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LIMIT THEOREMS FOR HITTING TIMES OF
1-DIMENSIONAL
GENERALIZED DIFFUSIONS

MATSUYO TOMISAKI AND MAKOTO YAMAZATO

Abstract. Limit theorems are obtained for suitably normalized hitting times
of single points for 1-dimensional generalized diffusion processes as the hitting
points tend to boundaries under an assumption which is slightly stronger than
that the existence of limits v + 1 of the ratio of the mean and the variance of
the hitting time. Laplace transforms of limit distributions are modifications of
Bessel functions. Results are classified by the one parameter {7}, each of which
is the degree of corresponding Bessel function. In case the limit distribution is
degenerate to one point, by changing the normalization, we obtain convergence
to the normal distribution. Regarding the starting point as a time param-
eter, we obtain convergence in finite dimensional distributions to self-similar
processes with independent increments under slightly stronger assumption.

81, Introduction

We denote by M the class of right continuous non-decreasing functions
m : [—00,00] — [—00, 0], satisfying m(—o0) = —o0, m(o0) = 0o, m(0-) =
0. For m € M, we set

(m) = sup{a < 0 ; m(z) = ~co},
lo(m) =inf{z > 0 ; m(z) = oo}.

If there is no confusion, we write /;(m) simply I; for 7 = 1,2. We denote by
E,, the support of the measure induced by m restricted to (l3,l2). There
naturally corresponds a strong Markov process {X;} (called 1-dimensional
generalized diffusion process) on E,, (whose formal infinitesimal generator
is jr%ad;) to m by changing time of the Brownian motion. The measure
m(dz) is called the speed measure of {X;}. Denote the hitting time of =
for {X:} by 7. We are concerned with a problem what is the suitable
normalization and what is the limit distribution of 7, when the process

starts at the origin and x tends to [s.
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The problem of the asymptotics of 7, as x — Iy is closely related to
metal exhaustion (private communication with A. Shimizu). That is, re-
garding the extreme point of a crack of metal by exhaustion as a maximal
point of diffusion process, one is concerned with determining the durable
length of time, by investigating asymptotics of the maximal point.

Keller-Kersting-Roesler [5] studied the problem in the case that the
process is regular diffusion and the starting point (the origin) is a reflecting
boundary. They showed that if the mean Fy7, and the variance Vy7, are
finite and (Vy7,)/? = O(Ey7;) (as £ — o0), then a suitable normalization
is

Ty = (Ta: - E’O"-:l:)/(VE)T:r)l/2

and, they obtained a necessary and sufficient condition for the limit distri-
bution of 7, to be normal or exponential. Moreover, they obtained sufficient
conditions in terms of infinitesimal generator (diffusion coefficient and drift
coefficient) that the limit distribution is to be normal or exponential.

Soloviev [9] studied the same problem for a birth and death process
which starts at its boundary. His result is described in a unified form and
is deeper than the result in [5].

In this paper, we consider the class of 1-dimensional generalized diffu-
sion processes, which includes both birth and death processes and regular
diffusion processes. We do not assume the starting point to be a reflecting
boundary. The starting point can be other kind of bundary or an interior
point. Our results are extensions of Keller-Kersting-Roesler and Soloviev
even in the case that the starting point is a reflecting boundary. We remark
that the class of hitting time distributions of 1-dimensional generalized dif-
fusion processes is determined by [11] and [12]; it is a subclass of the class
of infinitely divisible distributions.

We will give the conditions for convergence in terms of asymptotics of
m near l3. Our results are classified by one parameter 0 £ v < oo, which
appears in the condition

m(x) /Om m(y)dy/ /Ow m(y)2dy ~ 14y as 1z —l,

or in some related conditions.

We describe, in Section 4, our result in case that the origin is a reflecting
boundary. In Section 5, we describe the results in case that the origin is not
a reflecting boundary. We can regard the hitting point « as a time parameter
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and consider the convergence of {7} in finite dimensional distributions of
stochastic processes. Then we observe that the behavior of convergence is
quite different according as v < 1, vy =1 and v > 1. In case v = oo, the
limit distribution is degenerate to one point. We note in Section 6 that in
this case, normal distribution appears as a limit distribution if we change
the normalization. Section 7 is devoted to the comparison of our results
with Keller-Kersting-Roesler’s.

§2. Hitting time distributions of 1-dimensional generalized diffu-
sions

Let {B(t)} be 1-dimensional Brownian motion on a probability space
(Q, F, Ft, 0, Py) with B(0) = 0, where F; is an increasing right continuous
family of sub o-fields of F and 6, is a shift operator. Let I(¢,z) be its local
time. For m € M, set

o(t) = /R:(— )l(t,x)dm(a:).

This ¢(t) is a non-decreasing function. Let ¢~!(t) be the right continuous
inverse of ¢(t). Let En = supp(m|q, 1,)). For t1 < t3,

(2.1) é(t2) = ¢(t1) if and only if B(t) ¢ E,, for t € (t1,t2).

Let ¢ = inf{t 2 0: B(¢7(t)) = ) or I}. By (2.1), for any t < {, ¢~ (¢)
is an increasing point of ¢. So, for ¢t with t < ¢, B(¢~!(t)) € Ey,. Setting

Xt = B(¢—1(t))’ ﬁt = fd)“l(t)) ét = 9¢—1(t),

we have that
X = (Q7f’ﬁt,Xtaét7Pz)

is a strong Markov process on E,, and in case that the derivative m' of m
exists, the infinitesimal generator of X is given by m,la . di;g. Above ( is the

life time of X;. We can show that if B(¢~1(t)) = y, then for each z € E,,
satisfying 0 < x < v, there is s < t such that B(¢~!(s)) = z. Let 7, be the
hitting time of x for X;. Then, 7,(w) = ¢ if and only if

Te(w) + 7y (Or,w) = t.
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If Py(1, < 00) =1 for 0 < = < Iy, then by the strong Markov property
of X,

EO (e‘)‘("'y (W)=T= (“’)))

= Eo(Eo(e = )|F, ))
= Eo(Ex,, (e7™)) = E(e™™)

and
EO(e—AlTz(w)—-/\z(‘ry(w)—-rz(w)))
= E()(e"MTm(w)EO(e-—/\z(T,,(w)—'rm(w))|]_~Tz ))

= Eo(e—’\lrz(w))Ex(e_’\”y)
= EO(e—Asz(w))Eo(e—Az(Ty(w)—T’(“’))).

Therefore, if Py(1, < 00) = 1 for 0 < & < Iy, then {7} has independent
increments.
For m € M, let ¢(z,A) and ¢(z, A) be the continuous solutions of

(22)  ol@N)=1+A /[0 (= Dol Vim(y) for 220

=1- )\/ (z —y)p(y,\dm(y) for <0
[=,0)
and

(23)  é(e,)) =z + A /[0 (2 =06 Nam(y) for =20

—2- [ (2= 9)éle, Ndm(y) for = <0,
[,0)

respectively. Both are entire functions of A. Since ‘fl—: (:’;22:3) = ¢(z1,A)2’

limg_;, —¢(z, A)/p(z, A) exists and we denote this limit by h(A). Here we
denoted right derivative by %—5. Relations between h and m restricted to
[—00, 0) is studied deeply by Kac and Krein (see [6]). Let

u(z,A) = p(z,A) + h(A)_1¢(x, A).

