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DEGREE BOUNDS FOR GENERATORS OF
COHOMOLOGY MODULES AND

CASTELNUOVO-MUMFORD REGULARITY

UWE NAGEL AND PETER SCHENZEL

Abstract. By extending Mumford's result on the generating by global sections
there are estimates on the degree for generators of local cohomology modules.
These arguments provide bounds on the Castelnuovo-Mumford regularity, in
particular for Cohen-Macaulay varieties. As an application they imply a few
more cases of varieties that satisfy a conjecture posed by Eisenbud and Goto.

§1. Introduction

Let T denote a coherent sheaf on the projective space F n = P^, K
denotes an algebraically closed field. In [15], Lecture 14, T is called m-
regular, m G Z, provided #*(?", ^(ra - i)) = 0 for all i > 0. Then it
turns out, see loc. cit., that !F(k) is generated as Opn-module by its global
sections if k > m. By more recent results, see e. g. [5], this is generalized
to the generation of «Sj, the j-th. sheaf of syzygies of T. Here we want to
show another generalization of Mumford's result. In order to formulate our
approach we fix a few notation. For s > 0 let

ra(T) := min{m <E Z | ίΓ(P n , T{m - i)) = 0 for all i > s}.

Note that regT — rι(T) is called the Castelnuovo-Mumford regularity of
T. Hence T is m-regular for all m > reg^7. Furthermore, define ef(T) the
smallest integer m G Z such that Hi(Ψn,J:(k)) is spanned by H°(Φn,Oψn(l))
® iϊ z (P n , T(k — 1)) for all k > m. By Serre's vanishing result this is true
for all m >̂ 0. More precisely, Mumford's result, see loc. cit., says e^T) <
regjF. Its extension is our first main result.

THEOREM 1.1. Let T be α coherent sheαf on P n . Then there is the

following bound

for all i > 0.
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This result is shown in Section 2 where we prove more general degree

bounds for the minimal generators of local cohomology modules. That is,

we prove 1.1 by considering local cohomology modules of graded modules.

Another point of our considerations are estimates of regJ- under ad-

ditional assumptions on the local behaviour of T, in particular when T is

a Cohen-Macaulay Opn-module. More precisely, let S = K[XQ,... ,a;n],

denote the polynomial ring in n + 1 variables over K. Then a Cohen-

Macaulay Oψn-module T is called fc-Buchsbaum whenever the S-module

©jezii*(P3rj.F(j)) i s annihilated by (x0, ,%n)k for all i with 1 < i <

dim./7. Note that every Cohen-Macaulay sheaf is fc-Buchsbaum for some

k. Using our results on the generators of cohomology modules we explore

some of the restrictions on the vanishing of the cohomology of fc-Buchsbaum

sheaves as demonstrated by:

THEOREM 1.2. Let T denote a k-Buchsbaum Oψn-module. Then

τegT < e(T) + (d - l)(fc + 1) + 2,

where d = dimJF and e{T) = max{m G Z | Hd(Ψn,T{m)) ψ 0}.

The previous result shows that (in the case of a "nice" local behaviour

of T) the number e{T) is dominating for τegJ7. A bound of this type has

first been shown in [8] by completely different means. Theorem 1.2 is a

considerable improvement of the corresponding estimate in [8]. It will be

proved in Section 3. By some examples we show that certain of the finer

bounds obtained in that section are best possible.

In the case of T = Jx, the ideal sheaf of a projective scheme I c P n ,

there are estimates of e(Jχ) by simple invariants. Here X is called k-

Buchsbaum scheme whenever Jx is a A -Buchsbaum sheaf. For an integral

nondegenerate A -Buchsbaum scheme X this leads to bounds of the following

type

where regX = r e g j χ . In [9] it was shown that C(k) < (d+1λk-d + l,d =

dimX. In [18] resp. in [8] (in a slightly weaker form) this was improved to

C(k) < (2d—l)k — d + l. Our applications to Castelnuovo bounds presented

in Section 4 provide a further improvement.
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THEOREM 1.3. Let X C P n denote an integral nondegenerate k-
Buchsbaum scheme, k > 1, of dimension d. Then there is the bound

τegX <
Γdeg(X)-l l

I codim(X) Γ

So it turns out that C{k) < dk. It is an open problem — due to
Eisenbud and Goto (see [5]) — whether

reg(X) < deg(X) - codim(X) + 1.

