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CRITERION OF (L*, L") BOUNDEDNESS
FOR A CLASS OF MULTILINEAR OSCILLATORY
SINGULAR INTEGRALS

WENGU CHEN, GUOEN HU anp SHANZHEN LU

Abstract. In this paper, we consider a kind of multilinear operators related to
oscillatory singular integrals with rough kernels and give a criterion of certain
boundedness for this kind of operators.

§1. Introduction

During the last decade, there has been significant progress in the study
of oscillatory singular integral operators with polynomial phases. A proto-
typical work in this area is Ricci and Stein’s paper [8]. Suppose that K(z)
is a function defined on R™\{0} such that

(i) K(z) is homogeneous of —n,
(ii) / K(:E)d.’l:zo, 0< Ry < Ry < o0.
Ri<|z|<R2

Ricci and Stein showed that for real-valued polynomial P(xz,y) defined on
R™ x R", if K(z) € C*(R™\{0}), then the operator

(11) Tf(z) = po. / PV (1 — ) f(y)dy,

is bounded on LP(R"),1 < p < oo, with bound depending only on the
total degree of P(z,y), not on the coefficients of P(x,y). Subsequently,
Chanillo and Christ [1] showed that K(z) € C*(R™\{0}) is also a sufficient
condition such that T is of weak type (1,1). Lu and Zhang [7] found out

a simple criterion on LP-boundedness for oscillatory singular integrals with
polynomial phases when the kernels satisfy only a size conditions.
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This paper is a continuation of our previous work [2], [3]. We shall
extend above result of [7] to the case of multilinear oscillatory singular
integral operators. Let us consider the following multilinear operators

(1'2) TA1,A2f($)

2
iP(x Q:E—y
- /nep( ’y)lw_(yl—n+1\3—1Hij(Aj§may)f(y)dy, n>2,
j=1

where M = m; +mg, Q is homogeneous of degree zero, R, (A4;z,y) denotes
the m-th order Taylor series remainder of A at x expanded about y, more
precisely

Rm(A;z,y) = A(z) — ;;!DaA(y)(fc -y

For functions A; and Ag, one has derivatives of order m; —1 in BMO(R"),
another has derivatives of order mg in L™,1 < rg < oco. We will give a
criterion of (L?, L") boundedness for T4, 4,.

To begin with, let us introduce two concepts (see [7]).

DEFINITION 1. A real valued polynomial P(z,y) is called non-trivial
if P(z,y) does not take the form of Py(x) + Pi(y), where Py and P; are
polynomials defined on R”.

DEFINITION 2. We will say that the non—trivial polynomial P(z,y)
has property P, if P satisfies

P(z +h,y+h) = P(z,y) + Ro(z,h) + Ri(y, h),
where Ry and R; are real polynomials.

DEFINITION 3. We say that a non—trivial polynomial P(z,y) is non—
degenerate if

P(z,y) = Z aaﬁ:cayﬂ , k, 1 are two positive integers
lal<k,|8]<l

and Z laas| > 0.
lal=k,|B|=

Now we formulate our main result.
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THEOREM 1. Let 2 be homogeneous of degree zero and belong to
L3(S"7Y) for some q > 1. If Ay has derivatives of order mi—1 in BMO(R™),
Ay has derivatives of order mg in L™,1 < rg < oo, then for 1/r =
1/p+1/r9,1 < p, 7 < 00, the following two facts are equivalent:

(i) If P(z,y) is a non—degenerate real-valued polynomial, then T4, a,
s bounded from LP to L™ with bound

C(degP,n)( > [D*Aillemo)( Y [1DPAsllr,);

lo=m1-1 [Bl=m2

(ii) The truncated operator

Qz

Sa1,4, f () :/ (—,H_M—THRmJ (Aj;z,y)f(y)dy
lz—yl<1 |$ - l

is bounded from LP to L" with bound

C( Y ID*Alsmo)( Y D7 A2llno);

|a|=m1—1 |B]=mz

where degP denotes the total degree of the polynomial P(z,y).
§2. Proof of Theorem 1

To prove Theorem 1, we will use some lemmas.
LEMMA 1. (see [4]) Let b(z) be a function on R™ with m-th order

derwatives in L*(R™) for some s, n < s < co. Then

1 1/s
. < . m R Da S
|Rm(ba$>y)| — Cm,nlx yl |a§|_m (IIgl L;’ l b(Z)| dZ) 9

where I3 is the cube centered at x, with sides parallel to the azes and whose
diameter is 2,/n|z — y|.

