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LIMIT THEOREMS FOR HITTING TIMES OF
1-DIMENSIONAL

GENERALIZED DIFFUSIONS

MATSUYO TOMISAKI AND MAKOTO YAMAZATO

Abstract. Limit theorems are obtained for suitably normalized hitting times
of single points for 1-dimensional generalized diffusion processes as the hitting
points tend to boundaries under an assumption which is slightly stronger than
that the existence of limits 7 + 1 of the ratio of the mean and the variance of
the hitting time. Laplace transforms of limit distributions are modifications of
Bessel functions. Results are classified by the one parameter {7}, each of which
is the degree of corresponding Bessel function. In case the limit distribution is
degenerate to one point, by changing the normalization, we obtain convergence
to the normal distribution. Regarding the starting point as a time param-
eter, we obtain convergence in finite dimensional distributions to self-similar
processes with independent increments under slightly stronger assumption.

§1. Introduction

We denote by λΛ the class of right continuous non-decreasing functions

m : [—00,00] —> [—00,00], satisfying ra(—00) = —00, ra(oo) = 00, ra(0—) =

0. For m G λΛ, we set

h(m) = sup{x < 0 m(x) — —00},

him) = inf{# > 0 m(x) = 00}.

If there is no confusion, we write li(m) simply li for i = 1, 2. We denote by

Em the support of the measure induced by m restricted to (/i,/2) There

naturally corresponds a strong Markov process {Xt} (called 1-dimensional

generalized diffusion process) on Em (whose formal infinitesimal generator

is 3^3^) to m by changing time of the Brownian motion. The measure

τn(dx) is called the speed measure of {Xt}- Denote the hitting time of x

for {Xt} by τx. We are concerned with a problem what is the suitable

normalization and what is the limit distribution of τx when the process

starts at the origin and x tends to /2
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The problem of the asymptotics of τx as x —» I2 is closely related to

metal exhaustion (private communication with A. Shimizu). That is, re-

garding the extreme point of a crack of metal by exhaustion as a maximal

point of diffusion process, one is concerned with determining the durable

length of time, by investigating asymptotics of the maximal point.

Keller-Kersting-Roesler [5] studied the problem in the case that the

process is regular diflfusion and the starting point (the origin) is a reflecting

boundary. They showed that if the mean EQTX and the variance VQTX are

finite and (VoTz)1/2 = O(EQTX) (as x —> 00), then a suitable normalization

is

τx = (τx - Eo

and, they obtained a necessary and sufficient condition for the limit distri-

bution of fx to be normal or exponential. Moreover, they obtained sufficient

conditions in terms of infinitesimal generator (diffusion coefficient and drift

coefficient) that the limit distribution is to be normal or exponential.

Soloviev [9] studied the same problem for a birth and death process

which starts at its boundary. His result is described in a unified form and

is deeper than the result in [5].

In this paper, we consider the class of 1-dimensional generalized diffu-

sion processes, which includes both birth and death processes and regular

diffusion processes. We do not assume the starting point to be a reflecting

boundary. The starting point can be other kind of bundary or an interior

point. Our results are extensions of Keller-Kersting-Roesler and Soloviev

even in the case that the starting point is a reflecting boundary. We remark

that the class of hitting time distributions of 1-dimensional generalized dif-

fusion processes is determined by [11] and [12]; it is a subclass of the class

of infinitely divisible distributions.

We will give the conditions for convergence in terms of asymptotics of

m near I2. Our results are classified by one parameter 0 ^ 7 ^ 00, which

appears in the condition

rx rx

m(x) / m(y)dy/ / m(y)2dy—•I + 7 as x -> Z2,
Jo Jo

or in some related conditions.

We describe, in Section 4, our result in case that the origin is a reflecting

boundary. In Section 5, we describe the results in case that the origin is not

a reflecting boundary. We can regard the hitting point x as a time parameter
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and consider the convergence of {τx} in finite dimensional distributions of
stochastic processes. Then we observe that the behavior of convergence is
quite different according as 7 < 1, 7 = 1 and 7 > 1. In case 7 = 00, the
limit distribution is degenerate to one point. We note in Section 6 that in
this case, normal distribution appears as a limit distribution if we change
the normalization. Section 7 is devoted to the comparison of our results
with Keller-Kersting-Roesler's.

§2. Hitting time distributions of l-dimensional generalized diffu-
sions

Let {£(£)} be l-dimensional Brownian motion on a probability space
(Ω,T,Tt,θt,Px) with B(0) = 0, where Tt is an increasing right continuous
family of sub σ-fields of T and θt is a shift operator. Let Z(£, x) be its local
time. For m G ΛΊ, set

φ(t) = / l(t,x)dm(x).
./R=(-oo,oo)

This φ(t) is a non-decreasing function. Let φ~ι(t) be the right continuous
inverse of φ(t). Let Em = supp(m|(/1?/2)). For t\ < t2,

(2.1) Φ(t2) = φ(t1) if and only if B(t) £ Em for t e (tut2).

Let C = inf{t ^ 0 : β(0- 1(t)) = h or /2}. By (2.1), for any t < ζ, φ~ι(t)
is an increasing point of φ. So, for t with t < ζ, B{φ~ι(t)) G Em. Setting

Xt = B(φ~ (t)), θt =

we have that

is a strong Markov process on Em and in case that the derivative m! of m
exists, the infinitesimal generator of X is given by mhx\ gjb?- Above ζ is the
life time of Xt. We can show that if B(φ~λ(t)) = y, then for each x € Em

satisfying 0 < x < y, there is s < t such that B(φ~1(s)) = x. Let τx be the
hitting time of x for Xf. Then, τy(ω) = t if and only if

τx{ω) + τy{θTχω) = t.
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If PQ{TX < oo) = 1 for 0 < x < I2, then by the strong Markov property

oϊX,

and

Therefore, if PQ{TX < oo) = 1 for 0 < x < I2, then {τx} has independent

increments.

For m G Λ4, let φ(x,X) and φ(x,X) be the continuous solutions of

(2.2) φ(x, A) = 1 + A f (x - y)φ{y, X)dm{y) for x ^ 0
J[0,x)

= 1 - A / (a; - 3/)y?(3/, X)dm(y) for a: < 0
J[x,0)

and

(2.3) </>(#, A) = a: + A / (x - y)φ(y, X)dm(y) for x ^ 0
J[0,x)

= x — X I (x — y)φ(y> X)dm(y) for x < 0,
«/[z,0)

respectively. Both are entire functions of A. Since 4- ( / \\) = / 1

Xx^,

lim^-,^ —φ(x,X)/φ{x,X) exists and we denote this limit by h(X). Here we

denoted right derivative by ^ . Relations between h and m restricted to

[—oo,0) is studied deeply by Kac and Krein (see [6]). Let

u(x, X) = φ(x, A) + h(X)~ιφ(x, A).

Then, for A > 0, u is a positive increasing function of #, satisfying either

ΊA(ZI+, λ) = 0 or ^-ix((—oo)-j-, A) = 0 according as l\ > —oo or l\ = — oo.
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So, by the general theory on diffusion processes, the Laplace transform of

τx is given by the following:

(2.4) Eζ(e-Xτη = u(ξ, λ)/u(x, A) if h < ξ ^ x < l2.

See Ito-McKean [3] p.128-129.

In the case m = 0 on (—oc, 0), lχ = — oo, the origin is a reflecting

boundary. Then, since —φ(x,\)/φ(x,\) = \x\/l —> oo as x —> -oo,

Eξ(e-λτ ) = φ(ξ, λ ) M x , A), -oo < £ ̂  s < l2.