It has been shown for the case X an integral non-degenerate curve, see [6],
resp. for a smooth surface, see [11]. The first case in which the problem
was open, i.e. the case of a possible singular surface which is 2-Buchsbaum,
was settled in the affirmative by Brodmann and Vogel, see [4].

As another feature of our techniques we provide a new proof, see 4.10,
of that result to which the whole paper [4] is devoted.

In the body of the paper we work in the context of graded modules and
their local cohomology. The results mentioned above are just special cases
of the more general statements we will prove in the next sections. In our
terminology we follow [18].

§2. Degree bounds for the generators of local cohomology mod-
ules

Let R — Θn>oRn denote a graded Noetherian ring such that R =
Ro[Rι] and K := RQ is a field. Put m = Θn>o^n the irrelevant maximal
ideal of R. Let M denote a finitely generated graded i?-module. We fix the
basic notation of [18]. In particular, a homogeneous element x G R is called
M-filter regular provided 0 :M X is an ϋ-module of finite length. A system
of (homogeneous) elements x_ = {xi,...,xr} is called an M-filter regular
sequence whenever

(xi,..., Xi_i)M : Xi/(xi,..., x%-ι)M, i = 1,..., r,

is an i?-module of finite length. For an arbitrary graded i?-module TV let
e(N) denote

e(JV) := sup{j eZ\NjφQ}.

Here Nj denotes the j-th. graded piece of the graded i?-module N. Thus
e({0}) = —oo. Furthermore put

e+ (N) := e(N/mN).
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Hence, in the case of a finitely generated module N it denotes the maximal
degree of an element in a minimal generating set of N.

The following technical result does not look impressive but it will be
proven useful with respect to the estimates announced in the introduction.

LEMMA 2.1. Let y = {yi,... , y r} C R denote a set of homogeneous

elements of degree < s. Let x G Rt be an M-filter regular element. Then

we have

e(Hi(M)/(x,y)Wm(M))
1 t + s, e(Hι

m(M/xM)/yHι

m(M/xM))}

for all i > 0.

Proof. Since x is an M-filter regular element the short exact sequence

0 -»• Af/0 :M x(-t) A M -> M/xM -> 0

induced by multiplication by x provides a long exact sequence

(*) H*m(M)(-t) A HUM) - K(M/xM) - W+\M){-t) A W+\M)

for all i > 0. Hence, it induces a short exact sequence

0 - H0(x;Hί(M)) -> Hi(M/xM) - H^x; H^1 (M)) -* 0.

By applying the Koszul homology functor iϊ#(y; ) it provides an exact
sequence

H^mix lή+HM))) -> Wm(M)/(x,y)Hi(M)

- Hi

m{MlxM)lyHi

m{MlxM).

Call the module on the left hand side TV. Note that it is a subquotient of

Whence it turns out that

So the claim follows by the previous exact sequence.
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As a consequence there is the following bound of e+(H^n(M)).

COROLLARY 2.2. Let x E Rt denote an M-filter regular element.

Then

t+ l,e+(Wm(M/xM))}

for all i < dimM.

Proof. Choose y as a set of generators for the maximal ideal m. Note
that all the generators have degree 1. So the claim is an immediate conse-
quence of 2.1.

For a system of elements x_ = {#i,..., xr} of R and an integer 0 < i < r
let x^ = {#i,..., Xi). Note that x_0 is the empty set.

THEOREM 2.3. Let x^ = {#i,... ,# r} be an M-filter regular sequence
consisting of homogeneous elements of degree < t. Let i denote an integer
with 0 < i < dimM — d. Then there exist the following bounds:

(a) e(HUM)/xHl(M)) < mΆχ{e(Wm(M/xM),e(Hι

r+
1(M/xjM)) + 2t \ 0

^ J' < r — 2} for all i with 1 < r < d — i.

(b) e(H4(M)/xH4(M)) < max{e(iί;+1(M/xJ.M))+2t | 0 < j < d-i-1}
for all i with i > d — r.

Proof. First consider i with 1 < r < d — i. Then a repeated application
of 2.1 provides

max{e(iϊ;+1(M)) + 2t, e(Wm(M/x1M)/(x2,..., xr)lΓm(M/f

XlM))} <

+ 2ί, e{Hi+\M/xιM)) + 2t,

e(Hi(M/x2M)/(x3,...,xr)Hl(M/x2M))} <

j 2t,

e(flj,(Λf/xP_1M)/arrfl;(M/xP_1Λf)) | 0 < j < r - 2}.