LEMMA 2. Let Qy be homogeneous of degree zero and integrable on
Sn=1. For k a positive integer and j = 1,2,---,k, A;(z) have derivatives
of order mj in L™, 1 <r; < 00,1 < s < oo, let

“rQ
M3 ay,on, J (@)

k
= supr~("+M) | T](Bom, (4532, 9)1°Q0(z — v) £ (v)Idy,
r>0 lz—y|<r j=1
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where M/s = mi+mo+---+mg. If1 <p <oo,l <r<oolfr=
1/P+Z§:1 s/rj, then

k
1970 4, a e < Cl0lagsnny L (32 10745018 ) 11

i=1 " |aj=m,

For the special case s = 1, Lemma 2 was proved by Cohen and Gosselin
[5]. If 1 < s < oo, the lemma can be proved by repeating the argument
used in [5].

LEMMA 3. Let 2, Ay, As be the same as that in Theorem 1. Denote

M, 4. f(z) = supr—(HM=D / 0) T R, (452, £ (9) .
>0 |z y|<r

j=1

Ifi<p,r<oo, 1/r=1/p+1/ry, then

1Mt <clole( Y0 1D Arlsyo) (D2 1D sl )l

lal=m1-1 |B]=m2

- .
Proof. It suffices to prove the lemma for M 4, 4,, a variant of Mgb Ay

Mgl,Az f(z)

2
= supr=(+4-1) [ 190 = ) [T Bony (453 2, 9) £ (3) g
/2<|z—y|<r j=1

r>0

For fixed z € R",r > 0, let Q(z, ) be the cube centered at z and having
sidelength 2./nr,
set

1 o (a4
AW =4~ D —men(D Ay,

|a|l=my1—1

where mg(; ) (D*A;) denotes the mean value of D*A; on Q(z,r). By the
observation
of Cohen and Gosselin [4], we have

le (Al;ilf, y) = le (A?) z, y)
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Holder’s inequality then gives

0 e
MY, 4 f(z) < sup(r~"mas / @ — ) Rom, (A3 2,9) |7 (4)|dy) /2
r>0 lz—y|<r

x sup(r (M=) / | Ry (A5 2,9)|7 | f(y)|dy) /7
r>0 r/2<|z—y|<r

= 1(f) (=) Y/9I1(f)(z) /7.
It follows from Lemma 2 that
q
Il < CIML gy | 3= 1D° sl 11,
[Bl=m2

where 1/r1 = 1/p+ q/ro.
For the estimate of II(f), we consider two cases:
(i) my = 1, in this case, A; € BMO and

1(f)(z) = supr—™ //2<l ) - AWl Wy
r z—y|<r

r>0
< €3, (M=),
where the notation CZ{I (f) comes from [6]. By Theorem 2.4 in [6], we have

Il < ClLS Nlp-

(ii) my > 1, in this case, we observe that if r/2 < |z — y| < 7, then for
s> mn,

|Rimy—1(AY; 2, 9)|

N 1 o 1/s
< Crpnlz—y™ ™ > 0 ) |D*A1(2) — Mm@z (D Al)lsdz)
|a|=m1—1 el JIg
<Cmipn Y, ID*AilBmolz —y™ .

|a|l=my—1

So,

1 «
[Rony (A% 2,9)] < R (AT y) +| Y —D*AF(w)(@ ~ )7

|a|=m1—-1

<o Y ID Ao+ Y. D A1 (y) = M) (D A1) )

|al=m1—1 |al=m1—-1

x|z —y[™
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Thus for any ¢t > 1,