Note that {τx} is defined only for x £ Em. By the independent incre-

ments property, the finite dimensional distribution of {τx} is given by

(2.5) EXo[exp{-XιτXl - λ2τX2 λnrX n}]

for #o,#i, . . ,Xn ^ ^m? ̂ o < #1 < * * * < #n Note that the finite dimen-
sional distributions are determined only by u(x,\), x G Em.

LEMMA 1. u(s,λ)/u(t,λ) for lχ < s ^ t < lη> is the Laplace transform

of a distribution.

Proof. We may assume that 5, t £ Em. Let mc(dx) = m(dx)+cδs(dx) +

cδt(dx), where c > 0 and δa(dx) is the delta distribution concentrated at α.

Write u corresponding to mc as uc. Then, since s , ίG Emc, uc(s, X)/uc(t, X)

is the Laplace transform of a distribution. Since

uc(s,λ) = u(s,λ)

and

uc{t, λ) = φ(t, A) + (t - s)λcφ{s, A) + {φ(t, A) + (t - s)λc^(s, λ)}//ι(λ),

we have

wc(5, X)/uc(t, A) —• ^(s, X)/u(t, A) as c —> 0,

uniformly in any compact set of A. Hence u(s, X)/u(t, A) is the Laplace

transform of a distribution.
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The above discussion leads to the conclusion that if we define finite
dimensional distributions of {τx} by (2.5) for lχ < XQ < x\ < < xn < /2,
then they satisfy the consistency condition and therefore by Kolmogorov's
extension theorem, there is a unique probability measure on J\ix°M whose
finite dimensional distributions coincide with (2.5). We call this stochastic
process generalized hitting time process with starting point XQ.

§3. Functions φ, φ and h corresponding to special m € Λ4

We define a function Φ7(λ), (0 < 7 < 00) by

(3.1) Φ7(λ) = Γ( 7 )λ( 1 ^)/ 2

°° \n

J n\T

where Iv{z) is the modified Bessel function:

J n\T(n + 7)

^ π ! Γ ( ι / + n + l ) '
71=0 V '

Since linxγ^o Φ7(7λ) = 1 + λ and limγ^oo Φ7(7λ) = e λ, we define

(3.2) Φ 7 ( 7 λ ) | 7 = 0 = l + λ,

(3.3) Φ 7 ( 7 λ ) | 7 = o o = e λ .

EXAMPLE 1. Let ci,c 2 ^ 0, Zi < -a\ ^ 0 ^ α2 < h and

{ - c i for h<i< - α i ,

0 for - α i ^ ξ < α2,

C2 for α2 ^ ξ < h>

Then, the corresponding solutions φ, φ of (2.2) and (2.3) and h function are

— cχ{x + αχ)λ for l\ < x 5ί — αχ?

(3.4) </?(#, λ) = ^ 1 for ~αχ < x ^ α2 ?

1 + c2(# — α2)λ for α2 < x < /2,

x + c\a\{x + αχ)λ for l\ < x ^ —αi,

(3.5) <?!>(#, λ) = -{ x for -a\ < x ύ α 2 )

(x - α2)λ for α2 < x < Z2,
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and

{ {h + cioi(ii + αi )λ)/(- l

if ci > 0 and Zx > -σo,

(1 + ciαiλ)/ciλ if ci > 0 and h = -oo,

-Zi if C l = 0,

respectively.

EXAMPLE 2. Let |/;| = oo, i = 1,2, 0 < 7 < 1, ci, c2 Ξϊ 0 and

_ / -ci|a:|'1f/<1-τ)/(l - 7) for x < 0,
/

I - 7) for x Z 0.

We have

( 3 7 ) V ' ( a ϊ ' λ )

Also we have

(3 8) ώ(x \)-
(3.8) ^ar, λ) -

Moreover, we have

(3.9) Λ(λ) = ̂ ( c i λ ) 7 " 1 , λ > 0

for :
for :

for

for

v = °

x < 0,

x > 0.

where

(3.10) E 7 = 7 7

Obviously, if c\ = 0, then ψ{x^ λ) = 1 and φ(x, λ) = x for x < 0. Since

EΊ —» 1 as 7 I 0, Example 1 with ci = α2 = 0 can be regarded as a special

case 7 = 0, ci = 0, of this example by (3.2).

EXAMPLE 3. Let, for 7 > 1,

m(x) = \x\Ί^ι-^/{Ί - 1), x < 0.

Then

is the unique solution of the following;

(3.11) z-u(x, λ) = λu(x, λ),
dm ax
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(3.12) u'(-oo,λ) = 0,

(3.13) u(-oo,λ) = 1,

Note that u(0—, λ) = oo.

EXAMPLE 4. Let m(x) = α(eα* - 1), (α > 0) for a; € R.

is the unique solution of (3.11) with the boundary conditions (3.12) and
(3.13). Note that u(oc, λ) = oo. Set u\(x, λ) = u(x, λ) and set

rx

u2(x, λ) = uι(x,λ) / uι(y,λ)~2dy.
Jo

U2 is a solution of (3.11) linearly independent of u\. Since

u2(0,λ) = 0, ^ (

solutions of (2.2) and (2.3) are given by

φ(x, λ) - Ul(x, λ)/Φi(λ) - aλu2(x,

φ{x,X) =u2(x,

respectively. Setting

h(λ) := lim u2(x, λ)/uι(x, λ) = - /
χ-*-<x> J-o

we have,

/ι(λ) = — lim φ(x, λ)/φ(x, λ)
x > o c

= Φ1(λ)/αλΦ'1(λ).

Here we used h(X) = —oo.
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§4. Limit distributions of normalized hitting time

In this section, we treat limit distribution of suitably normalized τx as

x —> I2 when the origin is a reflecting boundary. We can describe our result

in a unified and simple form.

The following lemma can be easily proved by using (2.2) and (2.3).

LEMMA 2. Letφ,φ be the solution of (2.2) and (2.3), respectively, and

let φ(nXx,\) = -ξ^φ{x,\), φίn\x,\) = -§^φ(x,\). These functions are

absolutely continuous in x and represented as:

rx

0) = / m(y)dy,
Jo

φ(nXx,0)=n Γ Γ φ^n-1\z,0)m(
Jo Jo

/

x ryn rv2

dyn / (m(yn) - m(yn_i))dyn_i / (m(y2) -
Jo Jo

for n > 1 and

φ(n\x,0)=n Γ Γ φ(n-ι\z,Q)m(dz)dy
Jo Jo

ΓX ΓVn+l ΓV2

= n\ dyn+1 / (m(yn+ι) - m(yn))dyn -I (m(y2) - m(yι))dyι.
Jo Jo Jo

Note that if lι — -co and m = 0 for x < 0, then

(4.1) E0(τx) = φ'{x, 0)lφ\x, 0) = φ'(x, 0) = Γ m(y)dy.
Jo

(4.2) V0(τx) = {{ψ'f - φ"}(x, 0) = 2 Γ Γ m(z)2dzdy
Jo Jo

(4.3) E0((rx - E0τx)
3) = {^3) - *φ»φ' + 2(φ')3}(x, 0)

= 12 I I m(z) ( I m(u)2du) dzdy.
Jo Jo \Jo )

If m Φ 0 for x < 0, then the representations of the moments by the speed

measure are complicated. We will describe the representation in a special

case in Lemmas 9 and 11 in Section 6.
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Denote ak(x) = φ(k\x,0)/kl and bk(x) = φ(k\x,ϋ)/k\ for k ^ 0. We

have, by Lemma 2,

/•x z x ry

aχ(x) = / m{y)dy, h(x) = dy (m(y) - m(z))dz,

(4.4) ^ Λ Λ

v / rx ry rx ry
ak(x) = / / ak-1(z)m(dz)dy, bk(x) = bk_1(z)m(dz)dy.

