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ON THE GAUSS MEAN-VALUE FORMULA
FOR CLASS NUMBER

FERNANDO CHAMIZO AND HENRYK IWANIEC

Abstract. In his masterwork Disquisitiones Arithmeticae, Gauss stated an
approximate formula for the average of the class number for negative discrimi-
nants. In this paper we improve the known estimates for the error term in Gauss
approximate formula. Namely, our result can be written as iV"1 ] ζ n < i V H(—n)
= 4πv/ΪV/(21C(3)) - 2π2 + O(ΛT1 5/4 4 + e) for every e > 0, where H(-n) is, in
modern notation, h(—4n). We also consider the average of h(—n) itself obtain-
ing the same type of result.

Proving this formula we transform firstly the problem in a lattice point prob-
lem (as probably Gauss did) and we use a functional equation due to Shintani
and Dirichlet class number formula to express the error term as a sum of char-
acter and exponential sums that can be estimated with techniques introduced
in a previous work on the sphere problem.

§1. Introduction and statement of the main result

Gauss noted in Art. 302 of [Ga] that the average of the class number
for negative discriminants increases very regularly, and he gave (without
proof) an approximate formula for this average, checking its accuracy up to
unbelievably large values. (He, in fact, computed not only the class number
but also the subdivision into genera for several thousands of discriminants).

Probably Gauss proved that his formula gives the correct asymptotics
but the first known proof of this fact is due to Lipschitz in 1865. In this
century I. M. Vinogradov studied the error term in Gauss' approximation
using the method of trigonometric sums. In a series of papers, along fifty
years, he gave several upper bounds that also hold for the "sphere problem"
(the three-dimensional analogue of the circle problem).

In [Ch-Iw] we improved the results of Chen [Ch] and Vinogradov [Vi]
on the sphere problem. The key point in our method is the double interpre-
tation of the sphere problem; the first one leads us to trigonometric sums
and the second one to character sums. The purpose of this paper is to apply
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the same method to Gauss' original problem to get a similar upper bound
for the error term.

Before stating our main results we shall mention some notions of clas-
sical and modern theory of positive definite binary quadratic forms in order
to introduce some notation and facilitate posterior references:

For each positive integer, n, we consider the set Qn of positive definite
quadratic forms of discriminant —n

Qn = {Q(xJ y) = ax2 + bxy + cy2 : 4αc - b2 — n with a > 0}.

We also define the set of primitive forms

Q*n = {QeQn : gcd(α,6,c) = l}

and the set of primitive forms in the sense of Gauss

Q'n = {Q € Q\n : 2 I b}.

The modular group Γ = SL2CZ) acts on Qn, Q* and Q'n by the rule

, y) = (x, y) Ϋ ( b

a

/2

 b/

c

2 ) 7 ( * ) , 7 € SL2(Z).

When n = 0,3 (4), the set of primitive quadratic forms, Q*, is non-empty
and following modern authors, its class number, say h(—n), is defined as
the number of orbits when Γ acts on Q*. Similarly, the class number of all
positive definite quadratic forms of discriminant —n, say N^n), is defined
to be the number of orbits when Γ acts on Qn. Clearly

(1.1) N(n) =
k2\n

Gauss defined the class number of primitive quadratic forms, say H(—n),
considering Q!n instead of Q*. This definition is natural if we want the
matrix of each quadratic form to have integral entries, but the relation
with the theory of ideals in quadratic fields supports the modern definition.

The class number can be computed by the formula (see [Da])

h(-n) = W~" nL(l, χ_ n ), where χd(m) - ( —
ZTΓ \m

2 if d < -4

and Wd = { 4 if d = — 4

6 if d = - 3 .
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Comparing this expression with the classical formula proved by Dirichlet

for Gauss class number (see §97 of [Di]) it follows H(—n) = h(—4π).

After these considerations, we can state our main results:

THEOREM 1.1. For N > 1 and any e > 0

A O

THEOREM 1.2. For TV > 1 and any e > 0

§2. Class number and lattice points

Trying to keep the analogy with the notation of [Ch-Iw], we define:

H(-n) a n d

n<R2 n<R2

In this section we shall write this quantities in terms of the number of lattice

points in certains regions, the basic result is the following lemma, which is

a reformulation in modern notation of Art. 172 and 174 of [Ga]:

LEMMA 2.1. For n > 1

N(n) = #{(α, 6, c) : 4αc - b2 = n, -a < b < a < c or 0 < b < a = c}.