I(f)(@) < Oy Y. ID*Ar|EyoMF ()

jo|l=my~1

+C Z S“pfn/l I |D*A1(y) — Mgy (D*A1)|? | £ (y)|dy
z~y|<r

|a]:m1—lr>0

<c S I Ao M:f (),

|a|=m1—1

where M f denotes the Hardy-Littlewood maximal function of f and M; f(x)
= [M(|f]*)(x)]*/*. Holder’s inequality and the above estimate yield that

s, ap flle < IXCOITICA) Y
<c( > Ip*ailso) (o 1D Azl ) Il

lor=m1—1 |Bl=mg

LEMMA 4. Let Q; Ay, Ao be the same as the assumption in Theorem
1, b(z,y) € L2°(R"xR"). Let1 < p,r < oo and1/r =1/p+1/ry. Suppose
that the operator

2
T'f(z) = /R i l—w% Hl R, (Aj; 2,y)b(z, y) f (y)dy
=

is bounded from LP to L” with bound

a( Y 10 Ailsuo) (Y 1D 4all, ).

|al=my -1 |B]=ma2

Then the truncated operator

z—yl<1 |‘(B -

2
Qlr —y
T1f(z) = /I —% I Bon; (455 2, 9)b(z, ) £ (v)dy
J=1
18 bounded from LP to L" with bound

cla+blle)( Y ID%Ailsmo) (32 1D%4slr,).

laj]=mi—-1 |Bl=ma2
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Proof. Without loss of generality, we may assume that

3 ID*Adllsnmo = S 1DP gy, = 1.

|a|=m1~1 |Bl=m2

For each fixed h € R", we split f into three parts as

f=hH+fo+f3

where
F1(y) = F)x(y~ni<1/2} (),
and
F2(y) = F(¥)xq1/2<)y—hi<5/43 (¥)-
Let ¢, € C5°(R™) such that suppe¢p, C {y : |y — h| < 4}, ¢n(y) = 1 if
ly — h| < 2, and ||D"¢p|lec < ¢ for all multi-index v. Set
A5(y) = Ry (Az;y, )5 (y)with| — h| < 3/4.

It is easy to verify that if |z — h| < 1/4, then

D) = [ R (4152, 0) o (4 )00 ()

Thus i
Ty fr(@)["da < AT( Y IDP ARl fullp)"-

lz—h|<1/4 P

For each fixed multi-index 3, |8| = my, write

DPA}W) = Y CuwRonpe (D" A2;y, ) D 5(v).
B=p+v
Using the formula
1
_ m . _ - T
RaFinh)= 3 0 [ (=7 DR (it tly - R))(w — B
lajl=m 0

we have

1/r
</  |Rn(Fsy, ﬁ)lrdy>
ly—h|<4
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1 B . 1/r
<c Z/ (/ly_m<4]D F(h+t(y—h))| dy) dt

1/r

—cY /0 1 ( /' _E'<4t|DaF(z)|rt-ndz> dt

< CM, ( Z |DaF|XB(h,5)) (h).

|a)]=m

Using this inequality, we obtain

(*) > 1D ARy < CMyy (D2 1D Azlxming) ) (B

|Bl=ma loj=mq

We can choose h, |h—h| < 3/4, so that the right hand side of (*) is majorized
by

C” Z IDaA2|XB(h’5)Hm'
|

al=m

This shows that
ey [ mp@r
lz—h|<1/4

scar 37 (( /]y~h|<8|D"A2(y)|"°dy)” “lifale)

|B]=m2

If |z —h| <1/4and 1/2 < |y — h| < 5/4, then 1/4 < |z — y| < 3/2. So we
see that for |z — h| < 1/4,

Tufa(e)] < 0o |

1/4<|z—y|<3/2

< ClblloeMS, e f2().