Jo Jo Jo Jo

Set α(x) = αi(x). Throughout this paper, we assume that

a(x) —> oc as x —> /2

We introduce the following assumption on m G Λi.

(A7) (0 ^ 7 < oo) : m(x)a(x)/ / m(y)2dy —> 1 + 7 α^ x —> ^5
Jo

(AQO) m{x)a(x)l j m(y)2dy —• oc as x —> Z2

Jo

For any function Φ(7) of 7 G (0,oo), we set Φ(0) = Ii

L E M M A 3 . U n d e r t h e a s s u m p t i o n { A Ί ) f o r s o m e 0 ^ 7 ^ 0 0 ,

as x -> /2, /or n ^ 0./ α(2/)m(2/)^/m(x)() j
Jo n + 1 + 7

Proof. Integration by parts yields

(4.5) Γ a(y)nm(y)2dy
Jo

rx rx ry
= a(x)n / m(y)2dy - / na{y)n~ιm{y) / m(z)2dzdy.

Jo Jo Jo

By the assumption (Aγ) and L'hospitaΓs rule, we have

(4.6) Γ a(yγ-ιm{y) Γ m(z)2dzdy/ Γ a(yrm(y)2dy —> -
7o Jo Jo 1 ++ 7

as x
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By (4.5), (4.6) and the assumption, we have, for 7 < 00,

ex rx
71 i l ± 2 Γa(y)nm(y)2dy~a(x)n Γ m(y)2dy

1 + 7 io Jo

1 + 7

Also, we have, for 7 = 00,

a(x)n+1m(x) as x

ί a(y)nm(y)2dy = o(a(x)n+1m(x)) as x -* /2.
Jo

These give the conclusion of the lemma.

L E M M A 4 . Under t h e a s s u m p t i o n ( A Ί ) f o r s o m e 0 ^ 7 ^ 0 0 ,

(4.7) af

n+1(x)/m(x)a(x)n —> Γ(7)7n+7n!Γ(n + 1 + 7 ) as x^l2

for any nonnegatiυe integer n.

Proof. We prove by induction in n. For n = 0, both sides of (4.7) are

equal to 1 and the conclusion holds. Suppose that (4.7) holds for n ^ k — 1.

By (4.4), we have

(4.8) °4-fi(x) = ak(x)m(x) - / ak(y)m(y)dy.
Jo

By (4.7) for n = k — 1, L'hospital's rule gives

(4.9) ak(x)/a(x)k —

and

*k(y)rn(y)dy/ j^ a(y) ^{yfdy —± ^. _ ^ l τ V L , , Λ as

Hence, by Lemma 3,

(4.10) Γa'k(y)m(y)dy/a(x)km(x)

Jo
Γ(τ)7fc 1 as x —> U.

By (4.8) -(4.10), we have

afk+i(x)/m(x)a(x) as x
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PROPOSITION 1. Under the assumption {AΊ) for some 0 ^ 7 ^ oo;

φ(x, λ/a(x)) —• Φ7(7λ) as x —» I2

uniformly in any compact set of λ ^ 0.

Proof Note that φ{x, λ/α(x)) = ££L0 5 ^ λ n % Lemma 4,

an{x) Γ( 7 )7 n

n!Γ(n + 7) as x

We show that ^?iw — 1/^! for n > 1 by induction in n. It is obvious for

n — 1. Assume that it holds for n ^ k. By (4.4),

x) = ak(z)m(dz)dy
Jo Jo

rx rx ry

= / a>k(y)a'(y)dy - / / α ^ y
JO «/0 JO

^ / ak(y)af(y)dy
Jo

^ Γ a(y)ka\y)dy/kl
Jo

Hence it holds for n = k. This yields

^ 7 ( 7 ) as

uniformly in any compact set of λ ^ 0.

THEOREM 1. Suppose that lι — ~ O D and m(x) = 0 /or x < 0 ;

assume (AΊ) for some 0 ^ 7 ^ 00. TΛen

λ τ ^ a ^ ) -> 1/Φ7(7λ) a5 x-+h, -00 < ξ < l2.

Proof If Zi = —00, m(x) = 0, for x < 0, then

^(e-λr./aί*)) = ^ ( ^ λ/a(x))/^(x, λ/a(x)), -oo < ^ x < h

Hence we have the conclusion by Proposition 1.



HITTING TIMES OF 1-DIMENSIONAL DIFFUSIONS 13

The above result is obtained for birth and death processes by Soloviev

under a condition equivalent to

a(x)m! (x) / m(x)2 — > 7 ( 0 ^ 7 ^ 00) as x —> £2?

which is stronger than our assumption.

Remark 1. By L'hospitaPs rule,

rx

{Eζ(τx)}2/Vζ(τx) ~ m(x)(a(x) - a(ξ))/ / m(y)2dy —> 1 + 7 asx->ί 2 .

This is a probabilistic meaning of the quantity 7.

§5. Convergence to self-similar process

In this section, we investigate a problem on the convergence of hitting

time processes. For this purpose, we prepare the following assumptions:

(C 7) (0 ̂  7 < 1): l2 = 00 and m(x) ~ x^^-^Lix)/^ - 7) as x -> 00.

(Ci): I2 = 00 and there is a function s(α ) regularly varying at 00 and dif-

ferentiable for large x such that the derivative s'(x) is positive and monotone

and

m(s(x)) ~ exL(ex) asx->oo

with some function L slowly varying at 00.

(C 7) (1 < 7 < 00): l2 < 00 and m(x) - (/2 - x) 7 / ( 1 " 7 ) i i (/2 - X)/{Ί ~ ι)
as x —> ?2 with some X slowly varying at 0.

(Coo): I2 < 00 and ra(α ) ̂  (Z2 — x)~1ίί(/2 ~ χ) a s x -+ h with some i ί
slowly varying at 0.

Remark 2. If 0 ^ 7 < 0 and 7 ^ 1 , then (C7) is equivalent to the

following (-B7).

(J57) (0 5ί 7 < 1): I2 = 00 and α(a ) ~ (1 — 7)xm(x) as x —> 00,

( 5 7 ) (1 < 7 < 00): I2 < 00 and α(x) ~ (7 - l)(/2 - x)m(x) as x —> /2,

which is obtained by Seneta [8; Theorem 2.1].

LEMMA 5. 1. Ifη — 1 orj = oo; then (CΊ) implies the following (BΊ).

(B\) : h = CXD, (Aι) holds, and a(x) — o(xm(x)) as x —> 00.

(BQO): I2 < 00 and a(x) = o(m(x)) and (l2—x)m(x) — o(a(x)) as α?«—• £2-

2. 7/0 ̂  7 ^ 00 and J φ 1, then (BΊ) implies (AΊ).
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Proof. 1. Let 7 = 1 and let r{x) — s~ι(x). Then

(5.1) m(x) ~ er^L(er^) as x -> oo.

Since, for large M,
rx

a(x) ~ I m(y)dy
JM

r{x) m(s(logu)) ^

^(^(logit))^

and

K.) ,._ .£(*) . , xJx r'(s(\ogu)) r;(s(logx))
it holds that
yO.ΔJ LLyJU J ^^ C UyC j I I yju J.