Proof. If we assign to each quadratic form ax2 + bxy + cy2 in Qn the

complex number if = (—6 + %^Jn)j2a in the upper half-plane, H, then the

action of the modular group on these points is in one-to-one correspondence

with the action of Γ/{ib/} on Qn. Hence N(n) is the cardinality of the

complex numbers w — ( — b + iy/n)/2a with 4αc — b2 — n belonging to the

standard fundamental domain of Γ/{±/}

T = {z = x + iy E M : \z\ > 1, -1/2 < x < 1/2 or \z\ = 1, 0 < x < 1/2}.

This proves the lemma.
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Next we introduce some smooth weights to the sums H\{R) and
Given R > 1 and Δ = Δ(i?) > 0, let /# be the function supported in

[0, R + Δ] defined by

f x if 0 < x < R

( R(R + A - x)/Δ if i? < x < R + Δ.

then the following result holds

LEMMA 2.2. For R > 1 and A = A(R) > 0, we have

αncί

where

= Σ

ΣΣ
Proof. We shall prove the lemma only for 7ίι(R)J the proof for

is similar. We start with the formula

HX{R) = Σ ^ ( - 4 n ) = Σ Σ μ(k)N(4n/k2),
n<R2 n<R2k2\4n

interchanging the order of summation

Σ
k n<4i?2 fc-2

Σ
n<4R2k~2 2](k n<R2k~2
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hence

H1(R) = Σμ(k) Σ N(n) + Σμ(k) . £ N(4n)
2)fk n<R2k-2 2](k n<R2k~2

= Σ Σ Kk)(N(4n)-N(n)).
2]fk n<R2k-2

Using that fn(y/x)/y/x = 1 for 0 < x < i?, we have

(2.1)

where

= Σ ^ (
R<y/ϊi<R+A(R) V / 2 | 4n Z2 |n

= Σ Σ
J R < v / ^ < β - H Δ ( i 2 ) ι2\n

2X1

and substituting in (2.1) the lemma follows. •

§3. A weighted Voronoϊ formula

In this section we shall state a transformation formula for weighted sums
of N(n) based on the functional equation of a zeta function considered by
Shintani, and we shall use it to derive a kind of Voronoϊ formula for the
quantities Φi and Φ2 defined in Lemma 2.2.

Let us define

k2\n

Note that N*(n) equals N(n) except when n = 3k2 or n — 4k2, in these

cases N*(n) - N(n) = -2/3 or -1/2 respectively.

LEMMA 3.1. Let g e Co°([O, 00)) with g(0) = g"{Q) = 0, then

~ ΛΓ*(4n) , ^ - N 1 ., N ^ F ( n ) , - 1 f°° G(r) ΊΣ — T^9{V*n) = TΓG' 0 - 2 —)J-g(y/n) -- -^ dr
^ V4n 12 _χ Vn 2 Jo shττr



204 F. CHAMIZO AND H. IWANIEC

where

g(t)sm(πxt) dt and G(x) = g(x) + g(x).
f°
j

Jo
j

Jo
Proof. Defining f{x) = 2G(x), under our hypothesis on g, the series

converge absolutely and the lemma reduces to prove (note that g•= / — /

and g = / - ! / )

(3.!, S.ffl + ί.ίΓM*.
v } 24 4 y0 sh πr
Let F(s) be the Mellin transform of /, then (see 3.761.4 of [Gr-Ry])

=TΓ'I F{s)U{s)--m{s))ds
2πι y σ i _ i o o V 2 /

1 r*2-i- oo π 5 / .
5 = — : / F{s)π Γ ( l — s) cos —(771(1 — s) — 772(1 —

2τr2 yσ2_ioo 2
where 2 < σi < 3, - 2 < σ2 < - 1 and

In Th. 2 of [Sh] it is proved that 771, 772 have a meromorphic continuation
and are related by a certain functional equation (note that £UL(s) =' ?7i(2s —
1), ξ-(s) = 772(2$ — 1) with the notation used there). After some elementary
manipulations one can summarize these results saying that 771 — 1772 is entire,
takes the value —1/48 at —1 and it holds

- TΓ'^Γίl - s) cos ^(77i(l - s) - 772(1 - s)) + \{l - 2l~^{s) esc ^ .

Hence, moving the line of integration in 5 to Res = σ2, it follows (note

that Res s = _i F(s) = / ; ( θ ) )

(3.2) 5 =. - i ^ i + S' + — F(s)(l - 21~s)ζ(s) esc — ώ.
4δ δTΓZ J^-ioo 2
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Using again residue theorem and the functional equation of ζ, we have

-i pσ2+ιoo

— F(s)(l-21-S)ζ(s) esc-ds
8πι Jσ^ioo 2

1

— / F(s)C(l-s)ds
8πz J16

where — 1 < σ$ < 0 and C(s) coincides with the Mellin transform of
-csch(πz) (see 17.43.26 of [Gr-Ry]), hence (3.1) follows after substituting
in (3.2) and applying Mellin convolution theorem (see 17.42.4 of [Gr-Ry]).