2
1%%,71%3 11 B, (As; 2, 9) £2(v) |dy
7j=1

Lemma 3 now tells us that

z)|"dx T ﬂi_zr T
[, mpr <OBE( % 104l
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e <cpl( X (f

1/7‘0 T
s D7) T ll)
|Bl=m2 YT

Obviously, we have T f3(z) = 0 for |z — h| < 1/4. Combining inequalities
(2.1) and (2.2) leads to

/ Ty f () de
z—h|<1/4

r/ro r/p
<o + b)Y / Doatas) ([ iswpa)”
|Bl=ma ¥~ lu=hl<2
Integrating the last inequality with respect to h gives that
T T T T 7'/7'0
A <o ) 3 () 1D astrayan)
<

|Bl=mz

r/p
/ / |dedh)
n ——h]<2

< CMA +blI%) D IDPAallp, lIf 13-
|Bl=m2

This completes the proof of Lemma, 4.

Proof of Theorem 1. We only treat the case that

> ID*4illBmo = Y |IDPAgfl, = 1.

|a|=my -1 |Bl=m2

First we show that (ii) implies (i). Let k and [ be two positive integers,
P(z,y) be a non-degenerate real-valued polynomial with degree k in z and
[ in y. Write

P(z,y) = Z anpr®y”.
o<k, |B|<L

By dilation invariance, we may assume that Zl al=k,|B|=l |ags| = 1. Decom-
pose T4, 4, as

TA1,A2 f('r)

= [$~yl<1 e P( sy)m HRI’IL (AJ,JI y)f(y)
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> 2
> ' Uz —y)
d=1 2d—~1$'x—fyl<2d Ix —_ y|n+M——1 JI-zll 3( J ) ( )

= T&,AJ(JJ) + ZTgl,AQf(fU)-
d=1

We first consider the operator Tjh Ago d > 1. We claim that if DP A, is
in L for all |3| = ma, then

(2.3) IT4, 4, f1i2 < C275 Y~ D Aol flla, d 2 1,
|Bl=m2

where &1 is independent of d and f. If this is done, then by interpolating
between inequality (2.3) and the crude estimate

IT4, 4, lp < C D IDPAsfloclifllps 1 < p < o0,
18l=m2

we can get

(24) T4 4 N <C2720 Y IDP Asllocl fllpy 1 < p < o0.
|B]=m2

For each fixed p and rg, we choose rj, 7 such that 1 < 79 < rg, 1/p+1/7 =
1/7 < 1. Lemma 3 then tells us that

IT4, 4, fllz <C > IDP Agll |l fllp, 1 <p < 00
|Bl=ma

We regard le 4, 28 a linear operator of Az. Thus the inequality (2.4)
together with the last inequality states that

(2.5) T4, 4 fllr < C27°% Y IDP Aslnoifllp, 1 < p < oo,

|B|=ma

where ¢ is a positive constant. Summing over all d > 1, we obtain

1> T4, 4. fllr < Clllp.

d=1
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To prove (2.3), we may assume ) g, |DP Aglloo = 1. Define
T4, .4, (@)
Ay,Az

_ i P(20~17 2d~1 Q(z
" )1——1M— HRm (Asi2,9)f (v)dy-

By dilation invariance, it is enough to prove that

(2.6) IT4, 4, fll2 < C27) fll2.

Decompose R™ into R™ = JI;, where I; is a cube with side length 1,
and the cubes have disjoint interiors. Set f; = fxr,. Since the support of
Tgl, 4, i is contained in a fixed multiple of I;, so that the supports of the

various terms Tjh A, Ji have bounded overlaps. Thus we have the “almost
orthogonality” property

IT4,,4,F113 < CZ TS, 4, Fill3,
i
and therefore it suffices to show

(2.7) IT4, 4, fill3 < C27¢| £l

For fixed i, denote I; = 100nl;. Let ¢i(z) € CS°(R™) such that 0 < ¢; <
1, ¢; is identically one on 104/nI; and vanishes outside of 50v/n1I;, || DY ¢: oo
< C, for all multi-index 7. Let zo be a point on the boundary of 80y/nI;.
Denote