By (5.1) and (5.2),

a(x)/xm(x) ~ l/χr'(x) —> 0

as x —• oo. Since

/

( g )

m(y)2dy =
. (log M)

- / uL(u)2sf(\ogu)du ~ χ2L(x)2s'(\ogx)/2,
JM

we have, by (5.1) - (5.3), that

/

s(logar)

m(y) dy ~ 2.

Hence (Bi) holds. It is easy to show that (Coo) implies (JBQO)

2. If (BΊ) holds for some 0 ^ 7 < 1, then, by using L'hospital's rule, we
have

m{
rx

{x)a{x)l I m(y)2dy
Jo

rx
- a{x)2/(l - η)x I m(y)2dy

Jo

~ a(x){2xm(x) — a(x)}/(l — rγ)x2rn(x)2

~ (1 - 7)xm(x){(l + j)xm(x)}/(l - η)x2m(x)2

= 1 + 7 as x —• Z2
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If (BΊ) holds for some 1 < 7 < 00, then, we have

PX

m(x)a(x)l I m(y)2dy
Jo

ΛJ rtί T I /|Λ/ 1 if 7r> τ | I 7Y) (Ίl) ΠΊI

Jo
~ α(x){2(Z2 - x)m(x) + α(α;)}/(7 - 1)(Z2 - x) 2 m(x) 2

~ (7 — l)(/2 — a;)77i(x){(l + 7)(^2 ~ x)m(x)}/(ιy — l)(/2 — x)2r?2(a:)2

= 1 + 7 as x —> Z2.

Here we used L'hospital's rule again. If (Boo) holds, then, we have

PX

m(x)a(x)/ / m(y)2dy
Jo

PX

= o{a(x)2/(l2 -x) I m(y)2dy},
Jo

and, using L'hospital's rule, we have

PX

a(x)2/(l2 - x) / m(y)2dy
Jo

= a(x){2(l2 — x)m(x) + a(x)}/(l2 — x)2m(x)2

- a{x)2/(l2 - x)2m(x)2

—•> cxo a s x —* l2.

We get the conclusion.

Remark 3. The assumption (J3χ) includes (Ai). This is natural in the

following sense. Let us assume

a(x) ~ cxbm(x) as a: —> CXD (C > 0, —00 < b < 1).

Then, we have by using L'hospital's rule

PX

m(x)a(x)/ / m(y)2dy
Jo

- α(x)2/cx6 / m(y)2dy
Jo

- [2c2 A ι ( z ) 2 - bcxb-1{cxbm{x)Ϋlc2x2bm{x)2

—> 2 a s x —± l2.

Hence (Ai) holds.
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We next note that the following limit theorem for the function φ.

PROPOSITION 2. 1. Under the assumption (BΊ) with 0 5Ξ 7 < 1,

φ(x,\/a(x))/x — ^ n ! Γ w + 2 l ^ Λ " = *2-7(7λ)
71=0 ' ^ ' '

as x —> Z2 uniformly in any compact set of λ.

2. Under the assumption (BΊ) with 1 ^ 7 ίί oo;

" = Φ7(7λ)

as x —± I2 uniformly in any compact set of A.

Since (J57) is equivalent to (C7) for 7 G [0, 00) \ {1}, 1 of Proposition 2

is immediately obtained by Kasahara's continuity theorem on Krein's cor-

respondence ([4]). Let us observe the asymptotic behavior of bn(x) defined

by (4.4) as x —> 00.

LEMMA 6. Assume (BΊ) for some 1 ^ 7 ^ 00. Then, for k ^ 1?

/ a(y)k~1ym(y)2dy/a(x)kxm(x) —• as x —• 2̂-

Proof Integration by parts gives

(5.4) / a(y)k-ιym(y)2dy
Jo

rx
= xa(x)k~1 / m(y)2dy

Jo

- Γ(k-l)a(y)k-2ym(y) Γ m(z)2dzdy
Jo Jo

- Γ a(y)k-1 Γ m(z)2dzdy.
Jo Jo

Since the assumption (A7) holds, we have

ίx 1
(5.5) xa{x)k~λ I m(y)2dy ~ a(x)kxm(x) for 1 ^ 7 < 00,

Jo 1 + 7
= o(α(x) xm(x)) for 7 = 00,
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ι(v) vm(v) I m(z) dzdv/ I a(v) υm(υ) dv —> -
+ 7

(5.6) Γa(y)k-2ym(y) Γm{z)2dzdy/ Γ a(y)k-ιym(y)2dy —> - i
Jo Jo Jo 1 +

and

(5.7) Γ oίί,)*-1 Γ m(z)2dzdy/ Γ a(y)km(y)dy
Jo Jo Jo

as x
1 + 7

By the assumption (BΊ) with 1 £ 7 < 00, we have

(5.8) Γ a(y)km(y)dy = a(x)h+1/(k + 1)
Jo

= o(a(x)kxm(x)) if 1 ^ 7 < CXD.

By the monotonicity of α(x) and m(x), we have

(5.9) / a(y)km(y)dy ^ α(x)fcxm(x).
Jo

By (5.4) - (5.8)

—-— / a(y)k~1ym(y)2dy
1 + 7 Jo

1

α(x) xm(x) as x —• I2 for 7 < 00.
1 + 7

By (5.4) - (5.7) and (5.9)

/ a(y) ~lym{yγdy = o(α(x) xm(x)) as x f ° r 7 = cχo.

Hence,

/ k 1 2 k as x -> /2
/ a(y)k~1ym(y)2dy/a(x)kxm(x) —•

Jo /c ++ 7
LEMMA 7. Under the assumption (BΊ) for some 1 ^ 7 ^ oo ; it holds

for any n ^ 1

(5.10) 6n(x)/xα(x)n - b'n( n!Γ(n

x
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Proof. We prove by induction in n. For n = 1, (5.10) holds by

bf

ι(x)/xm(x) = {xm(x) — a(x)}/xm(x) —• 1,

b\(x)/xa{x) ~ {χm(x) — a(x)}/{xm(x) + a(x)} —• 1 as x —»

Suppose that (5.10) holds for n ύk. By L'hospital's rule, we have

b'k+i(x)/{a(x)k+1 + (k + l)a(x)kxm{x)}
rx

{bk(x)m(x)~ / b'k(y)m(y)dy}/{a(x)k+1+ (k + l)a(x)kxm{x)}
Jo

Γ( 7 )7 f c Γ( 7 )7 f c

(fe + l)!Γ(fe + 7) (k + l)(k - l)!Γ(fe + l){k + 7)

Γ ( 7 ) 7 f c + 1

Here, we used the induction hypothesis, (J37), (4.4), and Lemma 6.

Proof of 2 of Proposition 2. Since b\(x)/xa\{x) ^ 1, as in the proof of

Proposition 1, we can show that

bn{x)/xa{x)n ύ 1/nl

Hence by Lemmas 6 and 7, we get the conclusion.

Remark 4. Any φ and φ satisfy

1 <; φ(x, λ), φ(x, λ)/x <> e α ^ λ for x, λ ^ 0,

which is easily seen by the proofs of Propositions 1 and 2.

THEOREM 2. Assume that lι — —00, that (C 7) holds for some 0 ^ 7 <

1 and that

\m(—x)\/m(x) —> c G [0, 00) as x —> 00.