But now by an exact sequence as in the proof of 2.1 it is easy to see that
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Thus the statement in (a) follows. Now let r > d — i. Then first note that

e(IPm(M)/xIPm(M)) < e(fl

as easily seen. Similarly as above we obtain

e(H*+1(M/xjM)) I 0 < j < d - i - 1}.

But now it turns out that

= - o o

because H^M/x^^^M) = 0. Observe that dim M/x^_i+1M < ί. There-
fore (b) is shown to be true.

Note that the previous result for r = 2, t = 1 was proved in [3], Lemma
4.1. In the special case of linear elements there is the following application.

COROLLARY 2.4. Let / = {/i,...,/rf} C Rλ be an M-filter regular
system of parameters, d = dimM. Then

(a) e+(Hι

m(M)) < m^x{e{Hi^l{M/ljM)) + 2 | 0 < j < d - i - 1} for all
i with 1 < i < d.

(b) e+(Jϊ£(Af)) < max{e+(M)5e(iϊ4(M//jM)) + 2 | 0 < j < d}.

Proof Because of e+(ί4(M)) < e(Hτ

m(M)/l_Hι

m(M)) the statement in
(a) follows immediately by 2.3 (b). In order to prove (b) choose a system of
elements y — {yι,..., ys} consisting of linear forms such that (Z, y)R = m.
By 2.1 it lollows that

e+(H°m(M)) = e ( )

< m^{e(Ho

m(M/lM)/yHo

m(M/l_M)),

Now dim(M/ZM) - 0 and therefore H^(M/IM) ~ M/l_M, i.e.,

e(H°m(M/lM)/y<(M/l_M)) = e(M/&y)M) = e+(M)

which proves the claim.
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In order to continue we recall a definition, see [18], Definition 6.1. For

an integer s > 0 put

rs{M) := m a x { i + e{Hι

m(M)) \i>s}.

Then regM := r*o(M) = Td e pthM(^) is called the Castelnuovo-Mumford

regularity of M. It is known, see e.g. [5], that e+(M) < regM.

COROLLARY 2.5. There are the following estimates:

(a) e+(Hι

m{M)) < ri+x{M) -i + 1 for alii > 0.

(b) e + ( i ί^(M)) < max{e+(M),rχ(M) + 1} provided d> 0.

Proof. For / £ R\ an M-filter regular element the short exact sequence

(*) in the proof of 2.1 provides

ri(M/lM)<n(M) foralH,

see [17] for more details. Now let Z = {Zi,...,Zr} C Rι be an M-filter

regular sequence. Then by induction on r it turns out that r^M/lM) <

r{(M) for all i. Thus the statements of this corollary follow by 2.4.

Moreover e+(iϊ£(M)) = -oo for d = dimM > 0, since Ή^(M) =

miί^(M). It is also noteworthy to say that there is no bound for e

which does not depend on e + (M). To this end note that

for all t e Z.

For the following result let H(-) — lim Horn (m*, •) denote the functor

of global transform. Let RιH,i > 1, its right derived functors. For an

i?-module M there are a natural exact sequence

0 - H°m{M) -> M - H(M) -> fΓi(M) ^ 0

and natural isomorphisms iί^ l '1(M) ~ RιH{M) for i > 1.

LEMMA 2.6. LetM denote a finitely generated graded R-module. Then

e+(H(M)) < r2(M),

in particular e"l~(ίf(M)) is a finite number.
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Proof. If d = dimM < 1, then e+(H(M)) = -co, so the claim is
true. Let d > 2. Let / G i?i denote an M-filter regular element. The
multiplication by / induces a short exact sequence

0 -> H(M)/IH(M) -> H(M/IM) -> #i(Z; fl*(M))(-l) -> 0.

Now a Koszul homology argument as in the proof of 2.2 provides that

e+(H(M)) < m<ιx{e+(H(M/lM)),e(Hl(M)) + 2)}.

Furthermore, by induction hypothesis

e+(H(M/lM)) < r2(M/lM).

Because of r2(M/lM) < r2{M) and e(ί/^(M)) + 2 < r2(M) the inductive
step is complete.

Now we prove Theorem 1.1 of the introduction.