Then, for A > 0, u is a positive increasing function of z, satisfying either
u(li+,A) = 0 or %u((—oo)+,/\) = 0 according as I; > —oo or [ = —o0.
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So, by the general theory on diffusion processes, the Laplace transform of
Tz is given by the following:

(2.4) Ee(e™™) = u(€, ) /u(z,)) if I <€z <l

See Ito-McKean [3] p.128-129.
In the case m = 0 on (—o00,0), l; = —oo, the origin is a reflecting
boundary. Then, since —¢(z,A)/p(z,A) = |z|/1 — o0 as z — —o0,

Eg(e™™) = p(§, )/ w(x,)), —oco<ESz <l

Note that {7} is defined only for z € E,,. By the independent incre-
ments property, the finite dimensional distribution of {7} is given by

(2.5) E. lexp{—=M7Tz; — AaTay — -+ — AnTa, }
n n n
=[] wlej-1, Y M) /ulzs > Ax)
i=1 k= k=

for g, z1,...,2n € By, o < 1 < +-- < x,,. Note that the finite dimen-
sional distributions are determined only by u(z, ), z € E,,.

LEMMA 1. u(s,A)/u(t,A) for Iy < s St <ly is the Laplace transform
of a distribution.

Proof. We may assume that s,t ¢ E,,. Let m.(dz) = m(dz)+cbs(dz)+
cbi(dz), where ¢ > 0 and 6,(dz) is the delta distribution concentrated at a.
Write u corresponding to m. as u.. Then, since s,t € Ep,, uc(s, A)/uc(t, A)
is the Laplace transform of a distribution. Since

uc(s, /\) = u(s’ )‘)
and

we(t, A) = p(t, ) + (£ — 8)Acp(s, A) + {(t, X) + (¢ = $)Aeg(s, A)}/A(V),

we have
UC(S, /\)/Uc(t, /\) - U(S, /\)/U(t, )‘) as c— 07

uniformly in any compact set of A. Hence u(s,\)/u(t, ) is the Laplace
transform of a distribution.
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The above discussion leads to the conclusion that if we define finite
dimensional distributions of {7} by (2.5) for [y < zo < z1 < -+ <z, < Iy,
then they satisfy the consistency condition and therefore by Kolmogorov’s
extension theorem, there is a unique probability measure on R0 whose
finite dimensional distributions coincide with (2.5). We call this stochastic
process generalized hitting time process with starting point x,.

83. Functions ¢, ¢ and h corresponding to special m € M
We define a function ®,(}), (0 < vy < 00) by

(3.1) &,(\) = DAL, (2A1/2)
[e o] )\"
= _ <
I'(v) 7?:0 ATt )’ 05 )< oo,

where I,,(z) is the modified Bessel function:
y X2 n
10 = (3) % amen Ty
Since lim,—o @4(YA) = 1 + A and limy_.00 4 (7A) = €*, we define
(3.2) &7\ lyo = 1+ A,
(3:3) @ (YA) oo = €™
EXAMPLE 1. Let ¢1,c0 20,131 < —a; £0< a3 <y and

—c; for L <€ < —aq,
m(§) = 0 for —a; £€<ay,
cy for as § ¢ <y,

Then, the corresponding solutions ¢, ¢ of (2.2) and (2.3) and h function are

1—c(z+a)X for [ <z < —a,
(3.4) oz, A)=<¢ 1 for —a; <z < ao,
1+ ca(z —a2)X for ay <z <ly,

z+cai(z+a)A for ) <z £ —ay,
(3.5) Pz, A) =< =z for —a1 <z £ ay,
T + cgaz(x —az)A for ag <z <l
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and
(ll + clal(ll +a)AN) /(=1 +c1(lh + al))\)
_ if¢; >0 and l; > —oo0,
(3.6)  h(A) = 1+ cra1A) /A if ¢; >0 and l; = —oo0,
—‘ll if c; = 0,
respectively.

EXAMPLE 2. Let |lj] =00, 1=1,2,0<y<1, ¢1,¢2 20 and

_ —alz|0 /(1 ~4) for z <0,
m(z) = { _623;7/(1—7)/(1 —v) for z20.
We have

1/(1-7)
(3.7) _ | &(al vA) for z <0,

(@, 4) = { B, (cox/=N~))  for z 2 0.
Also we have

| zpa—y(cr]zEN) for z <0,
(3.8) $lz) = { x¢2-7(c2w1/(1_7)7)\) for =z 20.

Moreover, we have

(3.9) h(A) = E4(ct )™, A>0
where
(3.10) E, =7""'T(2-7)/T(7).

Obviously, if ¢; = 0, then ¢(z,A) = 1 and ¢(z,A) = = for z < 0. Since
E, —1as | 0, Example 1 with ¢c; = ap = 0 can be regarded as a special
case v = 0, ¢; = 0, of this example by (3.2).

EXAMPLE 3. Let, for v > 1,
m(@) = 270 /(y=1), =z <o.

Then
u(z, A) = & (|2 y))

is the unique solution of the following;

d d
(3.11) %%u(x, A) = du(z, A),
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(3.12) ¥/ (=00, A) = 0,
(3.13) u(—o00,A) = 1.
Note that u(0—, ) = oco.
EXAMPLE 4. Let m(z) = a(e® — 1), (a > 0) for z € R.
u(z, ) = ©1(e?N)

is the unique solution of (3.11) with the boundary conditions (3.12) and
(3.13). Note that u(co,A) = co. Set uy(z,A) = u(z,A) and set

T
ug(z, A) = ui(z, /\)/ uy(y, A) ~2dy.
0
ug is a solution of (3.11) linearly independent of u;. Since

ul(O, )‘) = @1()\), 'u’ll(O?)‘) = q)ll()‘),
u2(0, A) =0, ul2(0> A) = 1/@1()‘)’

solutions of (2.2) and (2.3) are given by

o(z,A) = u(z, A)/@1(X) — adua(z, \)@Y(N),
(f)(df, A) = ’LLZ(ZIJ, ’\)q)l(’\)7
respectively. Setting
3 0
B = lim_ua(a, A/, N) = = [ (w0,

—0o0

we have,

A =~ _lim_g(z, \)/e(z, )

= —&, ()/{BLVEMN)} " - aA; (V)
= 3, (A)/aA; ().

Here we used A()) = —oo.
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§4. Limit distributions of normalized hitting time

In this section, we treat limit distribution of suitably normalized 7, as
z — Iy when the origin is a reflecting boundary. We can describe our result
in a unified and simple form.

The following lemma can be easily proved by using (2.2) and (2.3).