Then,

lim
X—»OO
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for tj λ ^ 0 and ζ £ R. Namely, the normalized generalized hitting time

process {τtx/a(x)} with any starting point converges in finite dimensional

distributions to a self-similar process {T®} with exponent (1 — 7 ) " 1 with

independent increments as x —> oo, and {T®} is the hitting time process

starting at the origin of the generalized diffusion process with speed measure

7 ) χ < 0.

Proof. By the assumption (C 7) with 0 ^ 7 < 1 and Propositions 1 and

2, we have

φ(x, λ/a(x)) -> Φ 7( 7λ), φ(x, λ/a(x))/x -H Φ 2- 7(τλ),

as x —> 00. These convergences are uniform in any compact set of A ^ 0.

Since a(tx)/a(x) —> t^~Ί^ a s x - > oo, for any t ^ 0,

ψ(tx,λ/a(x)) = <p(tx,\a(tx)/a(tx)a(x)) -• Φ7

tφ{tx,\a(tx)/a(tx)a{x))/tx —> ίΦ2_7(7λ^1~7) ) as

Since

xm(tx)/a(x) -• - c | t | 7 / ( 1 " 7 V ( l ~ 7) as a: -• 00 for t < 0,

we have, by Kasahara's continuity theorem,

h(λ/a(x))/x —> ̂ ( c λ ) 7 " 1 as x —• 00.

Hence we get, for t > 0 and ξ E R that

= u(ξ,\/a(x))/u(xt,λ/a(x))

a s a ; ^ 00, where l/ifc°(t, λ) is the Laplace transform of τt° by Example 2 in

Section 3. Since {τx} has independent increments, {ff} = {rtx/α(x)} also

has independent increments. By (2.5), the finite dimensional distributions

of {ff} are determined by ύx(t,X) = u(xt, λ/a(x)). Hence, we get the

convergence of finite dimensional distributions.
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Remark 5. (i) In the case 7 = 0 and c = 0, the limit distribution is

exponential by (3.2).

(ii) In the case 7 = 5 and c = 1 in Theorem 2, the limit process is a

one-sided stable process with exponent i . The Laplace transform is given

by e~*(λ/2) . It may be an interesting problem for what measure ra, there

appear other stable distributions.

Remark 6. Self-similar processes with independent increments are ex-

tensively studied by Sato [7].

The following theorem treats the case c = 00 in Theorem 2.

THEOREM 3. Let m(x) = -m((-x)+) + ra(0) - m(O-) and ά(x) =

Jo lm(~2/)lΦ/ Assume that rh satisfies (C7) for some 0 ^ 7 < 1 and that

(5.11) a(x)/ά(x) —• 0 as x —> 00.

Then,

x
lim Eζ[e-Xτt*/άW] = 1/(1

for ί, λ ^ 0 and ξ G R, £Λα£ is, ί/fce normalized generalized hitting time

process {τtx/a(x)} with any starting point converges, as x —> 00, in finite

dimensional distributions to a self-similar process {T®} with exponent (1 —

7)- 1 with independent increments starting at the origin, {τt

0} is the hitting

time process starting at the origin of the generalized diffusion process with

speed measure

m W | j | 7 / ( i - 7 ) / ( i ) x < o .

Proof. By (5.11), Remark 4 and the assumption (C7) with 0 ^ 7 < 1,

we have

φ(xt,\/a{x))

= φ(xt,(λ/a(xt))(a(xt)/ά(x))) —> 1,

x~1φ(xt, λ/ά(x))

= (txy1φ(xt,(X/a(xt))(a(xi)/a(x))) —• 1.
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We have, by Kasahara's continuity theorem,

Hence,

£?{(e-Wδ(*)) = u(ξ,λ/a(x))/u(tx,λ/ά(x))

-» 1/(1 + tX1~Ί/EΊ) as x -> oo.

Since {τtx/a(x}} has independent increments, the convergence of finite di-

mensional distributions is obvious.

LEMMA 8. Let 0 ^ p fί oo and

(
_ /

oo /or p ^ ί < oo.

that l\ — —oo αncί

x\m{—tx)\/a(x) —> τnp(t) as x —• oo.

h(λ/a(x))/x —• p as x —> oo.

Proof. By Example 1 in Section 3, h(λ/a(x))/x corresponds to

xm(—tx)/a(x) and /ι(λ) = p corresponds to —mp(—i). Hence by Kasa-

hara's continuity theorem, the conclusion is obvious.

THEOREM 4. Assume (CΊ) and that

x\m(—tx)\l a{x) —• mp(t)

as x —• oo /or 5ome p G [0, oo]. ΓΛen

(5.12) £ ξ ( e - λ r «(-H)MΦ0)) _ ^ ! / ( i + l/pjφ^e^λ) as x -> oo

/or ί , ( E R and A ̂  0. Especially, in case p = oo, ίfte normalized general-

ized hitting time process {τsrx+t\/a(s(x))} with any starting point converges

in finite dimensional distributions to a process {T®} with independent incre-

ments, which is the hitting time process of the generalized diffusion process

with speed measure m°(t) = eι, t £ R and starting point — oo.
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Proof. By the assumption (Ci) and Lemma 5, the assumption (JE?I) is

satisfied. By Propositions 1, 2 and Lemma 8, we get

φ(x, λ/a(x)), φ(x, λ/a(x))/x —> Φi(λ),

h{\/a(x))/x —• p

as x —» oc. These convergences are uniform in any compact set of λ ^ 0.

Since a(s(x + t))/a(s(x)) —• et as x —» oo, for any t G R,

(* + *), {λ/a(s(x + t))}{a(s(x

0(s(x + t), X/a(s(x)))/s(x + t)

φ(s(x + ί), {λ/α(5(αr + *))}{α(s(s + t))/a(s(x))})/s(x + t)

and

fe(λ/(( + t ) ) ) / ( x + t) —• p, as x —> oo.

Hence, for any t G R, we get (5.12). As in the proof of Theorem 2, the

convergence of the finite dimensional distributions is obvious in case p = oo.

By Example 4 in Section 3, the limit process is the hitting time process of

a generalized diffusion with speed measure m°(t) = eι and starting point

—oo.

The following theorem treats the case p = 0 in Theorem 4.

THEOREM 5. Let πι(x) = -m((-x)+) + m(0) - m(O-) and a(x) =

Jo lm("~2/)l^2/ 4̂«s«ŝ ™e £Aαί m satisfies (Ci) and ίΛaί /2 = oo and, /or ant/

(5.13) a(tx)/ά(x) —> 0 as x —> oo.

ΓΛen

(5.14) lim £ £ [ e - λ τ t /δW] = 1/(1 + t) for t, λ ^ 0 and ξ G R.

Remark 7. The limit distribution coincides with the limit distribution

in Theorem 3 with 7 = 1.
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Proof of Theorem 5. By the assumption (CΊ), we get

x\m(—tx)\/ά(x) —• mi (t) as x —• oo.

Hence, by Lemma 8, we have

h(λ/ά(x))/x —> 1

as x —» oo. We have, by (5.13) and Remark 4, that

φ{tx,\/ά(x)),φ(tx,\/a(x))/tx —• 1.

Hence we have (5.14).

Remark 8. Let

m{x) ~ e r

and

m(-x) ~ e r i W L i ( e r i ^ ) as x -> oo,

where, r and ri. are regularly varying at oo, diίferentiable for large x > 0,

the derivatives r', (ri) ' are positive and monotone, and L and Li are slowly

varying at oo. Then, by (5.2),

a(x) - er^L(er^)/rf(x).