Proof. We use the notation of the introduction. Choose M a finitely
generated graded S-module such that M, the sheafification of M, satisfies
M = T, that is M = Θ j ^ o - f f 0 ^ , ^ ' ) ) . Then there are graded isomor-
phisms

H(M) ~ ®jeZH°(Ψn,T(j)) and

for ί > 1, see, e.g., [7]. That is, ef(F) = e+{H^ι(M)) and r^T) =
r j+i(M) for i > 1. So the claim of 1.1 is a consequence of 2.5 and 2.6.

§3. Restrictions on the cohomology imposed by large cohomolog-
ical annihilators

For a graded iϊ-module M let a%(M) = Ann# i?^(M),i G Z, denote
the i-th cohomological annihilator of M. See [18] for basic results and ap-
plications. For an M-filter regular element x G &i(M) Π m+ι{M) the long
exact cohomology sequence induced by multiplication by x provides a short
exact sequence

0 -> H^M) - Hi(M/xM) - W+\M){-t) -> 0,

t = degx, see (*) in the proof of 2.1. So there is a good comparison of r̂
and ri(M/xM). Pursuing this point of view further we show estimates of
e(Hι

m(M)) by e(H^(M)) and the "size" of a,(M),i < j < d.
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THEOREM 3.1. Let / = {/i,...,Zd_i+i} C Λ i , l < i < d, denote an

M-filter regular sequence with d = dimM. Suppose that

% _ j + 1 H i ( M ) = 0 for all i<j<d

and certain integers μj > 0. Then

Before we shall prove 3.1 let us mention an interesting consequence. In
fact, it is helpful in order to streamline the proof of 3.1. It gives bounds of
n{M) in terms of e(H^(M)) and the "size" of aj(M). If in addition Hι

m(M)
is a finitely generated R-module, one can measure the "size" of α^(M) by
the integer

λi(M) = min{λ e N | mλ C

COROLLARY 3.2. With the assumptions of 3.1 there are the following
estimates:

(a) n(M) < e(Hi{M)) +d + Y*Z\ μά, provided i > 0.

(b) reg(M) < λo(M) + max{e+(M) - 1, β(fΓ£(M)) + d + ΣJZl βj}-

Proof. By the definition of n(M), the claim in (a) follows by 3.1. If
λo(Af) = 0, i.e., equivalently H^(M) = 0, then reg(M) = n(M) and the
statement in (b) follows by (a). If λo(M) >0, then reg(M) = max{e(i?£(M)),
rχ(M)}. On the other hand by Lemma 3.3 below it follows that

e(ίfθ (M)) < e+(K(M)) + λo(M) - 1.

Therefore, by 2.5 we get

reg(M) < λo(M) + max{e+(M) - 1,n(M)}.

So the statement in (b) follows by virtue of (a).

In the proof of the previuos corollary we have already used the following
observation.
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LEMMA 3.3. Let I C R be an ideal generated by elements of R\ and
let M be a finite graded R-module. Suppose there is an integer μ > 0 such
that IμM = 0. Then

e(M) <e(M/IM) + μ-l.

Proof. Let r denote the number of generators of I. For an integer t > 1
there is the natural epimorphism

Thus e(/ ίM// ί + 1M) < e(M/IM) +1. Because of

e(M/I*M) = max{e(/ ί-1M// ίM),e(M// ί-1M)}

the conclusion follows now.

Now let us continue with the proof of 3.1

Proof. In order to prove the desired bound we make induction on
d — i > 0. In the case d — i — 0 the statement is empty. Let 0 < i < d. If
μi = 0, i.e., H^(M) = 0, then e(H^(M)) = — oo and the statement is true.
Let μi > 0. Then by 3.3

e(Wm(M)) < e(Wm(M)/l_Wm(M)) + W - 1.

By combining 2.3 (b) with the fact that

for all i, j with 0<j<d — i — lit turns out that

e(Hι

m(M)) < ri

By the induction hypothesis the claim is true for d — (i + 1). Whence the
above Corollary 3.2 provides

d-l

μά.

Putting this together it completes the inductive step.
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Note that in 3.1 there is no assumption on the ίiniteness of fl^(M), i =
1,..., d — 1. Under the additional assumption of ίiniteness it follows:

COROLLARY 3.4. In addition to the assumptions of 3.1 suppose that

= 0, . . . , d — 1, are finitely generated. Then there are the bounds:

(a) n(M) < e(Hi{M)) +d + Y*Z\ λj(M) provided i > 0.

(b) reg(M) < max{e+(M) + λo(M) - 1, e(fl£(M)) + d + Σfco λj(M)}.