4 1
AP () = Rou1(A1() = 32 —mz (D A1)y, 20) $i(y)
lal=m1—1
and for multi-index «, define

-
TAlojAQf(x)

. d—1, od—1 Q.’L“"yR A7x,y
B /1<|z y]<2€1P(2 e lw—)ylﬁir(M: )(:z:—y)af(y)dy,

It is easy to see that

Tgl,Ag fi(z)
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P24 120 Qz — y)Rm, (Ag; x, ’
:/ iP(29-1x,29-1y) ( y) 7;3_(]\421 y)le(A(f,a:,y)fz(y)dy
1<|z—y|<2 ]w— yl
i rd,o o pdi
= AP @ fiw) — Y TR, (DA f) (@)
]a|<m1 1
1 da a AP;
- Z Ol! Al,Az(D A¢ fl)( )
|a|=m1—1
=1+ 1T+ 0L

Before we estimate these terms, let us state a lemma.

LEMMA 5. There ezxists a positive constant § = §(n,degP) such that
for any d > 1 and multi-indez «,

Uz — ) Rimy(A2; 2,9)
Pley) o (@ = y)*f(y)dy
o e e GRSV O
< o2 Grmamilebd| )1 < p < oo,
where constant C' is independent of d, f and coefficients of P(x,y).

Recall that P(z,y) = >, <k, 1< aapz?y? and 2 lal=k,|8|=t |%agl = 1.
Lemma 5 can be proved by an argument used in [2]. We omit the details
here.

We return to the estimates of I, II and III. Note that for multi-index
ﬁ’ Iﬁl <mp -1,

DAY W)= Y CuvRony—jui-1(D*(A1()
B=p+v

- Z &%ml} (D%A1)()*);y, 20) D" ¢i(y).

|al=m1—~1
Since that supp ¢; C 50/nl;, by Lemma 1, we have
|DP A% (y)| < C Z A / |D* Ay (2) —mj (D*Ay)|'dz)"* < C,
a1 1150
where t > n. Thus, it follows from Lemma 5 that

ITllz < AT ool T 4, fill2 < C275 il
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Similarly, we have
T2 < G277 fillo-

It remains to estimate the third term III. Note that for any 0 < v < n,

T4, f@) <C / a2 =W Wy
T—Y|S
f q 1/q
< Oy 19 o) ( / s —F] __(Z)lL_,,dy)

< ColIQ La(sn-1y [ (I F19) ()],

where I, denotes the usual fractional integral of order . If p > ¢’ and
o > 0, we take a v such that 0 < v < n¢'/p, and 1/(p+ o) = 1/p— v/nq’.
By the Hardy-Littlewood—Sobolev theorem [9], we get

-
HTAIC,!AZ,f”P-FO' < Ol pa(sn-ll fllp, p > ¢, oc>0.

By the last inequality and Lemma 5, an interpolation will give

(28) [IT4% 4, fllp < C27%||fllp—s, for 1 <p < oo and 0 <o < ap,

where & is a positive constant. On the other hand, if |3| = m; — 1, then,

DAY W) = D CuwRpyoaoju(D(4r()
B=p+v,|puj<mi—1

= Y g (D)), 20 D i(y)

|al=mi—1

+(DP A1 (y) — my, (D A1))i(y)-
Thus, it follows that
IDPAY ()] < C(1+|D? 4u(y) = my (D7 Ay)),
and this shows that for any ¢ > 1,
IDP AT e < C.
Combining the above inequality and (2.8), we obtain

mIj, < c27% N ID2AY fillao < C27% ST DAL il

la|=m1—1 |la|=m;—1

< C27%|fill2,
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where we choose 0 > 0 and 1 < ¢ < oo such that 1/2+ 1/t =1/(2 — o).
All above estimates imply that (2.3) is true.
We turn our attention to the operator Tgh 4, The estimate for this
operator follows from the following lemma.

