply that (2.3) is true.
We turn our attention to the operator $T_{A_{1}, A_{2}}^{0}$. The estimate for this operator follows from the following lemma.

Lemma 6. Suppose that the condition (ii) in Theorem 1 holds. Then for any real-valued polynomial $\tilde{P}(x, y)$, the operator

$$
U_{A_{1}, A_{2}} f(x)=\int_{|x-y|<1} e^{i \tilde{P}(x, y)} \frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^{2} R_{m_{j}}\left(A_{j} ; x, y\right) f(y) d y
$$

satisfies

$$
\begin{equation*}
\left\|U_{A_{1}, A_{2}} f\right\|_{r} \leq C(\operatorname{deg} \tilde{P}, n)\|f\|_{p} \tag{2.9}
\end{equation*}
$$

Proof. We shall carry out our argument by a double induction on the degree in x and y of the polynomial. If the polynomial $\tilde{P}(x, y)$ depends only on x or only on y, it is obvious that the condition (ii) implies (2.9). Let u and v be two positive integers and the polynomial has degree u in x and v in y. We assume that (2.9) holds for all polynomial which are sums of monomials of degree less than u in x times monomials of any degree in y, together with monomials which are of degree u in x times monomials which are of degree less than v in y. Write $\tilde{P}(x, y)$ as

$$
\tilde{P}(x, y)=\sum_{|\alpha|=u,|\beta|=v} b_{\alpha \beta} x^{\alpha} y^{\beta}+P_{0}(x, y),
$$

where $P_{0}(x, y)$ satisfies the inductive assumption. We consider the following two cases.

Case I. $\quad \sum_{|\alpha|=u,|\beta|=v}\left|b_{\alpha \beta}\right| \leq 1$. Rewrite

$$
\tilde{P}(x, y)=\sum_{|\alpha|=u,|\beta|=v} b_{\alpha \beta}\left(x^{\alpha} y^{\beta}-y^{\alpha+\beta}\right)+\tilde{P}_{0}(x, y)
$$

where $\tilde{P}_{0}(x, y)$ satisfies the induction assumption. It follows that

$$
\begin{aligned}
& U_{A_{1}, A_{2}} f(x) \\
= & \int_{|x-y|<1} e^{i \tilde{P}_{0}(x, y)} \frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^{2} R_{m_{j}}\left(A_{j} ; x, y\right) f(y) d y \\
& +\int_{|x-y|<1}\left(e^{i \tilde{P}(x, y)}-e^{i \tilde{P}_{0}(x, y)}\right) \frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^{2} R_{m_{j}}\left(A_{j} ; x, y\right) f(y) d y \\
= & U_{A_{1}, A_{2}}^{1} f(x)+U_{A_{1}, A_{2}}^{2} f(x) .
\end{aligned}
$$

Our induction assumption now states that

$$
\left\|U_{A_{1}, A_{2}}^{1} f\right\|_{r} \leq C\|f\|_{p}
$$

Denote $\tilde{f}(y)=f(y) \chi_{\{|y| \leq 2\}}$. It is easy to see $U_{A_{1}, A_{2}}^{2} f(x)=U_{A_{1}, A_{2}}^{2} \tilde{f}(x)$ when $|x| \leq 1$. Thus,
$\left|U_{A_{1}, A_{2}}^{2} f(x)\right| \leq C \int_{|x-y|<1}\left|\frac{\Omega(x-y)}{|x-y|^{n+M-2}} \prod_{j=1}^{2} R_{m_{j}}\left(A_{j} ; x, y\right) \tilde{f}(y)\right| d y,|x| \leq 1$.

Let $\Phi_{h} \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ such that $\operatorname{supp} \Phi_{h} \subset\{x:|x-h|<8\}, \Phi_{h}(x)=1$ if $|x-h| \leq 4$ and $\left\|D^{\gamma} \Phi_{h}\right\|_{\infty} \leq c$ for all multi-index γ. We have that if $|x| \leq 1$, then

$$
\left|U_{A_{1}, A_{2}}^{2} f(x)\right| \leq C M_{A_{1}, A_{2}^{\bar{h}}}^{\Omega} \tilde{f}(x)
$$

where $A_{2}^{\bar{h}}(y)=R_{m_{2}}\left(A_{2} ; y, \bar{h}\right) \Phi_{\bar{h}}(y)$ with $|\bar{h}|<3$. By the same argument used in the proof of Lemma 4, we can get that