LEMMA 2. Let @, ¢ be the solution of (2.2) and (2.3), respectively, and
let (™ (xz,\) = a,\n oz, N), 6™ (z,\) = a—‘%\%(ﬁ(m, A). These functions are

absolutely continuous in x and represented as:
V(w,0) = [ mly)d,
z ry
o™ (z,0) = n/ / o™V (z,0)m(dz)dy
o Jo
€z Yn Y2
=t [y [ (mgn) = -0 - [ i) = i)
0 0 0
forn>1 and
T ry
@0 =n [ [ 6D (e 0m(ds)dy
o Jo
T Yn+1 Y2
=t [“dunis [ ) = ) [ () = i),
0

Note that if l; = —oo and m = 0 for z < 0, then

WD B =00/ @0 = /(00 = | " m(y)dy.
(42 Vo(m) = () - ¢}z, 0) =2 /0 ’ / " m(z)?dzdy

(43)  Eo((re — Eo2)®) = {¢® = 3¢"¢' + 2(¢')*}(,0)

“12// z)(/ m(u )2du>dzdy

If m # 0 for z < 0, then the representations of the moments by the speed
measure are complicated. We will describe the representation in a special
case in Lemmas 9 and 11 in Section 6.
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Denote ax(z) = o) (z,0)/k! and by(x) = ¢*)(x,0)/k! for k > 0. We
have, by Lemma 2,

a1(z) = / m(y)dy, bi(z) = / dy / m(y) - m(2))dz,
(4.4)
ar(x) = //ak 1(z)m(dz)dy, bi(z) //bk 1(2)m(dz)dy

Set a(z) = a1(z). Throughout this paper, we assume that
a(zx) — oo as x> ls.

We introduce the following assumption on m € M.

(4,) Oy <o0): m(e)a(a)/ [ midy — 147 as 2,
(Aoo) : m(z)a // m(y)?dy — co as = — Iy

For any function ¥(y) of v € (0,00), we set ¥(0) = lim,_,o ¥(7y) and
U(00) = limy— 00 ¥ (7).

LEMMA 3. Under the assumption (A) for some 0 < v < oo,

1

e l 2 0.
P as ¢ — Iy, form 2

/0 " a(y)"m(y)dy /m(z)a(z)" —

Proof. Integration by parts yields
‘ 2
@) [ et mrdy

~a(o)" [“mtsray - [ "oy my) [ dsd.

By the assumption (A,) and L’hospital’s rule, we have

(4.6)/0 ()" Im /m 2dzdy// (y)?dy — 1_}_7

as T — .
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By (4.5), (4.6) and the assumption, we have, for v < oo,

n+l+vy [ n n [*
—1—_;7'/0 a(y)"m(y)*dy ~ a(x) /0 m(y)2dy
)n+1

~

a(z)" " m(zx) as T — ls.

1+

Also, we have, for v = oo,
| etwrmwis = olatertime) ws oo
These give the conclusion of the lemma.
LEMMA 4. Under the assumption (Ay) for some 0 < v < oo,
(47) dyyy(@)/m(z)a(@)® — Ty /nl(n+1+7) as z— 1

for any nonnegative integer n.

11

Proof. We prove by induction in n. For n = 0, both sides of (4.7) are

equal to 1 and the conclusion holds. Suppose that (4.7) holds for n £ k—1.
By (4.4), we have
T
(19) (@) = ax(@)m(z) = [ ah(u)mlu)dy
By (4.7) for n = k — 1, L’hospital’s rule gives
L(y)y*
4.9 k —_—
and
¢ - L(y)~*
I d / k—1 2d L.
| dwmwas) [ o tmrdy — e s o

Hence, by Lemma 3,

(4.10) / * dl(y)m(y)dy/a(z)*m(z)

Tyl 1
k—DIT(k+7) k+7

By (4.8) —(4.10), we have

as x — [y,

k+1
Ahyr () /m(2)a(z)* — ﬁ‘I;(kL—)l:y_le)T)- as T — .
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PROPOSITION 1. Under the assumption (Ay) for some 0 < v < oo,
o(z,Ma(z)) — @y(YA) as x>
uniformly in any compact set of A 2 0.

Proof. Note that p(z,A/a(z)) = A". By Lemma 4,

'"Oaa:"

w@) T
a(z)® n!l'(n+7)

as = — .

We show that % 2 <1 /n! for n 2 1 by induction in n. It is obvious for
n = 1. Assume that 1t holds for n < k. By (4.4),

ak+1(z //ak(z (dz)d
- [" e wpay - /0 [ k' Grazay

< /0 " ar()a W)dy
za ka'

< /0 (y)"a'(y)dy/k!

= a(@)*/(k + 1)L

Hence it holds for n = k. This yields

o(a, A/a@»—»zk,ggkf)'; 2,(1) s b

uniformly in any compact set of A 2 0.

THEOREM 1. Suppose that l; = —oo and m(z) = 0 for z < 0, and
assume (A,) for some 0 £ v < co. Then

Eg(e_’\”/a(””)) —1/®y(yA) as x—l, —oo <€ <l
Proof. Ifly = —o0, m(z) =0, for z < 0, then
Be(e /%) = o(¢, M a(@)) [p(x, Ma(z)), —o0<éSaz <l

Hence we have the conclusion by Proposition 1.
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The above result is obtained for birth and death processes by Soloviev
under a condition equivalent to

a(z)m/(z)/m(z)® — v (0SvL00) as z—ly
which is stronger than our assumption.

Remark 1. By L’hospital’s rule,

T
(Be(ra))? Velre) ~ mi@)(ae) = a(e))/ [ m(pPdy — 1+ 52— b,
This is a probabilistic meaning of the quantity ~.

85. Convergence to self-similar process

In this section, we investigate a problem on the convergence of hitting
time processes. For this purpose, we prepare the following assumptions:
(Cy) (0L y<1): Iy =o00and m(z)~z"ANL(z)/(1-7) as z — oo.
(C1): Iz = oo and there is a function s(z) regularly varying at co and dif-
ferentiable for large z such that the derivative s’(x) is positive and monotone
and

m(s(z)) ~ e*L(e®) asz — oo

with some function L slowly varying at oco.
(Cy) (1 <y <) Iz <ooandm(z)~ (g —z)TVK(y — z)/(y—1)
as x — ly with some K slowly varying at 0.
(Coo): Iz < 00 and m(z) ~ (I3 — ) 'K(ly — z) as x — lo with some K
slowly varying at 0.

Remark 2. If 0 £ v < 0 and v # 1, then (C,) is equivalent to the
following (B.).

(By) (0 £ v<1): lp =00 and a(z) ~ (1 —y)zm(z) as z — oo,
(By) (1 <y <o00): Iy <ooanda(z)~(y—1)(la —z)m(z) as z= — Iy,
which is obtained by Seneta [8; Theorem 2.1].

LEMMA 5. 1. Ify=1 or~y = oo, then (Cy) implies the following (B.,).
(B1): la =00, (A1) holds, and a(z) = o(zm(z)) as xz — oo.
(Bso): 2 < 00 and a(z) = o(m(z)) and (Is—z)m(z) = o(a(z)) as z,— ls.