LEMMA 6. Suppose that the condition (ii) in Theorem 1 holds. Then
for any real-valued polynomial P(z,y), the opemtor

B Qx
Ua,,a, f(x) = / elp(g”’y)——(—;jr—m H Rm;(Aj;2,9)f(y)dy
lz—y|<1 |x - I
satisfies
(2.9) 1Uay, 42 fllr < C(degP,n)||flp.

Proof. We shall carry out our argument by a double induction on the
degree in x and y of the polynomial. If the polynomial P(w,y) depends
only on z or only on y, it is obvious that the condition (ii) implies (2.9).
Let v and v be two positive integers and the polynomial has degree u in z
and v in y. We assume that (2.9) holds for all polynomial which are sums
of monomials of degree less than u in = times monomials of any degree in y,
together with monomials which are of degree u in = times monomials which
are of degree less than v in y. Write P(x,y) as

P(l‘,y) = Z ba,@may'g +P0(.’L’,y),
lee|=u,|Bl=v
where Py(z,y) satisfies the inductive assumption. We consider the following

two cases.
Case 1. Z'alzl‘ylﬁl‘:v ‘baﬁl S 1. Rewrite

p(xay) = Z b ﬂ(iL‘ y - ya+ﬁ) + PO(xay)a
lo|=u,|B8|=v

where P (z,y) satisfies the induction assumption. It follows that

Ua, 4, f(z)
[ et SEZY HRm (4552, 9) £ W)y
Je—y|<1 |z — y|n M1 #Ey

iP(z P (z Qx

=Uj, 4, (2) + U3, 4, f (2).
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Our induction assumption now states that

1U4,, 42 fllr < Cllfllp-

Denote f(y) = f(y)x{|y|§2}. It is easy to see UiI’Agf(x) UA1 Azf( x)
when |z| < 1. Thus,

m — ~
GRRCIES 'Irc_—(-zﬁm H B, (4532, 0)f(0)]dy, la] < 1.
Ty

Let @), € C§°(R™) such that supp®, C {z : |z — h| < 8}, ®p(z) = 1 if
|z —h| < 4 and || DY®p|eo < c for all multi-index v. We have that if |z| < 1,
then

lUihAzf('T)l < CMXI,AQLJF(‘T))

where Ag(y) = Rpm,(Ag;y, h)®;(y) with |h| < 3. By the same argument
used in the proof of Lemma 4, we can get that

[ it

Lo 5 ([ rors)”

[B|=m
from which the same argument as that in [8, p. 189] show that the inequality

/| TS Tde

<o X ([, mora)"([ | ors)”

|B|l=ma2 Y

holds for all A € R™ and C is independent of h. Integrating the last in-
equality with respect to h and using Holder’s inequality, we finally obtain
that

1UA,, 4, fllr < Cll fllp-
Case Il Fjojmy |gl=v [bas] > 1. Denote B = (¥ j0jzy,jgj=v [bas) /.
Write

Pay)= Y (BB + Po( 22, BY) = (B, By),

la|=u,|B|=v
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and denote

7 z x Q(
O annnf () = / 2l m——l 2 =9) TR, (50, f(5)dy.
lz—y|<B z l j=1

It is not difficult to find that (2.9) is equivalent to the estimate
(2.10) HfJAl,Azf”?‘ < Clifllp-
we split Ua, 4, f(z) as

UAl,Azf(x)

; Qx
= /|;~yl<1 elQ(w,y)l—x—j(—l—m HRm (Ajsz,y) f(y)dy

do Q(x
+z/ ZQ(m,y)lx_(lW HRm] Ajyz,y) f(y)dy
d=1

24-1<|z—y|<2¢
= Ijx(‘)ll,Azf(x) + ﬁz,Azf(x)’

where 2% = B. The estimate for ﬁgl 4, follows along the same line as
in case I. On the other hand, by Lemma 5 and the argument used in the
treatment for Tgh A,+ We have

102 4, fll < Cllfllp-

This leads to the estimate (2.10).
Now we show that (i) implies (ii). To do this, we need to use Definition
2. We choose Q(z,y) such that Q(z,y) has P and decompose

. Oz —
Ty paf (&) = / eZQ(waC—_(me—lHRm (Aj;2,9)f (4)dy

|m—y|<1 j= 1

iO(x Qz
" /Iz y>1 e ,y)m H Rm,(Aj;,y)f(y)dy

= Tgl,Azf(x) + T4 4, f ().