$$
\begin{aligned}
& \int_{|x| \leq 1}\left|U_{A_{1}, A_{2}}^{2} f\right|^{r} d x \\
& \quad \leq C \sum_{|\beta|=m_{2}}\left(\int_{|y| \leq 8}\left|D^{\beta} A_{2}(y)\right|^{r_{0}} d y\right)^{r / r_{0}}\left(\int_{|y| \leq 2}|f(y)|^{p} d y\right)^{r / p},
\end{aligned}
$$

from which the same argument as that in [8, p. 189] show that the inequality

$$
\begin{aligned}
& \int_{|x-h| \leq 1}\left|U_{A_{1}, A_{2}} f\right|^{r} d x \\
& \quad \leq C \sum_{|\beta|=m_{2}}\left(\int_{|y-h| \leq 8}\left|D^{\beta} A_{2}(y)\right|^{r_{0}} d y\right)^{r / r_{0}}\left(\int_{|y-h| \leq 2}|f(y)|^{p} d y\right)^{r / p}
\end{aligned}
$$

holds for all $h \in \mathbf{R}^{n}$ and C is independent of h. Integrating the last inequality with respect to h and using Hölder's inequality, we finally obtain that

$$
\left\|U_{A_{1}, A_{2}} f\right\|_{r} \leq C\|f\|_{p}
$$

Case II. $\quad \sum_{|\alpha|=u,|\beta|=v}\left|b_{\alpha \beta}\right|>1$. Denote $B=\left(\sum_{|\alpha|=u,|\beta|=v}\left|b_{\alpha \beta}\right|\right)^{1 / u+v}$. Write

$$
\tilde{P}(x, y)=\sum_{|\alpha|=u,|\beta|=v} \frac{b_{\alpha \beta}}{B^{u+v}}(B x)^{\alpha}(B y)^{\beta}+P_{0}\left(\frac{B x}{B}, \frac{B y}{B}\right)=Q(B x, B y)
$$

and denote

$$
\tilde{U}_{A_{1}, A_{2}} f(x)=\int_{|x-y|<B} e^{i Q(x, y)} \frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^{2} R_{m_{\jmath}}\left(A_{j} ; x, y\right) f(y) d y
$$

It is not difficult to find that (2.9) is equivalent to the estimate

$$
\begin{equation*}
\left\|\tilde{U}_{A_{1}, A_{2}} f\right\|_{r} \leq C\|f\|_{p} \tag{2.10}
\end{equation*}
$$

we split $\tilde{U}_{A_{1}, A_{2}} f(x)$ as

$$
\begin{aligned}
& \tilde{U}_{A_{1}, A_{2}} f(x) \\
= & \int_{|x-y|<1} e^{i Q(x, y)} \frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^{2} R_{m_{j}}\left(A_{j} ; x, y\right) f(y) d y \\
& +\sum_{d=1}^{d_{0}} \int_{2^{d-1} \leq|x-y|<2^{d}} e^{i Q(x, y)} \frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^{2} R_{m_{j}}\left(A_{j} ; x, y\right) f(y) d y \\
= & \tilde{U}_{A_{1}, A_{2}}^{0} f(x)+\tilde{U}_{A_{1}, A_{2}}^{\infty} f(x),
\end{aligned}
$$

where $2^{d_{0}}=B$. The estimate for $\tilde{U}_{A_{1}, A_{2}}^{0}$ follows along the same line as in case I. On the other hand, by Lemma 5 and the argument used in the treatment for $T_{A_{1}, A_{2}}^{d}$, we have

$$
\left\|\tilde{U}_{A_{1}, A_{2}}^{\infty} f\right\|_{r} \leq C\|f\|_{p}
$$

This leads to the estimate (2.10).
Now we show that (i) implies (ii). To do this, we need to use Definition 2. We choose $Q(x, y)$ such that $Q(x, y)$ has \mathcal{P} and decompose

$$
\begin{aligned}
T_{A_{1}, A_{2}} f(x)= & \int_{|x-y|<1} e^{i Q(x, y)} \frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^{2} R_{m_{j}}\left(A_{j} ; x, y\right) f(y) d y \\
& +\int_{|x-y| \geq 1} e^{i Q(x, y)} \frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^{2} R_{m_{j}}\left(A_{j} ; x, y\right) f(y) d y \\
= & T_{A_{1}, A_{2}}^{0} f(x)+T_{A_{1}, A_{2}}^{\infty} f(x)
\end{aligned}
$$