There is no generalization of 3.1 relating e(H^(M)) and e(H^(M)) with
i < j < d. This follows because for any integers m,n one may construct
Buchsbaum modules with e(H^(M)) — m and e(H^(M)) = n.

Remark 3.5. (i) Let R be the coordinate ring of a projective curve
C c P n . Then 3.4(a) specializes to [12], Proposition 2.8.
(ii) Now let us assume that C is a curve with arithmetic genus ga(C) = 0.
Then it holds e(H^(R)) < λi(fl) by 3.1. Since a(H^(R)) > 1 (in the non-
Cohen-Macaulay case) and λi(β) < e(H^(R)) - a(H^(R)) + 1 it follows
(cf. also [12], 2.10) that

e(H^(R)) = X1(R) and α(i£(Λ)) = 1.

In particular, it turns out that 3.1 is optimal in this case. These consid-
erations apply in particular to smooth rational curves. Note also that the
previous equalities are proved in [2] in the case of monomial curves in P3.

According to Theorem 1.1 (or Corollary 2.5) it holds e^(H^(R)) <
e(Hl(R)) + 2 = 1. Since a(H^(R)) = 1 we obtain e+(H^(R)) = 1. Hence
the estimate in Theorem 1.1 is best possible as well.

Theorem 3.1 is also optimal in higher dimensions as seen by the follow-
ing:

EXAMPLE 3.6. Let S := JK"[xi,..., x ]̂ denote the polynomial ring in
# i , . . . , Xd over the field K. For a positive integer μ let M = xμ5, where
x — {# 1 ?... 5 χd}. So there are the following isomorphisms

S/xμS if j = 1,
^{ Hi(S) if j = d,

0 otherwise.
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Now # is an M-fϊlter regular sequence. Thus 3.1 is applicable. It yields the

following estimate

< e { H i ( S ) ) + μ + d - l = μ - l .

On the other hand e(S/x_μS) — μ — 1, as easily seen. So it follows that

e{Hι

m{M)) = e(S/x!>S) = μ - 1.

Hence the bound in 3.1 is optimal.

The bound in Theorem 3.1 is also optimal in the case when M has

more than two non-vanishing cohomology modules. In order to illustrate

this situation consider:

EXAMPLE 3.7. For r > 2 put 5 = K[x\,..., X2r) and R = S/a with

α = b Π c, where b = ( # i , . . . , xr) Π (αv+i, . . . , X2r) and

ί ( # 1 , . . . ,Xτ±i, (xr±iiΛ, -.. ,#2r) 3 ) if r is odd,
C = \ 2 2

. . . , £c r£2r., (3:1+1, j ^2r) 3 ) if r is even.2 L , χ

Then ^ ( Λ ) - Hι

m{S/b) for ί > 0 and thus

K for i = 1,

0 for 1 < i < r.

Finally if£(i?) ~ b/α c- K(-2)(2) . Therefore we have e(H^(R)) = - r ,

λ o (β) = λi(fl) .= I , λ 2 ( β ) = ••••= λ r _i(β) = 0, and regiϊ = 2. Thus in

3.4 (b) equality holds.

Now recall that M is called a fc-Buchsbaum i2-module if λj(M) < k

for all i with 0 < i < dimM. Note that O-Buchsbaum means Cohen-

Macaulay. Observe that 3.7 shows that the bound in [8], 2.8, is not true for

1-Buchsbaum rings which are not arithmetically Buchsbaum. Instead, we

have the following estimations in case of fc-Buchsbaum modules.

COROLLARY 3.8. Let M be k-Buchsbaum R-module. Then there are

the bounds:

(a) n{M) < e(H^(M)) + d+(d-i)k for all i > 0.



GENERATORS OF COHOMOLOGY MODULES AND REGULARITY 165

(b) reg(M) < max{e+(M) + k - 1, e(H^(M)) + d{k + 1)}.

Proof. By the definitions this is an immediate consequence of 3.4.

Remark 3.9. (1) First note that Theorem 1.2 of the introduction is

a consequence of 3.8 by the same translation procedure as in the proof of

Theorem 1.1.

(2) Put M = R. Then e+(i?) = 0. Moreover, it is known that e(H^(R)) +

d > 0, see e. g., [10]. Let R denote a fc-Buchsbaum ring. Then 3.8 yields

the following estimate

reg(iϊ) < e{Hi{M)) + d + (d - t)k,

where t = depth R.

(3) Note that 3.8 improves the main results of [8] for fc-Buchsbaum modules.