2. If0 £y S 00 and v # 1, then (B,) implies (Ay).
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Proof. 1. Let v =1 and let 7(z) = s™!(z). Then
(5.1) m(z) ~ '@ L ™)) as z — oo.
Since, for large M,

@)~ [ )y
_ /e’“) m(s(logw))
e

-y 7'(s(logu))u

and
/z L(u) du zL(z)
1 1'(s(logu)) r'(s(log 2))
it holds that
(5.2) v a(z) ~ '@ L(e"®) )¢ ().

By (5.1) and (5.2),
a(z)/zm(z) ~ 1/zr' () — 0

as x — 00. Since

s(log z) z
(5.3)/ m(y)zdyzf m(s(logu))?s'(log u)u™ du
s(log M) M

~ /m uL(u)?s' (log u)du ~ z?L(z)%s' (log z) /2,
M

we have, by (5.1) — (5.3), that

s(log )
a(s(log 2))m(s(log 2))/ /1 * m(y)dy ~ 2.

Hence (Bj) holds. It is easy to show that (Cy) implies (Boo).

2. If (B,) holds for some 0 £ v < 1, then, by using L’hospital’s rule, we
have

m(z)a(z)/ /0 " m(y)dy
~a(@P /- [ " m(y)*dy

~ a(z){2zm(z) — a(z)}/(1 - 7v)e*m(z)?
~ (1= yzm(@){(1 +v)zm(z)}/(1 - v)z*m(z)?
=1+v as x—ls.
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If (B,) holds for some 1 < v < 0o, then, we have
T
m()a(a)/ [ mu)dy

~ a(@)?/(y - 1)l - @) / " m(y)dy

~ a(z){2(ly — z)m(z) + a(2)}/ (v - 1)(Iz — 2)*m(z)’
~ (v = Dl — &)m(@){(1 +7)(ls — &)m()}/(y = D(la - )*m(z)?
=14+~ as z-—lo.

Here we used L’hospital’s rule again. If (By) holds, then, we have
m(@)a(a)/ [ mu)dy
T
= ofa(e)*/(l: =) [ m(y)du),

and, using L’hospital’s rule, we have

a(2)?/(lz — ) / " m(y)?dy

= a(2){2(l - @)m(z) + a(2)}/ (I — )*m(z)?
~ a(2)?/(lz — z)*m(z)?

— 00 as T — .
We get the conclusion.

Remark 3. The assumption (Bj) includes (A;). This is natural in the
following sense. Let us assume

a(z) ~cx®m(z) as z—o00 (c>0, —oco<b<1).

Then, we have by using L’hospital’s rule

m(@)a(@)/ [ " m(y)?dy
~ a(o)fes [ " m(y)?dy

~ [2¢22®m(z)? — bea® " {caPm(z)}? /P2 m(z)?

—2 as x— 1.

Hence (A1) holds.
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We next note that the following limit theorem for the function ¢.

PROPOSITION 2. 1. Under the assumption (B,) with 0 < v < 1,

B, Ma(x)) [z —> Z n—ﬁ%A RN

as © — ly uniformly in any compact set of A.
2. Under the assumption (By) with 1 £ v £ oo,

[e o)

bl Na(@)/e — 3 e s _Lon”

n!T(n + 'y) ®,(7A)

as x — ly uniformly in any compact set of .

Since (B,) is equivalent-to (Cy) for v € [0,00)\ {1}, 1 of Proposition 2
is immediately obtained by Kasahara’s continuity theorem on Krein’s cor-
respondence ([4]). Let us observe the asymptotic behavior of b,(z) defined
by (4.4) as £ — co.

LEMMA 6. Assume (B,) for some 1 < v £ oo. Then, for k 21,

1

| e tumtdyaleteme) — e as o

Proof. Integration by parts gives
(5.4) /Oma@)'“—lym(y)zdy
so(e) [ miy)dy

- /0 (k - Da(y)*2ym(y) / m(z)dzdy

- [[otwrt [Mme sy

Since the assumption (A,) holds, we have

(5.5) :I;a(a:)k‘I/ m(y)2dy ~ a(z)fem(z) for 1< < oo,
0 1+~

= o(a(z)*zm(z)) for v = oo,
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1

T y T
6:0) [ a2y [“m(e)Pdsdy) [ o) tmi?dy — =
and

(5.7) /Om a(y)k—1 /Oy m(z)2dzdy/ /Om a(y)km(y)dy
1

— ——— as T — 5.

147+

By the assumption (B,) with 1 £ v < oo, we have

(5.8) / " aw)Fmly)dy = a(@)*/(k + 1)
= o(a(z)fzm(z)) if 1<y < oo,

By the monotonicity of a(z) and m(z), we have

(5.9) /0 " a(@)Fm(y)dy < a(z)Fzm(z),

By (5.4) - (5.8)

k+~ [*

k—1 2
d
e A a(y)" " ym(y)“dy

1
147

By (5.4) ~ (5.7) and (5.9)

a(z)fzm(z) as z—1lp for < oo.

/0m a(y)* tym(y)?dy = o(a(x)*zm(z)) asz —1ly for = oo.

Hence,

1

— as T —ls.
k+y 2

/ " o) ym(y) dy/a(e) zm(z) —

17

LEMMA 7. Under the assumption (B,) for some 1 < 7 < oo, it holds

for any n 2 1 that

T(y)Y"

(5.10)  bp(x)/za(z)™ ~ b, (z)/na(z)" tem(z) — AT+ 7)

as z — ls.
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Proof. We prove by induction in n. For n = 1, (5.10) holds by

bi(z)/zm(z) = {zm(z) — a(z)}/zm(z) — 1,
bi(z)/za(z) ~ {zm(z) — a(z)}/{zm(z) + a(z)} =1 asz — .

Suppose that (5.10) holds for n £ k. By L’hospital’s rule, we have

by («)/za(e)
~ By (@)/{a(@)*! + (k + Da(e) zm(x))

~ b@m(a) - [ " b (y)m(v)dy}/{a@)* + (k + Da(e) zm(z))

Tt L)
(k+DIT(k+v) (k+1)(k—DIT(k+~)(k+7)
L(y)*+1

T+ DT(k+1+7)
Here, we used the induction hypothesis, (B,), (4.4), and Lemma 6.

Proof of 2 of Proposition 2. Since b1(z)/zai(z) £ 1, as in the proof of
Proposition 1, we can show that

bp(z)/za(z)™ £ 1/nl.
Hence by Lemmas 6 and 7, we get the conclusion.
Remark 4. Any ¢ and ¢ satisfy
1< ¢(z,2), é(z,A)/z < @ for z,A 20,
which is easily seen by the proofs of Propositions 1 and 2.

THEOREM 2. Assume thatly = —oo, that (C,) holds for some 0 < v <
1 and that

|m(—z)|/m(z) = c€[0,00) asz— 0.