Hence

x\m(-tx)\/a(x) - α:e r i( t x)Li(e r i^)r/(x)/e rWL(e r(a :)).

Now, set

r{x) = xaK(x), n(x) = xβKλ(x)

where K and K\ are slowly varying at oo. Let t > 0.

(i) If a < β, then a(tx)/ά(x) —> 0 and x\m(—tx)\/a(x) —• oo as x —> oo.

(ii) If α > /?, then α(te)/α(x), a;|m(—ίx)|/α(a;) —> 0 as x —• oo.

(iii) If a = β and limx_^oo K(x)/Kι(x) —• /c E (0, oo], then, for large x,

tκ l ( tx )-x ( , ) | > 0 . f ί > Λ l / β >

and hence

x\m(—tx)\/a(x) —• mκ i/o(ί).
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(iv) ϊΐa = β and lim^oo K(x)/K1(x) -* 0, then

a(tx)/a{x) —• 0.

THEOREM 6. Assume (C 7) with 1 < 7 ^ 00. ΓΛen, /or αnt/ ί < 0

(5.15)

1/(1 + /2/|ii|)^7(')'^|i|1^1~7^) for 1 < 7 < oo,

-hl\h\)eX for 7 = 00

as y I 0. Especially, in case l\ = — oo and 1 < 7 < 00, ίAe normalized gener-

alized hitting time process {τ~ι2-y\t\l a{h—y)} converges in finite dimensional

distributions, as y j 0, to the hitting time process of a generalized diffusion

with speed measure

Λx) = {7Tt \ w , 1

x > 0

and starting point — oo.

Proof. Note that

ί 1 / ( 1 ) for l < 7 < o o ,a{lt-y\t\)/a(h-v) — [[ for ? =

as ]/ I 0. By Proposition 2, we have

φ(l2-y\t\,λ/a(l2-y))

= ^(/2 - y\t\, {λ/a(l2 - y\t\}{a(h - y\t\)/a(l2 - y)})

_^ ί / 2* 7(7A|i | 1 / ( 1"" 7 )) for 1 < 7 < 00,
\ l2e

x for 7 = 00

as x —* l2. By Proposition 1, we get

ψ(h-y\t\,λ/a(l2-y))

= ψ(l2 - y\t\, {λ/a(l2 - y\t\}{a(l2 - y\t\)/a(l2 - y)})

_^ ( Φ7(7λ|ί|x/(i-τ)) for 1< 7 < oo,

\ eλ for 7 = oo
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as x —> ̂ 2- We have h(λ/a(x)) —» |Zχ|. Hence, we get (5.15). If 1 < 7 < 00,

then by Example 3 in Section 3, 1/Φ7(7λ|ί|1/(1~7)) is the Laplace transform

of the hitting time process of the generalized diffusion with speed measure

- { J1 χ<0,
'

x > 0

and starting point — 00. If Zi = —00, then the limit distribution has to-

tal mass 1 and hence we have also the convergence of finite dimensional

distributions as the proof of Theorem 2 shows. The proof is complete.

We can prove Theorem 6 except the case 7 = 00 using the following

Theorem 7, a version of Kasahara's continuity theorem. We can also prove

Theorems 2 and 3 using Kasahara's continuity theorem. These proofs allow

us to recognize the meaning of the convergence more clearly. However, in

this paper, we make use of Propositions 1 and 2 in our proofs for unification

of the method.

THEOREM 7. Let m be a nonnegatiυe and non-decreasing right contin-

uous function on (—005/2) satisfying | J^oorn(y)dy\ < 00 for x G (—00,^2)

and φ be the unique solution of the following equation:

φ(x, λ) = 1 + λ / (x- y)φ(y, λ)dm(y).
J(-OG,X)

For n = 1,2,..., let mn(x) be a non-decreasing right continuous function

on (Ini,ln2) such that there is cn G {lni^n2) satisfying mn(cn—) — 0. Let

α n , ί ) n G R and let <£n(x, λ) be the solution of the following equation:

φn(x, λ) = an + bnx + λ / (x - y)φn(y, λ)dmn(y) for cn ^ x < Zn2,
J[Cn,x)

= an + bnx - λ / (x - y)φn(y, \)dmn{y) fo
J[χ,cn)

Suppose that

lim sup I / mn(y)dy\ < 00,

an —• a, cn —> - 0 0 as n —> oo ; s u p n | 6 n c n | < oo, and

lim mn(x) = m(x),

for lnl < x < cn.
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for continuity points x G (—005/2) of m. Then,

lim φn(x , λ) = aφ(x, λ)
n—+00

uniformly in any compact set of (x, λ) with x < h and λ ^ 0.

We can prove this theorem similarly to the proof of Kasahara's theorem.

§6. Convergence to JV(0,1)

Theorem 6 and (3.3) show that the limit distribution is degenerate

to one point in case 7 = 00. In this case, we get convergence to normal

distribution by changing the normalization.

THEOREM 8. Assume that l\ = —00 and m(x) = 0 for x < 0. Then

the distribution ofτx = {τx — EQTX) j{VQTX)1/2 converges to iV(0,1) as x —> I2

if and only if

(6.1) I I I m(z) ί I m(u)2du\ dzdyl

as x

Proof. If l\ = —ex) and m(x) = 0 for x < 0, then (6.1) is equivalent

to the condition EQ(TX)
3 —> 0 as x —> I2. The conclusion is obvious by the

result of [5] for CE+ distributions (convolutions of exponential distributions

on R+) that the distribution of fx —* iV(0,1) as x —•> I2 if and only if

γ —> 0 as x —> /2 Refer to [10] for definition of CE+ distribution.

Remark 9. It is shown in [5] that if Zi = — 00 and m(x) = 0 for x < 0,

then (6.1) implies Vb(rx)/(jBo(^))2 —* 0 as x —* Z25 that is, 7 = 00. It is an

interesting problem what kind of limit distributions appear when 7 = 00

and (6.1) is not satisfied.

Set M(x) = f*m(y)2dy.

COROLLARY 1. Suppose that /i = —oo, m(x) — 0 for x < 0,

fx

(6.2) / M(y)dy —• oo as x-+l2

Jo
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and

(6.3) (Γm(y)M{y)dy) = o (M(X)2 Γ M(y)dy\ as x -> Z2.

Then the distribution of τx converges to JV(0,1) as x —• Z2.

Proof. (6.1) is satisfied in case that f£ J^ m(z)M(z)dzdy is bounded.

So, we assume that JQ

X /o

y m(z)M(z)dzdy tends to 00 as x —• Z2. By

L'hospital's rule, (6.2) and (6.3), we have

/ / m(z)M(z)dzdy/ \ / M(y)dy \
Jo Jo Uo J

m(z)M(z)dz/ I -M(x) f / M(y)dy

as x

COROLLARY 2. Suppose (6.2) and

f i r 117Λ
(6.4) M(x) = o m(x) < / M(y)dy) > as x - ^ ί 2 .

\ 1/2 , / tx X -1/2

ΓΛen (6.3) Λo/d5.

Proof. By L'hospital's rule, we have

JX m(z)M(z)dzf I M(a ) ( ^ M(y)dy\

( ( fx \1/2 1 / /*x

m(x)2 I / M(y)dy ) + -M(x)2 ( /
\Jo ) 2 \Jo

= o(l)

as x —•> 2̂- Hence (6.3) holds.