It is often much easier to check if a module M is fc-Buchsbaum than to decide

if mk is an M-standard ideal. Note that the main results of [8] stated under

this latter assumption are also improved by 3.8 in case i + k > d.

§4. Applications to Castelnuovo bounds

First let us recall the definition of an (r, z)-standard sequence introduced

in [18]. To this end let x_ = {#1,.. . ,x r }, 1 < r < d imM =: d, denote an M-

filter regular sequence. For i < d — r it is called an (r, z)-standard sequence

with respect to M provided

xn+1H**(M/{x1,...,xn)M) = 0

for all non-negative j,n with 0 < j + n < r. This notion generalizes the

notion of a standard system of parameters. In [18] it is shown to be useful

in order to control the vanishing of graded local cohomology. This point of

view is pursued further in this section.

LEMMA 4.1. Let x_ = {#i, . . . , xr} C Rk be an (r, i)-standard sequence

with respect to M. Then

e(Hι

m{M/xM)) = max{e(iί4+j(M)) +jk \ 0 < j < r}.

Proof. In [18], 6.3, it is shown that

< e(Hl(M/xM))-jk
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for j — 0 , 1 , . . . ,r. This proves that the left-hand side is bounded by the

maximum on the right. Since x is an (r, ΐ)-standard sequence there are

short exact sequences of local cohomology modules

..., xn)M) -

Thus an easy induction on r proves the claim.

As an application 4.1 implies a bound of rι{M). Thereby we use the

notation ]Sk> := {l\,..., 1%} for / = {/i,..., lr} a sequence of elements of R.

PROPOSITION 4.2. Let / = {Zi,...,/<*-*} C R\ denote an M-ήlter
regular sequence. Suppose that [^ is an (d — i,i)-standard sequence. Then

n(M) < e(Hτ

m(M/LM)) + i + (d- i)(k - 1).

Proof. By virtue of [18], 6.5, it follows that

e(H^(M/lSk)M)) < e(HJ

m(M/LM)) + (d - i)(k - 1).

Therefore, by 4.1 it implies for i < j < d that

which by definition proves the claim.

In the case of M a Buchsbaum module and I = {/i,...,/r} C R\ a
subsystem of a system of parameters 4.1 yields that

n(M) = ri(M/lM) for all i < d - r.

This is the crucial observation in [20] in order to derive Castelnuovo bounds

for Buchsbaum schemes. In contrast the basic result for our Castelnuovo

bounds for fc-Buchsbaum schemes is the following:

PROPOSITION 4.3. Let [ = {Zi,...,Zd-;} C -Ri, 0 < % < d, be an

M-filter regular sequence. Suppose there are integers μj > 0 such that

fliU = 0 for all i<j< d. Then

n(M) < e(Hι

m(M/LM)) +i + a,

where
_ ί μi-\ h μd-i - 1 if βi H h Md-i > 0,

1 0 otherwise.
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Proof. Let μ{ + . . . + μd_i = 0, i. e., HJ

m(M) = 0 for j = i , . . . , d - 1.

Then the claim is a consequence of 4.1. Otherwise we make an induction

on d — i > 1. Let i = d — 1. If μd_i = 0, then the claim follows by the

previous argument. Let μa-ι > 0. By 3.3 we have

Whence by 2.3 (a)

e{Ht\M)) < e{Hi-\M/l_M)) + μd-i ~

Moreover, by [18], 6.2, we know that

e{Hi{M)) + 1 < e(Hi\

which proves the claim for i = d — 1.

Suppose 0 < i < d - 1. If μ* = 0, then π(M) = r i + i (M). So the

statement follows by the induction hypothesis. Now suppose that μι > 0.

By 2.3 (a) and observing that ri{M/l_M) < r{(M) it turns out

e(IPm(M)) < e(Hi

m{M)/l_Hi

m{M)) + μ i - l
K } < max{e(iί4(M//M)),r i + 1(M) - i + 1} + μ{ - 1.

Due to the beginning of the proof we may assume μ{ + . . . + μd-i > 0 Now

let us suppose that even c^+i > 0. Then by the induction hypothesis and

[18], 6.2, we get

So (*) implies e^^M)) < e(Hι

m(M/l_M)) + i + Q, i. e., the claim is true.

In the remaining case of c^+i = 0 we have H^~1(M/[jM) = 0 for all 0 <

j < d — i — 2, which follows by an easy induction. Thus 2.3 (a) reads as

< e(Wm(M/l_M)).