Then,

lim Egle Amt=/a(®)]

T—00

= 1/{@y (YA 4 (eA) 14y (YA /B, )
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for t,A 2 0 and £ € R. Namely, the normalized generalized hitting time
process {1z /a(x)} with any starting point converges in finite dimensional
distributions to a self-similar process {10} with exponent (1 — v)~! with
independent increments as  — oo, and {7} is the hitting time process
starting at the origin of the generalized diffusion process with speed measure

o,y f /A1 —7) x 20,
m’(z) = { —c|x|7/(1_7)/(1 —v) z<0.

Proof. By the assumption (C,) with 0 £ v < 1 and Propositions 1 and
2, we have

o(z, Aa(z)) = D4(vA), ¢(z, A a(z))/z — D2—y(72),

as £ — oo. These convergences are uniform in any compact set of A = 0.
Since a(tz)/a(z) — t1~D7" as z — oo, for any t > 0,

p(tz, Ma(z)) = o(tz, Aa(tz) /a(tz)a(z)) — By (yALIDT),
td(tz, Aa(tz)/a(tz)a(z)) [tz — tBy_(YMLT)  as z— 1,
Since
zm(tz)/a(z) — —clt|/T/(1-v) as & — oo for t <0,
we have, by Kasahara’s continuity theorem,
h(Ma(z))/z — By(cA)’™!  as  z — oo.
Hence we get, for t > 0 and £ € R that

E§ (e—)\nm /a(a:))

= (€, Ma(z))/ulzt, \a(z))
— 1/{@, (YAEDT) 4 (eX) 14y, (yAt T /B )
= 1/u’(t,\)

as ¢ — oo, where 1/u%(t, \) is the Laplace transform of 70 by Example 2 in
Section 3. Since {7} has independent increments, {77} = {7i;/a(z)} also
has independent increments. By (2.5), the finite dimensional distributions
of {7} are determined by 4,(t,\) = u(zt,A/a(z)). Hence, we get the
convergence of finite dimensional distributions.
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Remark 5. (i) In the case v = 0 and ¢ = 0, the limit distribution is
exponential by (3.2).

(ii) In the case v = % and ¢ = 1 in Theorem 2, the limit process is a
one-sided stable process with exponent % The Laplace transform is given
by et/ R ( may be an interesting problem for what measure m, there
appear other stable distributions.

Remark 6. Self-similar processes with independent increments are ex-
tensively studied by Sato [7].

The following theorem treats the case ¢ = oo in Theorem 2.

THEOREM 3. Let m(z) = —m((—z)+) + m(0) — m(0-) and a(z) =
I Im(—y)|dy. Assume that 7 satisfies (C,) for some 0 £ v < 1 and that

(5.11) a(z)/a(z) - 0 asxz — oo.

Then, :
lim Egle 7=/8@)] = 1/(1 + tA1"7/E,)

T—00

for t,A 2 0 and £ € R, that is, the normalized generalized hitting time
process {1, /a(x)} with any starting point converges, as ¢ — oo, in finite
dimensional distributions to a self-similar process {10} with exponent (1 —
7)™t with independent increments starting at the origin, {7} is the hitting
time process starting at the origin of the generalized diffusion process with
speed measure

o [0 20,
m’(z) = ~|z/=M (1~ ) z<o.

Proof. By (5.11), Remark 4 and the assumption (C,) with 0 £ v < 1,
we have

p(at, \a(z))
= plat, (Ma(at)(al(et)/a(e)) — 1,

p(at, Aa(x))
= (tz) "' ¢(at, (A/a(xt))(a(at) /a(x))) — 1.
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We have, by Kasahara’s continuity theorem,
z7rh(Na(z)) — B,
Hence,

Be(e /%) = w(g, Ma(x)) [u(tz, M a(z))
—1/(L+tA'"7/E) as x — oo.

Since {7¢z/a(z)} has independent increments, the convergence of finite di-
mensional distributions is obvious.

LEMMA 8. Let 0 < p £ oo and

0 for 0=5t<p,
oo for p<it<oeo.

mp(t) = {
Assume that l; = —oco and
zlm(—tz)|/a(x) — mp(t) as z — oo.

Then,
h(Aa(z))/Jz —p as z— oo.

Proof. By Example 1 in Section 3, h(A/a(z))/r corresponds to
zm(—tz)/a(xz) and h(A) = p corresponds to —m,(—t). Hence by Kasa-
hara’s continuity theorem, the conclusion is obvious.

THEOREM 4. Assume (C;) and that
2lm(~ta)]/a(z) — my(?)
as £ — oo for some p € [0,00|. Then
(5.12)  Eg(e A s=+0/2@)y 5 1/(1 4+ 1/p)®1(e!))  as & — oo

for t,£ € R and X\ 2 0. Especially, in case p = oo, the normalized general-
ized hitting time process {Ty(z1¢)/a(s(z))} with any starting point converges
in finite dimensional distributions to a process {70} with independent incre-
ments, which is the hitting time process of the generalized diffusion process
with speed measure mO(t) = €', t € R and starting point —oo.
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Proof. By the assumption (C;) and Lemma 5, the assumption (By) is
satisfied. By Propositions 1, 2 and Lemma 8, we get

o(z, A a(x)), oz, A a(z))/z — 21()),
h(Ma(z))/z — p

as * — oco. These convergences are uniform in any compact set of A 2 0.
Since a(s(x +t))/a(s(z)) — €' as z — oo, for any t € R,

p(s(z + 1), Aa(s(z)))
= @(s(z + 1), {M a(s(z + t)) Ha(s(z + 1)) /a(s(x))})
- q)1(et/\)a

¢(s(z +1), M a(s(z)))/s(x + 1)
= ¢(s(z + 1), {A/a(s(z + 1)) Ha(s(z +1))/a(s(2))})/s(z + 1)
- <I>1(et/\),

and
h(Aa(s(z +1t)))/s(x+t) — p, as x— oo.

Hence, for any t € R, we get (5.12). As in the proof of Theorem 2, the
convergence of the finite dimensional distributions is obvious in case p = co.
By Example 4 in Section 3, the limit process is the hitting time process of
a generalized diffusion with speed measure m°(t) = e* and starting point
—00.

The following theorem treats the case p = 0 in Theorem 4.

THEOREM 5. Let m(z) = —m((—z)+) + m(0) — m(0—) and a(z) =
Iy Im(—y)|dy. Assume that 7 satisfies (C1) and that ly = oo and, for any
t20,
(5.13) a(tr)/a(z) — 0 as xz — oo.

Then
(5.14) lim Ee[e *=/8®] =1/(1+1t) for t,A20 and £ € R.
T—00 )

Remark 7. The limit distribution coincides with the limit distribution
in Theorem 3 with v = 1.



HITTING TIMES OF 1-DIMENSIONAL DIFFUSIONS 23

Proof of Theorem 5. By the assumption (C}), we get
z|m(—tz)|/a(z) — mi(t) as z — oo.
Hence, by Lemma 8, we have
h(A/a(z))/z — 1
as z — oo. We have, by (5.13) and Remark 4, that
o(tz, A a(z)), p(tz, A a(z))/tz — 1.
Hence we have (5.14).