By Lemma 4, $T_{A_{1}, A_{2}}^{0}$ is bounded from L^{p} to L^{r}. The same argument as in the proof of Lemma 4 tells us that

$$
\left(\int_{|x-h|<1}\left|T_{A_{1}, A_{2}}^{o} f(x)\right|^{r} d x\right)^{1 / r}
$$

$$
\leq C\left(\sum_{|\beta|=m_{2}} \int_{|y-h|<8}\left|D^{\beta} A_{2}(y)\right|^{r_{0}} d y\right)^{1 / r_{0}}\left(\int_{|y-h|<2}|f(y)|^{p} d y\right)^{1 / p}
$$

where C is independent of h. Since $Q(x, y)$ has \mathcal{P}, we have

$$
Q(x, y)=Q(x-h, y-h)+R_{0}(x, h)+R_{1}(y, h)
$$

where R_{0}, R_{1} are real polynomials. When $|x-h|<1$, it follows that

$$
\begin{aligned}
& S_{A_{1}, A_{2}} f(x)= \int_{|x-y|<1} \frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^{2} R_{m_{j}}\left(A_{j} ; x, y\right) f(y) \chi_{B(h, 2)}(y) d y \\
&= e^{-i R_{0}(x, h)} \int_{|x-y|<1} e^{i Q(x, y)} \frac{\Omega(x-y)}{|x-y|^{n+M-1}} \prod_{j=1}^{2} R_{m_{\jmath}}\left(A_{j} ; x, y\right) \\
& \quad \times e^{-i Q(x-h, y-h)} e^{-i R_{1}(y, h)} f(y) \chi_{B(h, 2)}(y) d y
\end{aligned}
$$

Observe that the Taylor's expression of $e^{-i Q(x-h, y-h)}$ is

$$
\begin{aligned}
e^{-i Q(x-h, y-h)} & =\sum_{m=0}^{\infty} \frac{i^{m}}{m!}\left(\sum_{\alpha, \beta} a_{\alpha \beta}(x-h)^{\alpha}(y-h)^{\beta}\right)^{m} \\
& =\sum_{u, v} a_{m, u, v}(x-h)^{u}(y-h)^{v}
\end{aligned}
$$

For $|x-h|<1$ and $|y-h|<2$, we have

$$
\begin{aligned}
& \left(\int_{|x-h|<1}\left|S_{A_{1}, A_{2}} f(x)\right|^{r} d x\right)^{1 / r} \\
\leq & \sum_{u, v}\left|a_{m, u, v}\right|\left[\int_{|x-h|<1}\left|(x-h)^{u}\right|^{r}\left|T_{A_{1}, A_{2}}^{0}\left[e^{-i R_{1}(\cdot, h)} f(\cdot) \chi_{B(h, 2)}(\cdot)(\cdot-h)^{v}\right]\right|^{r} d x\right]^{1 / r} \\
\leq & \left.C_{A_{2}, h} \sum_{u, v}\left|a_{m, u, v}\right| a^{u}\left[\int_{|y-h|<2}|f(y)|^{p}\left|(y-h)^{v}\right|^{p} d y\right)\right]^{1 / p} \\
\leq & C_{A_{2}, h} \sum_{u, v}\left|a_{m, u, v}\right| a^{u} b^{v}\left[\int_{|y-h|<2}|f(y)|^{p} d y\right]^{1 / p} \\
\leq & C_{A_{2}, h} \sum_{m=0}^{\infty} \frac{1}{m!}\left(\sum_{\alpha, \beta}\left|a_{\alpha \beta}\right| a^{\alpha} b^{\beta}\right)^{m}\left[\int_{|y-h|<2}|f(y)|^{p} d y\right]^{1 / p} \\
\leq & C_{A_{2}, h} \exp \left\{\sum_{\alpha, \beta}\left|a_{\alpha \beta}\right| a^{\alpha} b^{\beta}\right\}\left[\int_{|y-h|<2}|f(y)|^{p} d y\right]^{1 / p},
\end{aligned}
$$

where $C_{A_{2}, h}=C\left(\sum_{|\beta|=m_{2}} \int_{|y-h|<8}\left|D^{\beta} A_{2}(y)\right|^{r_{0}} d y\right)^{1 / r_{0}}$, and $a=(1,1, \cdots, 1)$, $b=(2,2, \cdots, 2)$. Hence,

$$
\left\|S_{A_{1}, A_{2}} f\right\|_{r} \leq C\|f\|_{p}
$$

This completes the proof of Theorem 1.
Remark 1. Consider the operator defined by:

$$
T_{A_{1}, A_{2}} f(x)=\int_{\mathbf{R}^{n}} e^{i P(x, y)} \frac{\Omega(x-y)}{|x-y|^{n+M-2}} \prod_{j=1}^{2} R_{m_{\jmath}}\left(A_{j} ; x, y\right) f(y) d y, n \geq 2
$$