Therefore (*) and the induction hypothesis complete the inductive step.

It is noteworthy to say that in 4.3 there is no finiteness condition for

the cohomology modules in the case i > 0. Under additional finiteness

conditions 4.3 yields the following:
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COROLLARY 4.4. Suppose that Hb(M),j = i , . . . , d — 1, are finitely

generated R-modules. Let / = {Zi,..., ld-i] C i?i, 0 < i < d, be an M-filter

regular sequence. Then

n(M) <n(M/l_M) + du

where

d = ( \i(M) + + Xd-i(M) - 1 ifXi(M) + ... + Xd-ι(M) > 0,

\ 0 otherwise.

Remark 4.5. Consider the ring R of Example 3.7. R is 1-Buchsbaum

and regi? == 2. Since rank^[α]2 = ( r%1) w ^ obtain for general linear forms

/ = {/i,... ,/r} that

rankκ[(α,/)]2 = rankχ[α]2

+

Therefore e(H^(R/l_R)) = e(fl/ΓR) = 1. Whence

2 = regi? = e(H°m{R/l_R)) + λo(Λ) + . . . + λ r_i(Λ) - 1.

That is, the bound in 4.4 is the best possible.

We need some more notation. The unique polynomial hj^{t) deter-

mined by h,M(t) = rank^Q Mt for t ^> 0 is called the Hubert polynomial of

M. Let d = dimM > 0. Then it may be written as

td-i

hM(f) — mult(M) — r- + terms of lower degree
{d- 1)!

where mult(M) φ 0. Then the multiplicity of M is defined to be mult(M).

If M is zero-dimensional its multiplicity is by definition mult(M) =

length(M). The codimension of R is codimi? := rank#0 R\ — dimi?. Fi-

nally, recall that \a] denotes the least integer > a for a 6 M.

The following lemma concerns the most technical part of our estimates

of the Castelnuovo-Mumford regularity.

LEMMA 4.6. Let M denote a finitely generated graded R-module.
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(a) Let I = {/i,... ,/d_i} C i?i be an M-filter regular sequence where
d = dimM. Then we have for all i > 0

d + e(Hi(M)) < i + e(i?4(M//^M)) < mult(M) + e+(M) - 1.

(b) Suppose that R is integral and RQ = K is an algebraically closed field.
Let Zi,..., ld-\ be general linear forms where d = dimi?. Then we get
for all i > 0

Proof In both statements the bounds on the left-hand side follow by
[18], 6.2. In order to show (a) put Mf := (M/l_M)/H^(M/l_M) Note that
M' is an one-dimensional Cohen-Macaulay i?-module. Since / is an M-filter
regular sequence it is well-known that

mult(M) = mult(M;).

Furthermore,

e+(M) > e+(M/lM) > e+(Mf) and e(H^ ^

as easily seen. Now let us prove that

(**) 1 + e(i^(M')) < mult(M;) +

To this end choose a general I G [R/[R]ι. Then we have e+(M') =
e+(M///M/). Therefore [M'/lMf}t = 0 for a certain integer t > e+(M')
implies [M'/lMr]t+i = 0, too. Now the multiplication by I on M' induces
a short exact sequence

for any integer t. It provides

rank[fli(M')]t < max{0,

for all ί > e+(M') But

= mult(Λf) - rank[M']e+(M/).
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Because of rank[M']e+(Mn > 0 the inequality in (**) follows. But now

i + eiHϋM/U^M)) < 1 + e(Hl(M/l_M))

for all i > 0. This proves part (a) of the claim.

In order to prove (b) we use the same notation as above. Then R' is the

coordinate ring of a set of mult(i?) points in linear semi-uniform position,

see [1]. Moreover, by [1] it follows that

Then the same arguments as above show (b).

Remark 4.7. (1) Because of e+(/2) = 0 part (a) of 3.7 is a generaliza-

tion of [8], 3.1. Furthermore, part (b) of 3.7 is an extension of [17], Corollary

2, to the case of a ground field of arbitrary characteristic.

(2) The result in 4.4 is an improvement by one of the bound which follows

by a direct combination of 3.4 and 4.6.

Now there are several bounds of Castelnuovo type by combining 4.2

resp. 4.3 with 4.7. Here we state only one which seems most interesting

to us. Consider a Cohen-Macaulay scheme X C P n . Let R denote its

homogeneous coordinate ring. In accordance with the introduction put

reg(X) = τeg(R) + 1. Moreover, define λ;(X) = Xi(R).