Remark 8. Let
m(z) ~ @ L(e"®)

and
m(—=z) ~ e @ L (e"®))  as  z— oo,

where, r and ry are regularly varying at oo, differentiable for large =z > 0,
the derivatives 7', (r1)’ are positive and monotone, and L and L; are slowly
varying at oo. Then, by (5.2),

a(z) ~ @ L@ /r' ().
Hence
zlm(—tz)|/a(z) ~ xem(tm)Ll(en(tx))r/(x)/er(z)L(er(m))_

Now, set
r(z) = 2°K(z), ri(z)="K,(x)

where K and K; are slowly varying at oo. Let t > 0.
(i) If a < B, then a(tz)/a(x) — 0 and z|m(—tz)|/a(z) — oo as  — oc.
(ii) If @ > B, then a(tz)/a(z), z|m(—tz)|/a(z) — 0 as z — oo.

(i) If o = B and limg—,00 K (2)/K1(z) — & € (0, 00], then, for large z,

<0 if t<kl/e
>0 if t> ke

taKl(t:L”) - K({E) {

and hence
zlm(—tz)|/a(z) = ma/a(t).
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(iv) If @ = 8 and limgy,o0 K(z)/K;(z) — 0, then

a(tz)/a(z) — 0.

THEOREM 6. Assume (Cy) with 1 < £ co. Then, for any t < 0 and
§ER,

(5.15) Eﬁ(e—”lz—yltl/“(h"y))
/(1 + b/[u]))2,(WAYAE))  for 1<y < oo,
1/(1 + /|l |)e* for y=o00
asy | 0. Especially, in casely = —o0 and 1 < v < oo, the normalized gener-

alized hitting time process {7, _y11/a(la—y)} converges in finite dimensional
distributions, as y | 0, to the hitting time process of a generalized diffusion
with speed measure

mO(w) — { |$!7/(1‘7)/(7 - 1)7 < Oa

0, z>0
and starting point —oo.
Proof. Note that

[(Y/0=7 for 1<y < oo,
1 for y=o00

otz = slt)/allz ~v) — {
as y | 0. By Proposition 2, we have

¢(l2 — ylt|, A a(l2 — y))
= ¢(l2 — yltl, {Aa(lz — y|t|]H{a(l2 — ylt])/a(le — y)})
LE,(YAYA)  for 1<v< oo,
- { lye? for y=o00

as ¢ — ly. By Proposition 1, we get

o(la — ylt], Ma(lz — )
= ¢(lz — ylt], {Malla — ylt|Halz — ylt])/allz — y)})
S, (WY A=) for 1<y < oo,
- { e for y=o0
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as ¢ — ly. We have h(A/a(z)) — |l1]. Hence, we get (5.15). If 1 < v < oo,
then by Example 3 in Section 3, 1/®.(yA|t|'/(=7)) is the Laplace transform
of the hitting time process of the generalized diffusion with speed measure

oy _ | (Y= z <o,
m(”’)_{o z>0

and starting point —oco. If I = —oo, then the limit distribution has to-
tal mass 1 and hence we have also the convergence of finite dimensional
distributions as the proof of Theorem 2 shows. The proof is complete.

We can prove Theorem 6 except the case v = oo using the following
Theorem 7, a version of Kasahara’s continuity theorem. We can also prove
Theorems 2 and 3 using Kasahara’s continuity theorem. These proofs allow
us to recognize the meaning of the convergence more clearly. However, in
this paper, we make use of Propositions 1 and 2 in our proofs for unification
of the method.

THEOREM 7. Let m be a nonnegative and non-decreasing right contin-
wous function on (—o0,ly) satisfying | [ m(y)dy| < oo for z € (—oo,l)
and ¢ be the unique solution of the following equation:

go(a:,/\)—:l—l-/\/

(—o0,x

)(w — )y, \dm(y).

For n = 1,2,..., let mp(z) be a non-decreasing right continuous function
on (ln1,ln2) such that there is ¢, € (In1,ln2) satisfying my(c,—) = 0. Let
an,bn € R and let on(x, A) be the solution of the following equation:

(@A) = an + bpz + A / (@ = W)on(y, Ndma(y)  for cn < @ < Iz,

[cn,T)

=a, + b, — /\/ (z — Y)on(y, Ndmn(y) forlp <z < cp.
Z,Cn

E

Suppose that

an — a, ¢, — —00 as m — 00, sup, |byc,| < oo, and

lim m,(z) = m(z),
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for continuity points x € (—oo,ly) of m. Then,
lim on(z, A) = ap(z, A)
n—oo
untformly in any compact set of (x, ) with z < ly and A 2 0.

We can prove this theorem similarly to the proof of Kasahara’s theorem.

§6. Convergence to N(0,1)

Theorem 6 and (3.3) show that the limit distribution is degenerate
to one point in case v = oo. In this case, we get convergence to normal
distribution by changing the normalization.

THEOREM 8. Assume that l; = —oo and m(z) = 0 for £ < 0. Then
the distribution of 75 = (1o — Eo7s)/(VoTz)/? converges to N(0,1) as z — Iy
if and only if

(6.1) { / ’ /0 Y m(2) ( /0 zm(u)zdu) dzdy}2
=0 ({/Om /Oy m(z)2dz}3) as x — ly.

Proof. If l; = —oo and m(z) = 0 for z < 0, then (6.1) is equivalent
to the condition Ey(7,)® — 0 as £ — l5. The conclusion is obvious by the
result of [5] for CE distributions (convolutions of exponential distributions
on R,) that the distribution of 7, — N(0,1) as ¢ — I3 if and only if
Eo(7%)® — 0 as  — lp. Refer to [10] for definition of CE, distribution.

Remark 9. It is shown in [5] that if [; = —oco and m(z) =0 for z < 0,
then (6.1) implies Vo(7z)/(Eo(72))? — 0 as & — Iy, that is, v = co. It is an
interesting problem what kind of limit distributions appear when v = oo
and (6.1) is not satisfied.

Set M(z) = [; m(y)*dy.

COROLLARY 1. Suppose that l; = —oo, m(z) =0 for z < 0,

T
(6.2) / M(y)dy — oo as z—ly
0
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and

63 ([ mnronas)’ =o(siar [“31as) oo 2ot

Then the distribution of T, converges to N(0,1) as z — 5.

Proof. (6.1) is satisfied in case that [ [ m(z)M(z)dzdy is bounded.
So, we assume that [; [ m(z)M(z)dzdy tends to oo as x — ly. By
L’hospital’s rule, (6.2) and (6.3), we have

/oz /oy m(z)M (z)dzdy/ {/Ox M(y)dy}s/z
o o o}

as  — ls.

COROLLARY 2. Suppose (6.2) and

64)  M(z) —o< {/M dy) }1/2) szl

Then (6.3) holds.

Proof. By L’hospital’s rule, we have

/ m(z)M(z dz/{ (/ My dy)l/z}
~ () M(z) {m(m)z (/Ow M(y)di‘l) 1/2 + %M(z)z (/0’ M(y)dy) _1/2}

=o0(1)
as ¢ — ly. Hence (6.3) holds.