By Lemma 4, Tgl 4, is bounded from L? to L". The same argument as in
the proof of Lemma 4 tells us that

. 1/r
( /| s T (@ da)
z—h|<
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- C( lﬂlzzm2 /Iy—h|<8 D% 42 (y)l”’dy) o ( /Iy*h|<2 ) 'pdl/) 1/1’,

where C is independent of h. Since Q(z,y) has P, we have

Q(CB, y) = Q(l‘ —h,y— h) + Ro(x,h) + Rl(y>h)’

where Ry, R; are real polynomials. When |z — h| < 1, it follows that

Qlx — 2
Say,a,f(z) = / —% 11 B, (455 2,9) F @)X Beh,2) (W) dy

|lz—y|<1 ICU -y j=1

: Q( H
—iRo(z,h z T,

xe—iQ(m—h,y—h)e—iRl WR) £ (y)x (k2 (v)dy

Observe that the Taylor’s expression of e *@@—hy~h) jg

et = 5 (et
"
= Z amu 'u(-'L' - (y h)
For |z — h| < 1 and |y — h| < 2, we have

S Td 1/r
([, 1Samf@re

< Sl / (@ = ) ITS, 4P I (xn () (= )] da) /7

|z—h|<1
< Cagn I lamunla®| £ @)PI(y - ) Pdy)] /P
wv ly—h|<2
_<_ C'Ag,h, Z ‘am,u,vlaubv[ lf(y)lpdy]l/p
W ly—h|<2

= 1
< Crun 3 (2 loola®¥" L, fwra

< Caypexp{ Y 0aplab?}] / () Py,

o8 |ly—h|<2
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where CA2,h = C(Z]ﬂ]:mQ .]iy_hl<8 |DﬁA2(y)|T’0dy)1/T0’ and a = (17 1) Tty 1),
b=(2,2,---,2). Hence,

541,42 Fll- < Cllflp-
This completes the proof of Theorem 1.
Remark 1. Consider the operator defined by:

iP(x Qz—y 2
B ’y)]_xf(ﬂﬁﬂ):? 11 B, (4532,9) f (w)dy, n> 2.

TAl,A2f(m) = / e
Rr o1

Repeating the arguments of Theorem 1, we can obtain that

THEOREM 2. Letl1l < p < oo, Q, M be the same as that in Theorem
1. Suppose A; have derivatives of order m; — 1 in BMO(R™) respectively,
1 =1,2. Then the following two facts are equivalent:

(i) If P(z,y) is a non—degenerate real-valued polynomial, then Ty, a,
is bounded on LP(R™) with bound

C(degP,n)( Y [ID*Aillzmo)( D> 1D 4z]lsmo);
Jal=m1-1 |B|=ma—1

(ii) The truncated operator

Q-1 1
s - 22 Y _TIR,. (A=, d
wnf@=[ ey L i) f )
is bounded on LP(R™) with bound

Cc( Y. [D*Allsmo)( > [IDPAz[lBmo).

Ja|=mi—1 |B|l=ma—1

Remark 2. Here we give an example which satisfies the condition (ii)
of Theorem 1. The example of Theorem 2 is analogous.

In R, suppose A;(z) = log(1 + |z|), Az(z) = z, and Q(z) = sgn(z),
then A; € BMO(R), A has derivatives of order 1 in L*(R).

St = [ TR M)~ M)A ~ ) Sy

1 1+ ||
- /lw—y|<1 z—y] % 5 j: 7] ) w)dy.

Therefore |Sa, 4,f(z)] < M f(x). So Sa, 4, is bounded on LP(R).
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