D
LEMMA 3.2. For R > 1 and 0 < Δ < 1

and

where
2R v ^ N(n) ' r-x , , v ,-,

Si = -5— > — ^ sin(πΔVn) cos(π(2i? + Δ)Vn)
τrzΔ ^ ^ nό/z

and

Proo/. If flf(x) = 2fR(x/2),we have

^. sin(2πi?x) 2i?sin(πΔx) cos(π(2i?

7Γ2£2 7Γ 2X 2Δ

Now we substitute in Lemma 3.1 (the lack of regularity of g is less important
because Lemma 4.1 assures the uniform convergence on compacta of the
involved series). By 3.981.1 of [Gr-Ry]

Γ°° h(r\ 1 ί°°
/ ψ2- dr = - g(t) th(πt/2) dt = R2 + O(R1+e)

Jo shπr 2 7o

for any e > 0, the rest of the calculations are plain getting

2 7 Γ o π i ? 2 Δ i ? 2

i?3

Hence, using Lemma 4.1 to clear the right hand side, the result for
follows. The proof for Φ2 is similar but choosing g(x) = 2JR(X).
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§4. Conclusion of the proof

In this section we shall deduce Theorem 1.1 and Theorem 1.2 from the

following lemmas which are proved appealing to the corresponding results

of [Ch-Iw]. As usually, e indicates a positive arbitrarily small real number

and n x N means c\N < n < C2N for some unspecified positive constants

LEMMA 4.1. If R > 1 then

+ Ne min(i?3/87V15/16

nxAΓ

+βl/8jV-17/16 ^7/24^49/48

and a similar result holds when N(ή) is replaced by N(4n).

LEMMA 4.2. With the notation of Lemma 2.2, if R~ι < Δ(i?) < 1

Φ l ( β ) = _ π R 2 A

 + O(i?15/8-feΔ7/8 + β83/48+EΔ2/3)

and

Proof of Lemma 4.1. Let SN be the sum of the lemma, by Lemma 2.1

it can be written as a three-dimensional exponential sum and some manip-

ulations using Lemma 7.3 of [Gr-Ko] prove (see the details in Lemma 3.1

of [Ch-Iw])

for some 9 G I . Splitting the range of the inner sum into subintervals of

lenght iV1/2"6, by Cauchy's inequality

2/1,2/2

e ( R ( y u ~ v\ - v u -
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with 1 < 2/1 < 2/2-< 2/1 + Nιl2~e < Nιl2, hence there exists 1 < D < TV1"6

such that

and this sum was bounded in the proof of Lemma 3.1 of [Ch-Iw] getting the
expected result. The proof when N(n) is replaced by JV(4n) is completely
similar. Π

Proof of Lemma 4.2. Theorem 4.1 of [Ch-Iw] implies for 1 < K < Nιl2

(4.1)

N<n<N+K

and the same method proves

(4.2)
Λ

n = 0,3 (4)

By class number formula and Abel's Lemma

R2l~2<n<t

and

Σ

then the result follows from (4.1) and (4.2). •

Proof of Theorem 1.1 and Theorem 1.2. Dividing the range of summa-
tion of S\ and 52 in Lemma 3.2 according n <C Δ~2 or n > Δ~2 and
applying Lemma 4.1 in combination with the trivial bound, we conclude
that for 0 < Δ < R'1!2

, \S2\) « (RA-1/2 + i? 9 /^" 1 / 8 + i?21/16)Δ"e

3

and choosing Δ(i?) = R~~7/11 Theorem 1.1 and Theorem 1.2 follow from
Lemma 2.2, Lemma 3.2 and Lemma 4.2. •
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NOTE ADDED IN PROOF. After this paper was accepted for publica-
tion, D. R. Heath-Brown has proved ("Lattice points in the sphere," to
appear in the proceedings of the Number Theory Conference in honour of
Prof. A. Schinzel held in Zakopane, Poland, 1997) that the error term in
Lemma 4.2 can be improved to (Ru/eA5/6 + RV^A'1^ + R19/15)Re. In-
serting this bound in the final optimization and choosing Δ(i?) = i?~5/8, it
is obtained that the 29/44 exponent in Theorem 1.1 and 1.2 can be replaced
by 21/32.
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