Remark 10. Assume (Cy), that is m(z) ~ (lo—z)'L(ly—z) as x — Iy,
where I3 < oo and L is slowly varying at 0. Then we have

M(z) ~ (Io —y) ' L(l, — y)*
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and

{M(z)/m(z)}? ~L(lz —z)? =0 (/Om(l2 —y)  L(ly - y)zdy) as z — la.
Hence (6.2) and (6.4) hold in this case.

We use the notations f', f”, f(™) for the 1st, 2nd and nth derivatives,
respectively, in the variable A of a function f of (z, A).

2 (2,0) — ¢'(z,0) = 2 /0 ) /0 Y m(2)dzdy

LEMMA 9.

and

zy” (2,0) —

¢"(z,0)
_ / () / / m(u)dudzdy — 4 / / / m(u)?dudzdy.

Proof. By Lemma 2, we have
T T Yy
56/(5,0) = (2,0 = [ - pym@)dy+ [ [ midsdy
0 o Jo

= 2/0w /Oy m(z)dzdy.

Also, we have, by Lemma 2, that

(6.5) o(2,0) = ¢ (z,0)% — 2 /O ) /0 ! () dedy
and

(2,0 = 2 / dy / m(2))dz /0 " (m(z) - m(w))du.
By integration by parts, we have

¢"(z,0)

B /O " mly) /0 Y am(z)dzdy — 2 /0 ’ /0 Y am(z)2dzdy
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_2/0 zm(y)y/O ! /0 ’ m(u)dudzdg:—}— : /0 ’ /0 Y m(2) /0 () dudzdy
=% /O m;(y) /0 :n(z)dzdy—zx /0 /0 m(2)2dz

4 /0 /0 ’ /0 m(u)2dudzdy — 4 /0 " () /0 ’ /0 " () dudzdy
= 2" (x,0) + 4 /0 ’ /0 ’ /0 " m(u)2dudzdy — 4 /0 " () /0 ! /0 " m(u)dudzdy.

Here we used (6.5). We get the conclusion.
LEMMA 10. Letl; = —oo and m((—o0)+) > —oco. Assume that
m(—z) — m((—o0)+) ~ x(a"'l)_l—lK(:L') as T — 00,

where K(z) is slowly varying at co and n < o« < n+ 1 with n 2 2. Then
AR(A) 1s n times differentiable in a right neighborhood of 0,

(6.6) (KR™2)(A) — —(e0)™,
(6.7) (W= {RR" — 2(R)2})(A) — 2¢5 %,
and

(6.8)  [A™4{6RR' " — 6(R')® — hZRB)}|(N) — 6(co) 3 (2 — coca)
as A | 0, where ¢, = limyjo 7 - ?id;k'{’\h()‘)} for k=0,1 and 2.

Proof. Under the assumption of the lemma, it is shown in the proof of
Theorem 6 in [10] that Ah(A) is n times differentiable in a right neighbor-
hood of 0 and

n

h(A) = AP 4 (=1)"(1 + 0(1))A*"IN(X),
k=0

where N () is slowly varying at 0. Since h(A) is completely monotone,
R(A) = coA™t + 1 + ea) + o(N),

R'(A) = —coA™2 4¢3 + o(1),
R'(A) = 2coA 2 + o(A 1)

and
RB(A) = ~6coA™% + o(A72).
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Hence, we have (6.6). Since
RE"(X) = 2(co)? A7 + 2¢oe1 A3 + o(A72)

and
2(h")2(N) = 2(co)? A% — 4cped ™2 4+ o(A72),

as A | 0, we have
{hh" = 2(R")2}(N) = 2coe1 A3 + O(A72).
Hence we get (6.7). Since

{R®R2Y(A) = =620 — 12c2c1 A5 — 6¢o(c? + 2coca) A% + o(A™Y),
{R"B'RY(A) = —2¢3A78 — 2c2c; A5 + 0o(A7H)

and
(h')3()\) = —~cg)\_6 + 3c(2)c2/\_4 + 0(/\-4)

as A | 0, we have
[6RA'R" — 6(h')3 — h2RB))(N) = {6co(c? + 2coca) — 18ckea} A~ + o(A™4)
= 6co(c? — coc) A" +0o(A7Y)
as A | 0. Hence we get (6.8).

LEMMA 11. Letu(z, ) = p(z, A)+h(X)"1é(z, ). Under the assump-
tion of Lemma 10,

6.9)  {()?~u"}z,0)
={(¢')? = ¢" +2(co) (¢’ — &) + (co) 2B(¢ + 2¢1)}(x, 0)
and
(6.10)  {u® — 3u'u" + 2(u")%}(z,0)
— [(4‘0(3) _ 38",‘/7” + 2(‘0/3) + 3(60)—1{¢n _ ¢<,0" + 2(p/(¢(pl _ ¢/)}

+6(co)"2(c1 + ) (¢’ — ¢)
+2(co) 2 p(#? + 3c16 + 3¢ — 3coca)](z, 0),

where ¢ for k =0,1,2 are those defined in Lemma 10.
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Proof. Since h(0) = oo, u(x,0) = p(x,0) = 1. Since u' = ¢’ + ¢'R~! —
¢'h~! — ¢h'h2, by Lemma 10,

W'(z,0) = {¢' + (co) "' ¢)}(z, 0).

Since

w' ="+ " = 2¢ MR — ghTA(hR" - 2(R')Y),
we have, by Lemma 10,
u"(x,0) = {¢" +2(co) 719’ — 2¢1(co) 29} (x,0).
Hence, we have (6.9). Since

w® = @(3) + ¢(3)h—1 —3¢"Wh2 - 3¢’h_3{h"h _ 2(h')2}
+oh~4{6hh'h" — 6(h')® — K2R},

we have, by Lemma, 10,
©)(2,0) = {6 +3(c0) 6" — 61 (c0) 29" + 6(c3 — coea)(co) >6} (2 0).
Hence, we have (6.10).
THEOREM 9. Let l; = —oo and m((—o0)+) > —oo. Let
m(—z) — m((—o0)+) ~ x(aH)_I_IK(:ﬂ) as T — 00

where K(x) is slowly varying at co and n < a < n+ 1 withn 2 2. If
(6.1) holds, then the distribution of 7o = (74 — Eo7s)/(VoTe)Y/? converges to
N(0,1) as z — 5.