Remark 10. Assume (Coo), that is ra(x) ~ (Z2—x)" 1 !/^ — ̂ ) as x -^ Z2,

where Z2 < 00 and L is slowly varying at 0. Then we have
M ( x ) rsj (Z2 — y)~ιL{}2 — y)2
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and

{M{x)/m{x)γ ~ L(l2 -x)2 = o (J\l2 - y)-lL{l2 - yfdyλ as x - ί2.

Hence (6.2) and (6.4) hold in this case.

We use the notations / ' , / " , / ' n ' for the 1st, 2nd and nth derivatives,
respectively, in the variable λ of a function / of (#, λ).

LEMMA 9.

rx ry
xφ'(x, 0) - φ'{x, 0) = 2 / / m{z)dzdy

Jo Jo

and

rx ry rz rx ry rx
— 4 / m(y) / / m(u)dudzdy — 4 / / / m(u) dudzdy.

Jo Jo Jo Jo Jo Jo

Proof. By Lemma 2, we have

rx rx ry

xφ\x, 0) - φ\x, 0) = / (x - y)m(y)dy + m(z)dzdy
Jo Jo Jo

rx ry
= 2 / / m(z)dzdy.

Jo Jo
Also, we have, by Lemma 2, that

rx ry

(6.5) <p"(x, 0) = φ'{x, 0)2 - 2 / / m(z)2dzdy
Jo Jo

and

rx ry rz
φ"(x,0) = 2 dy (m(y) - m(z))dz I (m(z) - m(u))du.

Jo Jo Jo

By integration by parts, we have

φ»(x,0)
rx ry rx ry

= 2 / m(y) / zm(z)dzdy — 2 / zm(z) dzdy
Jo Jo Jo Jo
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ΓX ry rz rx ry rz

—2 / m(y) / / m(u)dudzdy + 2 / / 771(2) / m(u)dudzdy

Jo Jo Jo Jo Jo Jo
rx ry rx ry

= 2x τn(y) / m(z)dzdy — 2x / m(z) dz
Jo Jo Jo Jo

rx ry rz rx ry rz
+ 4 i l l m(u) dudzdy — 4 / m(y) / / m(u)dudzdy

Jo Jo Jo Jo Jo Jo
rx ry rz rx ry rz

= xφ/f(x,0) + 4 / / / m(u) dudzdy — 4 / m(y) / / m{u)dudzdy.
Jo Jo Jo Jo Jo Jo

Here we used (6.5). We get the conclusion.

LEMMA 10. Let l\ — —oo and m((—oo)+) > — oo. Assume that

m(—x) — m((—oo)+) ~ x^α+1^ ~1K(x) as x —> oo,

where K{x) is slowly varying at oo and n < a < n -\- 1 with n ^ 2. Then
Xh(λ) is n times differentiate in a right neighborhood of 0,

(6.6) (h'h-2)(λ) —> -(co)" 1,

(6.7) [Λ-3{ΛΛ" - 2(/ι')2}](λ) —4 2c^2

C l

and
(6.8) [h-*{6htih" - %{h'f - h2h^}}(\) —± 6(co)-3(c? - coc2)

as λ I 0, where c& = limλj,o jr * J^"{^^(A)} /or fc = 0,1 and 2.

Proof, Under the assumption of the lemma, it is shown in the proof of
Theorem 6 in [10] that λh(X) is n times differentiate in a right neighbor-
hood of 0 and

n

Λ(λ) = £ cfcλ*"1 + (-l)n(l + o(l))λΩ-1iV(λ),
fc=0

where N{X) is slowly varying at 0. Since h{\) is completely monotone,

h(λ) = coλ"1 + ci + c2λ + o(λ),

Λ'(λ) = -c0A~2 + c2 + o(l),

and
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Hence, we have (6.6). Since

hh"{X) = 2(c o ) 2 λ- 4 + 2coc1λ~3 + o(X~2)

and

2(ti)2(λ) = 2(c o ) 2 λ- 4 - 4c o C 2 λ- 2 + o(λ" 2 ),

as λ I 0, we have

{hh" - 2(ti)2}(\) = 2c0ciλ~3 + O(λ~ 2).

Hence we get (6.7). Since

-6c3

Q\-6 - 12c 2

C l λ- 5 - 6co(c2 + 2c 0c 2)λ- 4 + o(λ" 4 ) ,

{h"tih}(\) = -2c3

0\-6 - 2c§ciλ"5 + o(λ~4)

and

(Λ;)3(λ) = -c3

0\-6 + 3c2c2λ~4 + o(λ~4)

as λ I 0, we have

[βhh'h" - 6(ti)3 - h2hF>](X) = {6co(cf + 2c0c2) - 18cgc2}λ-4 + o(λ~4)

- 6 c 0 ( c 2 - c 0 c 2 ) A - 4 + o(λ- 4)

as λ I 0. Hence we get (6.8).

LEMMA 11. Letu(x, X) — φ(x, X) + h(X)~1φ(x^ X). Under the assump-

tion of Lemma 10,

(6.9) {(u ') 2 -«"}(*,0)

= {(ψ'Ϋ - Ψ" + 2(coΓ W - φ') + (co)-2φ(Φ + 2Cl)}(x, 0)

and

(6.10) {u^ - 3u'u" + 2(u'f}(x, 0)

- 2ψ'ψ" + 2φ'3) + Hco)-1^' - φψ" + 2ψ'{φφ' - φ')}

+6(c o)- 2(C l + φ)(φφ' - φ')

+2(co)'3φ(φ2 + 3cιφ + 3c2 - 3coc2)](x, 0),

where Cfc for k = 0,1,2 are ί/iose defined in Lemma 10.
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Proof. Since h(0) = oo, u(x, 0) = φ(x, 0) = 1. Since v! = φ1 + φ'h~ι -

φ'h~ι - φtih'2, by Lemma 10,

Since

„" = φ" + φ"h-1 - Ίφ'tih'2 - φhΓ\hh" - 2(ti)2),

we have, by Lemma 10,

u"(x, 0) = W + 2(co)- V ~ 2C l(c 0)- 2^}(x, 0).

Hence, we have (6.9). Since

«(3) = ,̂(3) + ^(3) fc-l _ 3φ»h>h-2 _ 3φ'h-3{h"h - 2(ti)2}

+φh-i{6htih" - Q(h')3 - h2h&},

we have, by Lemma 10,

uW(x, 0) = {ΨW + 3(c o )-y - 6 C l (c)-V + 6(cf - CoC2)(co)-3^}(x, 0).

Hence, we have (6.10).

THEOREM 9. Let h = -oc and m((-oo)+) > -oo. Let

ra(-x) - ra((-oo)+) ~ x^" 1 " 1 )" 1 " 1 ^(x) αθ x -> oo

where K(x) is slowly varying at oo and n < a < n + 1 lyiίΛ n ^ 2. //

(6.1) holds, then the distribution of τx = (τx — E$τx)/(VQTX)1!2 converges to

Proof. Note that (6.1) implies that I2 < 00 or m(l2—) = 00. Then

(6.11) ί f m(z)dzdy = o ( ί I m(z)2dzdy) .
Jo Jo \Jo Jo )

By (4.2), Lemma 9, (6.9) and (6.11), we have

rx ry

VQ{JX) ~ 2 / / m(z)2dzdy as x —> /2
Jo Jo

By Lemma 11,

Eo((τx - E0(τx)f) = [«(3) - 3^"n' + 2(W ')3](^, 0)

= Jχ(x) + J2(a;) + J3(x) + J4(ar),
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where

"φ' + 2(φ')3
-3φ"φ' + 2(φ')3}(x,0),

J2(x) = 3(coΓ V - φφ" + 2ψ'(φψ' - φ')}(x,0),

Mx) = {6(co)-2(Cl + φ)(φφ' - φ')}(x,0),

and
J4(x) = {2(co)-3φ(φ2 + 3c1(f> + 3cl - 3c0c2)}(x, 0).