THEOREM 4.8. Let X C P ^ be a protective Cohen-Macaulay scheme

of positive dimension d, where K is an algebraically closed field. Let •

ί \\{X) + - - + λd(X) — 1 if X is not arithmetically Buchsbaum,

0 if X is arithmetically Buchsbaum.

(a) Then there is the following bound

reg(X) < deg(X) + c.

(b) Suppose in addition that X is integral and nondegenerate. Then
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Proof. Let JR be the homogeneous coordinate ring of X and let / =

{/i,..., ld-i} C R be general linear forms. Suppose that X is arithmetically

Buchsbaum. Then Z is an (r, l)-standard sequence and 4.1 provides that

Furthermore deg(X) = mult(iί). Thus the asserted bounds are a conse-

quence of 4.6. If X is not arithmetically Buchsbaum the claims follow by

4.3 and 4.6.

Remark 4.9. (1) The statements in 4.8 are an improvement of [18],

6.9, and — as noted there — also of [8], 3.2 (ii) and 3.3 (ii). Moreover,

Theorem 1.3 of the introduction is a particular case of 4.8(b).

(2) Let R denote a fc-Buchsbaum ring with k > 0. Let / denote a system

of linear parameters. Then τeg(R/[R) = e(H^(R/lR)). Hence, it yields an

improved bound in [18], 6.8. This follows by replacing the corresponding

argument in [18], 6.7, by 4.4.

For an integral subscheme X C P n it has been conjectured by Eisenbud

and Goto, see [5], that

reg(X) < deg(X) - codim(X) + 1.

This is known to be true only for certain particular cases, see [5], [6], [11],

[18], [20] and [19] for the precise description of the statements. Here we

want to point out that our Theorem 4.8 can be used in order to show this

claim in some further case. In particular, we give a new proof of a result to

which the whole paper [4] is devoted.

COROLLARY 4.10. Let X C P ^ denote an integral 2-Buchsbaum sur-

face where K is an algebraically closed field of characteristic zero. Then

reg(X) < deg(X) - codim(X) + 1.

Proof. We may assume that deg(X) > codim(X)+3, because otherwise

the claim is known by view of [20]. Let H denote a general hyperplane and

C = X Π H. Then by Corollary 4.4 we know that reg(X) < reg(C) + 1

for the curve C C Ψn~1. Thus we are done provided reg(C) < deg(C) —

codim(C) because deg(C) = deg(X). The latter is true unless C is a smooth

(connected) rational curve due to [6]. In this case it follows that X has only

finitely many singular points, whence X is normal. To this end note that
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in case X has a curve D C X as a singular locus. Then D Π C is singular
and non-empty. But this contradicts the fact that C is smooth.

Let R denote the homogeneous coordinate ring of X. Let H be defined
by the linear form /. Since X is normal the vanishing theorem of Kodaira-
Mumford-Ramanujan, see [16], provides [H^(R)]j ~ Hι(X,Oχ(j)) = 0 for
all j < 0. Moreover, since C has genus zero we get [H^(R/lR)]j = 0 for all
j > 0. Whence the short exact sequence

Hl(R)(-l) -> H2

m(R) - Hl(R/lR)

furnishes [H^(R)]j = 0 for all j > 0. Thus altogether it follows that
Hl(R) = 0. But now 4.8 yields

] + 2 £ de8(x) - c o d i m W + » •
where the latter is true by our assumption on deg(X) > codim(X) + 3.

Observe that for the final estimate Theorem 1.3 is not sufficient. We
have to use the finer bound in Theorem 4.8.

Imposing stronger conditions on the cohomological annihilators of a
scheme is possible to improve Theorem 1.3 slightly. Recall that a scheme
X is called (fc, r)-Buchsbaum if X Π V is fc-Buchsbaum for all complete
intersections V of codimension < r such that X and V meet properly.
Thus a scheme is (fc, 1)-Buchsbaum if and only if it is λ -Buchsbaum. But
usually a A>Buchsbaum is not (fc,2)-Buchsbaum. After having received an
earlier version of this paper Miyazaki and Vogel [14] were able to improve
the bound in Theorem 1.3 for a (jfc, r)-Buchsbaum scheme by r — 1. But
their methods do not give a result as good as Theorem 4.8. Moreover, C.
Miyazaki, see [13], has characterized those varieties for which the bound of
1.3 is attained.
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