Proof. Note that (6.1) implies that Iy < co or m(ly—) = co. Then

(6.11) /0z /Oy m(z)dzdy = o (/Oz /Oy m(z)zdzdy) :

By (4.2), Lemma 9, (6.9) and (6.11), we have

o(72 NZ//m dzdy as x — s,

Eo((rz — Eo(72))?) = [u® = 3u"u’ + 2(«)*)(=,0)
= Ji(z) + Jo(z) + J3(x) + Js(z),

By Lemma 11,
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where
Ji(z) = {p®) - 3¢"¢" +2(¢)*} (2, 0),
Ja(z) = 3(co) " H{9" — ¢¢” + 20 (¢’ — ¢')}(z,0),
J3(z) = {6(co) *(c1 + ) (¢’ — ¢')}(x,0),

and

.]4(.’1:) = {2(60)-3(]5((}52 + 361¢ + 36% - 36002)}(.’12,0).
By the proof of Theorem 2 and by the assumption,

Ji(z) = o ({/0 /Oym(z)zdz}3/2) as 7ol

By Lemma 9 and (6.11),

—o ({/0 /Oym(z)2dz}3/2) as T — by,

while Jy(z) is bounded in 0 £ z < l;. By Lemma 9,

C()Jz(:l} /3

) o
+4 /0 ( /0 m(u)du) dz + 4 /0 ’ /0 ’ /0 " () dudzdy
([ ) [ [

:4/; (/0 m(u)du) dz+4/0z /Oy /0 m(u)2dudzdy.

/Om (/Oz m(u)du)2 dz =2 /03c /Oy m(z) /OZ m(u)dudzdy
s 2/0”” /Oy m(z) /Oz m(u)dudzdy,

/0 : /0 ! /0 " m(u)2dudzdy < /O ’ /O "m(2) /0 m(u)dudzdy,

Since

and
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Jo(z) =o ({/Om /oy m(z)2dz}3/2) as  x — .

Eo((1e — Eo(12))®) = o(Vo(12)*/?) as =z — 1y

we have

Hence,

and we get the conclusion by [2] Corollary 2.
§87. Comparison with the result of Keller-Kersting-Roesler for
diffusion processes

In this section, we apply our results to diffusion processes and compare
them with the result of Keller-Kersting-Roesler. Let —co £ 71 < 79 < oo.
Let S be either (r1,79), [r1,72), (r1,72] or [r1,72]. Let a(y) and b(y) be
continuous functions on S such that a(y) > 0 on (r1,72). We assume that
0€S. Let A= a(y)dL;; + b(y)(—%. We set

5@=mkf%%@s@=fﬂWy

w@=m@ﬂw*,mw=/ﬁmmy
0
Let

a= /(OM)S(m)m(dx),

8= /(o,rz) m(z)s(dx).

If the boundary 7, is regular (o < oo, 8 < o) and 79 € S, then we need
the following boundary condition to determine a process by the differential
operator A:

(7‘1) ’Y'U,('I“Q) + 5AU(T2) + [L’U,—(’I'z) = Oa 7)6 g O, u z O’ l5| +p> 0.

Here u™(rg) = lim, | %:—Z—g%;%f;—:g It is easy to see that s(ro—) < oo and
m(ry~) < oo if and only if @ < co and B8 < co. That is, r9 is regular if and
only if s(re—) + m(re—) < oo.
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(i) In case s(rg—) + m(re—) = oo, we set ls = s(ro—) and define my(x)
by
m(s™(z)), z <l
mz(m) ={ ( ( )) 2

00, z >l
(i) In case s(re—) + m(r2—) < 0o, rg € S and 73 is not a trap (u > 0 in
(7.1)), we let Iy = s(ro—) + I%‘ and define mq by

m(s~!(z)), 0=z <s(rp—)
ma(z) =< m(re—) + l% , s(re=) Sz <y
00 Iy £ .

(iii) In case s(rg—) + m(re—) < oo, 79 ¢ S (6 = p = 0in (7.1)), we set
ly = s(re—) and define mq by

mz(x) = { m(s—l(x))a r < l2,

00, z 2 ls.

We define m; for x < 0 in the same way. Let

Lo mi(x), =<0,
m(e) = { m;(a:), z > 0.

Let {B;} be 1-dimensional Brownian motion and let

8(t) = / 1(t, v)n(dy).

Then {X; = B(¢~1(t))} is a generalized diffusion process corresponding
to m and {Y; = s7!(X;)} is the diffusion process with generator A with
relevant boundary condition (refer to [6]).

In the following, we assume that

(7.2) r; =0 is a reflecting boundary, a(z) = 1 and b(z) > 0 for z > 0.

Let o, be the hitting time of x for X; and let 7, be the hitting time of
y for Y;. Then, for 0 Sy < 7y,

s(y)
Bo(n) = Bolowy) = [ mu)du = [ mo)s' (),
s(y) rz
Va(r) = Volou) =2 | ’ | twaud:

—9 /0 ’( /0 " ()5 (u)du)s' (2)d
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Eo(ry — Eory)® = Eo(04(y) — Eooy(y))®
- 12/03(” {/0 (m(u) /0“ m(v)zdv> du} dz
—12 /0 ’ [ /0 ’ {m(u) /0 um(v)%'(v)dvs'(u)}dus'(z)] dz

LEMMA 12. Ifrg = 0o and
T
(7.3) b(x)z/ by)ldy — ¢/2 as x— oo,
0

with ¢ > 0, then, for any nonnegative integer n,

c -n ¢ ! —n—1
(7.4) / ! ()b(y) "y~ ! (@)h(&) " — 00 as 7 oo
Proof. By the assumptions (7.2) and (7.3), we have [’ m'(y)b(y) "dy

— 0o as £ — oo for n 2 0. Moreover, we have

/ m'( ) "dy

= [ @) o)y
~ [T () ([ b(zrldz) iy
= m'(z) (%)Tl (/Ozb(z ldz) /bz) Ldz
- [ (5)7 ([ b ldz) " i
S ) (5)7 s ([ o0 )-1dz)n7_ldy

N—m()(ac)"1 c+n /m b(y) " dy.

Here we used the assumption, integration by parts and L’hospital’s rule.
Hence, we get (7.4).
Under the assumption of Lemma 12,

m(@) = [ )y ~ g (@ble)
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Hence,

* m(y) c [T - c _
| 28w~ [ b ldy~mb<x) 2

* m( ’!J)2 e , _
/(y (c+ 1) / m'(y)b(y) ™~ (—c‘;mm (z)b(z) 3,

These asymptotics yield

™) g [T, t3
m{e) / ’(y) o m(y) W

Hence, by Theorem 1, we get the following:

THEOREM 10. Assume (7.2), rg = oo and (7.3). Then the Laplace
transform of the limit distribution of 7,/Eo7y as x — 00 is 1/® ey (%i)\)
2

It is shown in [5], that if b(z) is continuously differentiable,

(7.5) / ” bz)"*dz = oo

and
(7.6) b (z) = o(b*(2)),

then the distribution of {7, — Eo7s}/{Vo7z}/? converges to N(0,1). This
result can also be obtained by using Corollary 2 of Theorem 8. In order to
get this result, the following asymptotic similar to (7.4) is important:

X
/ m/(y)b(y) "dy ~ m'(z)b(z) "' — 00 asz — 00 forn 2 0.
0

We remark that if b(z) ~ cx™! with ¢ > 0 as = — oo, then (7.3) is
satisfied; if b(z) ~ cz® with —1 < @ < 1/3 and ¢ > 0, then (7.5) and (7.6)
are satisfied.
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