Repeating the arguments of Theorem 1, we can obtain that
Theorem 2. Let $1<p<\infty, \Omega, M$ be the same as that in Theorem 1. Suppose A_{i} have derivatives of order $m_{i}-1$ in $\operatorname{BMO}\left(\mathbf{R}^{n}\right)$ respectively, $i=1,2$. Then the following two facts are equivalent:
(i) If $P(x, y)$ is a non-degenerate real-valued polynomial, then $T_{A_{1}, A_{2}}$ is bounded on $L^{p}\left(\mathbf{R}^{n}\right)$ with bound

$$
C(\operatorname{deg} P, n)\left(\sum_{|\alpha|=m_{1}-1}\left\|D^{\alpha} A_{1}\right\|_{\mathrm{BMO}}\right)\left(\sum_{|\beta|=m_{2}-1}\left\|D^{\beta} A_{2}\right\|_{\mathrm{BMO}}\right) ;
$$

(ii) The truncated operator

$$
S_{A_{1}, A_{2}} f(x)=\int_{|x-y|<1} \frac{\Omega(x-y)}{|x-y|^{n+M-2}} \prod_{j=1}^{2} R_{m_{\jmath}}\left(A_{j} ; x, y\right) f(y) d y
$$

is bounded on $L^{p}\left(\mathbf{R}^{n}\right)$ with bound

$$
C\left(\sum_{|\alpha|=m_{1}-1}\left\|D^{\alpha} A_{1}\right\|_{\mathrm{BMO}}\right)\left(\sum_{|\beta|=m_{2}-1}\left\|D^{\beta} A_{2}\right\|_{\mathrm{BMO}}\right)
$$

Remark 2. Here we give an example which satisfies the condition (ii) of Theorem 1. The example of Theorem 2 is analogous.

In R^{1}, suppose $A_{1}(x)=\log (1+|x|), \quad A_{2}(x)=x$, and $\Omega(x)=\operatorname{sgn}(x)$, then $A_{1} \in \mathrm{BMO}(R), A_{2}$ has derivatives of order 1 in $L^{\infty}(R)$.

$$
\begin{aligned}
S_{A_{1}, A_{2}} f(x) & =\int_{|x-y|<1} \frac{\Omega(x-y)}{|x-y|^{2}}\left(A_{1}(x)-A_{1}(y)\right)\left(A_{2}(x)-A_{2}(y)\right) f(y) d y \\
& =\int_{|x-y|<1} \frac{1}{|x-y|} \log \left(\frac{1+|x|}{1+|y|}\right) f(y) d y
\end{aligned}
$$

Therefore $\left|S_{A_{1}, A_{2}} f(x)\right| \leq M f(x)$. So $S_{A_{1}, A_{2}}$ is bounded on $L^{p}(R)$.

Acknowledgements. Authors would like to thank the referee for giving us some very useful suggestions.

References

[1] S. Chanillo and M. Christ, Weak $(1,1)$ bounds for oscillatory singular integral, Duke Math. J., 55 (1987), 141-155.
[2] W. Chen, G. Hu and S. Lu, On a multilinear oscillatory singular integral operator I, Chinese Annal of Math., 18B (1997), 181-190.
[3] W. Chen, G. Hu and S. Lu, On a multilinear oscillatory singular integral operator II, Chinese Annal of Math., 18A (1997), 73-82.
[4] J. Cohen and J. Gosselin, A BMO estimate for multilinear singular integral, Illinois J. of Math., 30 (1986), 445-464.
[5] J. Cohen and J. Gosselin, On multilinear singular integrals on \mathbf{R}^{n}, Studia Math., 72 (1982), 199-223.
[6] J. Garcia-Cuerva, E. Harboure, C. Segovia and J. L. Torrea, Weighted norm inequalities for commutators of strongly singular integrals, Indiana Univ. Math. J., 40 (1991), 1397-1420.
[7] S. Lu and Y. Zhang, Criterion on L^{p}-boundedness for a class of oscillatory singular integral with rough kernels, Rev. Mat. Iberoamericana, 8 (1992), 201-219.
[8] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals I. oscillatory integral, J. Funct. Anal., 73 (1987), 179-194.
[9] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970.

Wengu Chen
Department of Mathematics
Capital Normal University
Beijing 100037
People's Republic of China
Guoen Hu
Department of Mathematics
Beijing Normal University
Beijing 100875
People's Republic of China
Shanzhen Lu
Department of Mathematics
Beijing Normal University
Beijing 100875
People's Republic of China
lusz@bnu.edu.cn

[^0]: Received April 2, 1996.
 Revised December 5, 1996.
 Research was supported by NNSF of China.