By the proof of Theorem 2 and by the assumption,

(Γ fx fy i Ί 3 / 2 \
J1(x) = o[< / m{z)2dz\ as x -> Z2.

\ Uo Λ) J /
By Lemma 9 and (6.11),

as as

while J4(x) is bounded in 0 ύ x < ?2 By Lemma 9,

Since

and

ax \ ( Γ fz N

m(y)dy I I / / m(u)dudz
J \Jo Jo j

/

x / rz \ 2 rx ry rz

ί / m(u)du J dz + 4 / / / m{u) dudzdy
\Jo J Jo Jo Joa x \ rx ry

m(y)dy I / / m(z)dzdy
J Jo Jo

fx ( fz \2 fX fy fZ

= 4 I / m(u)du I dz + 4 / / / m(u) dudzdy.
Jo \Jo ) Jo Jo Jo
j ί / m(u)du ) dz = 2 / / m(z) / m(u)dudzdy

Jo \Jo ) Jo Jo Jo
rx ry rz

= 2 I I τn(z) I m(u)dudzdy,
Jo Jo Jo

f
x
 f

y
 f

z

 9
 f

x
 f

y
 f

z

/ / / m(u) dudzdy ̂  / / m(z) / m(u)dudzdy,
Jo Jo Jo Jo Jo Jo
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we have

{x) = oUj* £m(z)2dzj ] as x

Hence,

E0((τx - Eo(τx))3) = o{V0{rxf'
2) as x-+l2

and we get the conclusion by [2] Corollary 2.

§7, Comparison with the result of Keller-Kersting-Roesler for
diffusion processes

In this section, we apply our results to diffusion processes and compare

them with the result of Keller-Kersting-Roesler. Let —oo ^ r\ < r 2 ^ oo.

Let S be either ( r i , r 2 ) , [r i ,r 2 ), (ri,r 2 ] or [ri,r 2]. Let a(y) and b(y) be

continuous functions on S such that α(y) > 0 on (τΊ,r 2 ) . We assume that

0 G 5. Let A = a(y)£, + b(y)^. We set

fy b(u) fx

s'(y) = exp(- / — — du), s(x) = / s'(y)dy
Jo a\u) Jo

m\y) = (a(y)s/(y))~1, m(x) = / m!(y)dy.
Jo

Let

a = I s(x)m(dx),

β — / m(x)s{dx).

J(0,ro)'(0,r2)

If the boundary r 2 is regular (α < oc, /? < oo) and r 2 G 5, then we need

the following boundary condition to determine a process by the differential

operator A:

(7.1) Ίu(r2) + δAu(r2) + μu~(r2) = 0, Ί^^O, μ ^ 0, \δ\ + μ > 0.

Here ^~(r 2 ) = limεjo ^ΛZ^^ZΛ It i s e a s Y to see that s(r 2 —) < oo and

m{r2—) < oo if and only if a < oo and β < oo. That is, r 2 is regular if and

only if s(r2 —) + ra(r2—) < oo.
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(i) In case 5(7*2 —) + 771(7*2 —) = oo, we set I2 = s(τ2—) and define rri2(x)

by

00, x > l2.

(ii) In case s(r2—) + 771(7*2—) < 00, 7*2 £ 5 and 7*2 is not a t r a p (μ > 0 in

(7.1)), we let l2 = s(r 2 -) + and define 7722 by
7

1(αr)), 0 ^ a; < 5(7*2—)

x) = { m{τ2-)+ I , 5(r2-)^^</2

00 I2 ̂  x.

(iii) In case s{r2~) + mfa—) < 00, r2 ^ 5 (δ = μ = 0 in (7.1)), we set

/2 = s(r2—) and define πi2 by

= ί
OO, X ^ l2.

We define m\ for x < 0 in the same way. Let

~ / \ ί m i ( x ) > # < 0,
m(x) — \ '

Let {β^} be 1-dimensional Brownian motion and let

φ(t) = J l(t,y)m(dy).

Then {Xt = β(0~ 1 (t))} is a generalized diffusion process corresponding

to 77i and {Yt = 5~1(X^)} is the diffusion process with generator A with

relevant boundary condition (refer to [6]).

In the following, we assume that

(7.2) 7*1 = 0 is a reflecting boundary, a(x) = 1 and b(x) > 0 for x > 0.

Let σ x be the hitting time of x for Xt and let r^ be the hitting time of

y for Yt. Then, for 0 ^ y < r 2,

^o(τy) = Eo(σs(y\) — I m(u)du — I m(v)5/(v)di;,

/

β(i/) r 2

= 2 f ( f m{ufsl{u)du)sl(z)dz
Jo Jo
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E0(τy - Eoτy) =

r<y) ( rz ( ru \ ϊ
= 12 I { I rh(u) I πι(v)2dυ ) du > dz

Jo {Jo \ Jo ) )
fy Γ ίz ( fu Ί 1

= 12 / / <m(u) / m(υ)2s'(υ)dvs'(u) \dus\z)\ dz.
Jo iJo I Jo ) J

LEMMA 12. If r2 = oo and

(7.3) b(x)2 / b{y)-1dy —> c/2 as x -> oo,
Jo

with c > 0 ; then, for any nonnegative integer n,

[x c
(7.4) / m'(y)b(y)~ndy ~ m (x)b(x)~n~ι

7o c + n + 1
oo as x —• oo.

Proof. By the assumptions (7.2) and (7.3), we have f* mf(y)b(y)~ndy
oo as x —> oo for n ^ 0. Moreover, we have

Jo

= Γ m'
Jo

m'{y) (f) "^δ(yΓl ( Γ 6 ^ ) " 1

) - 1 - 1 - C + " " 1 Γm'(y)b(y)-ndy.
* Jo

Here we used the assumption, integration by parts and L'hospital's rule.
Hence, we get (7.4).

Under the assumption of Lemma 12,

fx c
m(x) = / m'(y)dy ~ m\x)b(x)~ι.

Jo c + l
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Hence,

These asymptotics yield

mix) I —77-τdyl I —rrrdy ~ .
V JJo rn'(y) Ul Jo m'(y) y 2

Hence, by Theorem 1, we get the following:

THEOREM 10. Assume (7.2), r 2 = 00 and (7.3). Then the Laplace

transform of the limit distribution of TX/EQTX as x —» 00 is 1/Φc±± (̂ 2 λ).
2

It is shown in [5], that if b(x) is continuously differentiable,

/•oo

(7.5) / b(x)-3dx = 00

and

(7.6) b'{x) = o{b\x)),

then the distribution of {τx — EQTX}/{VoTx}1/2 converges to iV(0,1). This

result can also be obtained by using Corollary 2 of Theorem 8. In order to

get this result, the following asymptotic similar to (7.4) is important:

ί*X

/ m!(y)b{y)~ndy ~ m!{x)b{x)~n~ι —• 00 as x -» 00 for n ^ 0.
Jo

We remark that if b(x) ~ cx~ι with c > 0 as x —> 00, then (7.3) is

satisfied; if b(x) ~ cxa with - 1 < a < 1/3 and c> 0, then (7.5) and (7.6)

are satisfied.
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